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Continuum model for the core of a straight mixed dislocation
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Linear elasticity theory predicts a divergent strain field at the dislocation core, resulting from the continuum
approximation breaking down at the atomic scale. We introduce a minimum model that includes elastic
interactions and discrete lattice periodicity, and derive a set of equations that treat the core of an edge dislocation
from a solely geometric perspective. We find an analytical formula for the displacement field of a straight
dislocation of arbitrary mixed character, and we predict that the dislocation core widens as the screw character
becomes more dominant. This finding is in qualitative and quantitative agreement with atomistic simulations of
mixed dislocations in tungsten. The theory is based on a continuum form of the multistring Frenkel-Kontorova
model, which is a nearest-neighbor model for atomic bonding that also takes into account the discreteness of the
crystal lattice. Thus, we circumvent the need to use adjustable parameters in the treatment of a dislocation core.
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I. INTRODUCTION

Linear elasticity theory provides a mathematically pow-
erful description of how a crystalline material responds to
stresses resulting from either applied external forces or from
internal sources, for example lattice defects. Linear elasticity
theory is valid under the assumption that interatomic inter-
actions are harmonic to the lowest order. The linear elastic
Green’s function method enables a straightforward evaluation
of elastic strain at any point inside the material for arbitrary
tractions or displacement boundary conditions at the bounding
surface. In this picture, dislocations are the carriers of plastic
strain, acting as sources for elastic Green’s function solutions
in the form of boundary conditions defined at their slip
planes [1].

However, the question about exactly how the plastic strain
should be defined to reflect the real atomic configuration in the
core of a dislocation lies outside the realm of linear elasticity.
Textbook models of dislocations [2] follow Volterra [3], and
they state that the plastically slipped area associated with
a dislocation ends abruptly inside the crystal. This leads to
strain that is entirely localized at the dislocation line in a
Dirac delta-function-like form. An unfortunate consequence
of this approximation is that elastic strain and stress fields are
singular. They diverge at the dislocation line, and this gives
rise to ill-defined energies and forces.

Several approaches have been developed to address this
problem. In methods based on the Peierls-Nabarro model
[4-7], the plastic strain spreads out as a consequence of
nonlinear interactions across the slipped surface. The resulting
methods offer highly accurate predictions of dislocation core
properties, but solving the models often proves challenging
[8—11]. Some other approaches regularize the singular plastic
strain using a convolution of it with an isotropic nonsingular

“max.boleininger @ukaea.uk
Tsergei.dudarev @ukaea.uk

2475-9953/2019/3(9)/093801(10) 093801-1

function [12,13]. The resulting strain and stress fields can be
computed analytically, but the atomic positions and lattice
strains may not be accurate in the dislocation core region.

The objective of this study is to present a microscopic
continuum model for the dislocation core in a body-centered-
cubic (bcc) lattice. The resulting model is analytically
tractable and offers a physical insight into the microscopic
structure of the core region of a dislocation, combining the
Peierls-Nabarro and regularization approaches.

Starting from a simplified description of interatomic bond-
ing in the context of a discrete model, we relate the functional
form of the plastic strain directly to elastic strain through a
boundary-value problem. By asserting that the atomic model
is equivalent to linear elasticity theory far away from the dis-
location core where the continuum approximation applies, we
are able to eliminate the free parameters of the discrete model
and arrive at something akin to a lowest-order description
of the nonsingular edge dislocation core. The derivation of
the model relates the multistring Frenkel-Kontorova model
[14], the Lubarda-Markenscoff variable core dislocation the-
ory [15,16], and naturally the Peierls-Nabarro [4,5] and linear
elasticity treatments, into an internally consistent picture. By
virtue of its simplicity, we are able to investigate the model
analytically, and find an exact solution for the displacement
field of a straight mixed dislocation.

We do not attempt to derive a continuum model for the
bce screw dislocation core, as the first-principles studies
[17-19] show no appreciable spreading of the plastic strain
over any slip plane, other than possibly during the dislocation
migration process. The singular Volterra description of the
displacement field therefore appears adequate, with the caveat
that the core energy remains ill-defined. It would be appro-
priate to note other approaches to regularizing the dislocation
core energy [20-23].

