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Abstract
We present results of the design, implementation and testing of a Bayesian multi-diagnostic inference
system which combines various divertor diagnostics to infer the 2D fields of electron temperature Te,
density ne and deuterium neutral density n0 in the divertor. The system was tested using synthetic
diagnostic measurements derived from SOLPS-ITER fluid code predictions of the MAST-U Super-X
divertor which include appropriate added noise. Two SOLPS-ITER simulations in different states of
detachment, taken from a scan of the nitrogen seeding rate, were used as test-cases. Taken across
both test-cases, the median absolute fractional errors in the inferred electron temperature and density
estimates were 10.3% and 10.1% respectively. Differences between the inferred fields and the test-
cases were well explained by solution uncertainty estimates derived from posterior sampling. This
work represents a step toward a larger goal of obtaining a quantitative, 2D description of the divertor
plasma state directly from experimental data, which could be used to gain better understanding of
divertor physics phenomena.

Keywords: Bayesian inference, divertor physics, Tokamaks

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Limitations of conventional divertor diagnostic analysis

The divertor of a magnetic confinement fusion device is a
complex system involving transport, atomic, molecular and
impurity processes in the plasma as well as at the divertor sur-
faces, all giving rise to energy, momentum and particle sources
and sinks [1]. These processes are influenced by other aspects of
the divertor such as the divertor geometry (e.g. what fraction of
recycled neutrals escape the divertor) and magnetic topology. All
of the above make it difficult to separate out the effects of
individual processes to verify whether our physics understanding,

embodied in 2D models of the divertor such as SOLPS-ITER [2],
are correct.

Despite the variety of diagnostic systems available in the
divertor, they each have limitations such that any single instru-
ment cannot directly determine the 2D fields of plasma char-
acteristics (e.g. electron/ion temperature and density) or the
properties of the neutrals (e.g. atomic and molecular densities).
For example, Langmuir probes and Thomson scattering systems
can directly measure some of these fields, but do so only at a
series of isolated points. Filtered camera imaging systems can
collect information from a large fraction of the divertor cross-
section, but provide line-integrated measurements of spectral line
emissivities, which are a complicated function of the underlying
plasma fields [3].

Due to these limitations, studying the physics of divertor
plasmas has often relied on matching the predictions of codes
like SOLPS-ITER to diagnostic measurements, to find a set of
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plasma fields which are consistent with the available data.
This matching process can be extremely time intensive, and
typically requires ‘by-hand’ tuning of input parameters (e.g.
recycling coefficients, boundary conditions such as upstream
density, transport coefficients etc) over many iterations, and a
period of weeks to months. Conceptually, in this approach
assumptions are made regarding how divertor physics pro-
cesses and boundary conditions determine the divertor plasma
state, which then implies a corresponding set of expected
diagnostic measurements.

We propose to instead take the inverse approach, where
starting from the diagnostic measurements the plasma state is
inferred, and from the inferred plasma state the underlying
physics processes can be determined. Here we demonstrate
that the first part of this approach, direct inference of the
divertor plasma state, is possible using an ‘integrated’
approach to divertor analysis in which data from multiple
diagnostic systems are combined.

Such an integrated approach, if successful, would not
serve as a replacement for 2D divertor modelling codes.
Rather it is an alternative path to studying the role of various
divertor processes and how they vary during and across dis-
charges. It may provide an independent test of the validity of
the physics we believe is responsible for determining the
divertor plasma state, and is implemented within 2D divertor
modelling codes.

For the purposes of this study we use the geometry and
planned diagnostics of the MAST-U spherical tokamak as a
test-case to investigate integrated divertor diagnostic analysis
[4]. The MAST-U divertor will be well diagnosed, possessing
a multi-wavelength imaging (MWI) system based on the
MANTIS system at TCV [5], which can simultaneously
image the divertor for each of up to 10 atomic lines, spec-
trometers, bolometers, Langmuir probes and a dedicated
divertor Thomson scattering system. A cross-section of
MAST-U is shown in figure 1, and the coverage of diag-
nostics relevant to our analysis is illustrated in figure 2.

1.2. An integrated, Bayesian approach to divertor analysis

We will make use of the Bayesian approach to data analysis, in
which probability is used as a means of quantifying the infor-
mation content of experimental data with respect to model
parameters. By formalising the information content in this way,
we are able to combine data from multiple diagnostics in order
to strengthen our knowledge of the plasma fields. This is highly
desirable, but comes at the cost of an increase in the complexity
and computational expense of the data analysis, as typically all
data must be analysed simultaneously. Multi-diagnostic Baye-
sian analysis has been successfully applied within tokamak
plasma studies for profile diagnostic analysis [6, 7] and equili-
brium reconstruction [8, 9], but not yet to inference of the 2D
divertor plasma state.

Here we discuss the design, implementation and testing of a
Bayesian multi-diagnostic inference system for the MAST-U
Super-X divertor which aims to infer the fields of plasma elec-
tron temperature and density, and hydrogen neutral density,
throughout the divertor, including associated uncertainties. In

section 2 we discuss the parameterisation of the problem and
design requirements of the system. In sections 3 and 4 we show
how information regarding the plasma fields in both measure-
ment data and prior knowledge may be expressed as probability
distributions. In section 5 the construction of synthetic test-cases
using SOLPS simulations is discussed. In section 6 we discuss
the numerical strategies used to characterise the posterior dis-
tribution for the plasma fields. The results of analysing the
synthetic data are presented in section 7. A discussion of
potential improvements and further work is given in section 8,
followed by conclusions in section 9.

