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Volume of a dislocation network
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We derive a simple analytical line integral expression for the relaxation volume tensor of an arbitrary
interconnected dislocation network. This quantity determines the magnitude of dislocation contribution to
the dimensional changes and volumetric swelling of a material, and highlights the fundamental dual role of
dislocations as sources of internal strain as well as carriers of plastic deformation. To illustrate applications of
the method, we compute the relaxation volume of a stacking fault tetrahedron, a defect commonly occurring in
fcc metals; the volume of an unusual tetrahedral configuration formed by the (a/2)〈111〉 and a〈001〉 dislocations
in a bcc metal; and estimate the relative contribution of extended dislocations to the volume relaxation of heavily
irradiated tungsten.
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I. INTRODUCTION

A material exposed to neutron or ion irradiation changes
its volume [1–4] and, in some cases, its anisotropic spatial
dimensions [5]. If the exposure of the material to a flux of
energetic particles is low and the defects produced by irra-
diation can be treated as a dilute gas of localized centers
of lattice distortion [6], the degree of volumetric expansion
or contraction [1,7–9] can be estimated from the relaxation
volumes of individual defects [10–13]. These volumes can
now be accurately computed using ab initio methods [14–18].

However, a conceptual difficulty arises if the exposure
to neutron or ion irradiation exceeds approximately 0.1 dpa
[19,20]. In this high exposure limit, defects form com-
plex dense microstructures [21], with vacancies at elevated
temperatures coalescing into mesoscopic voids [1–4]. The
self-interstitial defects cluster into dislocation loops, which
then form rafts [22–24], agglomerate into larger loops [22,25],
and eventually evolve into an interconnected network of dis-
location lines [19,20].

The relaxation volume of a macroscopic void can be eval-
uated from its surface stress or surface free energy [12]. In
the absence of internal pressure from helium or hydrogen gas
filling the void, the relaxation volume of a void is negative.
As a result, vacancies and voids distributed in a material
produce negative lattice strain, readily observed using x-ray
diffraction [8,9,12,20]. At the same time, it is well known that
materials swell, i.e., increase their macroscopic volume, as
a result of exposure to irradiation [1–3]. In the limit of low
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radiation exposure, this can be readily explained by the fact
the relaxation volumes of self-interstitial defects, produced
simultaneously with vacancies during irradiation, are positive
and significantly larger than the (negative) relaxation volumes
of vacancies [17,18]. But in the limit of relatively high expo-
sure to irradiation this argument no longer applies, since the
majority of self-interstitial atom defects now agglomerate into
large dislocation loops and an extended network of intercon-
nected dislocations [19,20], effectively making them a part
of the regular crystal lattice, and hence barely detectable by
electron microscopy or x-ray diffuse scattering. In fcc metals,
vacancies form stacking fault tetrahedra [26–29], which are
dislocation configurations.

Extensive dislocation networks also form during severe
plastic deformation of materials, especially during rapid de-
formation [30–32], where the atomic processes resemble
those occurring in high-energy collision cascades initiated by
the incident high-energy ions or neutrons [33,34].

To relate the complexity of dislocation structures and dis-
location networks to the macroscopic dimensional changes
that they produce, and enable including dislocations in the
finite-element model formalism for the numerical treatment of
dimensional changes and radiation swelling of nuclear fusion
reactor components [10,13], we propose a method for com-
puting relaxation volume tensors and relaxation volumes of
arbitrary dislocation configurations, and show how to evaluate
the degree of volumetric expansion in a material containing an
interconnected network of dislocation lines.

II. RELAXATION VOLUME OF AN ISOLATED DEFECT
OR A DISLOCATION LOOP

We start by revisiting the concept of relaxation volume in
linear elasticity theory, casting it into a framework coherent
with the established eigenstrain [35] and dipole tensor [6]
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formalisms, and treating it from the perspective of recent
multiscale applications [10,13].

Consider a crystal occupying a finite volume in three-
dimensional space, subject to the traction-free surface bound-
ary conditions. The relaxation volume is defined as the change
of the volume enclosed by the external surface of the crystal,
caused by the strain inside it [6,36]. Hence, the relaxation
volume tensor � is given by the surface integral of the dis-
placement field ui(x) over the volume boundary S with normal
vector n j (x), namely

�i j = 1

2

∫
S

[ui(x)n j (x) + u j (x)ni(x)]dS. (1)

This quantity is a tensorial measure of the volume change to
first order in displacements [13], with the relaxation volume
� given by the trace

� = Tr(�) = �ii, (2)

where summation over repeated indices is implied, �ii =
�11 + �22 + �33. Note that only the diagonal elements of
�i j contribute to the relaxation volume, as shear distortions
conserve the volume of the material.

Applying the divergence theorem to (1), we arrive at [6,36]

�i j =
∫

V
εi j (x) d3x, (3)

where εi j = 1
2 (ui, j + u j,i ) is the strain tensor, with subscripts

after a comma denoting differentiation ( f,l = ∂ f /∂xl ). The
notion of the relaxation volume tensor enables quantifying
anisotropic dimensional changes, as its eigenvalues represent
variations of volume in the principal directions of the tensor.

We are interested in the case where the elastic strain is
originating from the defects inside the crystal. In Mura’s for-
malism [35], the defects are described by a spatially varying
field of eigenstrain ε∗

i j (x), which acts as a source of elastic
deformation. The strain tensor is thereby given by the sum of
two terms:

εi j (x) = εel.
i j (x) + ε∗

i j (x), (4)

where the elastic strain εel.
i j (x) also includes the effect of

boundary conditions. In the particular case where the surfaces
are free of tractions, the elastic strain tensor averages to zero
over the volume of the material [37,38]. Consequently, the
relaxation volume tensor is given by the volume integral of
the eigenstrain [13]:

�i j =
∫

V
ε∗

i j (x) d3x. (5)

In applications, it is necessary to express the eigenstrain
in terms of the specific content of defects in the crystal. For
a point x inside the crystal, we can evaluate the eigenstrain
from the body force f ∗

i by using the elastostatic equilibrium
condition σi j, j = − fi, viz.

