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Abstract
Anisotropy and some limiting toroidal flow effects on the stability of nearly resonant ideal
magnetohydrodynamic modes in hybrid shaped tokamak plasmas are investigated within the
ideal MHD infernal mode framework. Such effects are found to alter the plasma magnetic
well/hill, which can be interpreted as imparing the average curvature, and the strength of mode
coupling. In line with previous results, it is found that better stability properties are achieved
through deepening the magnetic well by special cases of uniform toroidal flow and parallel
plasma anisotropy. Plasma shaping provides additional modifications to the magnetic well
depth, whose global stabilising or destabilising effect depends on the mutual interplay of
elongation, triangularity and toroidicity. Further stabilisation is achieved by weakening the
mode drive in vertically elongated plasmas.

Keywords: MHD, tokamak, infernal, anisotropy, shaping

1. Introduction

The toroidally symmetric tokamak configuration is one of the
most promising reactor types for achieving controlled thermo-
nuclear fusion. An important figure of merit in fusion research
is β, the ratio of kinetic over magnetic pressure, which is a
measure of the plasma performance. Much effort has been
aimed indeed at maximising this quantity. High plasma pres-
sures are achieved by several heating schemes such as radio
frequency heating or neutral beam injection (NBI).While both
may produce parallel and perpendicular pressure anisotropy

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

[1, 2], NBI induces strong toroidal flows [3]. Large β val-
ues are typical of spherical tokamaks (STs) (devices with an
aspect ratio, i.e. the ratio of major over minor radii of the tor-
oidal chamber, close to unity) which also exhibit strong natural
shaping [4]. It has also been found that centrifugal effects have
a significant impact on equilibrium and stability in STs [5].
In such devices, scenarios at high β feature optimised cur-
rent profiles in which the core magnetic shear, a measure of
the inclination of the magnetic field lines with respect to one
another, is either reversed (advanced scenario), or small over
a wide region (hybrid scenario) with the safety factor (the
pitch of the magnetic field lines denoted by q) always above
unity [6].

Under these circumstances, long-lived saturated magneto-
hydrodynamic (MHD) activity, usually with low n numbers,
often occur [6, 7]. Indeed, scenarios with broad current and
peaked pressure profiles are prone to develop infernal type
instabilities [8–10], driven when the safety factor is close to a
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rational over a wide region. These instabilities exhibit a dom-
inant mode of helicity m/n which is nearly resonating with a
low q rational over a broad region. We refer to such modes as
nearly-resonant, since the exact resonance of the mode with
q in this broad region is not a necessary requirement for the
instability to develop.We point out that spherical tokamaks are
more susceptible to these ideal internal modes [6] because of
the tighter aspect ratio and higher β which yield stronger tor-
oidicity induced couplings that enhances the infernal driving
mechanism. Nevertheless, such kinds of instabilities have been
numerically and experimentally reported in standard tokamaks
such as TFTR and DIII-D [7, 11–14]. We additionally note
that reversed shear configurations with internal transport barri-
ers (ITBs) can be unstable against pressure driven modes with
infernal-like features [15].

As discussed in references [7, 11–14, 16], such instabil-
ities are usually associated with β limits (both soft or hard).
Moreover, as these modes tend to saturate in amplitude (often
preserving the linear mode structure [6, 17]), fast ion losses
can be enhanced [6]. Since preventing the access to the linear
phase avoids the development of a saturated non-linear state
[17–19], understanding the linear stability properties of such
perturbations is of crucial interest.

The impact of plasma shaping in isotropic static plasmas
has been extensively analysed [20–28]. A vast literature also
exists on the modifications to equilibrium and stability due
to toroidal flows [29–32] and pressure anisotropy (see e.g.
references [33–41]). Although these two effects were gener-
ally treated separately, more recent analytical and numerical
investigations provided a unified framework [2, 42–49]. The
reader interested in the experimental impact of plasma aniso-
tropy on equilibrium and stability is referred to references [41,
45, 48] and references therein. The current paper concentrates
specifically on the stability analysis of ideal infernalmodes in
shaped tokamaks characterised by strong degrees of pressure
anisotropy and toroidal flows. The problem of plasma aniso-
tropy is tackled within the guiding centre plasma model [43,
50], in which the macroscopic plasma motion across the mag-
netic field is fluid-like (i.e. identical to MHD), while the
dynamics parallel to the magnetic field is described by a colli-
sionless kinetic equation. Although the main aim is to describe
the dynamics of compact configurations, a large aspect ratio
expansion may still be employed as long as both the equilib-
rium and stability analysis is carried out sufficiently near to
the magnetic axis [51]. Hence, the relevance of the analysis
presented in this work can be naturally extended to standard
tokamaks as well.

In analogy with previous results reported in the literat-
ure [26, 31, 39], it is found that plasma shaping (elongation
and triangularity), anisotropy and equilibrium flows modify
the magnetic well (or hill). Contributions due to a flat tor-
oidal rotation with a monotonically decreasing pressure pro-
file tend to increase themagnetic well implying stabilisation. It
is noted that combined guiding centre-MHD model employed
here is essentially isothermal, and as such differs from the
way in which flows are known to modify MHD instabilities
(see e.g. [52]). Pressure anisotropy, beyond trivially affecting
the averaged total pressure, has a (de)stabilising effect when

T||(<)> T⊥ [37, 39, 40, 45]. Vertical elongation decreases
the magnetic well, whose depth can be restored by allowing
for corrections due to positive triangularity. The same effect is
achieved in negative triangularity plasmas with an oblate cross
section. Finally, elongation is found to alter the strength of the
coupling between neighbouring modes, improving the global
stability in vertically elongated plasmas.

The paper is organised as follows. In section 2, the aniso-
tropic single fluid MHD model is summarised and sub-
sequently employed for the derivation of the equilibrium equa-
tions for non-circular axisymmetric toroidal equilibria, which
is outlined in section 3. Section 4 is devoted to the description
of the perturbed dynamics within the infernal framework. The
governing equations for the mutually coupled harmonics are
derived, distinguishing between regions of high and low mag-
netic shear. In sections 5 and 6, by solving for the perturbed
system previously derived, stability boundaries are identified
and analysed by exploring several plasma parameters (e.g.
degree of anisotropy, shaping) for monotonic and reversed q
configurations. A discussion on the features of the physical
model and the results with their implications on present and
future experiments is given in sections 7 and 8 respectively.
Finally, appendix A presents a brief analysis for the allowance
for resistive effects on the satellite harmonics.

2. The anisotropic MHD model

Under the assumption of strong heating, we regard the plasma
as ideally conducting with vanishing resistivity. Thus, the
plasma dynamics are described by the single fluid anisotropic
ideal MHD equations [43]:

∂tρ+∇ · (ρu) = 0, (1)

∂tB=∇× (u×B), (2)

ρ(∂tu+u ·∇u) =−∇ ·P+ J×B, (3)

where ρ is the mass density, u the plasma fluid velocity, B the
magnetic field with |B|= B, J=∇×B and P= p⊥I+(p|| −
p⊥)bbwith I the diagonal unit tensor and b= B/B. The paral-
lel and perpendicular pressure are defined as moment averages
in guiding centre coordinates as [43, 44, 53]

(p||,p⊥) =
∑
s

ms

ˆ
d3vfs[(v|| − b ·u)2,v2⊥/2],

where f s is the particle distribution function of the species s of
mass ms (s= i, e for ions and electrons respectively), v is the
microscopic particle velocity (with parallel and perpendicu-
lar projections wrt the magnetic field indicated by v|| and v⊥
respectively), and the sum is extended over all species. Here-
after for a generic vector quantity A we indicate A= |A|.
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For the computation of p⊥,|| knowledge of the distribution
function for each plasma species is required. In guiding centre
theory, this satisfies the drift-kinetic equation [43, 44]