2. System design

2.1. Parametric representation of plasma fields

We choose to represent each of the 2D plasma fields via linear
interpolation on a triangular mesh, shown in figure 2, which
covers the relevant areas of the divertor cross-section. Spe-
cifically, this means that by defining the value of a field at
each vertex of the mesh, that field is defined continuously
inside each triangle of the mesh as the plane that connects the
three points which define that triangle.

Using this approach a field, for example the electron
temperature field Te(R, z), is defined as

( ) ( ) ( )( )å f=
=

T R z T R z, , 1e
k

V

e
k

k
1

Figure 1. Cross-section of the MAST-Upgrade tokamak. The Super-
X outer divertor configuration can be seen at the top and bottom of
the device.
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where ( )Te
k is the electron temperature at vertex k, ( )f R z,k is

the linear interpolation basis function for vertex k, and V is the
number of mesh vertices. This model for the plasma fields has
the advantage that the model parameters themselves are the
values of each field at each mesh vertex, allowing physics
constraints to be easily applied. For example, to ensure that
the electron temperature field is greater than zero everywhere,
we need only ensure that the parameters which set the
temperature at each vertex are greater than zero, i.e.
that ( ) > "T k0e

k .
The mesh shown in figure 2 was used to produce all

results presented in this paper. It was generated by first
creating a mesh of equilateral triangles of side length 35 mm
which aligns with a toroidally-symmetric approximation of
tile 5, where the outer strike-point will typically be located. In
select regions of the mesh covering the expected position of
the divertor leg and strike point, triangles were partitioned to
produce a higher-resolution area with side-lengths of
17.5 mm, yielding a refined mesh with V=586 vertices.

2.2. Design requirements

To guide the direction of the system design a set of require-
ments were chosen. Firstly, we want to be able to choose
easily which diagnostics are included in the analysis. This
means that diagnostic systems should be able to be added or
removed from the analysis without making direct alterations
to the system code. Instead, there should be a ‘higher-level’
interface for specifying the choice of diagnostics.

A key part of the system are the diagnostic forward
models. Also sometimes referred to as ‘synthetic diagnostic’
models, forward models simulate the experimental data we
would expect to measure using a particular instrument under a
given set of plasma conditions (in this case, the 2D fields of

electron temperature Te, electron density ne and hydrogen
neutral density n0 defined by the mesh). There may be many
possible forward models for a given diagnostic, which vary
based on the physics assumptions they make, their level of
complexity and their computational cost. As before, we want
an interface which allows us to specify which model is used
for a given diagnostic system without making changes to
the code.

2.3. Choice of diagnostics

In order to infer Te, ne and n0 without including additional
fields, we must choose diagnostics whose measurements can
be predicted using these fields only. The divertor Thomson
scattering system is able to make direct measurements of Te
and ne making it an obvious choice [10]. We also include the
target Langmuir probes on tile 5 (shown in figure 2) as they
are located where the primary heat and particle fluxes are
incident on a divertor surface. The probe measurements,
under certain assumptions, can also be modelled using only Te
and ne [11].

The emissivity of line radiation has a dependence on both
Te and ne, so any filtered camera data will carry information
about the Te, ne fields. However, the emissivity of a given line
also depends on the density field of the corresponding emit-
ting species, which is charge-state and metastable-state
resolved. For the initial development and testing of this
technique, we consider only hydrogenic line emission, which
can be modelled using only Te, ne and n0. Consequently we
include 4 filtered cameras which view the hydrogen Balmer
α, β, γ and δ lines, which correspond to the n=3, 4, 5, 6 to
n=2 transitions respectively.

Figure 2. Illustration of diagnostic coverage in the MAST-U Super-X divertor region. (a) Poloidal cross-section showing the triangular mesh
used to represent the plasma fields. The filtered cameras (MWI) have a view which covers the entire mesh due to the fact their viewing
direction has both a poloidal and toroidal component (see (b)). The Thomson scattering measurement points are located in the private-flux
region for this particular equilibrium, which is used for MAST-U SOLPS simulations, but can also be located around the separatrix or in the
scrape-off layer depending on experimental set-up. Only the Langmuir probes on tile 5 (highlighted in green) are used for this work.
However, others exist on most divertor surfaces. The dashed line shows a scrape-off layer flux surface which is later used to produce profiles
of plasma properties. (b) Top-down view of the Super-X divertor chamber showing the filtered-camera field-of-view (in blue) and the
Thomson-scattering laser path (in red).
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This initial version of the system represents a first step
toward integrating as many divertor diagnostics as possible;
other diagnostics which may be included in future are dis-
cussed in section 8.

3. Bayesian multi-diagnostic analysis

In Bayesian analysis, our knowledge regarding a set of model
parameters is expressed as a probability distribution over
those parameters, which can be thought of as the distribution
of possible ‘causes’ that could have produced the mea-
sured data.

In this case the set of model parameters, which we will
call θ, are the values of Te, ne and n0 at each vertex of the
mesh (which are used by the model in (1) to specify the
plasma fields) such that

{ } ( )( ) ( ) ( ) ( ) ( ) ( )q = ¼ ¼ ¼T T n n n n, , , , , , , , . 2e e
V

e e
V V1 1

0
1

0

Our goal is to learn about the distribution of θ constrained by
the set of diagnostic data, which is commonly referred to as
D. This distribution is expressed mathematically as the
probability of θ given D, i.e. D( ∣ )qP . This is called the
‘posterior distribution’, and is given by Bayes’ theorem as

D
D

D
( ∣ ) ( ∣ ) ( )

( )
( )q

q q
=P

P P

P
. 3

Constructing the posterior distribution and learning about its
properties is absolutely central to Bayesian analysis, so it is
worthwhile to discuss the terms on the right-hand side of (3)
individually.

