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Abstract
The impact of plasma shaping through magnetic well modifications on the stability of resistive
ballooning modes (RBMs) in tokamaks is analysed, also including finite diamagnetic flows.
Various limiting cases of the dispersion relation, obtained by matching the ballooning equation
across the ideal and resistive layers, are analysed. It is found that stability is generally
improved by the combination of vertical elongation and positive triangularity, although, in
some cases, the growth rate of the unstable mode can be enhanced by these effects. Usually,
vertically elongated plasmas with no triangularity are prone to exhibit worse stability
properties. A value for the critical β above which RBMs are driven unstable is identified, and a
connection with type-III ELM activity is established.
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(Some figures may appear in colour only in the online journal)

1. Introduction

H-mode tokamak plasmas are typically characterised by an
edge transport barrier [1, 2], in which temperature and den-
sity abruptly decrease within a narrow region. As such, large
pressure gradients develop which in turn destabilise edge
fluctuations called edge localised modes (ELMs). One of
the mechanisms that limit the achievable pedestal height is
the cycle of pressure drop and subsequent recovery due to
ELMs destabilisation. Various types of ELMs are observed

∗ Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further
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of the work, journal citation and DOI.

depending on pedestal parameters (i.e. temperature and den-
sity) [3], the most dangerous ones being the so called type-
I ELMs. These events are associated with violent eruptions
of energy and particles which deposit significant heat loads
on the plasma facing components (PFCs). These heat loads
will be intolerable for a steady state reactor and significant
research efforts have been directed at developing scenarios
without type-I ELMs.

In the eventuality that ELMs cannot be avoided, a scenario
with H-mode performance without large ELMs is the type-
III ELMy operating regime [3–7]. Type-III ELMs are charac-
terised by a high repetition rate associated with lower heat and
particle loads on the PFCs compared to type-I ELMs regimes,
and are usually observed above the L → H transition bound-
ary [8, 9] at high pedestal collisionality [3, 10–12]. A coher-
ent magnetic precursor oscillation of toroidal mode number
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n ≈ 5–15 is often observed [12–15]. These perturbations tend
to occur below the marginal boundary of peeling ballooning
modes and disappear as the input power, and therefore temper-
ature, is increased [10, 13]. This suggests that type-III ELMs
may be resistive in nature, and indeed several works pointed
to the importance of resistive effects on edge modes [16–19].

The most likely magnetohydrodynamic (MHD) instabili-
ties that could explain such behaviour are the resistive bal-
looning modes (RBMs) [8, 20]. Contrarily to ideal ballooning
modes which exhibit two stability regions one at low and the
other at high pressure (first and second stability regions respec-
tively) [21, 22], RBMs are generally found to be unstable all
the way across the first ideal stability region [23, 24], whereas
they are mainly stable in the second one. This would predict
that they should be always observed if the pressure is suffi-
ciently low, which is in contrast with experimental observa-
tions [8]. However, an island of stability at low pressure can be
accessed if finite magnetic well corrections are included [21,
25–28]. These contributions, which are stronger for moder-
ate n values typically associated with type-III ELM precursors
[12–15], may therefore have a significant role. It is impor-
tant to point out that plasma shaping has a strong impact on
the magnetic well [29, 30], improving the pedestal perfor-
mances, and indeed higher pedestal pressures were sustained
at high triangularity in type-I and type-III ELMy regimes
[8, 31]. Additionally, diamagnetic flows are known to be an
important stabilisation mechanism, and these are likely to be
generated in the pedestal where strong gradients develop in
H-mode scenarios.

Hence, the aim of this paper is to investigate the role of
magnetic well effects, primarily through plasma shaping, on
the stability of RBMs, providing a physical understanding
of the type-III ELM phenomenon and potentially a scaling
for the pedestal height. Indeed, the accessibility of a stabil-
ity window in the ideal ballooning first stable domain, i.e. at
low pressure, could explain why type-III ELMs are observed
after the pedestal pressure reaches a threshold value and not
before. Note also that the type-III ELMs high repetition rate
is likely to be associated with a lower pressure threshold driv-
ing the instability [12]. The analytical calculations presented
in this work also include finite Larmor radius (FLR) correc-
tions, which may become significant when strong edge gradi-
ents (in temperature and density) develop and for sufficiently
large n toroidal mode numbers (even for moderate diamag-
netic flows). Finally, by employing the EPED model [32, 33]
for the pedestal width, we aim to derive an explicit expres-
sion, which depends upon macroscopic plasma parameters e.g.
pedestal temperature and density, of the RBM marginal bound-
ary. Hence, we identify the type-III ELMs boundary in the
density–temperature parameter space, by linking it to RBM,
and to some extent ideal ballooning mode, dynamics.

The logic of the mathematical derivation presented in this
work is the following: we first focus, within the drift-MHD
model, on the description of the equilibrium of a shaped toka-
mak. Then, we introduce the resistive ballooning equations.
These are radially Fourier transformed infernal type equations
[22, 34] for which neighbouring high-n harmonics have the

same radial shape, although peaking at adjacent rational sur-
faces. With a careful ordering of pressure gradient, magnetic
shear and shaping effects, the ballooning equations can be sim-
plified with the method of averaging. The solution of the resis-
tive ballooning equations yields a dispersion relation which
is examined asymptotically near the marginal boundary, and
deep inside of the stable/unstable region of the ideal mode.
Finally, the associated stability boundaries are expressed in
terms of the relevant physical parameters (specifically mag-
netic shear and pressure gradient).