Ci jklε
∗
kl, j (x) = − f ∗

i (x), (6)

where Ci jkl is the stiffness tensor. The displacement field
originating from the body force is given by the volume

integral

ui(x) =
∫

Gi j (x − x′) f ∗
j (x′) d3x′

= −
∫

Gi j,k (x − x′)Cjklmε∗
lm(x′) d3x′, (7)

where Gi j (x − x′) is the elastic Green’s function of the infinite
body. Note that the above formula is not a solution to the
general boundary-value problem, as boundary conditions are
not accounted for, see Refs. [39,40] for detail.

If the eigenstrain is associated with a defect localized in a
region near point R in the crystal, the asymptotic form of the
displacement field is found by expanding the elastic Green
function to lowest order in x′ at R,

ui(x) = −Cjklm�lmGi j,k (x − R), (8)

where �lm is the relaxation volume tensor given by Eq. (5).
This gives rise to the expression known from the dipole tensor
formalism [6,11], namely

ui(x) = −PjkGi j,k (x − R), (9)

where the relaxation volume and elastic dipole tensor Pi j of
the defect are related through

�i j = Si jkl Pkl , (10)

Pi j = Ci jkl�kl , (11)

and Si jkl is the compliance tensor [41]. Owing to the sym-
metry properties of the stiffness and compliance tensors [42],
both the relaxation volume and elastic dipole tensors are sym-
metric. The notion of elastic dipole tensor enables evaluating
the energy of interaction between the defect and an external
slowly spatially varying strain field ε′

i j (x) to first order in
the size of the defect as E (x) = −Pi jε

′
i j (x), see [43,44]. For

a detailed analysis of how elastic dipole tensors, formation
[45] and relaxation volumes of small isolated defects can be
evaluated from atomistic simulations, we refer an interested
reader to Refs. [11,12,15–18,46,47].

To relate the relaxation volume tensor of a localized defect
to Mura’s eigenstrain, we define the density of relaxation vol-
umes of defects [10] similarly to the notion of charge density
in electrodynamics, see, e.g., Eq. (28.1) of Ref. [48],

ωkl (x) =
∑

a

�
(a)
kl δ(x − Ra), (12)

where summation is performed over the positions of individ-
ual defects Ra, and δ(x) is the Dirac delta function defined as
δ(x) = 0 for x �= 0 and

∫
δ(x)d3x = 1. The relaxation volume

tensor Eq. (5) can now be expressed as an integral of ωkl (x)
over the volume of the material �kl = ∫

V ωkl (x) d3x. Using
Eqs. (8) and (12), the field of displacements generated by a
spatial distribution of defects can be evaluated as an integral
of the density of relaxation volumes [13,35]

ui(x) = −
∫

Gi j,k (x − x′)Cjklmωlm(x′) d3x′. (13)

By comparing the above with Eq. (7), we arrive at the de-
fect eigenstrain theorem [13], which is the realization that
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the density of relaxation volume tensors is equivalent to the
eigenstrain,

ε∗
i j (x) ≡ ωi j (x). (14)

Provided that the spatial distribution of crystal defects and
their relaxation volume tensors are known, the resulting
macroscopic stresses can be evaluated using conventional
linear elasticity theory [10,13]. This theorem highlights the
intrinsic multiscale character of elastic forces originating from
crystal defects.

While the relaxation volume and dipole tensors of point
defects and small defect clusters can be readily obtained from
atomistic or density functional theory simulations [17,18,47],
it is not immediately clear how to identify the relaxation
volume of dislocation-type defects, in particular when the
dislocations form a complex interconnected network. In what
follows, we treat the problem in the linear elasticity ap-
proximation and begin by exploring the relaxation volume
produced by an isolated dislocation loop, a prototypical build-
ing block of a general dislocation network.

A dislocation curve is defined as the boundary of a cut
surface inside the crystal bulk, where the sides of the cut are
displaced by the Burgers vector b with respect to each another.
As cut surfaces are generally open surfaces, dislocation lines
cannot have loose ends inside the crystal. Not accounting for
closures along free surfaces or grain boundaries, dislocation
lines must terminate either at dislocation junctions or by
looping back onto themselves. In the following we refer to
a dislocation network containing no loose line segments as
closed. Following the above definition, the density of relax-
ation volumes or, equivalently, the eigenstrain of a dislocation
loop, is given by [49]

ωi j (x) = 1

2

∫
S

(bidS j + b jdSi )δ[x − rS (v,w)], (15)

where

dSn =
(

∂rS

∂v
× ∂rS

∂w

)
n

dvdw

defines the bounding surface of a dislocation loop in a
parametrized form through the vector function rS (v,w) [50].
In the linear elasticity approximation, the choice of a partic-
ular shape of the bounding surface rS (v,w) is immaterial,
since strain and stress are unique and continuous functions
defined solely by the position of the dislocation line at the
perimeter of the bounding surface of the loop [51]. However,
if one treats the underlying discrete atomic crystal structure
of the material, the variations of the shape of the bounding
surface can be detected and analyzed, for example by iden-
tifying the extrema of strain associated with the individual
crowdion defects constituting a dislocation loop [52,53]. The
fact that a perfect dislocation loop is an assembly of crowdion
point defects explains why, if we neglect the core effects, the
volume of a loop equals the number of defects forming it,
multiplied by the volume of an atom in the crystal lattice. We
refer an interested reader to Ref. [12] for a detailed analysis of
scaling relations for the relaxation volumes of larger defects,
derived from atomistic simulations.