∂tfs+(u⊥ + v||b) ·∇fs+

[v||u⊥ · (b ·∇b)− b ·∇Es]
∂fs
∂v||

= 0, (4)

with Es = µB+ es
ms
Φ− u2⊥

2 where µ= v2⊥/2B is the particle
magnetic moment, es being the particle charge and the par-
allel electric field given by E|| =−b ·∇Φ. Note that correc-
tions due to collisions have been dropped. We point out that
these results are unaffected by gauge transformations of the
form Φ→Φ+h(r). Although such a function, namely h, does
not play a role in the equilibrium calculations, it might have an
effect on perturbed quantities. Its formwill then be determined
in section 4. For a plasmawith an equilibrium flowU= u0 (the
subscript 0 indicates the corresponding equilibrium quantity),
we introduce the variable ϵs = 1

2v
2
|| − v||U|| +Es0 [44] with

U|| = b0 ·U, so that the parallel and perpendicular pressure are
given by

(p||,p⊥) =
∑
s,σ

2πms

ˆ ∞

0
dµ
ˆ ∞

ϵm

dϵs
Bfs
|v̄|||

[(v|| − b ·U)2,µB]

(5)
where v̄|| = v|| −U||, σ = sign(v̄||) and ϵm = µB0 +

es
ms
Φ0 −

U2/2. Finally, the density of each species is

ns =
∑
σ

2π
ˆ ∞

0
dµ
ˆ ∞

ϵm

dϵs
Bfs
|v̄|||

, (6)

and ρ=
∑

smsns ≈ mini with ni = Zine (quasineutrality for
single ion species). Hereafter we take Zi= 1. The framework
in which the following analysis is performed, is completely
determined by equations (1)–(6).

3. Equilibrium

We analyse a tokamak configuration of major and minor radii
R0 and a respectively, with non-circular shifted toroidal sur-
faces. The plasma is assumed surrounded by a perfectly con-
ducting metallic wall. Let us introduce the coordinate system
(r, θ,ϕ) where r is a flux labelling variable with the dimensions
of a length, while θ and ϕ are the poloidal and toroidal angles.
The covariant and contravariant components of the vector A
are indicated by Ai and Ai respectively. For sake of clarity,
hereafter perturbed quantities will be denoted by a tilde and we
will drop the subscript 0 for the equilibrium ones. We use the
notation (·)(0) for the leading order of

´ 2π
0 (·)dθ/2π ≡ ⟨·⟩. The

equilibrium magnetic field is written as B= Bϕ∇ϕ−∇ψ×
∇ϕ (themagnetic field strength at themagnetic axis is denoted
by B0) with the safety factor function and magnetic shear
defined by q= ⟨Bϕ/Bθ⟩ and ŝ= rd lnq/dr. Here Bθ = 1√

g
dψ
dr

where
√
g is the Jacobian associated with the coordinate sys-

tem (r, θ,ϕ). We assume that ŝ≈ 0 for r1 < r< r2, while ŝ> 0
for 0 < r < r1 and r2 < r < a.

From (4), at equilibrium fs = fs(r,µ,ϵs) [35, 43, 44]. Not-
ing the necessary independence of f s on θ, we choose a ’mod-
ified’ bi-Maxwellian equilibrium distribution function with
equal temperatures for both particle species (i.e. ions and elec-
trons) [37, 43]

fs =
ns

(2π/ms)3/2T⊥
√
T||

exp[−ms

2
(
v̄2||
T||

+
v2⊥
T⊥

)].

Note that ns is allowed to depend upon θ also. We shall
point out that, depending on the physics that is analysed,
other choices for the equilibrium distribution function are pos-
sible [1, 45]. The distribution function above allows for analyt-
ically tractable solutions to the equilibrium and stability prob-
lemwhile also accounting for the features of anisotropy (modi-
fication of the magnetic well, average curvature, etc). It is
noted that the distribution is a limiting form of a model widely
used for the anisotropic features of ICRH (in references [54,
55] with Bc chosen specifically as Bmax ≡ B0(1+ r/R0)). By
taking the parallel gradient of equations (5) and (6) and impos-
ing quasineutrality

∑
s esns = 0, we have [39, 43, 44]

∇||p⊥ = σ⊥∇|| lnB+
T⊥
T||
ρ∇||U

2/2,

∇||p|| = σ||∇|| lnB+ ρ∇||U
2/2,

∇|| lnρ= (1− T⊥
T||

)∇|| lnB+
mi

2T||
∇||U

2/2,

where∇|| = b ·∇, σ⊥ = 2p⊥(1− T⊥
T||

), σ|| = p|| − p⊥. For an

equilibrium velocity of the form U= R2Ω(r)∇ϕ, the system
above is solved by [43]

ρ= ρ̄(r)
T⊥
T||

exp[M2(R2/R2
0 − 1)], T⊥ =

BT||
B−Θ(r)

,

where T|| = T||(r) with p⊥,|| = 2T⊥,||ρ/mi and M2 =
ρR2

0Ω
2/(2p||). Here the function Θ(r) measures the degree of

anisotropy, i.e. Θ(r) = B(T⊥ −T||)/T⊥. For sake of simpli-
city we take ρ̄,Ω andΘ constant [31, 43] and normaliseB0 = 1.
Finally, from (3) it is found that Bϕ = F(r)/(1−σ||/B2). We
employ the large aspect ratio approximation (ε= a/R0 ≪ 1)
which has been proven, via comparison with codes, to give
reliable, at least qualitatively, results also for compact config-
urations [17, 51] providing that the analysis is performed suf-
ficiently close to the magnetic axis. Because the analysis will
then focus on radially extended perturbations, we extend the
local equilibrium model presented in reference [56] by allow-
ing elongation and triangularity corrections to be dependent
upon the radial variable. By taking the covariant radial pro-
jection of (3) with ∂t → 0 and assuming p⊥,|| ∼ ε2 with a
sufficiently small magnetic shear [20], a tokamak shaped
equilibrium is solved to leading order by

R= R0 + rcos(θ+ r
δ

a
sinθ)−∆, Z= κrsinθ. (7)

3
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Here κ ~ 1 and δ ~ ε are real numbers describing plasma elong-
ation and triangularity respectively, with the Shafranov shift
∆~εa fulfilling (′ ≡ d/dr)

∆′′ +
3
r
∆′ +

4
1+ 3κ2

(
2q2R0p̄′

r
+

2δ
a

− κ2

R0

)
= 0 (8)

with p̄= (p(0)|| + p(0)⊥ )/2. Finally, ψ′ = rκ/q and F= R0(1−
r2(1+κ2)

2q2R2
0

− p(0)|| ). Equation (8) is valid from T||/T⊥ ≫ 1 to

T|| ∼ T⊥. However for T⊥/T|| ∼ ε−1 additional harmonics
in p||,⊥ with respect to θ are generated [41, 57]. In regions
with ŝ∼ 1, where it is not necessary to resolve the equilib-
rium to such an order, we take R=R0+rcosθ and Z=κrsinθ.
We point out that for describing equilibria which have higher
β values and extremely pronounced shaping, different tech-
niquesmust be employed. Nevertheless, the analysis presented
above proves to be adequate in dealing with most of the exper-
imentally relevant configurations. We transform θ→ϑ, where
ϑ is the rectified angle for which the field lines are straight [58]
and the ratio Bϕ/Bϑ is a function of r only. It is easily verified
that θ=ϑ+λ(r,ϑ) with λ=−(r/R0 +∆′)sinϑ. Hence, by
means of (7), the metric tensor elements gij = ∂iR∂jR+ ∂iZ∂jZ
in the coordinate system (r,ϑ,ϕ) can be straightforwardly
derived to order ε. This is the required accuracy needed for
the stability calculations outlined in the next section.