In Sec. II we present a derivation of the boundary-
value problem for a mixed dislocation with a curved glide
surface. An analytical expression for the displacement field
of a straight mixed dislocation is given in Sec. III, predicting
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that the edge dislocation core widens as the screw character
becomes more significant. In Sec. IV we present a correction
that takes into account the finite distance between atomic
rows at the opposite sides of the glide surface. In Sec. V the
analytical expression for the strain field is compared to results
derived from atomistic simulations of mixed a/2[111](101)
dislocations in bee tungsten. The resulting theory is able to
predict the variation of strain in the dislocation core and
the width of the core in agreement with molecular-dynamics
simulations, offering an analytical nonsingular description of
the core of an arbitrary mixed dislocation free from adjustable
parameters.

II. A CONTINUUM MODEL FOR THE CORE OF A
DISLOCATION IN A BCC LATTICE

Below we introduce the multistring Frenkel-Kontorova
[14] (MSFK) model, which provides a simplified description
of interatomic bonding in a crystal lattice. The MSFK model
describes the periodicity of the lattice in a mean-field picture:
the motion of atoms is constrained to a chosen direction, with
atomic interactions modeled by an effective pairwise periodic
potential. In figurative terms, we consider rows of atomlike
beads threaded on strings, trying to arrange themselves under
the influence of mutual attraction and repulsion. By virtue of
its simplicity, the MSFK model lends itself well to analytical
studies, including the investigation of dislocation core prop-
erties. In the past it was applied to the investigation of the
structure and mobility of screw dislocations [24-26], small
defects of interstitial type [14,27,28], and, more recently, edge
dislocations [29].

However, as atomic motion is constrained along one di-
rection only, the MSFK model is conceptually incompatible
with elasticity theory, where the medium is free to deform in
any direction. We shall therefore apply the MSFK description
only at the plastically slipped surface while treating the elastic
field of the dislocation in the general linear elasticity approxi-
mation.

Consider an infinitely extended crystal lattice, containing
a dislocation with Burgers vector b, which here without loss
of generality is chosen to point in the Cartesian direction Z.
Atoms in the lattice are spatially partitioned along strings
collinear with the Burgers vector. Atomic positions r, ; are
indexed by their position n within a string and by the vector-
valued index j denoting the location of a string in a plane
orthogonal to the Burgers vector. The adjacent strings are
offset by the neighbor vectors h; see Fig. 1 for illustration.
The MSFK Lagrangian is then given by [14]

E 00 mZ,zLj o b 2
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J

j n=—00
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where m is the atomic mass, « is the spring stiffness between
neighboring atoms in the same string, and w is the periodic
interaction strength between atoms in adjacent strings. Below
we neglect the kinetic energy term, as we consider the crystal
in a state of elastostatic equilibrium.

r77,,j+h

Z

FIG. 1. Local bonding environment of an atom at r; ,, in the mul-
tistring Frenkel-Kontorova model. The Burgers vector is collinear
with Z. The atom interacts quadratically with neighboring atoms
in the same string at r;,+; (the interaction is shown by springs).
Neighboring atoms in the surrounding strings at r;; , contribute a
periodic sinusoidal interaction, representing the periodicity of the
lattice described in a mean-field picture. One out of six nearest-
neighbor string vectors A is shown here.

The MSFK model contains two unknown force constants o
and . The linear isotropic elasticity theory also contains two
elastic constants, here chosen as Lamé’s parameters © and A.
We can therefore eliminate the unknown force constants by
asserting that the model should be consistent with the isotropic
elasticity theory. Under the condition that the displacement
field varies slowly on the scale comparable with the distance
between atoms, the MSFK Lagrangian can be linearized with
respect to the strain field, and finally taken to the continuum
limit where it is matched to the Lagrangian of the isotropic
elasticity theory. This condition is not met in the immediate
vicinity of the highly strained dislocation core, but we shall
consider it met for the strings that are not immediately adja-
cent to the glide surface of the dislocation.

The glide surface 92 separates the crystal lattice into
the two bulk regions Q*. Across the glide surface the dis-
placement field is discontinuous because of the plastic slip
introduced by the dislocation, giving rise to a nonlinear La-
grangian L, for the interaction across the glide surface. The
Lagrangian can therefore be represented by a sum of three
terms:

L="Lo+ + Lo + Lsq. (2)