Evaluating the volume integral Eq. (5) for the eigenstrain
Eq. (15), we arrive at the relaxation volume tensor of an

isolated dislocation loop, see also Eqs. (27.11) and (27.12)
by Landau and Lifshitz [51],

�i j = 1
2 (biA j + b jAi ), (16)

where Ai is the vector area of the loop. The vector area is
defined either as an integral over the bounding surface of the
cut or, through the Stokes theorem, as a line integral over the
boundary � of the cut [51],

Ai =
∫

S
ni(x) dS = 1

2

∮
�

εikl rk drl , (17)

where ni(x) is the surface unit normal vector, εikl is the Levi-
Civita tensor, and r = {rk} is a coordinate of a point on a
dislocation line forming the perimeter of the dislocation loop.
In vector notation, Eq. (17) is [54]

A = 1

2

∮
�

r × dr. (18)

This definition is invariant with respect to the choice of the
origin of the Cartesian system of coordinates, since a transla-
tion of the origin by a constant vector r0 adds to Eq. (18) a
term

1

2

∮
�

r0 × dr = 1

2
r0 ×

(∮
�

dr
)

,

which vanishes for a closed loop since
∮
�

dr = 0.
The relaxation volume of a dislocation loop is given by the

trace of Eq. (16) and hence equals the scalar product of the
Burgers vector of the loop and its vector area, cf. Eq. (43) of
Ref. [55] and Eq. (12) of Ref. [11],

� = b · A = 1

2

∮
�

b · (r × dr) = 1

2

∮
�

(b × r) · dr. (19)

The relaxation volume of an interstitial loop is positive (b ·
A) > 0, whereas the relaxation volume of a vacancy loop is
negative (b · A) < 0. The relaxation volume of a loop formed
by a pure shear-type deformation is equal to zero (b · A) = 0.

The elastic dipole tensor of a dislocation loop can be read-
ily found from the relaxation volume tensor using Eq. (11) as

Pi j = Ci jkl Akbl . (20)

In the above equation, there is no need to symmetrize the
expression on the right-hand side with respect to i and j since
the symmetry properties of Pi j automatically follow from the
symmetry of Ci jkl . Similarly, there is no need to use the sym-
metrized form Eq. (16) in the right-hand side of the equation.

As a slight digression, we note that the Burgers formula
for the displacement field of a curved dislocation line can be
obtained by substituting Eqs. (15) into (13),

ui(x) = −Cklmnbm

∫
S

Gik,l (x − x′) dS′
n, (21)

which is equivalent to Eq. (9.3) by Teodosiu [56], Eq. (4–6) by
Anderson, Hirth, and Lothe [57], and Eq. (27.10) by Landau
and Lifshitz [51]. In (21), integration is performed over the
bounding surface of a dislocation loop. The differentiation of
the elastic Green’s function in (21) is performed with respect
to coordinate x, namely Gik,l (x − x′) = ∂Gik (x − x′)/∂xl , and
the sign convention in the definition of the Burgers vector
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in Eq. (21) above is consistent with Refs. [51,55,56]. If one
adopts the alternative definition of the Burgers vector used
in Ref. [57], the sign before Eq. (21) must be amended from
minus to plus. The observed physical quantities, for example
relaxation volumes, are independent of the Burgers vector
sign convention, and the volume of a self-interstitial disloca-
tion loop is always positive, whereas the volume of a vacancy
loop is negative.

A remarkable aspect of Eqs. (15) and (19) is that, on the
one hand, they show that the fundamental origin of the pos-
itive (or negative) volume of a dislocation loop is associated
with the extra (or missing) material at the bounding surface
S of the loop, illustrated by Eq. (15) and readily identified in
atomistic models [58,59]. On the other hand, Eq. (19) shows
that the problem of evaluation of the volume of a dislocation
loop can be conveniently reduced to computing a contour inte-
gral along the dislocation line at the perimeter of a dislocation
loop. This result, replacing the procedure of counting extra
or missing atoms over the surface of a dislocation loop by
a line integration over its perimeter, enables generalizing the
formalism developed above for an isolated loop to an arbitrary
configuration of entangled dislocations.

Equations (16), (19), and (20) show how to evaluate the
relaxation volume and elastic dipole tensors of an individual
dislocation loop. The case of a dislocation network, featuring
complex configurations of dislocation lines and dislocation
junctions, requires a special consideration. The formalism
for evaluating the relaxation volume tensor of a dislocation
network is given in the next section of the paper.

III. RELAXATION VOLUME OF A DISLOCATION
NETWORK

A dislocation network is defined by a set of dislocation
junctions connected by dislocation line segments Gn with
Burgers vectors b(Gn) ≡ bi(Gn). A closed dislocation net-
work can be equivalently represented as a superposition of
closed dislocation contours �α with Burgers vectors bi(�α )
and area vectors Ai(�α ) by splitting the dislocation segments
according to the conservation rule of Burgers vector at junc-
tions, analogous to the Kirchhoff law of electric current flow
[57]. The dipole tensor of the network in the linear elasticity
approximation is therefore given by the sum of dipole tensors
of the closed dislocation contours, namely

Pi j = Ci jkl

∑
�α

bk (�α )Al (�α ). (22)

While the above expression shows that the dipole tensor of a
closed dislocation network is unambiguously defined, it is in
practice cumbersome to partition the network into individual
contours. We shall instead reformulate the problem in terms
of dislocation line segments by reversing the argument.

First, similarly to Eqs. (17) and (18), we split the area
vectors of closed loops �α into area vectors of their constituent
line segments Gn,

Ai(�α ) =
∑

Gn∈�α

Aα
i (Gn), (23)

where Aα
i (Gn) = ±Ai(Gn) as the line sense of segment Gn

may not match that of the loop �α , leading to the dipole tensor

Pi j = Ci jkl

∑
�α

∑
Gn∈�α

bk (�α )Aα
l (Gn). (24)

This decomposition is exact as integration is a linear oper-
ation, with the caveat that the Ai(Gn) line integrals are not
closed anymore.

Some new line segments were introduced in order to form
the closed loop representation, which are now being integrated
over multiple times. Defining SU as the set of line segments
being integrated over once and SN as the set of line segments
being integrated over several times, Eq. (24) is reordered as

Pi j = Ci jkl

∑
Gn∈SU

bk (Gn)Al (Gn)

+Ci jkl

∑
Gn∈SN

∑
�α∈M(Gn )

bk (�α )Aα
l (Gn), (25)

where summation over the set

M(Gn) = {�α | Gn ∈ �α} (26)

counts all appearances of segment Gn ∈ SN . We refer to Fig. 1
for a visual example of the decomposition.

