
PAPER

Gyrokinetic simulations of toroidal Alfvén eigenmodes excited by
energetic ions and external antennas on the Joint European Torus
To cite this article: V. Aslanyan et al 2019 Nucl. Fusion 59 026008

 

View the article online for updates and enhancements.

This content was downloaded from IP address 194.81.223.66 on 30/01/2019 at 13:30

https://doi.org/10.1088/1741-4326/aaf430


1 © EURATOM 2018  Printed in the UK

Nuclear Fusion

Gyrokinetic simulations of toroidal Alfvén 
eigenmodes excited by energetic ions and 
external antennas on the Joint European 
Torus

V. Aslanyan1,a, S. Taimourzadeh2, L. Shi2, Z. Lin2, G. Dong3, P. Puglia4, 
M. Porkolab1, R. Dumont5, S.E. Sharapov6, J. Mailloux6, M. Tsalas6, 
M. Maslov6, A. Whitehead6, R. Scannell6, S. Gerasimov6, S. Dorling6, 
S. Dowson6, H.K. Sheikh6, T. Blackman6, G. Jones6, A. Goodyear6, 
K.K. Kirov6, P. Blanchard4, A. Fasoli4, D. Testa4 and JET Contributorsb

1  MIT PSFC, 175 Albany Street, Cambridge, MA 02139, United States of America
2  Department of Physics and Astronomy, University of California, Irvine, CA 92697,  
United States of America
3  Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543,  
United States of America
4  Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, 
Switzerland
5  CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
6  CCFE, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom of Great Britain and Northern 
Ireland

E-mail: aslanyan@mit.edu

Received 24 May 2018, revised 9 November 2018
Accepted for publication 27 November 2018
Published 21 December 2018

Abstract
The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfvén eigenmodes 
(TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus 
(JET), where TAEs were driven by energetic particles arising from neutral beams, ion 
cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been 
simulated. Modes driven by populations of energetic particles are observed, matching the TAE 
frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed 
of one toroidal and two neighboring poloidal harmonics has been used to probe the modes’ 
damping rates and quantify mechanisms for this damping in GTC simulations. This method 
was also applied to frequency and damping rate measurements of stable TAEs made by the 
Alfvén eigenmode active diagnostic in these discharges.
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1.  Introduction

Toroidal Alfvén Eigenmodes (TAEs) are one of the most fre-
quently observed [1, 2] examples of a class of electromagnetic 
instability driven by energetic particles in tokamaks and are 
of mounting concern for future experiments. A population of 
particles, resulting from wave and beam heating schemes and 
increasingly directly from fusion reactions, can destabilize 
TAEs leading to the expulsion of energetic particles and first 
wall damage [3, 4]. In this Article, we report the results of 
recent simulation efforts with the gyrokinetic toroidal code 
(GTC) [5] to determine the structure and stability of TAEs in 
recent JET discharges.

Spatial gradients of the densities and temperatures of 
energetic particles are a source of free energy contributing 
to the TAEs’ linear growth rate γL , which is counteracted by 
damping from several mechanisms. Continuum damping in 
the TAE frequency gap, formed by the coupling of two adja-
cent poloidal harmonics, is typically insignificant. Electron 
and ion Landau damping typically form a significant contrib
ution; radiative damping, whereby the TAEs couple to kinetic 
Alfvén waves and dissipate energy, can dominate over other 
damping mechanisms.

The conventional approach to numerical investigations of 
TAEs and their growth and damping rates is to compute the 
eigenmode structure and real frequency, often with an ideal-
MHD code like MISHKA [6, 7], and perturbatively compute 
dissipative rates and the contributions of energetic particles 
[8]. The advantage of the gyrokinetic approach in this work is 
the self-consistent solution to the structure and drive/damping 
mechanisms, even in the presence of a significant population 
of energetic (‘fast’) ions. The simulations presented in this 
Article are a first step towards nonlinear simulations required 
for planned future DT experiments.