By asserting that Lagrangian Lq+ in the linear continuum
limit must be identical to the Lagrangian of the isotropic
elasticity theory, we can match the two unknown force con-
stants of the MSFK model to elastic constants. Through this,
the dislocation core properties described by Lyq are entirely
determined by elastic constants and crystal lattice structure.
Details of the linearization procedure applied to Lq+ are
given elsewhere [29]. The continuous displacement fields
u®(r) for r € Q* are introduced as smooth interpolations of
atomic displacements according to u, ; = ui(r,,, j) forr, ;e
Q*, leading to a continuum form of the MSFK Lagrangian
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valid in the bulk regions, namely
Lor=—1 /Q V[ +me PG + )] ()

where u; ; = 0;u; is the strain field, and n = 2/(13 is the bcc
atom number density with lattice constant a. Parameter G
stems from the product h;h; = |k|GS;; = IGS;; [30], where
G = 3 for the hexagonal lattice and G =2 for the square
lattice [14], and [ is the length of the neighbor vector.
Consider next the Lagrangian of the linear elasticity theory,

1
Ly = ) /QdVCijklui,juk,l, 4)

where summation over repeated indices is implied. For the
purpose of matching the two models, we only permit dis-
placements in the 2-direction, u; ; = 8;;u; j, where §;; is the
Kronecker delta symbol. The substitution of the isotropic
stiffness tensor ¢;ju; = Ad;;6x + w(8ixdj1 + 6i18 i) leads to

1
Lg=—3 fg AV 42mil  + p(l  +u2,)], )

where the Cartesian indices are given explicitly, and no
summation convention is implied. The yet undefined force
constants of the MSFK model are matched to elastic constants
by equating Eq. (3) to Eq. (5), namely

w = mw*l*nG, (6a)
A = ab*n — 2mw?*1nG. (6b)

Having identified the force constants, we proceed with
defining the glide surface Lagrangian

00
maw*b?
Lio=-—"— 2. )
T
jeqQt n=—o0
j+heQ

x sin’ {%[uj(rn,j) —u, (ryj + h)]}, (7

where the vector summation is taken only over pairs of strings
situated at the opposite sides of the glide surface. The glide
surface Lagrangian describes displacement fields u;t of atomic
strings interacting across the plastic slip surface through a
nonlinear interaction law resulting from (1).

In an earlier study [29], we proceeded under the assump-
tion that the atomic strings that interact nonlinearly are situ-
ated infinitesimally close to the glide plane, with effectively
no separation between them. This approximation leads to an
overestimation of the nonlinear interaction, and therefore to
a highly localized plastic strain field. In other words, the pre-
dicted width of the dislocation core is severely underestimated
in comparison with atomistic simulations, as we confirm
later in Sec. IV. This is a well-documented issue associated
with applications of the Peierls-Nabarro models based on
stacking fault energies to describe nonlinear interactions in the
core region, which can be rectified through the use of more
sophisticated, spatially nonlocal, functionals of the stacking
fault energy [31]. We note that in the earlier study [29] we
solved a simpler variation of the boundary-value problem,
which was derived qualitatively, and therefore we arrived at
a less localized strain field.

) {h}™
z
FIG. 2. bce lattice viewed in a direction collinear with an
a/2[111]-type Burgers vector. Solid circles represent MSFK strings
in a local bulklike environment, and bordered circles represent
the strings adjacent to the glide surface. The glide surface of the
continuum model 9€2, the cross section of which is shown by the
dashed line, is situated at midpoints of the set of neighbor vectors
{h} connecting pairs of strings at opposite sides of the glide surface
(arrows).

In this study, we take into account the finite separation
between atomic strings in an approximate but analytically
tractable manner. The idea is to first solve the problem with
strings being infinitesimally close, and subsequently treat the
finite separation as a perturbation to the initial solution.

We begin by expressing the glide surface Lagrangian (7)
only in terms of the displacement fields at locations very close
to the glide surface. Assuming that the glide surface is situated
halfway between the string pairs r,, ;j and (r,, ; + h), that is, at
(rp,j + %h), see Fig. 2, we extrapolate the displacement fields
from the string positions toward the glide surface as

e U
u;(rn’j +h)~ u;(rn,j + %h) + %th;(rn,j + %h),

where V), = h;0; is the directional derivative operator. Using
the extrapolation rules given above, Lagrangian (7) can be
transformed into an expression compatible with the contin-
uum approximation

maw*b
Lyg = — 5 / ds
w2l aQ

x ) sin® {%[uj’ —u; — %Vh(u; + Mz_)i| }, )]

heNeb(r)

where the vector summation is performed over the set of
strings Neb(r), which are the nearest neighbors of a point
r € Q1 and lie across the glide surface in 7. The fields are
evaluated in the limit approaching the glide surface in the di-
rection collinear to the surface normal vector. The coordinate
dependence of displacement fields in (9) is omitted for brevity.