P(θ) is the prior distribution, and represents any infor-
mation we have regarding the model parameters before we
include information from the diagnostic data. For example,
this information may be a physics constraint such as non-
negativity of the plasma fields. This information could be
encoded into the prior distribution by having the prior prob-
ability fall to zero if any field values are negative. Typically
the prior distribution must be chosen rather than derived—this
choice will be discussed in section 4.

D( )P is usually referred to as the model evidence, and is
important in model selection problems, however we may
ignore it in this analysis as the posterior need only be deter-
mined up to a constant of proportionality in order for it to be
characterised.

D( ∣ )qP is the likelihood, and is the probability that we
would observe a dataset D assuming the plasma were in a
state described by a given θ. The use of D serves as a useful
shorthand to represent distributions over many individual data
values. For example, suppose that d(i) represents a single data
value from our full dataset—the likelihood is actually the
joint distribution over every individual data value given the
model parameters, i.e. ( ∣ )( ) ( ) ( ) q¼P d d d, , , n1 2 . By letting
D { }( ) ( ) ( )= ¼d d d, , , n1 2 we may write the likelihood more
concisely as D( ∣ )qP .

If some set of random variables, in this case D, are
mutually conditionally independent (i.e. the uncertainties of

all data values are independent) then the joint distribution of
all the variables can be written as the product over the dis-
tributions for each variable such that

( ∣ ) ( ∣ ) ( )( ) ( ) ( ) ( )q q¼ =
=

P d d d P d, , , . 4n

i

n
i1 2

1

This assumption of independence may not always be valid
and depends on the instruments in question, but it is strongly
simplifying so should be made where possible.

3.1. Individual diagnostic likelihoods

In multi-diagnostic inference, it is often practical to separate
out the overall likelihood for all data into a product of the
likelihoods for each diagnostic system. Let the dataset for the
Thomson scattering system and Langmuir probes be labelled
Dts and Dlp respectively. We will separate out the data for
each filtered camera, such that data for the i’th camera is
represented by D ifc, . Again making the assumption of mutual
independence between the datasets, the likelihood for all data
can be now written as

D D D D( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )q q q q=P P P P . 5
i

its lp fc,

It is common practice to work in log-probabilities, not only for
the conceptual simplification that large products of probabilities
become sums of log-probabilities, but also for improved num-
erical stability. Here we use L to indicate a log-probability
density function, such that L( ∣ ) ( ∣ )=A B P A Bln . Now com-
bining (3) and (5) we can express the log-posterior distribution
L D( ∣ )q as

L D L D L D L D

L L D

⎛
⎝⎜

⎞
⎠⎟ ( )( ∣ ) ( ∣ ) ( ∣ ) ( ∣ )

( ) ( )

åq q q q

q

= + +

+ -

6

.
i

its lp fc,

All terms in (6) (except L D( ), which is in practice discarded)
can be evaluated independently. From a programming perspec-
tive, this allows each term to be implemented as a separate, self-
contained object, encapsulating all experimental data and for-
ward models required to evaluate that term. This approach was
used when designing the system, and the resulting structure of
the code is illustrated in figure 3. This allows any of the terms to
be easily included or excluded from the log-posterior, fulfilling
one of the design requirements.

3.2. Thomson scattering and langmuir probe likelihoods

A single Langmuir probe or spatial channel of the divertor
Thomson scattering system accumulate their signal over a
volume which can be thought of as a spatial instrument
function. However, if the extent of this instrument function is
small compared to the scale lengths over which the relevant
plasma fields vary, we may approximate them to be point
measurements. Making this approximation de-couples the
analysis of the raw Thomson and Langmuir data from the
problem of inferring the fields. For example, the posterior
distribution for electron temperature and density for a single

4
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Thomson channel can be computed in advance and stored,
and then referred to when assessing the likelihood of that
spatial channel with respect to a set of proposed fields.

This approximation while convenient is not strictly neces-
sary, and in future when the system is applied to real exper-
imental data we may forgo this assumption and forward-model
from the proposed fields directly to the raw Thomson scattering
and Langmuir probe data. Presently however, we seek only to
demonstrate that the multi-diagnostic inference approach has
value, so we are free to prescribe a sensible likelihood for the
data of a point measurement given Te and ne. For this purpose,
we use an uncorrelated bivariate normal distribution such that

L D

⎡

⎣
⎢⎢
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥⎥

( ∣ )

( )

( ) ( )

( )

( ) ( )

( )

å
å

å

q
m

s

m

s

=-
-

+
-

W T

W n

1

2

. 7

i

j ij e
j

T
i

T
i

j ij e
j

n
i

n
i

ts

2

2

e

e

e

e

As in (1), ( )Te
j , ( )ne

j refer to the model parameters which specify
the temperature and density at the j’th vertex of the mesh. For
the electron temperature and density respectively, ( ) ( )m m,T

i
n
i

e e
are

the measured values and ( ) ( )s s,T
i

n
i

e e
are the uncertainties for the

i’th spatial measurement point. Wij is a matrix of pre-calculated
linear interpolation weights which give the prediction of the
fields at the spatial measurement points. As the Langmuir probes
are also treated as being point measurements of Te and ne, the

total log-likelihood for the Langmuir probesL D( ∣ )qlp is also of
the form given in (7).