In order to explore and quantify the phenomenon of TAEs 
at JET since the installation of the fully-metal ITER-like 
wall, discharges have been tailored to their observation [9]. 
In particular, experiments with deuterium were undertaken 
with the aim of developing a scenario for clear observation of 
α-driven TAEs in future DT experiments. Discharges with rel-
atively low densities, internal transport barriers and elevated 
q-profiles were performed to this end. Heating by �5 MW 
of ion cyclotron resonant heating (ICRH) and �25 MW of 
neutral beam (NBI) power was applied with various degrees 
of overlap. Consequently, TAEs were routinely destabilized 
during these experiments; a spectrogram of multiple unstable 
TAEs during application of ICRH is shown in figure 1.

During these discharges, the stable TAEs were probed 
by the newly upgraded Alfvén eigenmode active diagnostic 
(AEAD) [10, 11]. Two sets of antennas, located at toroi-
dally opposite locations below the outboard midplane, apply 
a magnetic perturbation at ∼10 cm from the last closed flux 
surface (LCFS). The antennas’ frequency was continuously 
swept across the TAE gap in order to resonantly excite stable 
modes, as seen in the triangular waveform in figure  1. A 
magnetic probe measurement of a mode’s response to this 
type of excitation is described by a transfer function, which 
allows the mode’s frequency and damping rate in the absence 

of energetic particle drive to be determined. The AEAD can be 
phased to maximize the excitation spectrum at some toroidal 
mode number of interest exciting ∆n ∼ ±10 around this peak.

In this article, we will outline the theoretical basis, work-
flow and initial results of simulations of JET plasmas using 
GTC. In section 2, we review the formulation of GTC and the 
details of JET simulations. In section 3 we outline in detail 
the calculations of the spatial structure and growth rate of an 
unstable TAE (driven by energetic ions), and the contribution 
to the mode’s damping by electron Landau, ion Landau and 
radiative damping. In section  4 we repeat this process for 
stable modes resonantly excited by external antennas.

2.  Details of gyrokinetic simulations

The gyrokinetic toroidal code (GTC) [5] treats a population 
of bulk ions and a separate population of energetic ions with 
the δf  particle-in-cell method (though a full- f  method is also 
available). For a full description of the 5D system of equa-
tions  solved by GTC, see [12–16]. The gyrokinetic equa-
tion  for the distribution of species α (which can be used to 
index i.e. f  for ions, electrons and ‘fast’ ions) is

d
dt

fα(X,µ, v‖, t) ≡
[
∂

∂t
+

(
v‖

B
B0

+ vE + vd

)
· ∇

−
(

1
mα

B∗
α

B0
· (µ∇B0 + Zα∇φ) +

Zα

mαc
∂A‖

∂t

)
∂

∂v‖

]
fα = 0,

� (1)
where X is the gyrocenter position, µ the magnetic moment, 
the unperturbed magnetic field B0 ≡ B0b0, and mα, Zα are 
the particle mass and charge respectively (qe is the electronic 
charge). Here, v‖ is the parallel velocity,

vE = c
b0 ×∇φ

B0
� (2)

is the E × B drift velocity,

vd =
1
Ωα

(
v2
‖∇× b0 +

µ

mα
b0 ×∇B0

)
� (3)

is the magnetic drift velocity with gyrofrequency Ωα, and

B∗
α = B0 +

B0v‖
Ωα

∇× b0 + δB.� (4)

δB = ∇× A‖b0 is the perturbed magnetic field. The perturbed 
vector and electrostatic potentials are A‖ and φ, respectively, 
and are gyroaveraged for ions and taken at the gyrocenter for 
electrons.

In this work, we split the distribution functions of ions into 
equilibrium and perturbed components fα = f0α + δfα, to 
solve

d(δfα/fα)
dt

=

[
δfα

fαf0α
− 1

f0α

] [(
v‖

δB
B0

+ vE

)
· ∇f0α

− 1
mα

(
µ
δB
B0

· ∇B0 + Zα
B∗
α

B0
· ∇φ+

Zα

c
∂A‖

∂t

)
∂f0α
∂v‖

]
.

�

(5)

The electrostatic potential can be found using gyrokinetic 
Poisson’s equation [17],
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Z2
i ni

Ti
(φ− φ̃) =

∑
Zαδnα.� (6)

The term φ− φ̃ on the left hand side represents the ion polar-
ization density and φ̃ is the double gyroaverage of φ [17]. The 
vector potential satisfies the gyrokinetic Ampère’s law,

∇2
⊥A‖ =

4π
c

∑
Zαnαδu‖α.� (7)

The density and parallel velocity are defined as the fluid 
moments (gyroaveraged for ions) of the corresponding distri-
bution functions,

δnα =

∫
dvδfα,

nαδu‖α =

∫
dvv‖δfα.