4. Perturbed dynamics

In order to investigate the stability of the system, we
employ the energy method [44, 59]. Introducing the Lag-
rangian displacement η [60], according to reference [44] the
momentum equation (3) is written as ρ(∂t+U ·∇)2η = F(η)
where F(η) = J̃×B+ J× B̃−∇× P̃+∇ · [ρηU ·∇U] is
self-adjoint (see also [50, 61] and references therein). The
equation above can be cast in the form [60]

ρ(∂2t η+ 2U ·∇∂tη) = F(η)−∇ · (ρUU ·∇η), (9)

where it can be easily shown that the last term on the rhs is
self-adjoint. It follows that a necessary and sufficient criterion
for stability can be derived [60, 62]. Note that (U ·∇η)i =
Ω[∂ϕηi− (z×η)i] [32] with

√
gzr =−R∂ϑR,

√
gzϑ = RR′

and zϕ = 0. We express the perturbation in the form ηj =∑
m,n η

j
m,nei(mϑ−nϕ)+(γr+iω)t+ c.c. (j= r,ϑ,ϕ) where γr and ω

are real and c.c. stands for complex conjugate. Thus, we dot (9)
with η and divide it by e2γrt, with ω= nΩwhereΩ is constant.
Integrating the resulting equation over the plasma volume and
averaging over an oscillation period 2π/ω, yields an equation
for γ2r showing that this quantity is real, which therefore indic-
ates that unstable modes rotate with frequency nΩ [31]. It fol-
lows that the stability boundaries are identified by γr = 0.

Having established the mode frequency characteristics, we
shall now proceed with the derivation of the stability equa-
tions. Assuming that perturbed quantities have a time depend-
ence of the form exp(γt) and vary along the poloidal and tor-
oidal angles proportionally to exp(iℓϑ− inϕ), we introduce
the perturbed fluid displacement ξ = ũ/(γ− inΩ). Since we

assume Ω constant, it follows that γ− iΩ is constant as well,
and hence is not affected by the differential operators. Let us
denote (·)ℓ =

´ 2π
0 (·)e−iℓϑ+inϕdϑdϕ/4π2. Within the infernal

framework, we impose a wide region of flat q for r1 < r< r2
(we shall specify r1 later) which nearly resonates with a dom-
inant mode of helicity m/n accompanied by its neighbouring
sidebands with poloidal mode numbers m± 1. Hereafter, m
will always denote the poloidal mode number of the dom-
inant harmonic. Because of the coupling induced by elonga-
tion, a larger number of harmonics, namely m± 2,m± 3,…
all of order ε, should be in principle taken into account [24,
27]. However, it will be shown later that under appropri-
ate conditions, retaining all these harmonics is not necessary
and the system can be described by linear coupling of three
modes. Nevertheless, for illustrative purposes, we formally
allow for higher order harmonics. We write q= m/n+ δq and
we adopt the ordering m ~ n ~ q ~ 1 with δq ~ ε, ξm±ℓ ∼ εξm
ℓ= 1,2, . . ., and γ ~Ω~εωA with ωA = 1/

√
R0ρ|r=0. There-

fore, the contravariant radial and poloidal projections of the
perturbed (2) yield respectively at leading order (

√
gB̃r)ℓ =

iκr(ℓ/q− n)ξrℓ and
1
r (rξ

r
m)

′ + imξϑm − inξϕm = 0. Hereafter we
indicate with

√
g the Jacobian associated with the coordinate

system (r,ϑ,ϕ). Since Ω is constant and considering
√
gB̃ϕ

small enough, which is verified a posteriori, from the con-
travariant ϕ projection of (2) it follows that ξϕm ≈ 0. Note that
although sideband harmonics have ε times smaller fluid dis-
placements compared to the dominant mode, their associated
magnetic perturbations are of the same order.

In the covariant basis identified by vectors er,ϑ,ϕ, we

shall note that U⊥ = b× (U× b)≈ (0,−Ω/q,0), and (̃u⊥)≈
(ũr−ΩB̃r/Bϕ, ũϑ− ũϕ/q−ΩB̃ϑ/Bϕ,0). By taking the cov-
ariant ϕ projection of the linearised equation (3), it can be
shown that at leading order

B̃ϕ ≈−R0p̃⊥. (10)

An expression for the perturbed distribution function is
required in order to obtain the fluctuation of the mass dens-
ity and the parallel/perpendicular pressure. We turn to (4) and
we change variables, replacing the variable v̄|| with εs (this
turns out to be more convenient when working in toroidal geo-
metry [44, 53]). By employing the expression for the perturbed
velocity given above, after some algebra it can be shown that

[γ̂−(v|| −U||)b ·∇](̃fs+ ξ ·∇fs)− (v|| −U||)×

× [b ·∇Ẽs+u⋆ ·∇(v|| +R/R0)]
∂fs
∂ϵs

= 0, (11)

where γ̂ = γ− inΩ, Ẽs = µB̃+ es
ms
Φ̃−U⊥ · (̃u⊥) and u⋆ =

(ũr, ũϑ− ũϕ/q,0) in the basis ei, having approximated b ·
∇b≈−∇⊥R/R0. For the calculation of the stability bound-
aries, we let γ̂→ 0 so that terms involving u⋆ ∝ γ̂ξ vanish. Let
us first note that in choosing the gauge function h defined in
section 2 to be vanishing, we ensure that ⟨Φ̃⟩= 0. The term
proportional to Ẽs in equation (11) produces small corrections

4
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to p̃||,⊥ and ns, hence it can be safely neglected. Thus, the per-
turbed distribution function can be written as [39, 40, 53]

f̃s =−ξ ·∇fs,

where we dropped trapped particles contributions [53]. Note
that neglecting compressibility effects is allowed only at mar-
ginal stability. By using the equation above for the evaluation
of p̃||,⊥ and ρ̃ (obtained at leading order from (5)–(6) with the
substitution fs → f̃s) we get [53]

p̃||,⊥ =−ξr[(p(0)||,⊥)
′ −σ

(0)
||,⊥

r
R0

cosϑ], (12)

ρ̃=−2ξrρ(0)(M2)′
r
R0

cosϑ, (13)

where small corrections due to B̃ have been dropped by virtue
of (10). We recall that ρ̄ andΘ are constant and so is ρ(0). Note
that p̃||,⊥ satisfies to leading order the parallel projection of
(3), i.e.

0≈ B ·∇p̃|| + B̃ ·∇p|| +ψ′σ̃||∂ϑR/R0.

All the expressions for the perturbed quantities entering the
linearised equations (1)-(3) have been obtained. We now
apply the operator D≡√

g∇ϕ ·∇× (1/Bϕ) to the linearised
(3) [53, 63]. By taking the m and m± 1 moments of the res-
ulting expression, three equations for the corresponding Four-
ier modes are obtained. Employing the usual techniques for
infernal modes [10], we distinguish between low and high
shear regions.

4.1. Low shear region

Let us first introduce the elongation factor, or ellipticity, e=
(κ2 − 1)/(κ2 + 1). It is worth noting that with an elongation
of order unity, a mode m̄ couples to all harmonics m̄± 2ℓ
(ℓ= 1,2, . . .) due to elongation inducedmetric oscillations. An
analytic treatment which retains the whole spectrum is clearly
hopeless. In order to make the algebra analytically tractable,
we follow reference [26] in which a double expansion, first in
ε and then independently to first order in e, is performed (such
an approximation proves to hold for e≲ 1

2 [26] or κ≲ 2). It
can be shown that harmonics with ℓ≥ (≤)m+(−)2 can be
neglected, as they enter the analysis to second order in e.