3.3. Filtered camera system likelihood

The emissivity at the j’th mesh vertex for a given hydrogen
spectral line Ej is approximated as a sum of excitation and
recombination emission such that

E ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )= +n n T n n T nPEC , PEC ,

8
j e

j j
e

j
e

j
e

j
e

j
e

j
0 ex

2
rec

where PEC , PECex rec are the photon emissivity coefficients
for excitation and recombination respectively, whose values
are taken from the ADAS database [3]. This model assumes
that only atomic emission channels contribute meaningfully
to the hydrogenic spectral emission and that =Z 1eff . The
experimental data are camera images, each of which are
analysed as vector of pixel-brightness values b. The bright-
ness at the ith pixel bi is modelled as the integral along that
pixel’s line-of-sight through the emissivity field defined by
the values in the emissivity vector E. As the fields are defined
through Barycentric interpolation, which is linear, this line-
integral can be represented exactly by a weighted sum of the
emissivities at each mesh vertex. Given a particular mesh, and
a set of lines-of-sight for the pixels, these weights can be pre-
calculated and stored as a ‘geometry matrix’ G such that the
product of this matrix with the emissivities EG yields a
prediction of the pixel brightness values. We represent the
filtered camera likelihood as multivariate normal such that

L D E E( ∣ ) ( ) ( ) ( )q = - - S --G b G b
1

2
. 9fc

1

Experimental calibration of filtered camera systems typically
finds the variance of the pixel brightnesses (assuming the
pixel is not near saturation) to be linear [12] such that

( )a bS = +b 10ii i

where α, β are constants determined as part of the calibration.
For our synthetic camera model, we re-parametrise (10) so
that the coefficients are more easily interpreted. First suppose
that the error at zero brightness can be expressed as some
fraction f0 of the maximum brightness bmax. Second, we fix
the fractional error at the maximum brightness to be a con-
stant fmax. Under these assumptions the variance may be
expressed as

( ) ( )S = - +b f f b f b . 11ii i max
2

0
2

max 0
2

max
2

4. Prior constraints

We are always forced to choose a prior distribution—even
omitting the prior is equivalent to using a uniform prior (i.e. one
which deems all possible sets of θ to be equally likely), which is
itself a choice. Our goal here is to construct a prior which
excludes unrealistic plasma conditions. In order to do this, we
require information about the space of realistic plasma

Figure 3. Flow chart illustrating the code structure of the system. The
posterior distribution is encapsulated as a single object which takes
model parameters (which define the plasma fields) as inputs and
returns the posterior log-probability. The prior distribution and the
likelihood for each diagnostic system are separated into self-
contained objects, which can independently request the specific
information they require about the plasma fields from the plasma
state object. The diagnostic and prior objects each return a log-
probability value, which are summed to produce the posterior log-
probability. The ‘MCMC sampler or global optimiser’ is responsible
for choosing the next set of parameters to pass to the posterior object,
with the objective of either sampling from the posterior or finding its
maximum.
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conditions that exist within the divertor. To gain insight into this,
we examined a collection of 25 MAST-U SOLPS simulations
which were carried out in support of a study on enhancements to
the plasma exhaust operational space of MAST-U [13]. These
simulations cover a range of plasma densities at the core grid
boundary ( ´  ´ -3.6 10 1.5 10 m18 20 3), and heating pow-
ers ( 1.7 2.5 MW). In each case, the fields of Te, ne and n0 in
the lower divertor were extracted, and the values of each field
across all simulations were gathered into a single dataset. By
plotting the gathered field values against one another we are able
to derive simple but useful constraints on plasma conditions
which dictate whether a given triple of (Te, ne, n0) is considered
realistic—these results are summarised in figure 4.

Our chosen prior is made up of three components: a
constraint on the static electron pressure, a constraint on the
neutral fraction and a constraint on the spatial ‘smoothness’ of
the plasma fields. This can be expressed mathematically by
writing the log-prior L( )q as a sum of three terms, one for
each constraint such that

L L L L( ) ( ) ( ) ( ) ( )q q q q= + + . 12pressure fraction smoothness

We will now discuss each of these terms individually.

4.1. Static electron pressure prior

The prior on the static electron pressure for each vertex is
uniform if the pressure is less than the chosen limit Pe

max , and
Gaussian for values above the limit. The resulting static
electron pressure log-prior is

L
⎛
⎝⎜

⎞
⎠⎟( ) ( )

( ) ( )

åq
s

= - -
n T

P

1

2
max 1, 0 . 13

i

e
i

e
i

e
pressure

prs
2 max

2

The value of σprs can be thought of as a ‘fractional tolerance’ of
the limit Pe

max , i.e. by what fraction the limit may be violated
before the prior probability drops significantly. Based on the
SOLPS data we set = ´ -P 2 10 eV me

max 20 3 and s = 0.1prs .

4.2. Neutral fraction prior

The upper limit on the neutral fraction at each vertex fmax
i is

set as a function of the temperature at each vertex such that

( ) ( ) ( )( )/= - - +f c T l c1 exp , 14i e
imax

where c=0.04 and l=5 eV. In figure 4 this limit is shown
to be greater than 99.5% of neutral fractions in the SOLPS
dataset. The neutral fraction prior has the same form as that
used for the static electron pressure in (13) such that

L
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )

( )

( ) ( )åq
s

= -
+

-
f

n

n n

1

2
max

1
1, 0 ,

15
i i

i

e
i ifraction

frc
2 max

0

0

2

where σfrc=0.1.

4.3. Spatial smoothness prior

We want our prior to favour solutions where the plasma fields
are spatially smooth. This requires us to choose a metric for the
overall ‘roughness’ of the fields, so that solutions which are too
rough can be penalised by assigning them a lower prior
probability. Suppose v is a vector of field values at each mesh
vertex, and define the ‘umbrella’ matrix operator U such that

⎧
⎨⎪
⎩⎪

( )

/=
- =

16

U

i j
n j n i

j i

1 if
1 if vertex is one of vertices connected to
0 if vertex is not connected to

.ij

The product Uv is then a vector of differences between the field
value at each vertex and the average field value of all vertices
to which it is connected. For a purely equilateral mesh, if the
value of a vertex and all its neighbours lie in a plane, then this
difference will be exactly zero. In this sense the umbrella
operator measures how much the field deviates from a plane in
the local region of each vertex. We therefore take the sum of
the squares of the umbrella differences, ∣ ∣Uv 2, as our metric for
the total ‘roughness’ of a field.