� (8)

Equations (1)–(8) form a complete system when applying 
to thermal and fast ions as well as electrons. For reasons of 
computational efficiency of simulating Alfvén Eigenmodes 
where tearing parity is not important, the electrons are treated 
by a fluid-kinetic hybrid electron model [18]. Namely, the per-

turbed distribution function is δfe = δf (0)
e + δh, where δf (0)

e  
and δh are the adiabatic and nonadiabatic parts of the per-

turbed electron distribution, respectively, and |δf (0)
e | � |δh|. 

The continuity equation is used for the perturbed electron den-
sity δne, to first order in the perturbation, becomes [12]

∂δne

∂t
+ B0b0 · ∇

(
n0δu‖e

B0

)
+ B0ve · ∇

(
n0

B0

)

−n0(v∗ + vE) ·
∇B0

B0
= 0,

�
(9)

where n0 is the equilibrium density, δu‖e is the perturbed par-
allel electron fluid velocity and

v∗ =
1

n0meΩe
b0 ×∇(δP‖ + δP⊥),� (10)

δP‖ =

∫
dvµB0δfe,� (11)

δP⊥ =

∫
dvmv2

‖δfe.� (12)

To obtain an expression for δf (0)
e , we expand equation (1) to 

first order in ω/k‖v‖:

v‖b0 · ∇δf (0)
e = v‖

(
f0qe

Te
b0 · ∇φeff −

δB
B0

· ∇f0|v⊥

)
.� (13)

The notation ∇f |v⊥ implies a derivative taken at v⊥ = const 
instead of µ = const. The effective potential represents the 
parallel electric field through δE‖ = −b0 · ∇φeff . The effec-
tive potential is, to lowest order,

qeφ
(0)
eff

Te
=

δne

n0
− δψ

n0

δn0

δψ0
− δα

n0

δn0

δα0
,� (14)

where δψ and δα are magnetic field line perturbations. We 
calculate the vector potential δA‖ from the inductive potential 
φind = φeff − δφ through

∂δA‖

∂t
= cb0 · ∇φind,� (15)

which also provides the time derivative of δA‖ used in equa-
tions (1) and (8). The parallel velocity δue‖ needed for equa-
tion (5) is calculated through Ampère’s law, i.e. equation (7) 
is used to solve for δue‖ on the right hand side. Equations (1)–
(15) form a complete system using fluid (adiabatic) electrons. 
These lowest order equations of the fluid-kinetic model can 
be used to remove the effects of kinetic electrons (electron 
Landau damping and trapped electrons).

The kinetic effects of electrons are treated in the higher 
order kinetic equations. Using equations (1) and (13), we cal-
culate δh with,

d(δhe/fe)
dt

=

[
δhe

fe
+

δf (0)
e

f0e
− 1

][
vE ·

∇f0e|v⊥
f0e

+
∂

∂t
δf (0)

e

f0e

+ vd · ∇
δf (0)

e

f0e
− qe

Te
vd · ∇φ+ c

b0 ×∇〈φ〉
B0

· ∇δf (0)
e

f0e

−
qev‖
cTe

∂〈A‖〉
∂t

]
,

�

(16)

4.5 5.0 5.5
t (s)

120

140

160

180

200

f L
A

B
(k

H
z)

−3

−2

−1

0

lo
g 1

0(
δB

)

2 3 4
R (m)

-2

-1

0

1

2

Z
(m

)

(a) (b)

Figure 1.  (a) Spectrogram of ICRH-driven TAEs in JPN #92416. GTC simulation time (5.2 s) is marked by pink dashed line. The 
triangular waveform is the frequency scan by the AEAD. (b) Corresponding shape of the LCFS from EFIT, relative to the limiters (grey) 
and AEAD antennas (black).
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where 〈〉 denotes flux-surface averaging such that 
φ = 〈φ〉+ δφ and similarly for A‖. Kinetic electron effects 
are calculated using the first order correction to the effective 

potential φeff = φ
(0)
eff + φ

(1)
eff , where φ(1)

eff  is given by

qeφ
(1)
eff

Te
= −δn(1)

e

ne
, δn(1)

e =

∫
dvδhe.� (17)

All particle species in GTC are assumed to have their own, 
spatially-dependent Maxwellian distributions (wth the excep-
tion of energetic ions, see below). GTC uses a field-aligned 
mesh in Boozer coordinates, which is computed based on 
an EFIT [19] equilibrium reconstruction, that is mapped to 
Boozer coordinates by the ORBIT [20] code. GTC simulations 
reported in this paper use a fixed boundary condition: namely, 
all perturbed quantities are set to be zero at the inner and outer 
boundary flux surfaces.