Thus, the paper is organised as follows: in section 2 the
MHD model and plasma equilibrium for a shaped tokamak are
discussed. The derivation of the ballooning equation, involv-
ing an average over the poloidal variation of the equilibrium,
is discussed in section 3, in which a two-region analysis is
carried out. The discussion of various limiting cases for the sta-
bility boundaries obtained from the dispersion relation, which
closely follows the approach of references [35, 36], is the main
aim of section 4, and the connection of the analytical results
with the experimental observation of type-III ELMs activity is
proposed in section 5. Finally, in section 6 a discussion of the
results and future outlook is given.

2. MHD model and equilibrium

It is convenient here to provide a brief summary of the physical
framework within which the stability analysis will be carried
out. Plasma evolution is assumed to obey the resistive drift-
MHD equations [37, 38]:

ρ
(
∂tv + v · ∇v + v∗ · ∇v⊥

)
= −∇p+ J × B, (1)

∂tB = ∇× (v × B) − η∇× J +
mi

ei
∇×

(
∇‖pe

ρ

)
, (2)

∂t p+ v · ∇p+
5
3

p∇ · v = 0, (3)

∂tρ+∇ · (ρvi) = 0, (4)

where v and v∗ = miB ×∇pi/(eiρB2) (mi and ei are the ion
mass and electric charge) are the plasma MHD and ion diamag-
netic velocities respectively with vi = v + v∗, ρ is mass den-
sity, J = ∇× B the current density having been normalised
to μ0 = 1, pi and pe the ion and electron pressure respec-
tively with the total pressure denoted by p and η the plasma
resistivity which is assumed constant. The symbol ⊥ indicates
the vector projection perpendicular to the magnetic field, i.e.
v⊥ = B × (v × B)/B2 while ∇‖ = b(b · ∇) with b = B/B.
Here we assume that the plasma is sufficiently collisional so
that at equilibrium Te = T i. Note that the high collisionality
assumption allows us to neglect bootstrap corrections to the
total toroidal current. We point out that in equation (2) we
assumed B · ∇Te ≈ 0 representing rapid thermal conduction
along the magnetic field.

Let us consider a large aspect ratio tokamak (ε = a/R0 � 1
where R0 and a are the major and minor radii respectively)
with a D-shaped cross-section [39]. Let (r,ϑ,ϕ) be a right
handed coordinate system with r a flux label with the dimen-
sions of length, and ϑ (counter-clockwise) and ϕ the poloidal
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and toroidal angles respectively. The equilibrium magnetic
field in the plasma is B = F∇ϕ−∇ψ ×∇ϕ where ψ is the
poloidal flux. Note that in the limit of a strong longitudinal
magnetic field, the equilibrium diamagnetic flow is primarily
in the poloidal direction.

In a low-β = 2p/B2
0 ∼ ε2 plasma (B0 is the equilibrium

magnetic field strength on the axis), the equilibrium state
(∂t → 0) without MHD flows is described by the equation

∇p = J × B. (5)

For a sufficiently small magnetic shear, the equation above is
solved at leading order by [34, 39–41]

R = R0 + r cos(θ + r
δ

a
sin θ) −Δ, Z = κr sin θ (6)

where κ ∼ 1 and δ ∼ ε describe plasma elongation and trian-
gularity respectively, with the Shafranov shift Δ ∼ εa given
by (′≡d/dr)

Δ′′ +
3
r
Δ′ +

4
1 + 3κ2

(
2q2R0 p′

rB2
0

+
2δ
a

− κ2

R0

)
= 0.

Here ψ′ = rB0κ/q and F = B0R0(1 − r2(1+κ2)
2q2R2

0
− p′

B2
0
).

If we consider the equilibrium poloidal ion velocity to be
small, a MHD flow generated by E × B drifts may be intro-
duced (this would rotate primarily in the poloidal direction
counter to the diamagnetic flow). In this case, the equilibrium
state is still described with a sufficient accuracy by equation (5)
with p ≈ p(r). However, the main effect of this additional flow
is to introduce a Doppler shift in the eigenfrequency with-
out altering the stability properties. As such, for the sake of
simplicity, we will not consider MHD flows at equilibrium.

Introducing the rectified angle ϑ related to the parametri-
sation (6) via θ = ϑ+ λ(r,ϑ) with λ = −(r/R0 +Δ′)sinϑ,
the metric tensor elements gi, j in the straight field line coor-
dinate system (r,ϑ,φ) with Jacobian g can be easily derived to
the required accuracy by means of (6). The derivation of the
stability equations will be the aim of the next section.

3. Ballooning equations

With an axisymmetric equilibrium, the toroidal mode n is a
good quantum number, thus for any perturbed quantity f̃ we
have

f̃ =
∑

m

fm(r) exp[i(mϑ− nϕ) + γt].

Under the assumption n � 1 (which also implies m � 1 with
q ∼ O(1) so that k‖R0q � 1 with k‖ denoting the parallel wave
vector), the perturbation is sufficiently localised so that the
quantities q′, p′ and s = rq′/q can be taken constant. It fol-
lows that adjacent resonances (each resonance denoted by rm

for a generic poloidal mode number m) are evenly spaced,
i.e. (rm+1 − rm)/rm = d = 1/(nqs). In addition, we assume
that different Fourier harmonics have similar amplitude (i.e.
fm ∼ fm+1) and impose translational invariance [42]:

fm+1(x + d) = fm(x), (7)

with x = (r − rm)/rm.
Hence, for a given Fourier poloidal harmonic with mode

number �, it is convenient to distinguish two regions: one far
from its own resonance for which plasma inertia, resistivity
and diamagnetism are neglected, and a second one close to r�
where these effects are instead retained. Let us start analysing
the region far from resonance.