It is helpful to consider whether the fields can be trans-
formed such that the expected solutions for the transformed

Figure 4. The space of realistic plasma conditions in the MAST-U
divertor as predicted by a group of SOLPS simulation results
spanning various experimental configurations. (a) The space of
realistic (Te, ne) can be well approximated by placing upper limits on
Te, ne and Pe. (b) The space of realistic ( )+n n ne0 0 can be
bounded by placing an upper limit on ( )+n n ne0 0 as a function
of Te.

6

Plasma Phys. Control. Fusion 62 (2020) 045014 C Bowman et al



fields better satisfy the assumption of smoothness. Enforcing
smoothness on these transformed fields means that real fea-
tures of the fields, which we want to preserve, are less likely
to be penalised by the smoothing prior.

For this reason we enforce spatial smoothness on the
natural log of the plasma fields, rather than the fields them-
selves. Let ˜ ˜ ˜T n n, ,e e 0 represent the vectors of log-temperature,
log-density and log-neutral density at each vertex of the mesh,
and define = S U U. The roughness of one of the log-fields,
for example the log-temperature, can now be written as
∣ ˜ ∣ ˜ ˜= T T TU Se e e

2 . By introducing a constant ssmth, which
determines how strongly overly-rough fields are penalised,
we can define the smoothing log-prior as

L( ) ( ˜ ˜ ˜ ˜ ˜ ˜ )

( )

q
s

= - + +  T T n n n nS S S
1

2
.

17

e e e esmoothness
smth
2 0 0

Unlike the priors on the static electron pressure and neutral
fraction, which effectively set upper limits on those quantities,
the smoothness prior has a strong impact on the entire pos-
terior distribution. Consequently, additional work is required
to select an appropriate value for ssmth—this is discussed
further in section 7.

4.4. Bounds on field values

Upper and lower bounds are placed on the electron temper-
ature, density and neutral density at every vertex. These
bounds, chosen based on the SOLPS data, are given in
table 1. The bounds could be imposed by including an
additional term in the definition of the log-prior in (12), but in
practice it is easier to allow the bounds to be enforced by the
optimisation or sampling algorithm which is being used to
characterise the posterior distribution.

5. Production of synthetic test-case data

5.1. SOLPS test-cases

In order to test the system we require synthetic data for each
instrument, and that this data is as representative as possible
of the real experimental data which will be measured during
MAST-U operation. For this purpose we use results from
SOLPS simulations of the MAST-U edge and divertor to
prescribe the fields of electron temperature, density and
neutral density from which the synthetic data will be derived.

Here we consider two SOLPS cases taken from a scan of
the nitrogen seeding rate to detachment. Both cases have the

same magnetic equilibrium, 2.5 MW of heating power and a
deuterium fuelling rate of ´ -2 10 s21 1. The two cases, which
we will from now refer to as the low- and high-seeding cases,
have nitrogen seeding rates into the divertor of 2×1020 s−1

and 5×1020 s−1 respectively. These two cases are not part of
the set used to inform the prior constraints discussed in
section 4, however their field values lie well inside the limits
set by the chosen prior.

Note that although in the SOLPS data itself the electron
density and hydrogen ion density fields maybe be different
due to the presence of the seeded nitrogen, we set them to be
equal when producing synthetic data, as this equality is
assumed in the emission model in (8).

The field values on the SOLPS grid are interpolated on to
the triangular mesh prior to producing the synthetic data, such
that the resulting mesh representation of the fields becomes a
test-case which we will attempt to reconstruct. The mesh-
representations of the plasma fields for each of the two test-
cases are shown in figure 5.

5.2. Addition of simulated noise to synthetic data

After synthetic measurements for each instrument are gener-
ated using their respective forward-models, simulated noise is
added to the data. For the filtered camera images, the variance
of the noise added to each pixel is set according to (11),
where fmax=0.025 and f0=1/256.

The point measurements of electron temperature taken by
the Thomson scattering and Langmuir probes systems have
an assigned uncertainty of s = +T 10 0.1 eVT ee

, and the
corresponding electron density measurements have an
assigned uncertainty of s = + -n 10 10 mn e

18 3
e

.

6. Characterising the posterior distribution

Now that all terms in (6) which have a dependence on θ have
been defined, the posterior log-probability can be evaluated
for any chosen set of plasma fields. The posterior must now
be characterised in a way which allows us to extract useful
information about the plasma fields.

6.1. Maximum a posteriori estimation

The first stage of characterising the posterior is to find the set
of model parameters which maximises its value, referred to as
‘maximum a posteriori’ (MAP) estimation [14]. To locate this
maximum, we employ a ‘hybrid’ approach which combines
both stochastic and gradient-based optimisation—a more
detailed description of this approach is given in the appendix.

6.2. Hamiltonian Monte-Carlo sampling

Although MAP estimation yields a useful single-value estimate
of the model parameters, it does not provide any information
regarding the uncertainties associated with that estimate. To
characterise these uncertainties we employ ‘Hamiltonian Monte–
Carlo’ (HMC), a gradient-based sampling algorithm which is

Table 1. Upper and lower bounds placed on the values of the plasma
fields at all mesh vertices.