The synthetic antenna imposes an electrostatic perturbation 
δφant (a perturbation of the parallel vector potential δA‖ant is 
also available) consisting of a number of toroidal and poloidal 
spatial components and sinusoidal temporal oscillations at 
a user-defined frequency. For the purposes of this work, an 
antenna structure with a single n and two neighboring m , 
m + 1 mode numbers of identical magnitude and an approxi-
mately Gaussian radial profile is chosen to closely resemble 
the destabilized TAE structure. These Gaussian radial profiles 
are imposed only in the plasma inside the simulation domain, 
i.e. no vacuum regions are simulated.

The flux surface dependent electron density and temper
ature was taken from JET’s high resolution Thomson scat-
tering and LIDAR diagnostics, which for t = 5.2 s in JPN 
#92416 is given by the points in figures 3(a) and (b). Data 
from this and adjacent time slices is smoothed into quasi-
analytic, monotonic functions given by the solid lines in each 
panel in order to avoid any unphysically large spatial gradi-
ents. At the simulation times chosen for this work, the bulk ion 
temperature determined by spectroscopic measurements was 
relatively close to that of the electrons, namely Ti ≈ Te. The 
safety factor from the EFIT equilibrium reconstruction, used 
by GTC as outlined above, is given in figure 3(c).

3.  Calculation of mode structure and damping rates

For each JET equilibrium used in GTC simulations (taken at 
the experimental times of interest), we calculate the struc-
ture of the Alfvén continuum using the ALCON [21] code, 
which includes acoustic effects. The n = 5 continuum in JPN 
#92416 at 5.2 s (pink line in figure 1) is shown in figure 4; 
note that the symbol ψp denotes the poloidal flux normalized 
to the edge value. This n = 5 mode was chosen for analysis 
as it is observed destabilized with an approximately constant 
amplitude for a significant length of time. The observed TAE, 
after adjusting for the Doppler shift due to plasma rotation, is 
within the predicted TAE gap.

A population of energetic ions (typically much smaller than 
the bulk ions) can be treated in GTC as either a Maxwellian 
where f (v) ∝ exp(−mαv2/2Tα), as used in this work, or a 
beam slowing down distribution where f (v) ∼ v−3, isotropic 

in both cases. It is known that the non-equilibrium distribu-
tions produced by external heating methods are directional 
and may have a complicated functional form. However, 
for the present work we assume the that the destablizing 
effects of energetic ions are insensitive to the precise nature 
of the distribution function in line with other simulations. 
In order to simulate energetic particle drive, we must there-
fore define an effective ‘fast’ ion temperature Tf  and density 
nf . As direct measurements of these quantities are difficult 
to obtain, we smooth the density profile predicted by ICRH 
(and, optionally NBI) codes; this is then used to obtain an 
effective temperature through Ef =

3
2 Tf nf , where Ef  is the 

total intantaneous absorbed energy content of the energetic 
ions, also calculated by such codes. For the present case, we 
take a centrally peaked energetic particle population accel-
erated by ICRH, computed by the PION code [22], given 
in figure  3(d). Here, Tf (ψp = 0) = 747 keV, dropping to 
Tf (ψp = 0.258) = 550 keV at the peak of the mode of interest 
and with nf /ne = 4.9 × 10−3 at this flux surface. Note that 
once the ne and nf  profiles are chosen as described above, the 
bulk ion density ni is calculated from quasineutrality.

