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Preface

The goal of this report is to provide the basic analytic tools necessary to
describe magnetohydrodynamic (MHD) instabilities in toroidally sym-
metric devices known as tokamaks.

Although an extensive literature is available on the subject, it is quite
difficult to find a thorough explanation of the mathematical techniques
employed in MHD tokamak physics. Some of the fundamental results
are often only briefly mentioned, and their derivation is usually referred
either to the original works, or to very few highly technical references,
which, most of the times due to the compactness of the exposition, are
a very challenging reading. This, combined with the fact that at times
some topics are better developed in certain references than others, re-
sults in a rather fragmented literature typically scattered over several
books or research articles.

Hence, my hope with this report is to present in an unified and clear
manner such techniques, detailing the derivation of some of the rele-
vant results in tokamak MHD without omitting the salient mathemati-
cal steps involved. In some instances the mathematical manipulations do
not follow the standard textbook approaches but, in my personal opin-
ion, have the advantage to being more transparent in terms of logical
methodology and applicability. I also tried to emphasize the connection
between theory and experiment: a short mention to an experimentally
observed phenomenon, stressing the relevance/motivation behind the
development of the theory, is usually given.

The report is divided into four main parts. In the first part I give a
very brief account of the tokamak device, with a discussion on the phys-
ical model and the mathematical tools used to describe the macroscopic
plasma dynamics in curved geometries. In the second part, the theory
of tokamak equilibrium is developed. The third and fourth parts are
dedicated to the exposition of the linear stability properties within the
ideal and resistive MHD frameworks respectively. The list of the MHD
instabilities treated in this report is not exhaustive. These however have
been chosen in such a way that many of the MHD phenomena observed
in experiments can either be interpreted by combining appropriately the
results here discussed, or analysed by using the mathematical techniques
we present. The appendices include optional material (not strictly neces-
sary for the comprehension of the main text), and some technical deriva-
tions which resulted to be too heavy to be included in the main body of
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the report. Boxes in chapters contain some physical or mathematical
highlights.

Despite the fact that there has been a tremendous effort in the last
decades in the development of numerical tools for the analysis of MHD
equilibrium and stability in toroidal devices, this subject, although proven
to be of great importance for the understanding of tokamak behaviour,
is not discussed apart from very few instances. More advanced top-
ics such as multifluid effects, the interaction of global instabilities with
highly energetic particles, or non-linear behaviours are not addressed
either.

We employ the International System of Units (SI) as system of mea-
surement. In the stability calculation however, we will normalise the
vacuum permeability to unity. It is not uncommon to use the same sym-
bol with different meanings. However, the meaning of the symbol, unless
made explicit, should be clear from the context.

This report is intended for a graduate and post-graduate audience.
Basic results in magnetohydrodynamics are assumed to be known as well
as some knowledge of Fourier transform, special functions, asymptotic
analysis and matching theory. Familiarity with MHD theory in cylindri-
cal confinement systems, namely pinches, is highly desirable.

Culham, 12 May 2025.



Part I

BASIC CONCEPTS







Nuclear fusion and plasma confinement

This short chapter introduces the fundamental concepts of nuclear fu-
sion and plasma confinement. Particular emphasis is given to the de-
scription of the main components of the tokamak device (from the Rus-
sian acronym for toroidal chamber with magnetic coils) which is one of
the most promising configurations for achieving controlled thermonu-
clear fusion, and whose dynamics (from the macroscopic plasma point
of view) is the subject of this report.

1.1 Fundamentals on nuclear fusion

Contrarily to nuclear fission, in which a heavy nucleus breaks up into two
lighter ones, nuclear fusion is a reaction in which two or more atomic
nuclei combine to form heavier elements. Let us introduce the average
binding energy per nucleon (denoted by B/A4), i.e. the energy required
to separate an atomic nucleus completely into its constituent protons
and neutrons. Energy is released, either from fission or fusion, when the
final products of the nuclear reaction have larger B/4 than the reacting
nuclei (see figure 1.1).

Nuclear fusion releases million times more energy than a chemical
reaction (e.g. from burning coal, oil or gas) and four times as much as
nuclear fission reactions (at equal mass). Therefore it has the potential
to be a sustainable and abundant energy source, with no greenhouse gas
emissions and modest radioactive waste production. Although nuclear
fusion regularly occurs in the universe, as it powers most of the stars in
the sky, reproducing the process in a controlled way has been proven
to be extraordinarily difficult.