3.1. Ideal region

After linearising (1), simple algebra yields [41, 43] (hereafter
quantities without a tilde are assumed to take their respective
equilibrium values)

B · ∇ J̃ϕ

Bϕ
+ B̃ · ∇ Jϕ

Bϕ
− J · ∇ B̃ϕ

Bϕ
−∇ϕ · ∇ 1

Bϕ
×∇p̃ = I,

(8)
where the inertia operator I is given by

I = ∇ϕ · ∇ × ρ

Bϕ
(γṽ + v∗ · ∇ṽ⊥).

In this region we let I → 0.
Let us introduce the ballooning parameter α = −2R0p′q2/

B2
0 and assume that the perturbation is localised near the

plasma edge. In this region one usually has s ∼ α ∼ 1, which
is the standard ordering employed in the usual s − α model
[44]. Within this model, field line bending and coupling with
the nearest neighbouring sidebands arising from the first and
the last two terms in (8) are of the same order. However, deal-
ing with shaping effects, which requires higher order expan-
sions of the metric coefficients and a more careful analysis of
the poloidal couplings (i.e. for a given mode m we must retain
up to the m ± 4 sidebands), is significantly more difficult.

Thus, in order to simplify the algebra involved, we take
s,α � 1 [21, 45] and expand each term of (8) to the rele-
vant order by including pressure and elongation driven cou-
plings. Note that this is consistent with the equilibrium calcu-
lation presented in the previous section. The equations derived
with this approximation do not differ too much from the ones
obtained using the s ∼ α ∼ 1 ordering. It is worth noting that
the stability boundaries, at least for the ideal case, calculated in
the limit s � 1 behave qualitatively in a similar manner to the
ones obtained by more precise numerical computations with
realistic profiles [22, 46]. This suggests that our model could
be employed, to some extent, for cases with s ∼ α ∼ 1 [47].

We immediately notice that because of the translational
invariance (7), it is sufficient to compute only a single
Fourier projection of equation (8), say the mth with the res-
onance denoted by rm. Thus, equations (2) and (3) give√

gB̃r
m = irκB0(m/q − n)Xm with p̃m = −p′Xm where Xm =

ṽr
m/γ. Plasma compressibility has been neglected. Let us

define
Ym = (

√
gB̃r)m/(irκB0).

We take r d ln f̃/dr ∼ m so that (m/q − n) ≈ −snx where
nx ∼ 1 and x has been defined in equation (7). From
the covariant toroidal projection of (1) it is easy to show

3
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that (B̃ϕ)m ≈ R0 p′

B0
Xm, so that using ∇ · B̃ = 0 one has

(
√

gB̃ϑ)m = −i/m(
√

gB̃r)′m.
The equation for the perturbation in the ideal region is

obtained by multiplying (8) by
√

g and selecting the mth
Fourier component. Couplings between the nearest m ± 1 har-
monics are generated by the last term on the left-hand side
in (8), whereas the third one, which also combines with the
fourth, is associated with the magnetic well [29, 30]. Addi-
tional elongation driven couplings with the m ± 2 harmonics
arise from the first term which also yields the familiar terms
in the Newcomb equation [48]. Finally, the term proportional
to the equilibrium current density gradient can be neglected.
Thus, under the assumption that the mode is localised near the
plasma edge for which r ≈ rm ≈ a, we eventually obtain

d
dx

(
x2 dXm

dx

)
− (m2x2 +

ᾱ

s2
U)Xm

+
ᾱ

2ms2

∑
�=m±1

(
mX� ±

dX�

dx

)
− x

2ns

(
κ2 − 1
κ2 + 1

)

×
∑

�=m±2

(
d2Y�

dx2
± 2m

dY�

dx
+ m2Y�

)
= 0, (9)

where here Y� = (�/q − n)X�, ᾱ = 2α/(1 + κ2) and

U =
a

2R0

(
1 + 7κ2

1 + 3κ2
− 1 + κ2

q2

)
+ ᾱ

1 + κ2

1 + 3κ2
+

3δ(κ2 − 1)
1 + 3κ2

.

In the limit s2 ∼ α [21, 45], required to have comparable
field line bending and coupling contributions, the term U in
equation (9) is formally smaller compared to other contribu-
tions, which are all of the same order. However, in experi-
ments both aspect ratio and shaping parameters, i.e. κ− 1 and
δ, may take values not much smaller than unity, suggesting
that such corrections may enter the problem in leading order,
that is the term with U may be of the same order as the field
line bending and coupling ones. Consequently, we retain the
U term. It is also worth pointing out that the ratio of poloidal
to radial derivatives in (9) is expected to scale as md ∼ 1/s,
and, although the magnetic shear is supposed to be small (cf
section 2), both contributions are taken into account. Hence,
we envisage that our model could be potentially extended to
s ∼ 1 cases. A method for solving (9) with s ∼ 1 is given in
reference [49].

We now Fourier decompose the displacement Xm by defin-
ing X†

m(k) =
∫∞
−∞dx Xm(x) exp(−ikx), and take the kth moment

of equation (9). Hereafter the dagger symbol will denote a k-
space Fourier transformed quantity. By exploiting the radial
symmetry of the perturbation given by (7) with m ≈ nq, after
some straightforward algebra we finally obtain

d
dy

{
[1 + y2 +

(
κ2 − 1
κ2 + 1

)
(1 + y2 − 2h2(y))]

dX†
m

dy

}

+
ᾱ

s2
[h(y) − U]X†

m = 0, (10)

having defined h(y) = y sin y
s + cos y

s and y = k/m.
Equation (10) features two length scales, the short one

being contained in the oscillating coefficients of the function
h. The solution of the equation above can be obtained by
means of the averaging method [50–53] (a very readable
account of this method is given in references [37, 54]).