Next, recalling that due to the conservation of the Burgers
vector at junctions∑

�α∈M(Gn )

bk (�α )Aα
l (Gn) = bk (Gn)Al (Gn), (27)

as well as that the union of unique and nonuniquely appearing
segments contains all the line segments of the network exactly
once, we arrive at the central result:

Pi j = Ci jkl

∑
Gn

bk (Gn)Al (Gn). (28)

Comparing Eq. (28) with Eq. (10), we find the relaxation
volume tensor

�i j = 1

2

∑
Gn

[bi(Gn)Aj (Gn) + b j (Gn)Ai(Gn)], (29)

the trace of which yields the relaxation volume of the network

� =
∑
Gn

bi(Gn)Ai(Gn). (30)

Since the evaluation of areas Ai(Gn) can be reduced to the
line integrals along the dislocations, the dipole tensor, the re-
laxation volume tensor, and the relaxation volume of a closed
dislocation network can all be obtained by the integration over
the individual dislocation line segments.

In computational dislocation dynamics codes and post-
processing algorithms for detecting dislocations, dislocation
lines are commonly represented by a set of piecewise direc-
tionally ordered linear segments [60], satisfying Kirchhoff’s
Burgers vector conservation law at dislocation junctions. Each
linear segment Cn is defined by its Burgers vector b(n)

i , the
starting point p(n)

i , and the end point q(n)
i . Noting that an ele-

ment of the vector area associated with an individual straight
segment equals

A(n) = 1
4

(
q(n) + p(n)

) × (
q(n) − p(n)

) = 1
2 p(n) × q(n),
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b(G1)

b(G2)

b(G3)

b(G4)

b(G5)

b(G6)

(a) b(Γ1)

b(Γ2)

b(Γ3)

A(Γ1) = A(G1) − A(G4) + A(G6)

A(Γ2) = A(G2) − A(G4) + A(G5)

A(Γ3) = A(G3) − A(G5) + A(G6)

(b)

b(G1)

b(G2)

b(G3)

b(G4)

b(G5)

b(G6)

SU = {G1, G2, G3}
SN = {G4, G5, G6}

(c)

FIG. 1. (a) Example of a closed dislocation network consisting of line segments Gi with Burgers vectors b(Gi ) (arrows). Triangles indicate
line sense. (b) The same network represented as a superposition of closed loops �i. Also given is the relation between area vectors A(�i ) and
A(Gi ). (c) Closed loops are split into their constitutive line segments, which are then grouped according to whether they appear uniquely or
not, into sets SU and SN , respectively. The decomposition is used to prove that all three representations yield the same dipole tensor.

we can simplify the expression for the dipole tensor of a
dislocation network Eq. (28) as

Pi j = 1

2
Ci jklεluv

∑
n

b(n)
k p(n)

u q(n)
v . (31)

The relaxation volume tensor of a dislocation network de-
scribed by straight dislocation line segments is now

�i j = 1

4

∑
n

[
b(n)

i ε juv + b(n)
j εiuv

]
p(n)

u q(n)
v , (32)

with the corresponding total relaxation volume given by

� = 1

2
εiuv

∑
n

b(n)
i p(n)

u q(n)
v

= 1

2

∑
n

b(n) · (p(n) × q(n) ), (33)

where p(n) and q(n) are the coordinates of the start and end
points of straight dislocation segments. For a set of arbitrary
curved dislocation segments used in dislocation dynamics
simulations [49,60–63], the relaxation volume can be written
as a sum of line integrals along the dislocation segments,
linking dislocation junctions

� = 1

2
εiuv

∑
n

b(n)
i

∫
(n)

rudrv

= 1

2

∑
n

∫
(n)

(b(n) × r) · dr

= 1

2

∑
n

b(n) ·
∫

(n)
(r × dr), (34)

where the direction of line integration along each curved seg-
ment follows the direction of the corresponding dislocation,
consistent with the law of conservation of the Burgers vector

at the dislocation junctions. Equation (34) is one of the central
results of our study, and for an individual dislocation loop it
reduces to Eq. (19).

To show that expression Eq. (34) is invariant with respect to
an arbitrary translation of the Cartesian system of coordinates,
we note that such a translation amounts to adding an extra
term

1

2

∑
n

b(n) ·
(

r0 ×
∫

(n)
dr

)

= 1

2

∑
s

b(s) · (
r0 × [

r(s)
2 − r(s)

1

])
, (35)

where r0 is the translation vector, and summation over s is
performed over the full arbitrarily curved segments of the
dislocation network linking the dislocation junctions, with r(s)

2

and r(s)
1 being the coordinates of the two junctions at the start

and the end of a full segment s. Since the choice of the start
and end points of a full segment reflects the sense of direction
of integration along the segment, each junction enters the
sum in Eq. (35) with a plus or minus sign. This sign rule,
depending on whether a segment enters or leaves the junction,
in combination with the Burgers vector conservation law at
the junctions, ensures that the various terms cancel each other
and the sum in Eq. (35) vanishes, confirming the translational
invariance of expression Eq. (34).

IV. PERIODIC BOUNDARY CONDITIONS

In computational studies of complex dislocation networks,
periodic boundary conditions are commonly employed to rep-
resent systems of much larger size than the size of the actual
simulation cell. While any dislocation network contained in
a periodic cell must also be closed by definition, the treat-
ment of periodic boundary conditions requires an additional
discussion.
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c

b

FIG. 2. Three example closures of an extended dislocation network consisting of two dislocation dipoles in a box with periodic boundary
conditions. The network is closed by augmenting the dislocation lines with extra segments, showed by dotted blue lines, that connect the
dislocation line ends, with line sense and Burgers vector chosen in accordance with the Burgers vector conservation law at junctions. As the
closure lines cancel with themselves upon the repetition of the motif along the periodic cell vector c, all the examples of closure are equivalent.

First, networks crossing periodic boundaries must be cor-
rectly treated as closed. Depending on the implementation
of periodic boundary conditions, line segments crossing a
periodic cell boundary may be split and displaced by the
corresponding periodic cell vector, seemingly appearing as
loose ends. In order to avoid errors, the area vectors must be
computed using an unbroken (unwrapped) representation of
the network. This is either achieved by computing the distance
vector between any two neighboring points on a curve modulo
the periodic cell vectors [64], or by explicitly translating the
segments broken by a periodic boundary by the corresponding
cell vector.