The above expression gives rise to a complicated
boundary-value problem for which we have not yet been able
to find an analytical solution. Hence we shall first find a
solution corresponding to the limit of vanishing separation
between the strings situated at opposite sides of the glide
surface ng = limy,_,¢ Lyg. In this case, Eq. (9) reads

0 mw*b .o [T 4 -
LBQ = —ZW o dS sin I:Z(MZ _uz )]7 (10)
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and Z is the average number of neighboring strings interact-
ing with a given string across the glide surface. Z =2 for
hexagonal and square lattices,' provided that we neglect the
curvature of the glide surface at the atomic scale; see Fig. 2.

It is of note that the gradient expression Lyg (9) assumes a
local description of interatomic bonding. While we proceed
with investigating a dislocation in a bcc lattice, the gradi-
ent terms may need to be explicitly included to describe
the splitting of a dislocation into partials as observed in a
face-centered-cubic lattice. In this picture, the stacking fault
energy can be obtained by fixing the displacement field in
one half-space as zero, and the displacement field in the other
half-space as constant.

III. ANALYTICAL SOLUTION FOR THE DISPLACEMENT
FIELD OF A STRAIGHT MIXED DISLOCATION

We now proceed to derive the elastostatic equilibrium
equations from the linear elasticity Lagrangian (4) and the
simplified glide surface Lagrangian (10). This is accom-
plished by applying the virtual work principle. The total
variation of the Lagrangian is

2
SLY, = z@/ ds sin [2—”(uj = u;)} Suz — dub).
wl I b

1)
Similarly, the total variation of the linear elastic Lagrangian
4)is

SLSi 2/ chi_,-klukilszu;—L—/ dSC,'jk[M]:ctlnT(Su;t. (12)
Q* ’ a0 ’

The total variation must vanish at equilibrium in accord with
the virtual work principle, namely
8Ljq + 8L + 8Ly = 0. (13)

This results in a boundary-value problem of the form

Cijklulflj(r) =0, reQ*, (14a)
cl‘jkzu,il(r)nf(r) =tF@r), redQ, (14b)
where
mw? 2
1) = :F3izZ—l sin [T(Mf(r) —u; (r))]~ (15)
s , z

The expression above represents an elastostatic equilib-
rium problem complemented with traction boundary condi-
tions of the Peierls-Nabarro type for an arbitrarily curved glide
surface. We note that an equivalent elastodynamic problem
can be formulated by retaining the kinetic-energy term in the
Lagrangian (1), and using the principle of least action instead.

Consider now the case of a straight dislocation of mixed
edge-screw character, lying in the xz-plane with Burgers
vector b || Z. Let the dislocation character angle 6 represent
the angle between the line tangent vector and X, such that
orientations # = 0° and 180° correspond to pure edge, and
6 =90° and 270° to pure screw dislocations. The outward

"With exception for [100](010) dislocations, where Z = 1.

normal vector to the glide plane is then njE = F4,;, and the
boundary term (14b) for i = z simplifies to

ma)2

Coptty ,(r) = Z2— sin [%(uj(r) — uz_(r)):|. (16)

ml
Next we substitute the definition of the isotropic stiffness
tensor into Eq. (16),
czyklu]::[ = [A8; 01 + 1 (Sby + (Szl(syk)]“/::[
= V‘”:,v + M“;?z

= 2uez;, a7

where &; = L(u;; +u;;) is the elastic strain tensor. This
leads to the boundary term

" mow’® |:271 N _ i|
2ues(r) = Z——sin | —u; (r) —u_ (r))|. (18)
’ ml b <

Using expressions for the shear modulus (6a) and (6b) derived
above, and the dimensionless core structure constant
Z

= 19
213G (19

p

we collate the constants and arrive at the final expression
b4 2
—e2,(r) = sin [—(uf(r) —u; (r))]. (20)
p b < <

Summarizing, the boundary-value problem for a flat glide
plane is defined by equations

cijutty; =0, re Q% (2la)
5, =0, red, (21b)
g, =0, red, (2leo)
2
%ejy = sin [%(uj’ - u;)], reaQ.  (21d)

The substitution of the core structure constant (19) also
results in a more compact notation for the glide plane La-
grangian (10),

o [T
/B _ds sin [Z(uz i )]. 22)