Let us define e = (κ2 − 1)/(κ2 + 1) andχ = y/s. Introduc-
ing the smallness parameter λ, we set [21, 54]

e ∼ α ∼ λ, s ∼ δ ∼ λ2, ε ∼ λ3,

and expand the function X†
m as follows:

X†
m = ξ0(y) + λξ1(y,χ) + λ2ξ2(y,χ) + · · · , (11)

with the requirement that the functions ξ1, ξ2, . . . vanish when
averaged in the variable χ over a period of 2π. Thus, writing
d/dy → ∂y +

1
s∂χ, equation (10) is solved order by order in λ,

from λ−3 to λ−1, providing an expression for ξi (i = 1, 2, 3).
These are then plugged into the zeroth order (in λ) of (9),
and averaging over χ yields an equation for ξ0. With the help
of computer assisted algebra tools [55], the final result reads
[21, 29]

d
dy

[
(1 + y2)

dξ0

dy

]
−
[
ν(ν + 1) − b2

1 + y2

]
ξ0 = 0, (12)

with ν(ν + 1) = α
s2 [ε(1 − 1/q2) + 3

2 eδ − α
8 e2] and b2 = α2

s −
7

32
α4

s2 . We shall restrict our attention to the case 0 < ν <
1/2, i.e. for resistive interchange stable configurations. If
we allowed s ∼ α ∼ 1 [44] in the derivation of the mode
equation (9), the averaging procedure would have an equation
similar to (12) with the last term on the left-hand side replaced
by (2α2/s − 3

8α
4/s2)/(1 + y2)2 [47, 54]. This fully provides a

description of the perturbation dynamics in the ideal region.
In the next subsection the derivation of the layer equation is
presented.

3.2. Inertial-resistive layer

Let us perform our analysis in the proximity of rm and take
d/dx � m. Assuming that ∇ · vi ≈ 0 [56], we may write
ρ̃m = −ρ′Xm and p̃im = −p′iXm where the ion pressure
equation is given by (3) with the replacements p→ pi and
v → vi. Moreover, it easily follows that (ṽϕ)m±1 = 1

im R0q(γ +

imωi) dXm
dx with ωi = mi p′i/(eiρaκB0). In the inertial layer,

plasma compressibility must be retained so that p̃m±1 =
−p′Xm±1 + δpm±1 where δpm±1 are obtained from the parallel
projection of (1), reading at leading order:

δpm±1 = ±R0ρq2

m
d

dx
[γ(γ + imωi)Xm]

+ p′(Xm±1 ∓ qYm±1).

Neglecting resistivity fluctuations in (2) under the
assumption that the perturbation varies sufficiently rapidly in
the radial direction, we obtain to the required accuracy

[1 + Hy2(1 + e cos
2y
s

)]Y†
m =

s
iq

dX†
m

dy
, (13)

4
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where H = m2η(1 + κ2)/[2κ2a2(γ − imωe)] and ωe =
ρ′Te/(eiρaκB0) having included elongation driven couplings.

The coupling between (8) and (13) completely describes
the mode dynamics in the resistive layer. We recall that
equation (8) must be multiplied by

√
g before taking the mth

poloidal Fourier harmonic. Let us focus on each individual
contribution arising from (8). It is easy to see that the term
proportional to the gradient of the equilibrium current den-
sity is negligible also in this region. The term proportional
to the perturbed current density can be easily worked out in
line with the derivation of the section before, where here the
magnetic fluctuation is given by (13). The pressure driving
terms, i.e. the third and fourth on the left-hand side of (8),
yield the last term in (10) augmented by the plasma com-
pressibility contribution, which is proportional at leading order
to d

dx (δpm−1 − δpm+1). Finally, the inertial contribution can

be written as (
√

gI)m ∝ γ(γ + imωi) d2

dx2 [Xm + e
2

∑
�=m±2X�].

Therefore, collecting these results together and transforming
to the k-space yields

d
dy

[
f (y)

dX†
m

dy

]
+

(
ᾱ

s2
[h(y) − U] − [ζ(y) +

(2qy)2

1 + κ2
]Λ2

)
X†

m

− ᾱ

s

(
Hζ(y)

1 + Hζ(y)

)
y cos

y
s

dX†
m

dy
= 0, (14)

where we defined ζ(y) = y2[1 + e cos 2y
s ] and Λ2 = γ(γ +

imωi)q2/(s2ω2
A), ωA = B0/(R0

√
ρ), with the function f (y)

given by

f (y) =
1 + y2 + e[1 + y2 − 2h(y)2]

1 + Hζ(y)
.

Note that for the two-regions analysis to be valid, we require
that n2 � a2|γ − imωe|/(s2q2η), where this condition must
hold also when s ∼ 1, introducing an effective upper limit in n
[27]. Thus, we must restrict our analysis to moderate n modes
only.

We perform a two-scales analysis [57] similarly to the
derivation in the ideal region. Let us employ the variable χ
for the argument of the periodic coefficients in the equation
above (cf section before), and take λ as a smallness parameter.
We order H ∼ λ2, γ ∼ mωi,e ∼ λ with y ∼ 1/λ and substi-
tute d/dy → λ∂y +

1
s∂χ. Here, no λ-ordering is introduced for

magnetic shear and shaping parameters. The eigenfunction X†
m

is expanded in λ according to (11), and then plugged into (14)
yielding an expression of the form

λ−1D−1(ξ0, ξ1) +D0(ξ0, ξ1, ξ2) + · · · = 0.