Second, the simulation box may contain networks that
span the entire periodic box along one or more directions,
regardless of how they are translated. In an unwrapped repre-
sentation, such a network appears to contain terminated lines
that only become connected if the network is repeated along
the periodic cell directions. The simplest example of such a
network is a pair of dislocation lines, collinear to one of the
periodic cell translation vectors, with identical Burgers vec-
tors and opposing line sense. In what follows, we refer to such
a network as extended. Extended networks have well-defined
relaxation volumes, provided that we connect the loose seg-
ments in such a way that the network can be represented by a
superposition of closed loops.

Specifically how should an extended network be closed?
As it turns out, a specific recipe for doing this is immaterial,
provided that some simple rules are followed. Consider a
network extended along a periodic translation vector c, con-
taining a set of m curved segments terminating at points Ri

that are connected through translations by ±c. We introduce
a new set of dislocation lines, the closure, linking the loose
ends of line segments in a manner such that the Burgers
vector conservation law is fulfilled at every junction. Some
examples of closure are shown in Fig. 2. The vector area of
the closed network is invariant with respect to the choice of
closure since each closure segment cancels itself out with its
own periodic image. The most trivial choice of closure is to
pick a single loose end of a dislocation segment and let all
other ends of loose segments connect to it, keeping the line
sense and Burgers vector unchanged, see Fig. 2 (right). The
contribution of the closure to the relaxation volume is then

given by

�(c) = 1

2

m∑
i=2

sib(i) ·
(∫

(i,1)
r × dr +

∫
(1,i)

(r − c) × dr
)

,

(36)
where integrals over (i, j) signify curve integral starting at Ri

and ending at R j , and si is either −1 or 1 depending on the
line sense of the loose segment terminating at Ri. After some
manipulation, we arrive at a simple expression

�(c) = 1

2

m∑
i=2

sib(i) · [c × (Ri − R1)]. (37)

This closure correction needs to be included in the formula for
the relaxation volume given by Eq. (34) if a dislocation config-
uration happens to contain loose ends because of periodicity,
to ensure consistency with the treatment of a fully closed
dislocation network. The relaxation volume and dipole tensors
are then computed in exactly the same way as for a closed
network. In practice, we found the term given by Eq. (37) to
be of comparable magnitude to the relaxation volume of the
network itself, and as such it cannot be neglected.

V. APPLICATIONS

A. The relaxation volume of a stacking fault tetrahedron

Stacking fault tetrahedra (SFT), first observed in quenched
gold by Silcox and Hirsch [65], are thought to form through
the condensation of individual vacancies into a platelet that
subsequently collapses into a loop of intrinsic fault [66,67].
Possible alternative reaction pathways, leading to the forma-
tion of SFTs and likely dominating the dynamics of defects in
the mesoscopic limit, were extensively analyzed and reviewed
in Ref. [68]. The faulted loop is able to transform into an SFT
by means of dissociation and glide of the dislocation segments
bounding the loop. As these processes do not involve mass
transfer, in the limit where dislocations are treated as elastic
discontinuities and core effects are neglected, the relaxation
volume of the SFT configuration is not expected to change
during the transformation. The individual components of the
dipole and relaxation volume tensors may however change.

063601-6



VOLUME OF A DISLOCATION NETWORK PHYSICAL REVIEW MATERIALS 6, 063601 (2022)

b

A

B

C

D

α
β

γ
δ

x

y

z

(a)

A

BC

D

δD

δD

δD

λ = 1

(b)

A

BC

D

δγ

δα

δβ

βα

γβ

αγ
γD

αD

βD

λ = 0.5

(c)

A

BC

D

δγ

δα

δβ

βα

γβ

αγ

λ = 0

(d)

FIG. 3. (a) Arrangement of the faulted Frank loop and stacking fault tetrahedron corner points in the one-eighth of an fcc unit cell with the
edge length of a/2. Points labeled by Greek letters are at midpoints of tetrahedral faces opposite to points labeled by the respective Roman
letters. (b)–(d) Transformation of the faulted Frank loop to a stacking fault tetrahedron parametrized by the reaction coordinate λ. Burgers
vectors are described using the Thompson vector notation.

Let the faulted Frank loop be of vacancy type with b =
1
3 [111]. The loop lies in the plane perpendicular to the Burgers
vector, bounded by dislocations with 〈110〉 line directions and
{112} slip planes forming an equilateral triangle with side
length l , see Fig. 3. We introduce a reaction coordinate λ,
parametrizing the transformation of the faulted loop at λ = 1
to an SFT at λ = 0, with 1 > λ > 0 describing the inter-
mediate stages of the transformation process. Intermediate
configurations are approximated by a tetrahedron truncated
at a height h′ = (1 − λ)h along the direction of b, see Fig. 3
illustrating the notations. Here h is the height of a perfect SFT.

Using the parametrization of the SFT transformation de-
tailed in Appendix A, we find the relaxation volume tensor
from expression Eq. (32),

�(λ) = −al2

12

⎡
⎣ 1 λ2 λ2

λ2 1 λ2

λ2 λ2 1

⎤
⎦, (38)

with the relaxation volume �(λ) = �ii = −al2/4, where a is
the fcc lattice constant. The principal values of the relaxation
volume tensor are

�p.v. = −al2

12
(1 − λ2, 1 − λ2, 1 + 2λ2), (39)

indicating that an SFT (λ = 0) generates isotropic volume
contraction, whereas a Frank dislocation loop (λ = 1) gives
rise to anisotropic volume contraction. While the principal
values of the relaxation volume tensor vary as functions of
λ, the total relaxation volume of the SFT is the same as the
relaxation volume of the Frank loop.