The mode of interest with n = 5 and two dominant 
poloidal harmonics m = 11 and m = 12 grows from random 
initial perturbations. The mode’s frequency and growth rate 
can be determined after a length of simulation time, when the 
amplitude of the mode has grown sufficiently and the other 
harmonics are damped to low amplitudes. This growth of the 
electrostatic potential of the mode’s m = 12 harmonic (for 
a simulation with kinetic electrons and gyrokinetic ions) is 
shown in figure  2(a) with an indicative exponential enve-
lope. The spatial mode structure is shown in figure 2(c), with 
f = 110 kHz and a net growth rate of γ/ω = +1.38% (by 
convention we explicitly specify positive γ  for growth). We 
note that the frequency is within the TAE gap and closely 
matches the observed frequency, as shown in figure  4; the 
full width half-maximum (FWHM) of the flux surface aver-
aged electrostatic perturbation is given by the horizontal bars 
for the energetic particle driven mode and antenna excita-
tion as detailed below. To obtain the rate of electron Landau 
damping, we repeat the simulation with the fully adiabatic 
electron model; in this case the frequency and mode structure 
are both largely unchanged, but the increase in growth rate 
(now γ/ω = +1.47%) is attributable to the disappearance of 
kinetic electron effects. To transform from GTC simulations in 
the plasma frame to the laboratory, where fLAB − f = nfROT, 
we assume that the frequency of unstable TAEs of neighboring 
toroidal numbers are approximately equal in the plasma frame 
as predicted by ideal MHD and therefore deduce the plasma 
rotation frequency fROT . Note that TAE frequency could 
weakly depend on toroidal number n in the plasma frame due 
to pressure gradients of thermal plasmas, which contribute to 
both TAE real frequency and growth rate [16].

The response of a damped eigenmode in GTC to external 
excitation by an antenna with a driving angular frequency ωd 
is similar to that of a damped driven harmonic oscillator (as is 
that of a physical antenna), producing a beat pattern and then 
tending to a saturated response after a number of cycles. The 

Nucl. Fusion 59 (2019) 026008
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peak amplitude in this case is given by a Lorentzian distribu-
tion of the form

A(ωd) =
A0√

(ω2
d − ω2)2 + (2γωd)2

,� (18)

where the parameters to be fitted are the scale factor A0, the 
real part of the angular frequency ω  and the damping rate γ  
of the eigenmode. Note that this antenna drive is applied in 
the plasma frame, in the simulations. The sinusoidal beat fre-
quency envelope appearing in present simulations is shown 
in figure 2(b). The peak is taken to be the first maximum, at a 
time indicated in this case by the red cross: in fact, the peak 
itself is taken from the modulus of the mode amplitude.

In order to quantify damping mechanisms other than elec-
tron Landau damping, we perform a simulation without the 
fast ions and apply the synthetic antenna at the same radial 
location as the energetic particle mode. Such a mode struc-
ture, for a simulation with fluid-kinetic electrons and gyrokin
etic ions, is given in figure 2(d). Repeating the simulation for 

multiple drive frequencies allows a fit to determine the param
eters in equation (18) to be performed, as shown in figure 5; 
the derived damping rate (γ/ω = −2.82%) in this case is due 
to both ion Landau and radiative damping. This procedure is 
repeated for the ideal MHD formulation of GTC [13], where 
ion Landau damping is not present (γ/ω = −1.18%). A heir-
archy of mechanisms is obtained by taking the difference in 
the total drive or damping rates of simulations with different 
physics models to obtain a net rate, as summarized in table 1.

4.  External antenna excitation

Six antennas of the AEAD were operated during these exper-
iments, with groups of four and two at toroidally opposite 
locations, each producing a peak magnetic field of approxi-
mately 8 × 10−5 T at the LCFS. With the system’s recent 
upgrade, each antenna is now driven by an individual ampli-
fier, allowing arbitrary phase control between the antennas. 
The resonant excitation of marginally stable AE by such 
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Figure 2.  Time-dependent electrostatic potential perturbation (dark—imaginary and light—real components) of (a) energetic particle 
driven and (b) antenna driven TAE with n = 5. An indicative exponential and sinusoidal envelope is given for each respective plot by the 
grey dashed line. The red cross in (b) indicates the time when the peak amplitude is taken for the purposes of damping rate calculation (see 
below). The corresponding spatial mode structures are given by (c) and (d) respectively.
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magnetic perturbations is detected by a toroidal array of 
high-resolution magnetic probes. The probe signal is related 
to the driver input of frequency ωd by a complex-valued 
transfer function [10]

H(ωd) =
Cω2 + iDωdω

ω2 − ω2
d + 2i|γ|ωd

,� (19)

where ω  and γ  are the mode’s frequency and damping rate 
(with measurements in the laboratory frame), and C and D 
are amplitude parameters. The mode number can be identi-
fied from the phase differences between probes, provided that 
measurements can be obtained at a sufficiently large number 
of toroidal points.