Focussing the analysis in the low shear region, we note
that within the above mentioned approximations, shaping and
flow effects are contained in the field line bending and per-
turbed toroidal field contributions. The latter, along with the
perturbed pressure tensor, generates additional anisotropy cor-
rections. After some algebraic manipulations, it is possible to
show that

D(∇ · P̃)≈ rsinϑ(p̃|| + p̃⊥)
′ + cosϑ∂ϑ(p̃|| + p̃⊥)

− ∂ϑ[{R0(p
(0)
⊥ )′ + ⟨ 1

Bϕ
d lnB
dr

⟩}σ̃|| −⟨1/Bϕ⟩′p̃⊥]. (14)

The field line bending term contains coupling with the ℓ± 2
sidebands due to the elongation induced metric tensor oscilla-
tions. It can be shown that at leading order the equations for
the sideband harmonics are [24] (for sake of clarity we drop
the superscript r in denoting the radial fluid displacement, viz.
ξrℓ → ξℓ)

[r−1∓2m(r2±mξm±1)
′]′− e

2
(
m± 1
m∓ 1

)[
1
r
(r2∓mξm∓1)

′]′ =

1±m
1+κ2

[r∓mαξm]
′,

with α=−2R0p̄′q2. These two equations can be integrated
yielding to leading order in e

r−1∓2m(r2±mξm±1)
′ =

(1±m)
1+κ2

(1− e
2
)r∓mαξm+

L± − e
2
(
1±m
1∓m

)r∓2mL∓, (15)

where L± are constants, which in general depend on e, to be
determined later through matching with the sheared region
solutions [10]. If the pressure profile has a step at r̄ so that
α∝ δ(r− r̄), expanding ξm±1 and L± in e and integrating
across r̄ shows that the constants L± are the same on either
side of r̄ [64] (this will turn to be useful in the next sections).
Let us introduce the Newcomb’s operator [65]

Lℓ =
1
r
d
dr

[
r3(

ℓ

q
− n)2

d
dr

]
− (ℓ2 − 1)(

ℓ

q
− n)2.

Elongation driven coupling can be neglected in the analysis
of the mode m as it enters the equations proportionally to e2.
Hence, the mth component of the perturbed field line bend-
ing term can be written as i(

√
gB ·∇J̃ϕ/Bϕ)m ≈ 1+κ2

2 mR0
Lm(ξm).

Thus, employing standard techniques and taking the limit γ̂→
0, by means of (10), (12), (13) and (14) after rather lengthy
algebra we obtain

[r3k2||ξ
′
m]

′ − r{(m2 − 1)k2|| + rw′}ξm+

α

2
(1− 3e

2
)
∑
±

r1±mL±
1±m

= 0, (16)

where k|| = 1− n
mq and the function w′ associated with the

plasma magnetic well is given by

w′ =
α

R0
[1− 1

q2
+(1− e)τ − 3e

4
+

3
2
eδ
ε
] + (1− e)(

qΩ
ωA

)2
dM2

dr
,

(17)
with τ = ( 12 +

T⊥
T||

)
T||−T⊥
T||+T⊥

[39] where it is understood that T||,⊥
is taken on the magnetic axis. Note that, regardless of either
plasma shaping or pressure anisotropy, the term associated

5
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with plasma rotation is positive for monotonically decreas-
ing pressure profiles. This indicates a deepening of the mag-
netic well, and therefore a stabilising effect [31]. The dynam-
ics in the low shear region is completely determined by equa-
tions (15) and (16). The derivation of the harmonics governing
equations in the high shear region is the aim of the next sub-
section.

4.2. Sheared region

In the regions of large magnetic shear, i.e. for 0 < r < r1 and
r2 < r < a, the parallel wave vector associated with the dom-
inant mth mode is large enough so that inertial (viz. the lhs
of (3)) and coupling terms can be neglected. We recall that m
denotes always the mode number of the main harmonic. Thus,
to leading order (i.e. to e2) the fluid disturbance of helicitym/n
obeys the Newcomb’s equation [10]

Lm(ξm) = 0. (18)

Multiplying the equation above by ξm and integrating from r2
to a, yields ξm= 0. In the region 0 < r < r1, the same procedure
gives ξm= 0 for m> 1 and ξm= const for m= 1.

Thus, since the main harmonic vanishes for r2 < r < a it fol-
lows that in this region the sidebands behave according to

[
√
gB ·∇(J̃ϕ/Bϕ)+

√
gB̃ ·∇(Jϕ/Bϕ)]m±1 = 0. (19)

Note that elongation driven coupling between satellite har-
monics of the type m± 1→ m∓ 1, which are of the same
order, are allowed regardless of the weakness (or strength) of
the magnetic shear. For monotonic q profiles, it is sufficient
for to require ξm(r2) = 0 and smooth matching of the side-
bands across r2 for any m≥ 1. Let us consider inverted safety
factor profiles with r1 ̸= 0. Focussing on the internal high shear
region 0 < r < r1 we distinguish betweenm> 1 andm= 1 dom-
inant modes. For m> 1, the same logic adopted above implies
that the satellite harmonics fulfil (19) in this region also. Thus,
the boundary conditions at r1 are ξm(r1) = 0 and smooth side-
bands at this point. The analysis of the m= 1 mode is more
complicated. Since ξm does not vanish for 0 < r < r1, additional
terms must be retained in the sideband equations. Moreover, a
more careful computation of (18) (up to order ε2 even in low
shear circular plasmas [44, 53, 66, 67]) is required to obtain the
correct boundary condition (viz. ξ′m(r1)) at r1 [67]. We point
out that infernal modes with m= 1 occur when q is very close
to unity over a broad region. Usually, in inverted q configura-
tions such a region is not particularly wide. This induces us
to conjecture that the dynamics of the m= 1 mode with an
inverted q profile are more kink-like than infernal-like, and,
as such, are better described by computing δW in the region
0 < r < r1 [68] andmatching the solution across r1 and r2 allow-
ing for second variations in q, i.e. q′′ [10]. Nonetheless, we
may argue that the m= 1 mode is not strictly relevant for suf-
ficiently inverted q scenarios with the minimum of the safety
factor well above unity [7, 11, 69–74]. Hence, with a reversed
magnetic shear we consider m> 1 dominant modes only, i.e.
infernal modes with qmin > 1.

Themode stability is determined by equations (16) and (19)
with the boundary conditions given above. This will be ana-
lysed in the next section.

5. Monotonic q

Let us consider a broad region of weak magnetic shear extend-
ing from the magnetic axis to r2 (i.e. we let r1→ 0). We
denote the value of q in this region with qm. For r2 < r < a
we take q= qm(r/r2)2 so that at leading order the flux sur-
face averaged toroidal current density is vanishing. By impos-
ing the mode m+ 1 having a resonance within the plasma, the
maximum allowed extension of the current channel is r2/a<√
m/(1+m) with qm≈m/n.
Because of the presence of a perfectly conducting metallic

wall at the plasma edge, we have ξm,m±1(a) = 0. As discussed
in section 4.2, the appropriate boundary condition for ξm at r2
is ξm(r2) = 0 (we recall that this expression is exact to order
e2). We cast (19) in the form

Lm±1(ξm±1) =Nm∓1(ξm∓1), (20)

where Nm±1 ∼ e is a linear functional. After setting L− = 0
for regularity of the lower sideband on the magnetic axis [75,
76] (this will be proven also in the next section where a more
general case is addressed), matching ξm− 1 smoothly (to lead-
ing order in e) at r2 yields ξm− 1≈ 0. Hence, by joining ξm+ 1

across r2 we have [10, 75]

L+
1+m

=
(1+m)(1− 3e/2)

r2+2 m
2

(
2+m+B+

m−B+

)ˆ r2

0
r1+mαξmdr,

where B+ = r2ξ′m+1(r2)/ξm+1(r2) is obtained through solving
Lm±1(ξm±1)≈ 0. It easily follows that

B+ = m+
2(m+ 1)

(m+ 1)− nqm
− 2(m+ 1)

1+ d(r2/rs)2 m+2
, (21)

where r2/rs =
√
nqm/(1+m) and d determines the behaviour

of ξm+ 1 at rs. For an ideal mode, we choose d=−1 so that
ξm+ 1 is finite at rs.