It is trivial to verify that the dependence upon ξ2 in D0 is
annihilated by averaging in χ over a period of 2π. The lead-
ing order of the equation above provides an expression for ξ1.
Elongation introduces complicated angular dependencies in
the variable χ which are resolved by casting ξ1 as ξ1 = Ξ(0) +
eΞ(1) + · · · (obviously Ξ(i) must be periodic in χ) and then
performing a perturbative expansion in e of the expressions
D−1 = 0 and

∫ 2π
0 D0 dχ = 0. For the accuracy required in our

calculations, it is sufficient to compute Ξ( j) with j = 0, 1, 2

(this is for a correct estimate of the magnetic well). After a con-
siderable amount of algebra, taking δ and therefore magnetic
well contributions sufficiently small and expanding to second
order in e gives

d
dy

(
y2

1 + H0y2

dξ0

dy

)
− [ν(ν + 1) + y2Λ2

i ]ξ0 = 0, (15)

with H0 = 2κH/(1 + κ2) and

Λ2
i =

(
1 + 2(1 − e)q2

1 − e2/2

)
Λ2 ≡ κ2

σ
(1 + 2q2)Λ2,

where in this expression, which defines the quantity σ, we may
let q be large.

Equation (15) incorporates shaping and FLR effects in the
inertial layer, and together with (12) determines the ballooning
dynamics. Their solution and the associated dispersion relation
are discussed in the next section.

4. Stability boundaries

Throughout this section we let m = nq and rescale ωA →
ωA/

√
1 + 2q2. The solutions of equations (12) and (15) are

well known [25, 26, 41, 53] and from their matching over
the overlapping region in y we obtain the dispersion rela-
tion. Although (12) yields even and odd solutions, we restrict
our attention to even parity modes only. Thus, the dispersion
relation reads [25, 38, 41]

1
λH

≡ Γ[ 1
2 (1 − b + ν)]Γ[ 1

2 (1 + b + ν)]Γ2[−ν − 1
2 ]

Γ[− 1
2 (b + ν)]Γ[ 1

2 (b − ν)]Γ2[ν + 1
2 ]

= (H0Q)−ν− 1
2

Q + ν

Q − ν − 1
Γ
[

1
4 (Q + 3 − 2ν + ν(ν + 1)/Q)

]
Γ
[

1
4 (Q + 5 + 2ν + ν(ν + 1)/Q)

]
(16)

where Q = Λi/
√

H0 and Γ is the Gamma function [58].
Although this equation is rather complicated, some limiting
cases can be identified and addressed analytically.

Since Q ∼ η−1/2, the ideal limit is trivially obtained by tak-
ing Q →∞, providing an expression for the mode marginal
stability boundary, which, for small diamagnetic ion flow,
reads [41]

b ≈ 1 + ν + (1 − e
2

)q|mωi|/(sπωA).

The destabilising role of the elongation is evident through the
weakening of the diamagnetic contribution, although its inter-
action with triangularity improves stability via magnetic well
corrections contained in the ν term [51].

Focussing on the resistive case, equation (16) can be anal-
ysed asymptotically for some limiting values of λH. This quan-
tity, defined by the left-hand side of (16), is a function of
the equilibrium parameters and its value determines Q, i.e.
the growth rate. Roughly speaking, λH can be considered as
a measure of the proximity to the s − α stability boundary
[38, 59]. The three cases of interest are: (i)λH > 0, (ii)λH ∼ 0,
and (iii) |λH| � 1 with λH negative. These correspond respec-
tively to analysing the deeply unstable, marginally stable and

5
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deeply stable regions of the ideal mode without diamagnetic
effects. Thus, balancing λH with the right-hand side of (16)
yields the three limits Q � 1, Q ∼ 1, and Q � 1. These cases
are analysed below.

4.1. Q � 1 regime

Let us take λH > 0 with ωi �= 0 and assume that the analy-
sis is carried out in a neighbourhood of the stability region
of the ideal mode when ion diamagnetic flows are present.
Expanding equation (16) for large Q yields to leading order

Λ2
i − 4λ2/(1+2ν)

H ≈
(

5
2
− ν

3

)
H0, (17)

where on the right-hand side we assumed ν � 1 which holds
for weak shaping with a sufficiently large aspect ratio. The
marginal stability boundary of the ideal mode is recovered by
setting H0 → 0. We shall stress that equation (17), and simi-
larly other simplified expressions of the full dispersion rela-
tion, only picks out a limited number of all the roots generated
by (16).

Let us introduce the Lundquist number S � 1 defined
as S = a2ωA/η and assume q large enough. Therefore, near
the stability boundary of the ideal mode with diamagnetic
flows, if we substitute γ → γ − imωi/2 with γ � |mωi| in
equation (17) we find

γ ≈ γ∗

[
1 − ν

15
+

γ2
I

γ2
∗

]
,

where

γ∗ ≈
√

5
2

[m|ωe + ωi/2|/ω3
A]−1/2[s2m2/(q2S)]1/2,

γ2
I ≈ (1 + e)[λ1/(1+2ν)

H sωA/q]2 − (mωi/4)2 < 0,

with −γ2
I � γ2

∗ . The growth rate, which is rather fast since it
scales as 1/

√
S, decreases as λH is reduced. Further stabili-

sation, although small, is gained by ν effects. With ωi suffi-
ciently small, the marginal boundary is given by the following
expression

b = 1 + ν +
q|mωi|
sπωA

(
1 − e

2
− 10s2ω3

A(mS)−1

ω2
i |ωe + ωi/2|

)
. (18)

The destabilising role of the resistivity is clearly evident,
although modes with a sufficiently large n are expected to be
completely suppressed by the ion diamagnetic flow. We point
out that if S is large enough, the stability boundary identified by
(18) is not too far away from the one of the ideal mode. This
seems to indicate that a modest heating may suppress these
instabilities.