Three measurements of TAEs made in two discharges suit-
able for analysis with GTC are shown in figure 6(a); table 2 
contains their details and labels for reference. The derived 
values of the frequency and damping rate are obtained by 
fitting the transfer function of equation  (19) to the appro-
priate signals as shown for one of the probes in case 2 in 
figure  6(b). The experiments discussed here were under-
taken when the majority of the toroidal magnetic probes had 
become defective or miscalibrated prior to a major shutdown 
and refurbishment. This has led both to the large margin of 
error in the damping rate measurements and to difficulties 
in identifying the TAEs’ toroidal mode number. We there-
fore perform the above analysis with the synthetic antenna in 
GTC—identifying the peak amplitude for different drive fre-
quencies—for multiple mode numbers to identify a suitable 
candidate mode. Of these simulated candidates, the closest to 
the measured mode in both the frequency and damping rate 
can be matched to the experiment.

For the mode in case 2, the Alfvén continuum is plotted in 
figure 7. Note that the q profile has evolved significantly in 
time since the equilibrium profile in figure 3(d), with q(0) < 1 
and consequently higher Alfvén frequency. We probe the TAE 
gap with a synthetic antenna with two neighboring poloidal 
harmonics; the driving signal is localized between the two 
corresponding rational surfaces to maximize the excita-
tion. For example, when investigating a mode with n = 5, 
m = 5, 6, the radial peak of the synthetic antenna signal would 
be located between q = 5/5 and q = 6/5. For four prospec-
tive modes, the resulting frequencies, mode localization and 
damping rates are shown in figure 7. Based on this analysis, we 
see that the n = 6, m = 5, 6 mode located around ψp = 0.12 
most closely fits the observed laboratory frame frequency and 
damping rate. ICRH was active at the time of the AEAD meas-
urement, but the n = 6, m = 5, 6 mode occurs sufficiently far 
from the absorption layer at ψp = 0.267 [8] that the stability 
is not affected by fast ions in this case.

We have repeated this analysis for the modes in the other 
two cases, as summarized in figure 8. The experimental uncer-
tainty in the frequency detected by the AEAD in the laboratory 
frame is negligible, because the antenna driving frequency is 
a well-defined function of time and varies relatively slowly 
during mode detection; for this reason, we omit the AEAD 
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Figure 4.  Alfvén continuum (black dotted lines) for n = 5 for the 
energetic particle simulation parameters (pink line in figure 1: 5.2 
s in JPN #92416). The frequency and peak position of the modes 
are given by the colored points; the corresponding FWHM is given 
by the horizontal bars. The modes are driven by energetic particles, 
the synthetic antenna with gyrokinetic ions and with the reduced 
(MHD-like) model, as labelled. Note that the FWHM and frequency 
in the EP drive case is almost identical for both the kinetic and 
adiabatic electron case. The red dashed line represents the observed 
TAE plasma frame frequency. The 11/5 and 12/5 rational surfaces, 
which bracket the mode, are indicated.
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Figure 5.  Spectral response to synthetic antenna excitation in GTC 
for a TAE with n = 5. Peak amplitudes as a function of frequency 
are given by crosses, the fit function with f = 101 kHz and 
γ/ω = −2.82% by the solid line.

Table 1.  Drive and damping mechanisms for the n = 5 TAE 
observed in JPN #92416 at 5.2 s. The total drive or damping rate, 
obtained directly from the corresponding simulation, is used to 
deduce net rate for each mechanism; the net rate is that due to 
the corresponding mechanism alone in the absence of the other 
mechanisms.