With a parabolic p(0)|| and p̄, by taking (M2)′ ∝ r it is pos-
sible to find an exact solution of (16) [28, 67, 76]. The res-
ult, however, is rather convoluted. A great deal of simplifica-
tion is achieved by approximating the plasma pressure within
the shear-free region with a Heaviside step function [64, 77],
namely p(0)|| ∝ H(rp− r) with 0< rp < r2 (this is shown in
figure 1). Despite the crudeness of this approximation, all
the important physical ingredients are retained. Due to the
rotation being constant in r, it then follows that the Mach
number M(r) is also distributed with a Heaviside step, so
that (M2)′ ≈ δ(r− rp)[M2(r+p )−M2(r−p )] = δ(r− rp)∆M.
Similarly, we write α≈−2R0[p̄(r+p )− p̄(r−p )]q

2δ(r− rp) =
rpδ(r− rp)ᾱ. We choose p̄(r+p ) = p̄(r2) and p̄(r−p ) = p̄(0) (cf
figure 1). The amplitude of the Heaviside step is determined by

arguing that the volume averaged β = 2µ0
B2

´ a
0

√
gp̄dr´ a

0

√
gdr with

√
g≈

κrR0 is identical to the one having parabolic p̄ everywhere

6
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Figure 1. Approximated pressure profile employed in the stability
analysis (i.e. in equations (15) and (16)) of section 5 with r1→ 0.
The smooth pressure profile has a parabolic dependence upon r.

(see figure 1). Thus rp = r2/
√
2 and ᾱ= 2β(r2/a)2q2m/ε̄ with

ε̄= rp/R0. Finally, it is worth pointing out that within our
model equations the ratio T⊥/T|| can be varied independently
of β, which is kept constant throughout the following analysis
as well as the current channel width r2, by allowing variations
in T||. We nevertheless point out that other constraints, e.g. on
the cyclotron frequencies Ωs of the species s (related to the
magnetic field strength) which have to fulfil γ/Ωs ≪ 1, may
impose further limitations on how specific equilibrium quant-
ities can be varied independently of each other. However, we
argue that the amount of the independent variation of the phys-
ical parameters associated with the equilibrium configurations
of interest is consistent with the model assumptions

Note that, alternatively, we could have had chosen to work
with a constant plasma current Ip, or equivalently q(a), which
corresponds to having βN ∝ βaB/Ip constant (this may be
more suitable for current tailoring studies). Thus, exploit-
ing the δ-function behaviour of α and (M2)′ and assuming
qm≈m/n, integration of equation (16) across rp [64, 77] yields
(note that integrating from 0 to r2 gives the same result)

ᾱ2

2ε̄
Λ+ᾱ

(
3e
4

− 3
2
eδ
ε

)
+

(1+ e)
ε̄

[
(
δq
m/n

)2Jrξ′mKrp−
rpᾱ
R0

(1− n2

m2
)
]
− m2Ω2

ε̄n2ω2
A

∆M = ᾱτ (22)

where JAKr = A(r+)−A(r−) having normalised ξm(rp) = 1.
Note that in references [27, 28] where the m= 1 mode is stud-
ied and the quantity 1− 1/q2 vanishes, the Mercier term refers

Figure 2. Stability boundaries for n= 1, 2 perturbations in the

(qm,
T||
T⊥

) plane, with the unstable regions shaded, for a static circular
(e= δ =Ω= 0) configuration with ε= 1/5, r2 = 1/2 and β= 1%.

to the second term on the lhs in the equation above, i.e. the geo-
metrical shaping contribution to the magnetic well. Neverthe-
less, as a matter of terminology, hereafter we call the Mercier
contribution the term 1− n2/m2. The constant Λ accounts for
the sideband coupling, i.e. L+, so that employing (21) gives

Λ = (1+m)(1− 2e)

[
(
1+m
m

)1+m− 2

]
(
rp
r2
)2 m+2. (23)

Finally, the solution of (16) that is continuous at rp and ful-
filling the boundary conditions at r2 is

ξm =


(r/rp)

m−1, r< rp,

(r/r2)m−1 − (r/r2)−m−1

(rp/r2)m−1 − (rp/r2)−m−1
, r> rp,

(24)

from which Jrξ′mKrp =−2 m/[1− (rp/r2)2 m]. Hence, collat-
ing these results, equation (22) can be solved for the degree
of anisotropy that yields marginal stability, i.e. we solve for
marginal τ and hence marginal T||/T⊥ for e.g. a given qm (a
simplified expression for T||/T⊥ in a weak anisotropic case

can be obtained by taking τ ≈ 3
4 (

T||
T⊥

− 1)). An example of the
stability regions in the (qm,T||/T⊥) plane is shown in figure 2.

Let us first note that, as pointed out in section 4.1, the
last term in the lhs of (22) is always negative for monoton-
ically decreasing pressure profiles, so that its effect is stabil-
ising [31]. It is worth noting that modes with a sufficiently
large m are stable since the field line bending contribution
eventually dominates over the destabilising contribution due
to the pressure driving terms. We shall also note that large m,
i.e. short wavelength, perturbations of infernal type might be
suppressed by higher order effects, such as e.g. diamagnetic
corrections [78], which have not been included in our analysis.
Finally, for given qm, the most unstable mode is expected to be
the one with m and n coprime with qm≈m/n (i.e. the lowest m
resonating mode).

It is immediate to verify that, for a fixed ᾱ and m> 1, smal-
ler aspect ratio configurations are prone to exhibit enhanced
stability by having a stronger stabilising contribution from the
Mercier term (always having qm > 1). This, however, does not
hold for modes withm/n= 1, for which such term vanishes. In
agreement with previous studies, we find that with anisotropic

7
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Figure 3. Stability boundaries (with n= 1,…, 10) for a MAST-like
configuration with ε≈ 0.67, r2 = 1/2, β= 10%, Ω/ωA = 1/10,
∆M = 1/2, e= 0.4 for different triangularity values. The unstable
regions lie below each curve.

temperatures, longitudinal injection (T|| > T⊥) improves sta-
bility, while transverse injection (T⊥ > T||) degrades it [36–
40, 45]. Assuming e> 0, we recover the elongation stabilising
effect at high plasma pressure, with the stabilising influence
of a positive plasma triangularity (this was previously noted in
reference [28] for the standard MHD isotropic case T⊥ = T||).
Pressure destabilisation at low β and sufficiently large ver-
tical elongation is more easily achieved by the m= 1 mode
because of the vanishing Mercier contribution (which is even-
tually dominant for high m modes). An example of the effect
of plasma triangularity on the stability boundaries of a MAST-
like configuration is shown in figure 3.

Note that for negative triangularity plasmas, oblate cross
sections might be beneficial in keeping the product eδ posit-
ive, and therefore deepening the magnetic well [79]. However,
one might have the side effect of enhancing the coupling with
the sidebands, and therefore worsening the stability. Thus, a
careful optimisation of this effect by considering the global
stability against a broader spectrum of perturbations may be
required. The case of inverted q profiles with a core localised
high shear region is the aim of the analysis in the next section.