Using the stiffness tensor for a cubic crystal [42,69]

Ci jkl = (c11 − c12 − 2c44)δi jδ jkδkl

+ c12δi jδkl + c44(δikδ jl + δilδ jk ), (40)

we arrive at an expression for the elastic dipole tensor of an
SFT using either Eq. (11) or (31), namely

P(λ) = −al2

12

⎡
⎣c11 + 2c12 2c44λ

2 2c44λ
2

2c44λ
2 c11 + 2c12 2c44λ

2

2c44λ
2 2c44λ

2 c11 + 2c12

⎤
⎦.

(41)

The number of vacancies Nv forming the SFT can be found
by dividing its relaxation volume by the volume of a missing
atom in an fcc lattice −a3/4, resulting in Nv = l2/a2. The
relaxation volume of an SFT, expressed in terms of the number
of vacancies that it contains, is

� = − 1
4 Nva3. (42)

For comparison, the relaxation volume of a spherical void in
an fcc metal, containing the same number of vacancies, is [12]

�void = −
(

3

2

)5/3

π1/3

(
1 − ν

1 + ν

)
sa2

μ
N2/3

v , (43)

where s is the surface stress, μ is the shear modulus, and ν is
the Poisson ratio. Equations (42) and (43) suggest that in the
macroscopic limit Nv 	 1, an SFT exhibits a much greater
degree of elastic relaxation than a void, in agreement with
atomistic simulations [68]. This does not imply, however, that
a void is energetically more stable than an SFT since, like for
point defects [70,71], it is often the core energy rather than the
elastic energy that dominates the total self-energy of a defect
configuration.

B. 〈111〉/〈100〉 bcc tetrahedron

Collision cascades in body-centered cubic (bcc) metals
occasionally produce unusually complex dislocation struc-
tures, which are topologically different from the commonly
occurring individual dislocation loops. An example of such
a topologically unusual dislocation configuration formed in a
collision cascade is given in Fig. 10 of Ref. [72]. Similarly
to an SFT, the structure involves four dislocation junctions
but, as opposed to an SFT, now dislocations with two fun-
damentally different Burgers vector types are involved in
the formation of this structure. These two Burgers vectors,
schematically noted in Fig. 4, are of the (a/2)〈111〉 and
a〈100〉 types, where a is the bcc lattice constant.

Computing the scalar triple products for the six segments
of the bcc tetrahedron using the rule Eq. (33) produces values
given in the last column of Table III, resulting in the total
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FIG. 4. (a) Sketch of a tetrahedral defect structure formed by dislocations with (a/2)〈111〉 (blue) and a〈100〉 (red) Burgers vectors in a bcc
metal. The configuration resembles a stacking fault tetrahedron, but involves no stacking faults. The topology of this dislocation configuration
is not equivalent to that of a dislocation loop. Coordinates of points A, B, C, and D are given in Table III. (b) Dislocation configuration shown
in (a) represented as an equivalent superposition of two (a/2)〈111〉 and one a〈100〉 loop.

relaxation volume of the dislocation structure in Fig. 4,

� = aL2. (44)

The fact that this quantity is positive suggests that the dislo-
cation configuration depicted in Fig. 4 has the net interstitial,
rather than vacancy, character.

The decomposition of the structure shown in Fig. 4 into
individual loops highlights the subtlety associated with the
evaluation of the volume of a complex dislocation configu-
ration. Indeed, applying vector calculus and formula (b · A)
for the volume of an individual loop Eq. (19), we find that
both (a/2)〈111〉 dislocation loops, shown in blue, have the
interstitial character and the same positive volumes of aL2.
The a〈100〉 loop, shown in red, has vacancy character, its
volume is negative, and is equal to −aL2. The sum of volumes
of the three loops is aL2, in agreement with the result Eq. (44)
obtained by a direct calculation using Eq. (33), which notably
does not require decomposing a dislocation configuration into
individual loops.

C. An extended network of dislocations produced by irradiation

Metals exposed to irradiation by highly energetic particles,
such as neutrons in a nuclear reactor, develop microstructures
often involving complex extended dislocation network con-
figurations. Whenever energetic particles scatter by atoms in
the crystal lattice, they may impart sufficient kinetic energy to
ballistically displace a large number of atoms from their lattice
sites. The displaced atoms eventually recrystallize, leaving
behind defects of both vacancy and interstitial type. With
increasing exposure to radiation, the density of radiation de-
fects becomes large enough for defects to coalesce and form
complex interconnected dislocation networks. The dislocation
network transfers mass through the system under the influ-
ence of irradiation and external stress, thereby contributing to
irradiation-induced creep.

We simulate the formation of an irradiated microstruc-
ture in single-crystal bcc tungsten (W) using the molecular
dynamics software package LAMMPS [73] and the empiri-
cal interatomic potential developed in Ref. [74]. We start
by initializing a perfect bcc lattice in an orthogonal simula-
tion cell with 220 unit cell repeats along the [100], [010],
and [001] cell vectors, containing over 21.3 million atoms.

Periodic boundary conditions are applied in all three direc-
tions. We introduce 100 simultaneous cascades by choosing
100 random atoms, with a minimal distance of 15 Å to each
other, and assigning each atom a randomly oriented velocity
corresponding to the kinetic energy of 10 keV. Following the
method commonly used in atomistic cascade simulation, we
use an electronic stopping model for atoms with kinetic ener-
gies above 10 eV and an adaptive time step. For atoms with
kinetic energy below the energy corresponding to melting, we
apply a damping term with the time constant of 15.6 ps to
model electronic losses due to electron-phonon coupling in
the low velocity limit [75]. The system is propagated until the
temperature drops below 100 K, which takes ∼10 ps, at which
point velocities are set to zero, and atomic coordinates and box
dimensions are relaxed using the conjugate gradients method.
The next round of cascades is initialized in the now damaged
microstructure, and this process is repeated until the desired
radiation dose is reached.