Finally, it is worth noticing that if γ2
I is sufficiently large

and negative with λH > 0 not small, the two roots with
frequency −iωi/2 ±

√
γ2

I are both stable.

4.2. Q ∼ 1 regime

This case holds when |λH| � 1, i.e. close to the ballooning
ideal marginal boundary without diamagnetic effects. We first

expand the right-hand side of (16) to first order in ν � 1 and
then take the limit Q − 1 � 1. This yields

1
λH

=
2

(Q − 1)
√
πH0

(
1 +

ν

Q − 1

)
.

Note that in the resistive region H0y2 ∼ Λ2
i y2 ∼ 1 [21], so

that for y � 1 we obtain qm2/(sS) � 1. A straightforward
rearrangement of the equation above gives [35, 38, 59]
(ν/(Q − 1) � 1)

Q = 1 + ν + 2λH/
√
πH0.

Thus, in the limit of vanishing diamagnetic corrections, we find
that the growth rate is

γ = γR

[
1 +

2
3
ν +

4λH

3
√
π

(σ
κ

)1/6
(

sS
qm2

)1/3
]

, (19)

where γR ≈ ωA[s2m2/(q2S)]1/3. For S →∞ the stability
boundary identified by (19) is λH = 0, in agreement with
the findings of the previous section. Stability is improved as
λH becomes more negative [35], whereas the growth rate is
increased by finite magnetic well corrections when λH = 0. It
is worth noticing that the stabilising term proportional to λH

weakens as m increases, although the condition qm2/(sS) � 1
must be fulfilled, thence restricting the validity of this result
to the neighbourhood of the marginal stability boundary of
the ideal mode. Note that the analysis above has been derived
in the limit ν � Q − 1 � 1, yielding ν � λ with λ a small-
ness parameter which determines how close the system is to
the marginal boundary of the ideal mode (not to be confused
with λH). This condition can be fulfilled if the aspect ratio is
sufficiently large.

If diamagnetic flows are allowed, the growth rate of the low
frequency mode is [35]

γ = γR∗

⎡
⎣1 + 2ν + 4λH

√
κS|ωe|
πmωA

eiπ/4

⎤
⎦ , (20)

where γR∗ ≈ s2ω3
A/(q2Sωiωe). Similar conclusions to the ones

discussed above can be drawn regarding the stability of this
mode. An approximate expression for the stability boundary
can be written in a form similar to (18) with the obvious
replacements. Note that this root has a rather small growth
rate (γR∗ ∼ S−1) and it vanishes when S →∞. As in (19), the
stabilising contributions weaken as m increases.

4.3. Q � 1 regime

Here we take |λH| � 1 with λH < 0, i.e. far from the ideal-
MHD instability threshold in the ideal ballooning stable region
of the s − α space. Let us first neglect diamagnetic corrections.
Similarly to the regime discussed in the previous paragraph,
we first expand the right-hand side of equation (16) to first
order in ν � 1 and then take the limit Q � 1. This yields [28]

1
|λH|

=
Γ[ 3

4 ]

Γ[ 5
4 ]

×
√

Q
H0

(
1 +

πν

4Q

)
. (21)
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For vanishing FLR effects Q ∼ γ3/2, H0 ∼ γ−1, and the
equation above corresponds to the one analysed in references
[21, 25, 26] augmented by shaping effects. If ν → 0, the sta-
bility boundary for the resistive modes is given by b = 0, in
accordance with previous analyses [21, 23, 24]. The presence
of the interchange term ν, however, introduces a threshold in
1/|λH| as pointed out in references [21, 25, 26]. An estimate
of such a threshold can be found by assuming ν/Q sufficiently
small, so that from (21) one obtains [21]

γ = γT

[
1 − ν

(
|λH|
C0

)6/5( sS
√
σ

m2q

)2/5
]

,

where C0 = (5/π)5/6Γ[5/4]/Γ[3/4] ≈ 1.09 and

γT = ωA

(
Γ[5/4]

|λH|Γ[3/4]

)4/5

×
(

s2m6σ

q2S3κ5

)1/5

.

Thus, the result above yields the following expression for the
stability boundary

|λH| = C0ν
−5/6σ−1/6

(
m2q
sS

)1/3

≡ A .

Since ν � 1, the right-hand side of this equation could take
values of order unity. Similarly to the analysis in the previ-
ous subsection, the condition ν � Q � 1 yields ν � 1/qs2/5.
Because of the complicated Gamma function dependencies in
λH, it is desirable to identify limits which are sufficiently sim-
ple to be dealt with analytically. Hence, if the right-hand side
of the equation above is small, we are allowed to expand |λH|
to first order in ν giving

b = 1 + ν − 4C0

π
ν−5/6σ−1/6

(
m2q
sS

)1/3

. (22)

It is evident that this boundary lies between the ideal marginal
(b = 1 + ν) and the resistive one with ν = 0 (b = 0). Con-
versely, when A ∼ 1, we let ν → 0 in |λH| and obtain

cot(bπ/2)
2b

≈ 1
πb2

− π

12

= C0ν
−5/6σ−1/6

(
m2q
sS

)1/3

, (23)

where the approximation above accurately holds when b is suf-
ficiently far from unity. The ideal and the resistive ν = 0 stabil-
ity boundaries along with the ones identified by equations (22)
and (23) are shown in figure 1. At finite ν, a region of stability
opens at low α. The transition from (22) to (23) occurs when
A ∼ N with 0 � N � 1. For a circular torus ν ∼ αε/s2, thus
letting C0 ∼ σ1/6 ∼ 1 yields

s ∼ N3/4

(
S

m2q

)1/4

(αε)5/8.