Now we focus on solving the boundary-value problem
defined by Eqgs. (21) above. The singular Volterra displace-
ment field u} (r), which can be obtained from the Burgers
displacement formula [2], simultaneously satisfies the elas-
tostatic equilibrium condition (21a) and the two traction-free
conditions (21b) and (21c), with the exception of the points
where the strain field is divergent. We can hence solve the
combined boundary-value problem (21) by convolving the
Volterra field with a nonsingular distribution function. This
distribution function removes the divergence of the singular
Volterra field, and must be chosen in such a way that the
nonlinear traction condition (21d) is met. The traction-free
and elastostatic conditions remain satisfied because taking
a partial derivative or performing a convolution are linear
operations, both acting on the displacement field.
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We find an exact solution for the strain field of a straight
mixed dislocation by convolving the Volterra displacement
field with a Cauchy-Lorentzian distribution,

ui(xvy’ Z) = / dS,O(S—Z)M,l')(x,)’a S)v (23)
where
(s) = L(K—z> (24)
pIS)= i\ s2 4+ k2

is the Cauchy-Lorentzian distribution with width « > 0,
where the latter depends on the dislocation character. The
above convolution approach exemplifies the link between
the Peierls-Nabarro and Lubarda-Markenscoff variable core
dislocation models [15,16].

A full analytical solution describing the MSFK displace-
ment field of a dislocation is given in the Appendix. The
solution shows that the width of the core k increases as
6 — 90° or 270° or, in other words, as the screw character
of the dislocation becomes more dominant:

b 1 2 >
+ tan“ 6 |. (25)
8pv1+tan29<1 -V

The solution satisfies all the conditions of the boundary-
value problem (21). For & — 0° or 180° the solution reduces
to the known form, describing a straight edge dislocation
[16,29,32].

K(0) =

IV. CORE BROADENING DUE TO FINITE INTERATOMIC
SEPARATION EFFECTS AT THE GLIDE PLANE

We now consider a perturbation approach to correct the
above result for the finite separation between string pairs
lying adjacent to the glide plane. First, we rewrite the glide
plane Lagrangian (9) using the displacement field symme-
try relations u} —u; = 2u and u, = u_; see Appendix.
Furthermore, we take &, and h, components as zeros, as their
absolute values are significantly smaller than &,. The resulting
solution depends solely on the elevation of atomic strings
above or under the glide plane & = |h,| = |k - §|, namely

2ubp -2 [T,y +
a /a _ds sin [;(2142 +hu”)]. (26)

Lyg = —

We see that the effect of the glide plane elevation % softens
the role of disregistry, leading to a solution with a broader
core. It is desirable to express this effect as an approximate
scaling law for an effective core structure constant p, < p that
we can apply to the analytical solution found for the 7 — 0
limit above. This is a minimization problem: we seek to find
an effective structure constant p; that most closely captures
the core broadening as a function of 4. Assuming that the
glide plane Lagrangian provides a reliable measure of the core
width, we recast the problem in terms of a condition on the
Lagrangian

Lo (pn) = Laa(p). 27)

In effect, we seek to find a scaled core structure constant
pn, for which the energy of the unperturbed solution is equal
to the energy of the perturbed system. We use the analytical
expression for the displacement field found above in the limit

TABLE I. Structure constant p (dimensionless) and the disloca-
tion core width x (in A) shown as functions of the dislocation charac-
ter. We give the values of the core width without the height correction
k(0), with the height correction «,(0), and with the approximate
height correction «j (6), respectively, using the structure constants
from Egs. (19), (30), and (31). The dislocation core width diverges
as 0 — +90°.

angle 6 (deg) P Pin(0) Kk(8) Kkn(6) K (0)
0 (pure edge) 0.306 0.138 1.54 3.42 3.42
15 0.306 0.139 1.57 3.46 3.48
30 0.306 0.140 1.66 3.61 3.68
45 0.306 0.144 1.88 3.99 4.16
60 0.306 0.148 2.44 5.04 5.41

75 0.306 0.152 4.40 8.89 9.77
90 (screw) 0.306 0.153 oo} 00 oo}

h — 0 in both cases, which could be considered as the first
step in a self-consistent solution scheme. Due to the already
approximate nature of the approach taken so far, there is little
reason to go beyond this first-order approximate step.