Drive/Damping γ/ω

Mechanism Total (%) Net (%)

Continuum ∼0 ∼0
Radiative −1.18 −1.18
Ion Landau −2.82 −1.64
Energetic particle +1.47 +4.29
Electron Landau +1.38 −0.09
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frequency error bars from figure 8. Conversely, the uncertainty 
in the damping rate arises from fitting the transfer function 
to noisy signals from different magnetic probes and is conse-
quently large. For case 1, a population of ICRH-accelerated 
ions taken from PION with nf (ψp = 0) = 3.6 × 1011 cm−3 
and Tf (ψp = 0) = 461 keV is used in the simulation. We find 
that a mode with n = 9, m = 26, 27 (the mde indicated for 
case 1 in figure 8) is damped sufficiently strongly even in the 
presence of the fast ions that it exceeds even the relatively 
strong damping seen in experiment. The calculated damping 
rate of the closest candidate mode with n = 6, m = 11, 12 
in case 3 is a close match to experiment; no fast ions are 
modelled for this case as the measurement was made >500 ms 
(constituting multiple slowing down times) after ICRH had 
been switched off.

The uncertainty in matching the modes’ frequency arises 
from the Doppler shift due to varying plasma rotation (which 
cannot be deduced in the absence of unstable modes). Direct 
spectroscopic measurements are available intermittently: 
only immediately following a ‘notch’ (rapid switch-off) 
in the neutral beam power, which allows the background 
signal to be subtracted. In figure  8 we transform the fre-
quencies to the lab frame from the plasma frame as seen in 
GTC by the most probable rotation rate, based on an extrap-
olation from the closest spectroscopic measurement or the 
closest observable separation of other unstable modes. The 
lower error bound assumes zero rotation, while the upper 
error bound assumes that the rotation rate is exactly equal 
the closest observation. The measurement in case 2 is made 
much later than the end of neutral beam injection and there-
fore the plasma rotation is most likely negligible. Case 1 
was taken as neutral beam injection was increasing rotation 
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Figure 6.  (a) The laboratory frame frequencies and damping rates of TAEs measured by the AEAD; the measurements are labelled by the 
cases given in table 2. (b) Magnetic probe datapoints (for case 2) acquired by the AEAD and the corresponding transfer function fit.
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Figure 7.  (Upper panel) The q profile at 11.1 s in JPN #92416. 
(Lower panel) Branches of the Alfvén continuum for n = 5 (black) 
and n = 6 (grey) showing the TAE gap. The frequencies and widths 
of modes probed by a synthetic antenna, with n and pairs of m  
as indicated, are shown relative to the continuum. (Middle panel) 
The corresponding damping rates. The red lines correspond to the 
laboratory frame frequency (see discussion below) and damping 
rate in the respective panels.

Table 2.  Pulse numbers and times of the three AEAD measurement 
cases.

Case JPN # Time (s)

1 92 416 4.9
2 92 416 11.1
3 92 060 7.7
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and followed by a rotation measurement and vice versa for 
case 3. There is some discrepancy between the measured 
and simulated frequency in case 3, which may warrant fur-
ther investigation.

5.  Conclusion and outlook

We have presented the first simulations of TAEs in two JET 
pulses using GTC. The computations enable the modes’ indi-
vidual drive and damping mechanisms to be identified and 
quantified, from kinetic and non-perturbative models, which 
provide more physics insights than ideal MHD solvers. We 
have presented a heirarchical approach to the damping rate 
calculations, by applying different physics models, namely 
fully adiabatic and hybrid kinetic for electrons; ideal MHD 
and gyrokinetic for ions. A synthetic antenna is used to probe 
modes’ frequencies and damping rate in the absence of drive 
by a population of energetic ions.

Simulations of a TAE driven unstable by ICRH-
accelerated ions show good agreement with experiment. Its 
frequency has been matched to the that of the mode in the 
plasma frame as observed in the experiment and its damping 
mechanisms have been analyzed. Three measurements of 
stable TAEs made by the Alfvén eigenmode active diag
nostic have been presented and analyzed with GTC. There 
are experimental challenges to be overcome in modelling 
these measurements: there is significant uncertainty in the 

mode number, stemming from a lack of magnetic probes 
(which have now been replaced and re-calibrated) and in the 
Doppler shift from the laboratory to the plasma frame, stem-
ming from a lack of spectroscopic data. Nevertheless, the 
AEAD measurements are in reasonable agreement with the 
GTC simulations. We plan to use GTC to study lower fre-
quency AEs on JET (in similar fashion to other machines 
[23, 24]) excited by energetic particles and the AEAD, and 
all AEs in the presence of α particles during the upcoming 
JET DT campaign.
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