Te ne n0

Lower bound 0.2 eV 1×1016 m−3 1×1015 m−3

Upper bound 60 eV 2.5×1020 m−3 2×1020 m−3
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particularly effective (in comparison to other approaches) in
cases where the number of model parameters is large, and strong
correlations are present [15].

6.3. Marginal expectation

An alternative to the MAP estimate is the marginal expectation
(MEX), where the value of each parameter is taken to be the
mean of its corresponding marginal distribution. Where as the
MAP is the single most probable solution, the marginal expec-
tation can be thought of as the ‘average’ of the possible solu-
tions. The marginal expectation estimate can be calculated easily
by taking the mean of the sample generated using Hamiltonian
Monte-Carlo.

7. Results of synthetic testing

7.1. Selecting the smoothing prior uncertainty

The value of the smoothing prior uncertainty σsmth, which
appears in (17), can have a strong impact on the posterior
distribution and therefore the MAP estimate. To assess this
impact we evaluated the mean absolute difference between
the MAP estimate and the low-seeding case at all vertices for
a range of values of σsmth—the results of this scan are shown
in figure 6. The minima in the error for each field are fairly
broad, but do not all occur at the same value of σsmth. The
results presented here used a value of σsmth=0.2 which
provides a good balance between low error in electron
temperature and electron density.

Figure 5. Plots showing the mesh-representations of the electron temperature, electron density and neutral density taken from the nitrogen-
seeded SOLPS predictions. Plots (a)–(c) and (d)–(f) show the low- and high-seeding cases respectively.
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In an applied case using experimental data we cannot
select the smoothing uncertainty in this fashion as the true
values of the fields are unknown. As such, testing selection
criteria for the smoothing uncertainty which are applicable to
experimental data will be the subject of further work.

7.2. Comparison of inferred fields and test-cases

The maximum a posteriori (MAP) and marginal expectation
(MEX) estimates were evaluated as described in section 6 for
both test-cases. The inferred field values from the MEX
estimate are compared with those from the corresponding test-
case in figure 7. The mean-absolute-difference between the
inferred and test-case fields is used to quantify the accuracy of
the estimates. The mean-absolute-difference for the electron
temperature is given by

∣ ∣ ∣ ∣ ( )( ) ( )åá D ñ = -
=

T
V

T T
1

18e
k

V

e
k

e
k

1
,inf ,test

where ( )Te
k
,inf and ( )Te

k
,test are the inferred and test-case electron

temperature at vertex k respectively. The mean-absolute-differ-
ences for each test-case are given in table 2 for both the MAP
and MEX estimates. The marginal expectation appears to out-
perform the MAP estimate for these cases, but with the excep-
tion of the high-seeding neutral density estimation, the
differences in the mean absolute error values are less than 10%.

We note that the estimate of the electron temperature
becomes less reliable above ∼10 eV—this may occur because
at these higher temperatures the emission is almost purely due
to excitation, which is very insensitive to electron temperature
above 10 eV for the Balmer series.

Conversely, in regions where the temperature is very
low, the emission becomes dominated by recombination,
which has no dependence on the neutral density. We suspect
this is the cause of the large errors in the neutral density
estimation for the high-seeding test-case, which is more

strongly detached than the low-seeding case, and therefore
has a large region of recombination-dominated emission.

The absolute fractional error ∣ ∣( ) ( ) -T T 1e
k

e
k

,inf ,test is another
useful metric for gauging the overall accuracy of the inferred
fields. Averaged over both the low and high-seeding test-
cases, the median absolute fractional errors in the electron
temperature and density estimates were 10.3% and 10.1%
respectively. We use the median rather than the mean in this
case as it is more robust against large outliers that can occur
when field values get very small.

The inferred fields for the low-seeding case, along with
the differences between the inferred fields and the test-case
are shown in figure 8. These difference plots highlight spatial
structure in the estimation errors, such as the under-estimation
of the temperature along the separatrix. The peak in the
electron temperature at the separatrix is a very sharp feature
which will be penalised by the spatial smoothing prior. This,
combined with the relatively weak temperature dependence of
the emission in that region, is likely the reason for the under-
estimate of the separatrix temperature. This highlights a
common difficulty of regularising solutions which possess a
wide range of spatial scale-lengths—any level of smoothing
which suppresses non-physical fluctuations in regions with a
long scale-length will also over-smooth in regions with short-
scale lengths.

Tests were also carried out wherein only measurements
from a single filtered camera were used to constrain the
plasma fields in order to verify the effects of a multi-diag-
nostic approach. The MAP estimates of the fields obtained in
these tests were completely erroneous, and posterior sampling
predicted very large uncertainties in the solution. Although
imaging data for a single emission line does provide some
information about Te, ne and n0, it is not a strong enough
constraint to estimate them with useful accuracy. This is
because the set of plasma fields which reproduces the mea-
sured image to within experimental error is too large and too
varied. Inclusion of additional filtered images of different
Balmer lines improves the estimate significantly because the
size of this set of potential solutions is greatly reduced, as
now a valid solution must reproduce all of the images
simultaneously rather than just one.

7.3. Uncertainty estimation

Uncertainties in the inferred fields for both test-cases were
estimated by sampling from the posterior distribution using
Hamiltonian Monte-Carlo.

Figure 9 shows a comparison of the test-cases and
inferred fields along a scrape-off layer flux-surface (shown in
figure 2), and shows the 95% highest-density interval derived
from the sample. We see that the differences between the test-
case values and the inferred fields are well explained by the
estimated uncertainties almost everywhere. One notable
exception is that the uncertainty in the electron temperature
and density appears to be under-estimated close to the target.