First we evaluate the unperturbed Lagrangian LgQ (pn) (22),
using the expression for the displacement field in the near
vicinity of the glide plane (A5c):

2
Lo (pn) = c/ ds sin’ (%uﬁ)
Bl

00 Kf
=ch | dim—
o Ktz
= cl Ky, (28)

where [, is the dislocation length in the x direction, and «;,
is the dislocation core width (25), but with p replaced with
the yet unknown parameter pj,. Prefactor c is introduced for
brevity, where ¢ = —2ubp/m>. Similarly, we evaluate the
perturbed Lagrangian Ly (p) defined in Eq. (26), using the
expression for the strain field in the vicinity of the glide plane
(A6Db):

N
Lyo(p) = c/asz ds sin? [Z(Zuj + huj))]

cl,h (3 —2v
241+ tan26 \2 — 2v

~ clirk + + tan® 9),

(29)

where we have performed a series expansion in & at 0 to
first order to obtain an analytically solvable integral. Equating
expressions (28) and (29) enables solving for the perturbed
structure constant py:

bp(1 — vsin®0)

PO = S l(B = 2v) — sin 0] + b(1 — vsin® )

(30)

In Table I, we give values of the perturbed structure con-
stant p, and the corresponding core width «;, for a range of
dislocation character angles 6. Material parameters are cho-
sen appropriately for the a/2[111](101) edge dislocation in
bce tungsten, where p = ﬁ/(4ﬁ), h = a/ﬁ, b= \/ga/Z,
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v=0.28, and a = 3.14 A. We find that the core width effec-
tively doubles as a result of the height correction. Notably, the
angular dependence of p;(6) has a minor effect on the core
width and may therefore be neglected, leading to a simplified
expression for the perturbed structure constant:

bp

pr(0) =~ pp(0) = m

€29

In conclusion, above we derived an approximate analyt-
ical expression describing the broadening of the dislocation
core due to the finite separation between atoms at the glide
plane. The effect of broadening is substantial for a straight
mixed dislocation, and must be taken into account to describe
displacement fields in better agreement with atomistic simu-
lations. Atomic displacement fields derived from molecular-
dynamics simulations and analytical solutions are compared
below.

V. COMPARISON OF ANALYTICAL SOLUTIONS AND
ATOMISTIC SIMULATIONS

The continuum displacement fields derived from analytical
solutions given above are compared to the data derived
directly from atomistic simulations performed using the
LAMMPS [33] molecular dynamics program. We simulate
a mixed tungsten dislocation dipole of a/2[111](101) type
using the embedded-atom model potential by Marinica et al.
[34].

The simulation cell was initialized with a pristine bcc
lattice oriented along the basis set x = %[151], y= [101],
and z = [111] in the units of lattice parémeter a. Periodic
boundary conditions were applied in all three directions, and
the simulation cell vectors were chosen as

¢y = noX + ik,

¢y = ny, (32)

The kink vector nyk causes the cell to acquire a triclinic
shape, thus forcing the dislocation tangent vectors to be
collinear with ¢,, while the Burgers vector remains at b =
a/2[111] and the glide plane remains parallel to the xz-plane.
The dislocations increasingly acquire the screw character as
ny increases. For n; = 0 this setup reduces to an orthogonal
cell, and for n; = 1 it reduces to single-kink boundary condi-
tions [21,35].

To generate displacement fields suitable for comparison
with analytical solutions given above, we initialized a dipole
of mixed a/2[111](101) dislocations with k = b. We refer
to Fig. 3 for a sketch of the geometry used in atomistic
simulations.

We chose the cell dimensions of (ny,ny,n;)=
(15,34,99). An additional half-plane of atoms was
introduced to enable the formation of a dislocation dipole,
leading to a simulation involving 405 000 atoms in the cell.
The dislocation dipole was initialized by displacing atoms
according to the Volterra displacement field of a mixed
dislocation dipole. We used a relaxation procedure consisting
of three steps for the purpose of escaping shallow energy
minima. First, the atomic configuration was relaxed statically.

nik
S ittt bty P -
/ 5 /
o 4

Ny s ,.!f"‘ —> b e

20 o ',:,.' 4

. il 7
—i >

nyY n,z

FIG. 3. Triclinic simulation cell (dashed line) containing a dipole
of mixed dislocations inclined at a character angle of 6, as seen
looking along the —y direction. The coordinate system is defined in
Eq. (32). The Burgers vector is not drawn to scale.

Subsequently, the system was annealed at 900 K for 5 ps,
before the final static relaxation. This setup was repeated over
a broad range of n; values, spanning an interval of dislocation
character angles 6 from 0° to 85°.

Atomic strains u,, were extracted along atomic rows
collinear to b, for the atomic rows immediately above and
below a dislocation glide plane.