6. Inverted q

Let us allow a magnetic shear reversal in the region 0 < r < r1
with r1 < r2. We recall that in the following analysis domin-
ant harmonics with m> 1 only are considered. This is indeed
appropriate for describing experimental configurations with
negative central shear which have the minimum of the safety
factor well above unity [11, 74]. Since plasma anisotropy and
toroidal flow, and also triangularity, enter through a modific-
ation of the magnetic well, the conclusions drawn in the pre-
vious section on their effect on the stability boundaries hold
in inverted q configurations as well. Elongation, on the other
hand, affects the dynamics in a more subtle manner.

Following the same analysis presented in the previous sec-
tion, in approximating the pressure within r1 < r< r2 with a
step function (cf figure 1) and retaining the same β of the
parabolic profile, we choose rp =

√
(r21 + r22)/2 and p̄(r−p ) =

p̄(r1). Therefore, we have ᾱ= 2β[(r2/a)2 − (r1/a)2]q2m/ε̄. As
shown in section 4.2, the main harmonic is vanishing in the
high shear regions. Therefore, maintaining the normalisation
ξm(rp) = 1, the solution of (16) for r > rp is identical to (24),
while for r < rp reads

ξm =
(r/r1)m−1 − (r/r1)−m−1

(rp/r1)m−1 − (rp/r1)−m−1
,

yielding

Jrξ′mKrp =−
2 m{(rp/r2)2 m − (rp/r1)2 m}

{1− (rp/r1)2 m}{1− (rp/r2)2 m}
. (25)

By repeating the logical steps employed in the previous sec-
tion, we arrive at (22) where the constant Λ is now defined

by Λ = 1−e/2
ᾱ

∑
±

r±m
p L±
1±m . In an inverted shear configuration

the computation of the constants L± requires a more care-
ful treatment compared to the monotonic q case. The diffi-
culty arises because of the coupling due to elongation which
yields non-trivial expressions for the satellite harmonics. Let
us start by expanding the sideband perturbations according to
ξℓ = Xℓ+ eYℓ with Yℓ/Xℓ ∼ 1 and Lm±1(Xm±1) = 0 (cf (20)).
It is helpful to introduce the constant

H±(C,B, ℓ) =

ᾱ(1±m)(2±m+C)(2±m+B)(rp/r2)2±ℓ

×(∓m± ℓ−B)(2±m+C)−(
r1
r2
)2±ℓ(∓m± ℓ−C)(2±m+B).

Writing L± = L̄± + eL̂±, and following the standard
procedure outlined in references [10, 64], equation

(15) yields
r±m
p L̄±
1±m =H±(C̄±, B̄±,2 m) and

r±m
p L̂±
1±m =

−H±(Ĉ±, B̂±,2 m)[ 32 − ( 1±m
1∓m )

r∓m
p L̄∓/4

H±(Ĉ±,B̂±,0)
] where

C̄± = rd lnXm±1/dr|r1 , B̄± = rd lnXm±1/dr|r2 , Ĉ± =
rd lnYm±1/dr|r1 and B̂± = rd lnYm±1/dr|r2 . It is worth stress-
ing that, since the dependence in e of ξm is missing, there is
no need to expand this quantity in the elongation parameter.
In order to compute Xm±1 and Ym±1, we turn to equation (19)
which is more easily manipulated when it is expressed in
terms of the perturbed poloidal flux ψ̃ℓ =−κr(1/q− n/ℓ)ξℓ.
This also is expanded in e yielding ψ̃ℓ =Ψℓ+ eχℓ with
χℓ/Ψℓ ∼ 1. By linking Xℓ and Yℓ to ψ̃ℓ, it follows that Xℓ =
−Ψℓ/[r(1/q− n/ℓ)] and Yℓ =−Xℓ−χℓ/[r(1/q− n/ℓ)].
Hence, to leading order equation (19) gives (ℓ= m± 1)

∇2
⋆Ψℓ ≡ (rΨ′

ℓ)
′ −

[ℓ2
r
+

( 2q −
rq′

q2 )
′

1/q− n/ℓ

]
Ψℓ = 0,

which is equivalent to Lℓ(Xℓ) = 0. To the next order in e, we
obtain an equation for χm±1

∇2
⋆χm±1 +

1
2

[
(rΨ′

m∓1)
′ ∓ 2 mΨ′

m∓1 +
m2 − 1
r

Ψm∓1

8
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+
( rq

′

q2 )
′(m∓ 1)Ψm∓1 ∓ 2rq′

q2 Ψ′
m∓1

m±1
q − n

]
= 0. (26)

Focussing on the region r2 < r < a first, we employ the safety
factor profile used in the previous section which is chosen
such that the modem+ 1 is resonant at rs < a. By requiring the
upper satellite harmonic to be finite at rs with an ideal metal-
lic wall at the boundary, we have Ψm−1 = a−[(r/a)m−1 −
(r/a)−m+1] whereas Ψm+ 1 = 0 for rs < r < a and Ψm+1 =
a+[(r/rs)m+1 − (r/rs)−m−1] for r2 < r< rs (the computation
of B̄± is straightforward). Proceeding further, let us denote the
particular solution of (26) associated with them+ 1modewith
g (which is proportional to a−). By imposing χm+1(rs) = 0,
we eventually have

χm+1 = b+[(
r
rs
)m+1 − (

r
rs
)−m−1]− g(rs)(

r
rs
)−m−1 + g,

In the region 0 < r < r1 we use a safety factor of the form [53]

1
q
=

1
q0

+(
1
qm

− 1
q0

)(r/r1)
2.

With such a profile, the sideband equations can be expressed
exactly in terms of hypergeometric functions [53, 80]. Retain-
ing the full solutions might be helpful when strongly reversed
safety factor profiles with q0 ≫ 1, i.e. advanced scenarios, are
considered which, however, are beyond the scope of this work.
The analysis of the problem tackled here, can be significantly
simplified by assuming q0/qm not too large. Hence, within this
approximation, we have Ψm−1 ≈ A−(r/r1)m−1 and Xm−1 ∝
rm−2. This yields C̄− = m− 2, and therefore L̄−/(1−m) = 0.
By using (15), it follows that

[Xm±1(2±m+ B̄±)]r2 = r±m2 L̄±, (27)

from which a− = 0 giving g= 0 and B̂+ = B̄+. Plugging the
functionΨm− 1 determined above into (26) and neglecting the
terms proportional to themagnetic shear, it is promptly verified
that∇2

⋆χm+1 = 0 which yields Ĉ+ = C̄+ and, as an immediate
consequence, L̂+ =−3/2L̄+. It is worth pointing out that in
the limit r1→ 0 the expressions derived in the previous section
are recovered, also for the m= 1 case. In order to have the
driving term Λ fully determined, it only remains to compute
the constant L̂−. Noticing that, depending on the value of q0
the mode m+ 1 might have a resonance at r̄s < r1, two cases
are then examined in the next subsections.

6.1. Weak reversal (nq0 <m+1)

Here we employ the weakly reversed q approximation, viz.
1/qm−1/q0

1/q0
≪ 1, so that Xℓ ∝Ψℓ/r. Let us denote ∆µ=

1/qm− 1/q0, m̄=
√
(m+ 1)2 + 8 and ζ = n/[m(m+ 1)]. By

introducing the variable z= (r/r1)2∆µ/[∆µ− ζ], the upper
harmonic can be written in terms of the hypergeometric func-
tion F

Xm+1 ∝
ym/2

(1− y)(m̄−3)/2
F(A,A+ 1;2+m;y),

with y= z/(z− 1) and A= (m+ 1− m̄)/2. Since y< 1, this
expression yields approximately Ψm+1 ≈ A+(r/r1)m+1 and
Xm+1 ∝ rm so that C̄+ = m. By employing equation (27) with
the replacements r2 → r1 and B̄± → C̄±, it readily follows that
A+ = r1ᾱ

2 [n− (m+ 1)/q0)(r1/rp)m(rp/r2)2+m[(rs/r2)2+2 m −
2].