For an inverse problem of this type the posterior is
typically highly multi-modal. It is possible that the Markov-
chains used to generate the sample were trapped near the

Figure 6. Mean absolute difference between the field values of the
low-seeding case and those of the corresponding MAP estimate for
each of the plasma fields as a function of the smoothing prior
uncertainty σsmth. The chosen value of σsmth=0.2 is indicated by
the dashed vertical line.
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maxima corresponding to the MAP estimate, and were unable
to explore other maxima which may feature more varied
configurations of the fields near the target. To investigate this
we plan to test extensions to standard Markov-chain Monte-
Carlo which are designed specifically to allow exploration of
multi-modal distributions such as parallel tempering [16].

7.4. Inference of physical processes

The long-term goal of developing this analysis is to help
advance our understanding of divertor physics by providing
direct information about the 2D divertor plasma state. We are
therefore interested not only in plasma fields like Te and ne,
but also the behaviour of physical processes like ionisation
and recombination which are partially responsible for deter-
mining the plasma state.

If these processes can be modelled using only the infer-
red plasma fields, then their values and uncertainties can also
be inferred from the posterior sample. An example of this is
shown in figure 10, where the deuterium ionisation rate along

a scrape-off layer flux-surface was calculated from the pos-
terior sample, and is compared with the corresponding
ionisation calculated from the test-cases.

8. Discussion

8.1. Potential improvements to instrument modelling

All synthetic diagnostic models are ‘idealised’ to some extent,
as they cannot reasonably capture every subtlety of the
experimental set-up perfectly. Our goal however should be to
make these models more realistic where possible, and this will
be the focus of further work on the system before it is applied
to real experimental data.

For example, uncertainty in the absolute brightness
calibration of filtered cameras is a potentially important effect
for which we do not currently account. This can be achieved
by including the calibrations as so-called ‘nuisance para-
meters’. This process involves allowing the calibration values

Figure 7. Scatter plots of the field values of the test-cases versus those of the MEX estimate at each vertex of the mesh. Plots (a)–(c) and
(d)–(f) show results from the low- and high-seeding cases respectively.

Table 2. The mean-absolute-difference as defined in (18) for Te, ne and n0 in each test-case, and for both the MAP and MEX estimates.

∣ ∣á D ñTe (eV) ∣ ∣á D ñne (m−3) ∣ ∣á D ñn0 (m−3)

Low-seeding MAP 1.12 1.57×1018 3.50×1017

Low-seeding MEX 1.09 1.46×1018 3.38×1017

High-seeding MAP 0.81 1.60×1018 7.37×1017

High-seeding MEX 0.74 1.65×1018 4.05×1017
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themselves to be free parameters in the system, with a prior
distribution determined by the measurement of those cali-
bration values. By allowing the calibration values to vary in
this way, effects of the uncertainty in their value are reflected
in the inferred plasma fields.

Some of the light collected by the MWI system will have
reached the camera after being reflected by a material surface in
the divertor. The algorithm used here to calculate the Geometry
matrix G, which appears in (9), only accounts for light which
has travelled directly from the plasma to the camera. It is
however possible to account for reflections from material sur-
faces by using a more sophisticated approach to calculating the
geometry matrix [17], with an associated increase in the com-
putational cost of the filtered camera forward-model.

It may be the case that in practice, the Langmuir probes
are unable to measure the electron temperature with an
uncertainty comparable to that which we assume when gen-
erating synthetic data when the temperature drops below
5 eV. In such cases, the probes may only provide an ‘upper
limit’ measurement on the temperature. Accounting for this
will require forward-modelling to produce synthetic probe
data, which can be analysed to calculate joint-distributions of
Te, ne to be used in place of the assumed Gaussian errors.

In this work the SOLPS test-cases were treated as if no
impurities were present. However, in real experiments with
strong impurity seeding, the presence of impurities can affect
measured diagnostic signals. Consequently, modifications to
the diagnostic forward-models may be required to properly

Figure 8. The marginal expectation estimate of the electron temperature, electron density and neutral density fields for the low-seeding case
are shown in (a)–(c) respectively. The corresponding differences between the marginal expectation estimate of a field and the test-case values
are shown in (d)–(f).
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account for these effects. For example, the emission model in
(8) assumes that the hydrogen ion and electron densities are
equal, which may no longer be reasonable with strong seed-
ing. Although the effect is expected to be small, impurities
can also impact Langmuir probe measurements [18].

8.2. Inclusion of additional diagnostic systems

The MAST-U divertor spectroscopy system could be a useful
additional source of information for inferring the plasma fields.
The system will observe a large number of spectral lines,
including many from various impurities, so modelling all data
produced by the spectrometers is not feasible. However, if we
restrict the analysis to spectral lines which are already being
viewed by the MWI system, then this data can be modelled
without greatly increasing the number of model parameters. The
brightness of these lines as measured by the spectrometers would

provide a cross-check on the brightnesses measured by the MWI
system, and it may also be possible to constrain the electron
density along the spectrometer line-of-sight using information
encoded in the spectral line-shape due to Stark-broadening [19].

8.3. Choice of imaged spectral lines

The emissivity model in (8) does not account for emission
resulting from the production of excited deuterium atoms due
to plasma-molecule interactions. This emission may be a non-
negligible component of low-n Balmer series emissivities,
particularly for deuterium Balmer-α, in strongly detached
conditions [19, 20]. Deuterium-α through δ were chosen as a
starting point from which to develop and test the system, but
there are many possible choices of atomic lines, including
higher-n Balmer lines and impurity emission lines.