We found the atomic strains to be stacked in symmetric
(a) and asymmetric (b) configurations in alternating order. An
explanation for this effect is that atomic planes alternate in
height along the [121] direction, such that the apparent glide
plane position in (a) is centered between atomic rows under
compression and tension, while in (b) it is significantly closer
to the atomic row under tension [29].

Atomistic dislocation core widths are measured from the
full width at half-maximum (FWHM) of Lorentzian distribu-
tions fitted to the atomistic strain field. Similarly, continuum
dislocation core widths are extracted by fitting Lorentzian
distributions to the analytical u, . strain field given by Eq. (A4)
evaluated at an offset of 4 in the y direction, consistent with
the average height of atomic rows above or below the glide
plane. This process is repeated for three types of continuum
models, listed below in the order of ascending accuracy:

(i) Volterra, p — 0.
(i) MSFK, without height correction, p = +/3/(4+/2).
(iii) MSFK, with height correction, p;, from Eq. (30).

In Fig. 4 we compare atomistic dislocation core widths
to predictions derived from the continuum model over an
interval of dislocation character angles 8. We show the core
widths of the atomically computed tensile or compressive
fields averaged over the two stacking configurations, as well
as overall averaged value. Comparisons show that the Volterra
model consistently underestimates dislocation core widths
by about 50% on average. This is expected, as the Volterra
strain field diverges at the dislocation core. The MSFK model
without the height correction shows improved agreement, but
the predicted core widths are still underestimated on average
by about 30%. In contrast, the MSFK model, including the
height correction, yields the dislocation core widths within
10-20 % agreement to the average atomistic core widths over
the entire range of character angles.

The interpretation of atomistic core widths involves an
element of subtlety. The strain field in the dislocation core
exhibits a strong degree of asymmetry between the regions
that are under compressive and tensile stresses. It is partially
a feature of atomic bonding; for a crystal lattice under an
equal amount of compressive or tensile stress, the absolute
tensile strain is greater than the absolute compressive strain.
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FIG. 4. Dislocation core width plotted as a function of the dislo-
cation character angle, measured as the full width at half-maximum
(FWHM) along the Burgers vector direction. The molecular-
dynamics (MD) core widths are extracted from the first atomic
rows immediately above or below the glide plane, which are under
compression or tension, respectively.

A strongly peaked strain field translates to a more compact
dislocation core, consequently one would expect the disloca-
tion core under tension to be narrower. This is indeed the case
for character angles of 6 < 65°, as is readily seen in Fig. 4. At
larger character angles inversion occurs, and the dislocation
core under compression becomes narrower. To explain this
finding, we need to take a closer look at the strain fields
computed atomistically.

In Fig. 5 we show plots of the core strain fields derived
from atomistic simulations and continuum models for a few
selected dislocation character angles. The strain field derived
from atomistic simulations at low angles is in excellent agree-
ment with the MSFK continuum model. For the angles above
0 =~ 60° the effect of kinks becomes more pronounced; an
internal substructure of multiple peaks appears as the sepa-
ration between the kinks increases; see the inset in Fig. 5.
As the kinks become well-separated, most of the dislocation
line locally acquires the pure screw character, with short edge
dislocation segments connecting straight screw dislocation
segments [37]. The dislocation line does not acquire a mixed
character uniformly, and hence the continuum model de-
scription assuming a straight mixed dislocation line becomes
invalid.

Figure 6 shows the continuum strain field of a dislocation
line where kinks have been introduced deliberately in the form
of a staircase, assuming a kink height of /2/3a = 2.56 A
and a kink separation of 27 A to yield the average disloca-
tion character angle of 6 = 84.6°. The approximate MSFK
strain field was obtained from a numerical convolution of the
Volterra model strain field with a Lorentzian kernel with an ad
hoc width «,(0 = 60°) = 5 A. The strains labeled as kink.1
or kink.2 are computed from dislocations centered at a kink
or at a screw-segment midpoint, respectively. The resulting
strain fields show a characteristic substructure similar to that
of the atomistic strain fields, providing evidence that the
substructure can be readily explained by the effect of the
formation of kinks.
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FIG. 5. Comparison between the strain fields derived from
molecular dynamics (MD) and predicted by the MSFK and Volterra
continuum models for the a/2[111](101) mixed dislocation in tung-
sten at a few selected dislocation angles. The strain of the atomic row
under tension is plotted with a negative sign. The atomistic structure
(inset), colored according to the potential energy of atoms and seen
in the normal direction to the glide plane, reveals the formation of
kinks at large dislocation character angles. The atomistic structure is
visualized with OvITO [36]. Note that the core width is measured in
the direction of the Burgers vector of the dislocation.