Using the damage model proposed in Ref. [76], we find
that every new set of cascades increments the radiation dose
φ by the amount

�φ = Nc
0.8Td

2EdN
= 1.67 × 10−4 dpa, (45)

where Nc is number of cascades per iteration, Td ≈ 8 keV
is the cascade damage energy, Ed = 90 eV is the assumed
threshold displacement energy for tungsten, and N is the total
number of atoms in the simulation cell. The dose is given
in the dimensionless units of displacements per atom (dpa),
which is a standard measure of exposure of materials to radi-
ation used in the field of nuclear materials [76]. The dose of
φ = 1 dpa signifies that on average every atom in the system
has been a part of a Frenkel pair, consisting of a vacancy and
a self-interstitial defect, suggesting a significant accumulation
of radiation defects. We apply 6000 cascade iterations in order
to reach the dose of 1 dpa.

The resulting atomic configurations are analyzed and
their dislocation content determined using the dislocation ex-
traction algorithm (DXA) [77] implemented in the OVITO

software [78]. The algorithm is able to identify the disloca-
tion line sense, its Burgers vector, the line coordinates, and
the topology of the dislocation network. Because the irra-
diated microstructure is vacancy rich as a large number of
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70
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z
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FIG. 5. Dislocation networks extracted from simulated microstructure of irradiated tungsten, showed in an unwrapped representation.
In this example, the dislocation microstructure is found to evolve from dispersed loops at low dose, to extended dislocation networks at
intermediate dose, to a large closed interstitial loop at high dose. Networks with net interstitial and vacancy content are colored red and blue,
respectively. Structures (d) and (e) contain extended networks, shown periodically repeated along x direction (gray lines), with segment end
points marked by black dots. Dislocations of (a/2)〈111〉 and a〈100〉 type are drawn with solid and dotted lines, respectively.

self-interstitial atom defects have coalesced into dislocations
loops and the dislocation network [19], some dislocation
curves identified by the DXA are disjointed and have loose
ends. To ensure that all the networks are closed, we restore
the dislocation connectivity by iterating over loose ends in
the network and connecting them to other loose ends in the
neighborhood.

Snapshots of the dislocation network formed at various
doses are shown in Fig. 5. At low doses, the interstitial defects
produced by cascades form small spatially dispersed disloca-
tion loops with (a/2)〈111〉 and a〈100〉 Burgers vectors. As
the dose increases, the interstitial loops grow and coalesce,
joining together to form more complex loops, which even-
tually merge to form an extended network. At a higher dose
(φ ∼ 1 dpa) the network breaks apart, leaving behind a large
interstitial loop of around 60 nm diameter. We note that the en-
tirety of the simulation box is now filled with homogeneously
distributed vacancy clusters, saturating to the total vacancy
content of 0.34% over the course of irradiation, see Fig. 6(c).
Around 90% of vacancy content is in the form of monova-
cancies, with the remainder constituting subnanometer sized
vacancy clusters. The vacancy content was determined using
the isosurface method presented in [79].

In Fig. 6(a) we compare the change of volume of the sim-
ulation cell with the total relaxation volume of the dislocation

network computed using expressions Eqs. (34) and (36). The
volume change is given in the units of bcc atomic volume
�0 = a3/2. In the dynamic steady state of the material form-
ing in the high dose limit [19,20], the total box volume has
increased by �V/V0 = 46 × 103/(2 × 2203) = 0.22%. We
note that the relaxation volume of the dislocation network
is at times higher than the total volume change of the simu-
lation cell. This is not a contradiction, as each of the many
monovacancies contributes the negative amount of �vac

mono =
−0.367 �0 to the total relaxation volume of the system
[12,17]. For the saturated vacancy concentration of 0.34%,
we obtain the total relaxation volume of all the vacancies
�vac

tot = −26.6 × 103 �0, suggesting that the sum of the dislo-
cation and vacancy relaxation volumes is always smaller than
the simulation cell volume change. The margin of error stems
from neglecting the nonlinear relaxation volume effects [74]
associated for example with the core regions of dislocations.

The relaxation volume of the dislocation network ex-
hibits a discontinuity at 0.3 dpa where it sharply drops by
�� = −48.2 × 103 �0. This drop can be entirely attributed
to its transformation into an extended network. As seen in
Fig. 6(b), the dislocation network first becomes simultane-
ously extended along the x and y directions at 0.26 dpa.
Shortly after, at 0.30 dpa, the network reorganizes itself to
being only extended in the x direction. During this process, it
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FIG. 6. (a) The relaxation volume of the dislocation network and the total change of volume of the simulation cell, expressed in the units
of atomic volume �0, shown as a function of dose. (b) Plot showing if the dislocation network is extended or not as a function of dose. The
discontinuity in the computed relaxation volume occurs shortly after the dislocation network becomes extended, suggesting that the change of
the relaxation volume is associated with the change in the topology of the network. (c) Vacancy concentration, in the units of vacancies per
lattice site, shown as a function of dose.

loses over half of its relaxation volume. Because the number
of atoms in the system is conserved, such a process can only
occur if the crystal lattice simultaneously undergoes a plastic
transformation that increases the number of lattice sites by an
equal amount—this is possible because many lattice sites in
the simulation cell are unoccupied, populated by vacancies.
As the simulation cell volume does not exhibit a discontinuity,
the drop in the relaxation volume of the dislocation network
must be fully counteracted by the volume change arising from
a corresponding plastic deformation of the cell as a whole.

To illustrate this point, we estimate the change in the num-
ber of lattice sites in the simulation cell. Given matrix A,
where the jth column is the jth simulation cell vector, and
matrix B, where the jth column is the jth primitive lattice
vector, preserving the continuity across periodic boundary
conditions requires that

A = BN, (46)

where N is a 3 × 3 matrix of integers. Note that nlattice =
nmotif det(N) is the number of lattice sites, where nmotif = 1
for the primitive bcc unit cell. For a bcc crystal, B takes on the
form

B = a

2

⎡
⎣−1 1 1

1 −1 1
1 1 −1

⎤
⎦. (47)

For the simulation cell given here before irradiation, Ai j =
220aδi j , and therefore Ni j = 220(1 − δi j ).