Because of the absence of internal resonances, in (26) we
drop effects linear with respect to the magnetic shear. Hence
it is straightforward to show that

χm−1 = C(r/r1)
m−1 −A+

1+m
2

(r/r1)
1+m,

where C is a constant. We point out that a similar expression
could have been derived by using (15) with α→ 0 and the
obvious replacement L± → A±. Similarly to the derivation of
(27), expanding equation (15) further in e yields

[(2−m)Ym−1 + rY′m−1]r1 = r−m
1 L̂− +

1
2
(
m− 1
m+ 1

)rm1 L̄+. (28)

By plugging the expression for χm− 1 into the equation above
and taking q0≈n/m, we obtain

r−m
p L̂−
1−m

=
m(1+m)

nr1
A+(

r1
rp
)m+

1
2
(
r1
rp
)2 m r

m
p L̄+
1+m

.

It can be shown that L̂− = 0 so that the constant Λ is given by
(23). Therefore, the stability boundaries are determined by the
set of equations (22), (23) and (25). It is immediate to note that,
with r1 > 0, the stability is improved by having a stronger field
line bending stabilising contribution. As previously noted, the
expressions for the monotonic q case are recovered by letting
r1→ 0. In the next subsection we allow for a stronger shear
reversal which produces an internal resonance of the m+ 1
mode.

6.2. Moderate reversal (nq0 >m+1)

The analysis of the moderately reversed q configuration essen-
tially repeats the steps outlined in the paragraph above. The
only difference is a more complicated dependence upon the
radial variable of the upper sideband. For nq0 >m+ 1 the har-

monic Xm+ 1 has a resonance at r̄s = r1
√

1/q0−n/(1+m)
1/q0−n/m < r1,

hence for 0< r< r̄s we have Xm+ 1 = 0, whereas for r̄s < r<
r1 the eigenfunction is (F is the hypergeometric function) [53]

Xm+1 ∝
z−(m̄+3)/2

1− 1/z
[F(B,B−C+ 1;B−A+ 1;1/z)+

Dzm̄F(A,A−C+ 1;A−B+ 1;1/z)],

whereB= (m+ 1+ m̄)/2,C= 2+m andD is such thatXm+ 1

is finite at r̄s.
We find that, far from r̄s, the leading order of the upper

sideband displacement is well approximated by Xm+1 ∝
rm̄−1/[1/q− n/(m+ 1)]. Since |D|> 1, we may takeΨm+1 =
A+(r/r1)m̄ for r̄s < r< r1 and Ψm+ 1 = 0 for 0< r< r̄s. In

9
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analogy with the case of weak reversal, we obtain A+ =
−r1 nm (r1/rp)

mrmp L̄+/[(1+m)(2+m+ C+)] where

rmp L̄+
1+m

=
ᾱ(1+m)[m̄+(1+m)(2 m/nq0 − 1)]Z

m̄+(1+m)( 2 m
nq0

− 1)+ ( r1r2 )
2+2 m[m̄+(1+m)( 2 m

nq0
− 3)]Z

(29)

with Z= (rs/r2)2+2 m − 2. It can be shown that the particu-
lar solution of the m− 1 mode is not significantly affected by
dropping the last term in square brackets in (26). Hence, for
the sake of simplicity in the resulting expressions, this term
will be neglected. It follows that in the region r̄s < r< r1 the
solution of (26) for the m− 1 harmonic reads

χm−1 = C0(
r
r1
)m−1 +C1(

r
r1
)−m+1 − A+

2
(
m̄+m+ 1
m̄−m+ 1

)(
r
r1
)m̄.

Under the assumption q0/qm is not too large (see section 6)
we take (m− 1)/q− n≈ (m− 1)/q̄− n with q̄= 2/(1/q0 +
n/m). In order to find L̂− it is sufficient to specify the con-
stant C1. Some simple integrations of (26) across r̄s show
that χ′

m−1 has a jump at r̄s, whereas χm− 1 remains con-
tinuous. These conditions read Jχm−1K̄rs = 0 and Jrχ′

m−1K̄rs =
−1/2m̄(r̄s/r1)m̄A+. By applying such constraints we obtain

C1 =
(1+m+ 2m̄)
4(1−m)

(
r̄s
r1
)m̄+m−1A+.

If r̄s/r1 is sufficiently small, we let C1→ 0. Hence, by means
of (28), after some straightforward manipulations we finally

have
r−m
p L̂−
1−m = K× rmp L̄+

1+m with

K=
1
2
(
r1
rp
)2 m{1+ (1+m+ m̄)n/m

[(m−1)/q̄−n][m̄+(1+m)(2 m/nq0−1)]

}
.

(30)

Therefore, the parameter Λ expanded to leading order in e
reads

Λ =
[1+ e(K− 2)]

ᾱ

rmp L̄+
1+m

,

which is computed by means of (29) and (30). It is found that
the quantity K is rather small, and in the range of experimental
relevant parameters wemay approximateΛwith (23). Thus, in
analogy with the weakly reversed q case, the stability bound-
aries are identified by the set of equations (22), (23) and (25).
Thus, the same conclusions drawn in section 5 hold also for
weakly and moderately reversed q configuration. We note in
particular that the marginal β has a very weak dependence
upon q0 and for sufficiently small r1/rp the stability bound-
aries of monotonic and weakly reversed configurations coin-
cide [7]. This might be somehow expected, since according to
references [7, 11, 12] the eigenfunctions are relatively small in
the region of the shear reversal indicating weak contributions
associated with this region. Indeed, the fluid displacements,
viz. the eigenfunctions, tend to be more localised where either
the shear is small or in the external sheared region.

7. Discussion

The aim of this section is to point out the robustness of the
anisotropic model and to discuss to what extent our results,
in particular flow modifications, differ from previous findings
found in the literature (see e.g. [52]). Such differences can be
attributed essentially to (i) the absence of rotation and aver-
aged density gradients (this has been chosen for mathematical
ease) and (ii) the closure model.

Focussing on the first effect, it is well known that the allow-
ance of rotation and density gradients might have a profound
impact on the stability properties. Indeed, in reference [52]
it was found that the additional contributions to the magnetic
well (the dA2/dr term given by equation (30) in the reference
above) due to realistic radial variation of Ω and ρ̄ can be con-
siderably larger than the last term in (17). Radial variations of
the equilibrium averaged density can be included (e.g. in the
model of the current paper) rather simply, yielding

w′ =
α̂

R0
[1− 1

q2
+(1− e)τ − 3e

4
+

3
2
eδ
ε
]+

q2{Ω
2

ω2
A

[2− 1
q2

− 3
2
e+(1− e)M2]}′,

where ωA(r) = R2
0ρ̄(r) and α̂=−2R0[p̄(1+M2)]′q2 ( (we

also must replace α with α̂ in equations (16) and (19)). On
the contrary, dealing with rotation gradients is much more
difficult. This is because, if rotation is radially dependent,
we cannot set to zero the Doppler shifted eigenvalue across
the whole low-shear region. This, therefore, requires a more
elaborate calculation of the perturbed distribution function (cf
equation (11)), which yields a complicated expression of the
plasma response written in terms of the plasma dispersion
function [44]. We nevertheless stress that within the infernal
framework and under appropriate approximations, effects of
sheared flows of the order aΩ′/Ω∼ 1 can be included in the
analysis, thus showing off the power of the approach. The
inclusion of these particular flows demonstrates that a gener-
alisation beyond simple anisotropy is possible, and that future
work will attempt to take into account flows that resemble
more realistic experimental situations.We finally point out that
a large flow shear may break the assumptions employed in our
model, in particular the gyrotropic assumption [81, 82]. How-
ever, as long as we do not deal with instabilities localised in
extremely pronounced ITBs or at the pedestal where the flow
shear can be very large, the assumptions within our framework
is developed should be reasonably fulfilled.