We note that the strain fields computed using the approx-
imate form for p;, given by Eq. (31) are practically indistin-
guishable from the character-dependent height correction that
uses p, from Eq. (30). We therefore recommend using the
approximate expression and take advantage of its simplicity.

VI. CONCLUSION

We have derived a continuum model for the straight dis-
location of mixed character in a bce lattice. We found an
exact analytical solution for the strain field of an arbitrary
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FIG. 6. MSFK prediction of the strain field assuming a mixed
dislocation with staircase line shape (dotted), as an approximation to
the kinked line found in atomistic simulations. Pictured here are the
strain fields of two kinked lines centered at differing points; see the
main text. The MSFK prediction exhibits a similar substructure to
the atomistic strain field at an equivalent inclination, providing clear
evidence of kink formation.

mixed dislocation, which is nonsingular and is valid in the
entire space including the core region, and which satisfies both
the elastostatic equilibrium condition and the Peierls-Nabarro
traction condition. We emphasize that the continuum model
is based on a simple description of the periodic crystal lattice
and is free from adjustable parameters.

The shape and the width of the strain field in the core region
of a dislocation are in agreement with atomistic reference
simulations performed for a mixed a/2[111](101) dislocation
in tungsten over a broad interval of dislocation character
angles from 6 = 0° up to approximately 6 = 60°. At larger
character angles, atomistic simulations predict the formation
of well-separated kinks, and this invalidates the representation
of a dislocation as a straight linear object. Nevertheless, the

J

average width of the dislocation core predicted by analytical
solution remains consistent with the atomistic simulations,
confirming the validity of the solution and its suitability for
a coarse-grained description of the dislocation core.
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APPENDIX: ANALYTICAL SOLUTION

Below we give an analytical solution to the displacement
field of a straight mixed dislocation, and we explore some
limiting cases given in the main part of the paper.

We start by defining the following coordinate transforma-
tions:

m=tan@,

Ym =V 1 +m?y, (AD)
Im = T — mX,

that provide the more compact notation required for the pre-

sentation of the analytical formulas below. The displacement

field of a mixed straight dislocation with Burgers vector b || Z
has the form

2 2
wEr) = — b il + (yzm il : (A2)
4 (1 —v)(1 + m?) (yr2n+Z,%1+K2) — 4y 42
b [Z2 +(ym:FK)2][Z2 +K(K:|:ym)]

+ m m 2 2
W) = (1/1+m2_2 — (I =2v)In|z;, + (ym £ &) > (A3)

y 87 (1 — v)v/1 + m? (yrzn + 22 + K2)2 — 4y2 k2 [ ]

b b mim|Ze + Om F k)2 b m
W) = £ + Y2 (y2$ "1 ) 2 ean (-5 , (Ad)
: 4 Ax(1 —v)(1 +m?) (yr2n+zr2n+,(2) — 4y2 2 2 Ym £ K
[

where u;" is valid for y > 0, and u; is valid for y <O. The strain fields in the vicinity of the glide plane are also

The displacement fields are defined in the limit where the
coordinates are close to the glide plane, namely

lim uF(r) =0, (A5a)
y—0+

b[VT+m? —2— (1 =2v)In (2 +«?)]
87 (1 — V1 +m? ’
(A5b)

lim u®(r) =
y—0% y()

lim u®(r) = ﬂ:%[n — 2 arctan (Z—m>]

y—0+ < K

(A5c¢)

well-defined, for example the #, components of the strain field
are

bmk

limut ) =4——o Ab6a
y—0* 2 (r) 27 (22, + «?) (A6a)
bz, [2(1 2 1—v)!
lim ufy(r)z Zn[2(1 +m”) + (1 —v) ]’ (A6b)
yo o= 41+ m? (22, + k?)
b
lim uf,(r) = F d (A6c)
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Solution of the boundary-value problem also involves the
uy . strain component in the limit approaching the glide
plane:
bzu[(1 —v)™' —2]

AT+ m2 (22 +«2)

. + _
ylf(‘}i uy (r) = (A7)

Finally, the width of the dislocation core, as shown by
Eq. (25), is obtained by substituting the uzi component of
the displacement field (AS5c) and the uzi’ and u;—; strain
fields (A6b) and (A7) into the boundary-value problem (21d),

subsequently solving them for «(0).
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