Consider now the same system after it was exposed to irra-
diation, leading to an elastoplastic deformation, transforming
the simulation cell to A′. As the periodic boundary conditions
still apply to the transformed simulation cell, the continuity
condition still applies in a modified form

A′ = B′N′, (48)

where B′ is the elastically distorted lattice cell and N′ is the
integer-valued matrix of cell repeats after plastic deformation.
The change in the number of lattice sites after elastoplastic
deformation is then given by

�nlattice = nmotif [det (N′) − det (N)]. (49)

As the continuity condition still applies, N′ is constrained
to be integer valued, therefore the smallest possible increase
in the number of lattice sites is �nlattice = 48 400, which is
equivalent to the volume increase of the system by �V =
48.4 × 103 �0. This volume change is very close to the mag-
nitude of the discontinuous change in the dislocation network
volume of �� = −48.2 × 103 �0 found numerically at φ =
0.3 dpa. This confirms that the change of volume of the crys-
tal involves a plastic deformation, mediated by a structural
reorganization of the extended dislocation network. During
irradiation at low temperatures, where vacancies are immo-
bile, this mechanism is expected to play a significant role in
changing the dimensions of the crystal.

VI. CONCLUSIONS

The question about the relaxation volume of an arbitrar-
ily complex interconnected network of dislocations naturally
arises in the context of macroscopic analysis of microstruc-
tures of heavily irradiated or heavily deformed materials if
one attempts to evaluate the effect of the dislocation network
on swelling or dimensional changes [10,13]. While a formula
for the volume of an isolated dislocation loop is well known
[11,55], generalizing it to the case of an arbitrary dislocation
network has so far proved elusive. In this study we derived
an analytical expression for the volume of an arbitrary inter-
connected network of dislocations and showed that its volume
can be evaluated using piecewise line integration along the ar-
bitrarily curved directionally ordered dislocation lines, linking
the junctions of the network, see Eqs. (33) and (34). We prove
that this analytical expression for the volume of the network is
invariant with respect to the choice of the Cartesian system of
coordinates or the use of periodic boundary conditions, and il-
lustrate its applications using several representative examples
of complex dislocation structures.
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TABLE I. Parametrization of the faulted Frank loop (λ = 1) in
terms of piecewise linear segments.

Burgers vector b(n) (a) Start p(n) (
√

2l) End q(n) (
√

2l)

δD = 1
3 [111] A C

δD = 1
3 [111] C B

δD = 1
3 [111] B A
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APPENDIX A: PARAMETRIZATION OF THE SFT
FORMATION PROCESS

Following Fig. 3, the corners of the one-eighth fcc unit cell
A, B, C, and D define the coordinate system:

A = a

2
(x̂ + ẑ),

B = a

2
(ŷ + ẑ),

C = a

2
(x̂ + ŷ),

D = 0,

(A1)

where a is the fcc lattice constant. Points α, β, γ , and δ lie at
midpoints of the tetrahedral faces opposite the points A, B, C
and D, respectively:

α = (B + C + D)/3,

β = (C + D + A)/3,

γ = (D + A + B)/3,

δ = (A + B + C)/3. (A2)

Tables I and II list the Burgers vectors b(n), starting points
p(n), and end points q(n) of the piecewise linear segments con-
stituting the SFT dislocation structure. Note that the Burgers
vectors are given in the Thompson vector notation, such that

b = δD = D − δ = 1
3 [111]. (A3)

The tables enable a simple computation of the dipole tensor,
the relaxation volume tensor, and the relaxation volume, fol-
lowing the general expressions Eqs. (31)–(33).

TABLE II. Parametrization of the Frank loop transforming to the
SFT (0 � λ < 1) in terms of piecewise linear segments.

Burgers vector b(n) (a) Start p(n) (
√

2l) End q(n) (
√

2l)

δβ = 1
6 [011] A C

δα = 1
6 [101] C B

δγ = 1
6 [110] B A

γβ = 1
6 [101] D + λ(A − D) A

βα = 1
6 [110] D + λ(C − D) C

αγ = 1
6 [011] D + λ(B − D) B

βD = 1
6 [211] D + λ(A − D) D + λ(C − D)

αD = 1
6 [121] D + λ(C − D) D + λ(B − D)

γD = 1
6 [112] D + λ(B − D) D + λ(A − D)

APPENDIX B: PARAMETRIZATION OF A BCC
TETRAHEDRON

Figure 4 shows the schematic structure of a tetrahedral
dislocation structure that can be formed in a bcc metal by the
b = (a/2)〈111〉 and b = a〈001〉 dislocations. In principle, the
dislocation lines forming the edges of a bcc tetrahedron can
be curved, see, for example, Ref. [72], but for the purpose of
illustrating the principle of how to evaluate the volume of an
unusual dislocation structure, we assume that all the disloca-
tion lines linking the dislocation junctions of the structure are
straight. The coordinates of the four junctions shown in Fig. 4
are

A = (0, L, L),

B = (0,−L, L),

C = (L, 0, 0),

D = (−L, 0, 0). (B1)

In these notations, vector DC is collinear with the [100] crys-
tallographic direction, whereas vector BA is collinear with the
[001] direction. The Burgers vectors of the six dislocation
segments forming the bcc tetrahedron shown in Fig. 4, and
the vector coordinates of the segments themselves are given
in Table III. A direct examination of the dislocation configura-
tion shows that the Burgers vectors are conserved at junctions,
and that the a〈001〉 dislocations have a pure edge character,
whereas the (a/2)〈111〉 dislocations have a mixed character.
The length of the a〈001〉 segments is 2L, whereas the length
of the (a/2)〈111〉 segments is

√
3L.

TABLE III. Parametrization of the bcc tetrahedron shown in
Fig. 4 in terms of piecewise linear dislocation segments.

Burgers vector b(n) (a) Start p(n) End q(n) �(n)

[100] A B aL2

1
2 [111] D A 0
1
2 [111] C A 0

[010] C D 0
1
2 [111] B C 0
1
2 [111] B D 0
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The quantities referred to as �(n) in Table III are
the individual terms in Eqs. (33) and (34), computed
in the Cartesian system of coordinates where the posi-
tions of the junctions are given by Eq. (B1). On their

own, quantities �(n) are not invariant with respect to
the translations of the system of coordinates, but their
sum � = ∑

n �(n) is invariant with the respect to such
translations.
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