The other differences arise from the closure model. As is
well know, in standard MHD we employ the adiabatic clos-
ure for which d(pρ−Γ)/dt= 0 where Γ= 5/3. In the guiding
centre plasma (GCP) approximation, the closure is provided
by solving the one dimensional collisionless kinetic equation,
i.e. (4), which describes the particlemotion parallel to themag-
netic field [42, 43]. It was pointed out in reference [42] that
MHD marginal stability boundaries are recovered by the iso-
tropic GCP model (in the case of shearless toroidal flows in
cylindrical geometry) if Γ= 1, i.e with the plasma being iso-
thermal. This is indeed apparent by inspecting equations (12)
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and (13). In standard MHD in toroidal geometry, the adiabatic
index enters inertia and magnetic well terms [77]. In toroidal
geometry, these contributions reduce to the ones obtained in
the isotropic GCP limit for Γ= 1 at marginal stability with
uniform flows. Thus, it follows that within the GCP model the
Brunt-Väisälä stabilisation mechanism, coming from the cent-
rifugal force which gives a stable density or entropy distribu-
tion within each magnetic surface, is lost (see e.g. [30, 83, 84]
and references therein). We shall point out that other types of
closure may be used [85, 86], and different results might be
expected depending on the closure model.

It is worth pointing out the robustness of the anisotropic
fluid model used here, for cases where strong parallel aniso-
tropy is applicable to the experimental regime of interest. It
is a more complete model in the deep parallel anisotropic
limit, for low or high performance plasmas, than the isotropic
MHD limit for cases where isotropy applies to a fusion grade
plasma. Indeed, in the limit of strong parallel anisotropy, i.e.
T||/T⊥ →∞, the trapped particle fraction vanishes so that
kinetic corrections to kinetic-MHDmodels are negligible [45].
Although kinetic models are dependent upon several paramet-
ers (collisional regime, temperature, bounce frequency reson-
ance effects, etc), in the parallel anisotropic limit kinetic mod-
els yield weak corrections to a fluid model. What is left are
anisotropic fluid effects which are robustly stabilising since
pressure perturbation associated with passing particles are lar-
ger on the high field side of the flux surface (contrarily to an
isotropic plasma in which passing particles compensate for
trapped particles, where the latter tend to spend more time in
the low field side).

It is also possible to see that combined elongation and
anisotropy effects are recovered by inspecting equation (3)
in reference [45], noting that p⊥, p|| and the factor C=∑

sms
´
dµdϵ B

v||
(µB)2 ∂fs∂ϵ [34] can be written easily in terms

of cosθ, T|| and T⊥ for the model used. This equation indic-
ates also that the effect of elongation would yield exactly the
elongation correction seen in theMercier index (−eτ ) in equa-
tion (17). Note that for parallel anisotropy, changes to the met-
ric are weak, allowing the toroidal and shaping expansions
presented in section 3. Toroidicity and elongation effects com-
bine with anisotropy in such a simple way because anisotropy
introduces a low order poloidal dependence, which combines
with the poloidal dependence of 1/R. The other shaping effects
are additive, giving the well known shaping effects on inter-
changemodes [26]. Thus, as the physical effects are additive in
nature, and fairly intuitive, more realistic, though perhaps ad-
hoc, approaches to including combined fluid anisotropy and
flows can be sought.

Finally, it is worth pointing out that parallel anisotropy
provides stabilisation also in stellarators, whose fields decay
proportionally to 1/R [87].

8. Conclusions

The problem of plasma anisotropy and certain limited equilib-
riumflow effects in shaped hybrid plasmas has been addressed.

As discussed in the introduction, the relevance of the res-
ults presented in this work can be extended both to spher-
ical and standard tokamaks. Using simplified class of pro-
files allows to have a manageable analytical treatment, nev-
ertheless retaining relevant physical effects. The main result
of this work is equation (22) which describes the stability
boundaries for ideal infernal modes. Such an equation holds
both for flat and q profile reversed configurations, whose spe-
cific case is identified by selecting appropriately the field line
bending contribution. In line with previous results, beyond
a trivial redefinition of the ballooning parameter α due to
a modified averaged total pressure, it is found that plasma
anisotropy effects enter through a modification of the mag-
netic well, yielding better stability properties with tangential
injection. It is found that a uniform toroidal flow improves
stability as well. Positive triangularity effects in vertically
elongated plasmas are stabilising, whereas negative triangu-
larity tends to be destabilising. We notice from figure 3 that
even with a relative modest parallel pressure anisotropy (T|| >
T⊥), that should be easily realisable with the MAST neut-
ral beam system, the infernal mode can be completely stabil-
ised even when the minimum of q approaches unity. Oblate
cross sections might be beneficial for restoring the stabilising
contribution to the magnetic well in negative triangularity
plasmas.

Depending on β, elongation might be either stabilising or
destabilising. A positive elongation parameter e at low pres-
sure and negligible triangularity tends to be destabilising with
a sufficiently small filed line bending contribution, while its
effect turns out to be stabilising at sufficiently high β in
accordance with [28]. Note that equation (22) seems to suggest
that mode stabilisation could be achieved not only with cur-
rent profile optimisation, i.e. modifying the safety factor, but
also with a careful tailoring of the plasma shaping. We point
out that the stability eigen-equations for the Fourier harmonics
derived in this work, and in particular the equation for the dom-
inant mode (16) with the allowance for residual magnetic shear
effects in the field line bending contribution, might be helpful
for analysing a broader class of instabilities, e.g. ballooning
modes.

Further work is nevertheless needed to assess more rig-
orously finite aspect ratio effects, highly relevant for com-
pact machines when ε ~ 1, and the coupling effects result-
ing from the inclusion of a larger number of satellite Four-
ier harmonics, viz. allowing the perturbation to be more
ballooned. Moreover, additional analysis is required for the
description of cases in which the safety factor is strongly
reversed, such as either advanced scenarios or current hole
configurations. Finally, we point out that the penetration of
beams in a ST reactor might not be sufficient to provide
the required levels of anisotropy envisaged to stabilise the
MHD activity analysed in this work. Further work is there-
fore needed to assess the overall effect of NBI heating in
future experiments, and particularly the role of shaping as
a primary player in mode stabilisation. It is envisaged that
such challenging analysis, might be more suitably addressed
numerically.
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Appendix A. Allowance for resistivity at rs

We consider a safety factor of the form shown in figure 1, i.e.
monotonic, and a uniformly flat rotation profile. In the eventu-
ality that some residual resistivity is allowed at rs, the energy
method is not valid any longer to obtain the stability boundar-
ies. These are instead heuristically identified by the condition

∆′ =
rψ̃′

m+1

ψ̃m+1
|rs = 0 [88] where

√
gB̃r ≈−∂ϑψ̃ (see section 6).

Hence at marginal stability, the constant d appearing in (21) is
set to d=−(rs/a)2 m+2. It immediately follows that we must
replace (23) with

(1+m)
ᾱ2

2ε̄
(1− 2e)[(

a
r2
)2+2 m − 2](

rp
r2
)2 m+2.

Noting that (rs/r2)2+2 m = ( 1+mm )1+m, the destabilising effect
of plasma resistivity is clearly apparent. Further work is non-
etheless needed to assess the effects of plasma compressibility
and sheared flows in a more rigorous manner and the possibil-
ity of a second resonance in case of strongly inverted q profiles.
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