Stability is improved at high S, eventually coinciding with
the one of the ideal mode, with strong shaping and Mercier
contributions, i.e. large ν. This suggests that vertically elon-
gated compact devices with high positive triangularity should

Figure 1. Ideal and resistive stability boundaries for a shaped
tokamak with ε = 0.05, q = 4, κ = 1.3, δ = 0.1 and S = 108. Ideal
n = ∞ ballooning modes are unstable inside the region delimited by
the thick full black line. The red curve identified by the condition
b = 0 indicates the stability boundary of the n = 10 resistive mode
with ν = 0 (instability occurs above this curve). At finite ν, the
marginal boundary is highlighted by the dashed line: below the
A = 1/3 level (highlighted by the dot–dashed line) the resistive
boundary at finite ν is computed by means of (22), whereas
equation (23) is employed above this level, both indicated by the
dashed line. Similarly to the ideal case, instability occurs within the
region delimited by the dashed line.

exhibit better stability properties against RBMs. It is interest-
ing to note that plasma shaping greatly affects the opening of
the RBM stability window at low pressure, whereas for ideal
modes such an effect impacts more at low magnetic shear (i.e.
at higher edge current densities) [60].

When strong diamagnetic effects are introduced, follow-
ing the procedure outlined in references [35, 36], from the
dispersion relation (16) we obtain

Γ[5/4]
Γ[3/4]

≈ λ(0)
H

√
Q/H0

Q − 1
(1 + νf(Q)) ,

where λ(0)
H = λH(ν = 0). Note that, compared to (21) the

equation above retains the Q − 1 singularity. The function f(Q)
can be approximated by assuming Q small, yielding f(Q) ≈
π/(4Q). Thus, under the assumption Q ∼ ν/Q � 1 we may
write

Γ[5/4]
Γ[3/4]

× 1

|λ(0)
H |

(
1 − Q − πν

4Q

)
=

√
Q
H0

. (24)

One can immediately verify that for |λH| � 1 there are three
roots. Seeking the unstable root with frequency mωe, we
substitute γ → γ + imωe with γ � |mωe|. Equation (24) can
be easily solved perturbatively [36], yielding for the fastest
growing mode

γ ∝ 1 − 8
3
Ω∗ +

πν

3Ω∗
, (25)

where we defined

Ω∗ =

(
Γ[5/4]

Γ[3/4]|λ(0)
H |

)2/3

×
[

m2q2κ2ωe(ωe + ωi)
s2ω2

Aσ

]1/3

.

7



Nucl. Fusion 62 (2022) 076016 D. Brunetti et al

The result above suggests the destabilising effect of finite
magnetic well corrections [61, 62]. However, complete sta-
bilisation can be achieved for any m [35, 36] owing to the
second term on the right-hand side of (25) for λH sufficiently
small. We also point out, that the growth rate scales as S−1

[35, 36] indicating that this root grows slowly and eventually
disappears in the ideal limit.

Thus, having discussed the physically relevant limits of the
dispersion relation (16), the aim of the next section is to link
the analytical findings to experimental observations.

5. Critical pressure height

As mentioned in the introduction, RBMs are likely to be asso-
ciated with type-III ELM dynamics. Hence, our aim in this
section is to derive an expression for the critical pedestal pres-
sure height beyond which RBMs appear, and link it to type-
III ELM phenomenology. Type-III ELMs are usually found
above the L → H boundary [8, 9] at moderate pedestal height
and high collisionality [3, 10, 12, 13]. Since type-III ELMs
are localised in a region of low values of edge current in the
peeling-ballooning stability diagram at not too high pressure,
we focus on equation (23), i.e. for a low-α and moderate s case.
Noting also that the boundaries computed with s ∼ 1 behave
qualitatively as the ones obtained in the s � 1 limit [22], it
might be reasonable, to some extent, to push the theory towards
the s ∼ 1 limit. Finally, because the toroidal wave number
associated with type-III ELM precursors is generally not too
large (n ∼ 10) [12–15], we may drop diamagnetic corrections.

The pressure gradient appearing in the ballooning parame-
ter α can be well approximated by

−dp
dr

≈ p
aΔped

,

where Δped = (a − rped)/a is the pedestal width with rped indi-
cating the pedestal shoulder. The quantity Δped is estimated by
means of the EPED model [32, 33, 46], in which the pedestal
width scales with the pressure according to Δped = Cqβ1/2/ε
with C ∼ 0.05 where β has to be evaluated at the pedestal top.
For Te = T i = T we have β = 2μ0 p/B2 = 4μ0neT/B2 where
ne is the plasma density, having restored the vacuum perme-
ability. Note that we accounted for the fact the EPED-pedestal
width is written as a function of the poloidal flux [32, 33],
whereas our expression depends upon the variable r ∼

√
ψ.

Finally, we take the local value of the Lundquist number as
an independent parameter, i.e. the value of resistivity in S is
independent of the pedestal top temperature. This is consistent
with the derivation in section 3, in which we considered the
instability to be highly localised, i.e. m � 1.