Figure 9. Comparison of profiles along a scrape-off layer flux-surface (shown in figure 2) derived from the inference results and the test-
cases. Plots (a)–(c) and (d)–(f) show results from the low- and high-seeding cases respectively. The coloured areas indicate the 95% highest-
density intervals (HDI) derived from the sampling results.
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Determining the optimal group of lines for inferring the
plasma fields is complex—one needs to consider not only the
information content of the lines with respect to the plasma
fields, but also how well those lines can be measured (con-
sidering their brightness, wavelength and contamination from
neighbouring spectral lines), how accurately their emissivity
can be modelled, and the total number of plasma fields
required in order to model them. Testing alternative groups of
atomic lines which best meet these criteria will be an
important part of the ongoing development of the system.

8.4. Imposing physics constraints using equilibrium information

The spatial structure of the Te and ne fields in the divertor is
closely tied to that of the magnetic field and the resulting flux-
surfaces. If the mesh used to parametrise the plasma fields
were constructed such that every vertex of the mesh lay on
one of a chosen set of flux-surfaces, this would allow addi-
tional physics constraints to be imposed.

For example, we could include an additional term in the
prior distribution which requires that the electron temperature
decrease monotonically along each flux surface when
approaching the strike-point. It would also allow for a more
powerful constraint on spatial smoothness of the fields, as we
could require that the fields vary much more smoothly along
flux-surfaces than perpendicular to them.

There are some disadvantages to this approach however.
The equilibrium reconstruction required to build such a grid is
itself an inverse problem whose solution is uncertain. Given
equilibrium reconstructions which include uncertainty esti-
mates (which are typically unavailable), propagating this
uncertainty through the system so that it is reflected in the
uncertainties on the plasma fields would be difficult, as the
grid remains fixed throughout the analysis.

Imposing physics constraints in this way, and the effect
this has on the accuracy of the inferred 2D plasma fields will
be explored as part of further work.

8.5. Toroidal asymmetry effects

The major radius of tile 5 in the MAST-U divertor (visible in
figure 2) varies as a function of toroidal angle, with a peri-
odicity that matches the toroidal-field ripple of the device in
order to distribute power more evenly across the tile surface.

Cases in which there is strong emission close to the surface
of tile 5 may introduce 3D effects into filtered camera mea-
surements which cannot be reproduced by the 2D model we use
here for the plasma fields. The significance of this effect could
be explored theoretically using 3D simulations of the MAST-U
divertor which account for the toroidal asymmetry of tile 5.

9. Summary and conclusions

We have presented details of the first design, implementation
and testing of a Bayesian multi-diagnostic inference system,
which can infer the 2D fields of electron temperature, density
and neutral density over the divertor cross-section. The sys-
tem has been designed to be modular and flexible, so that the
diagnostics utilised by the system, and the underlying fields
that are to be obtained by the analysis, can be changed easily.

For this initial test of the system we restricted the inferred
plasma fields to only electron temperature, electron density
and deuterium neutral density. These fields were inferred
using simulated experimental data, which included appro-
priate added noise, derived from two SOLPS-ITER simula-
tions taken from a scan of the nitrogen seeding rate. The
synthetic diagnostic models used to generate the simulated
data included four filtered cameras as part of the MWI system
viewing the first four Balmer lines, as well as divertor
Thomson-scattering system and target Langmuir probes.

These system tests have demonstrated that for the given
synthetic data, the 2D plasma fields can be inferred with enough
accuracy to give powerful insight into the physics of plasma
behaviour in the divertor. It was also demonstrated that uncer-
tainties in the inferred plasma fields can be reliably estimated
using Hamiltonian Monte-Carlo sampling, which would allow
conclusions to be drawn from the results with greater confidence.

This first effort at Integrated data analysis for the divertor
has thus been successful in demonstrating that the use of a
Bayesian, multi-diagnostic approach to infer the plasma solution
merits further investigation. Future work will focus on the
inclusion of additional diagnostic systems, and the application of
this analysis to real diagnostic data from tokamak experiments.
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Appendix. Optimisation methodology

The line-integrated nature of filtered camera measurements,
and the nonlinear relationship between line emissivities and
the plasma fields introduces strong nonlinear correlations
between the model parameters. The presence of correlations
and a large number of free parameters (around 1800 in this
case) usually necessitates the use of gradient-based optim-
isation and sampling techniques.

Such techniques require the derivative of the log-pos-
terior with respect to the model parameters. However
approximating this derivative via finite-difference is prohibi-
tively expensive as the number of model parameters is large.
The system was therefore designed such that the gradient of
the log-posterior can be calculated analytically. As a result,
evaluating the gradient takes around 3 times longer than
evaluating the log-posterior itself—this is approximately 600
times faster than evaluating the gradient using finite-differ-
ence for the current number of model parameters.

However, we also found the posterior distribution to be
highly multi-modal, which causes issues for gradient-based
optimisation algorithms which tend to converge to local rather
than global maxima.

To address this we employ a ‘hybrid’ approach which
combines a genetic algorithm with the L-BFGS algorithm
[21]. In this approach a set of candidate solutions is created
(initially by random sampling), and then each candidate is
used as a starting-guess for the L-BFGS algorithm, which
convergences to a (typically local) maximum in the posterior
log-probability density. Based on the resulting set of local
maxima, a new set of candidate solutions is generated using
the genetic algorithm, and this process is repeated until the
highest observed log-probability converges.

Evaluating the L-BFGS algorithm for each candidate
solution is an independent computation, allowing them to be
efficiently distributed across multiple CPUs. The results pre-
sented here used a population of 20 candidate solutions dis-
tributed over 20 threads of a Intel Xeon E5-2695 v3. The
maximum log-probability had converged sufficiently after 80
generations, taking around 80 min in total.
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