As noted in the previous section, ν corrections to the ideal
marginal boundary are rather weak in the region of suffi-
ciently high magnetic shear. This, indeed, might explain why
the transition temperature between type-I and type-III ELMy
behaviour depends weakly upon triangularity [8]. Therefore,
by writing α = q

√
β/C, the boundary of the first stability

region for the ideal mode with ν = 0 is identified by b =

Figure 2. Boundaries for n = ∞ ideal ballooning (with ν = 0
where only the first stability boundary is shown) and for a n = 10
resistive mode with s = 1.5, R = 3 m, B = 4 T, ε = 0.1, q = 3 and
S = 107 for a circular and shaped (κ = 1.5 and δ = 0.3) tokamak
with T i = Te. The stability regions lie below each respective curve.
The νe∗ = 1 level (νe∗ is the electron collisionality whose definition
follows reference [63] having used Zeff = 1) below which (26) is
expected to hold is also shown.

1 which yields β ≈ 1.48 × sC2/q2. Focussing on the resis-
tive perturbation, if the ratio α2/s is sufficiently low (low-α/
high-s region), we are allowed to take b2 ≈ α2/s. Thus,
approximating ν−5/6 ≈ α−1(ν/α)−5/6 on the right-hand side
of (23), we can obtain an explicit expression for the critical
pedestal pressure which reads

q
√
β/C ≈ −τ +

√
12s/π2 + τ 2, (26)

where

τ =
6
π

qs4/3C0(ε+
3
2

eδ)−5/6σ−1/6
(
S/n2

)−1/3
,

having neglected the e2α/8 term in ν (this is because α is
assumed to be small enough) with q � 1. An example of the
behaviour of the stability boundary identified by (26) in the
ne − T parameter space, which exhibits qualitative similarities
with experimental findings [8, 9, 31], is shown in figure 2. The
beneficial role of plasma shaping, i.e. vertical elongation with
positive triangularity, is apparent through the upwards shift of
the RBM stability boundary. We point out that type-I ELMs
are likely to appear as the boundary of the ideal mode is met,
thus limiting the maximum achievable pressure height [20]. As
such, we argue that the boundary of the second stability region
is never crossed. We stress however that diamagnetic flows
may favour the accessibility to higher pressure regions. On the
other hand, the RBM (and thus the type-III ELMs) threshold
is a softer limit which can be crossed allowing higher pres-
sure regions to be explored, until the type-I ELM boundary is
reached.

We shall now briefly discuss the boundaries identified by
equations (18) and (22), both of which share the same struc-
ture. By taking S large, we note that although (20) yields a
similar expression for the stability boundary, the growth rate
associated with this mode is so small (∼ S−1) as to be not
particularly relevant in the limit of large Lundquist numbers.
Hence, taking 7

32α
2/s � 1 and neglecting the e2α/8 term in

8
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ν, we obtain the critical pressure (q � 1)

q
√
β/C =

71
64

√
s +

1
s

(ε+
3
2

eδ) − U , (27)

where from (18)

U = − q|mωi|√
sπωA

(
1 − e

2
− 10s2ω3

A(mS)−1

ω2
i |ωe + ωi/2|

)
,

while from (22) the quantity U can be written in a form similar
to τ defined below equation (26) apart from some slightly dif-
ferent numerical coefficients. In the latter, (27) closely resem-
bles equation (26) expanded to first order in τ in which the ν
contribution to b has been neglected. We may drop the sec-
ond term on the right-hand side of (27) if the magnetic shear is
sufficiently large, indicating that for the case with strong dia-
magnetic effects identified by equation (18) plasma shaping
effects are of higher order.

6. Conclusions

In this work the impact of magnetic well contributions, primar-
ily through plasma shaping, also including FLR effects, on the
stability properties of RBMs has been analysed. The analysis
focussed on a particular choice of the perturbed displacement
for which neighbouring Fourier harmonics are translationally
invariant (cf (7)). By performing a two scale analysis, with a
careful ordering of magnetic shear and shaping contributions,
it has been possible to derive an averaged ballooning equation
in the ideal and inertial-resistive regions. By matching the two
solutions we obtained a dispersion relation which has been
analysed for various limiting cases.

When FLR corrections are negligible, stability is generally
improved for a vertically elongated cross section with positive
triangularity, whereas close to the ideal marginal boundary the
growth rate tends to be increased. Diamagnetic effects have
a strong stabilising influence altering significantly the growth
scaling with the Lundquist number. Various roots and their
corresponding stability boundaries, have been identified.

Finally, in the limit of negligible diamagnetic effects, which
appears to be appropriate for plasmas near the L → H transi-
tion, we derived by means of the EPED model an expression of
the RBM critical pressure value at the pedestal top. This seems
to compare favourably with the type-III ELM dynamics, and
thus could provide a sensible physical interpretation for such
phenomena.

We point out that our study is limited to the n � 1 case, for
which (7) holds. Therefore, different results might be expected
if slightly different forms of the fluid perturbation are con-
sidered [64]. Note also that in our calculations we assumed
that n is not too large in order for the two scale analysis to
hold. Consequently, several effects, which may become impor-
tant for finite n perturbations, have been neglected. Apart
from the obvious modification of the mode structure which
requires a global approach as in [65], additional effects would
also include variations of temperature and density across the
pedestal, neglected in the present work that considers very
high-n perturbations. These variations may alter resistivity and

diamagnetic flow values around different rational surfaces,
yielding a richer dynamics as discussed in [66, 67] As a result,
we envisage that for n finite a variational approach, which
might be more easily tackled via numerical methods possibly
with extended-MHD models, would be more appropriate.
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