Of all the many possible fusion reactions (cf. Fig. 1.2), the most
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Figure 1.1: Nuclear binding energy
curve. Generally, energy is released by
the nuclear fusion process when atomic
nuclei lighter than iron-56 or nickel-62
are produced.
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Figure 1.2: Fusion cross sections, as a
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mass, for the reactions D-T, D-3He and
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promising to be used in a reactor, that is the one with the largest cross-
section and therefore probability to occur at lower temperatures, is the
reaction between Deuterium (D) and Tritium (T):

D+ T — *He(3.5MeV) + n(14.1MeV).

The released energy is contained in the kinetic energy of the reaction
products, namely an alpha particle (*He) and a neutron (}z). Deuterium
is plentiful on Earth, and Tritium can be obtained from nuclear capture
of a neutron by an atom of either °Li or “Li (both of which are abundant
elements)

1w +5Li - T + *He + 4.8MeV,

In+7Li > T +*He + 'n — 2.5MeV.

In order to overcome the mutual Coulomb repulsion, and therefore
to have an appreciable probability of undergoing fusion, the D and T
positively charged nuclei must be heated to a sufficiently large tempera-
ture. At such temperatures, D and T atoms are stripped of their electrons
and a plasma is formed. Furthermore, to reach the so called ignition
condition, in which the plasma temperature is maintained at a steady
level only by the internal heating generated by the helium particles, the
rate of energy production has to be higher than the rate of loss, and
enough of that energy must be captured by the system. This condition
is expressed by the Lawson criterion which, for plasma temperatures
in the range of 10-20 keV, takes the form*

nteT > 3x 108 m3skeV

where # and T are the plasma density and temperature, and 7z is the
energy confinement time defined as the ratio of the plasma stored energy
W over the rate of energy loss Py (g = W /P;). The quantity on the left-
hand-side of the Lawson criterion is know as fusion triple product. For



temperatures in the range of some tens of keV, the ignition condition
expressed by the Lawson criterion states that the plasma, i.e. the nuclear
fuel, has to be confined either for long times at low density, or for short
times at high density. The latter approach is pursued by the so called
inertial confinement schemes which mainly use lasers for fuel heating
and compression, whereas the former by magnetic confinement ap-
proaches, in which the plasma is trapped by powerful magnetic fields.
The table below summarises the orders of magnitude for temperature,
density and confinement times for magnetic confinement fusion (MCF)
and inertial confinement fusion (ICF) approaches.

MCF ICF
T 10 keV 10 keV
n 100 m=3 103 m3
T 1s 10710 ¢

The difficult part in nuclear fusion research is keeping the fuel in
the plasma state hot and dense enough for the required time (toka-
mak experiments reached a fusion triple product of the order of ~ 1 x
102'm=3skeV). This report focusses on a specific MCF device, namely
the tokamak, and the following sections will provide a brief introduction
to the main ideas underlying the magnetic confinement approach.

1.2 Magnetic cages

1.2.1 Open and closed systems

Magnetic confinement relies on the application of strong fields in order
to enclose the hot plasma in a magnetic bottle. Since currents flowing
in the plasma cannot self-confine the plasma itself (this is a consequence
of the virial theorem which is discussed in the next chapter), these fields
must be applied externally.

Due to the Lorentz force, to lowest approximation, a charged particle
with velocity » undergoing the effect of external electric and magnetic
fields gyrates along the line of force, being essentially “glued” to the
field lines. Several concepts have been developed during the past fifty
years based on this basic idea, with the two main families of magnetic
confinement devices grouped in the so called open configurations and
closed configurations.

The basic design of open configurations, known as magnetic mirrors
(or simply mirrors), consists of two parallel coils which carry the same
current in the same direction separated by a small distance, producing a
magnetic bottle between them (see Fig. 1.3) with an increased density of
magnetic field lines near the coils region. From orbit theory, in absence

MAGNETIC CAGES 5

Figure 1.3: Magnetic mirror geometry.
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2 That is the radius of the particle gyra-
tion around the magnetic field.

3 The Van Allen radiation belts are a nat-
ural mirror confinement system.

Figure 1.4: Geometry of the magnetic
mirror loss cones in the velocity space.
Particles with a pitch angle in velocity
space less than 63 = arctan(vy /v)|) are
lost.

4 In real experiments perfect axisymme-
try is never fully achieved due to inhomo-
geneities induced by external structures
such as coils, vessel components, etc.

of electric fields one has for the energy & and magnetic moment u of a

particle of mass m; and charge ¢
mso?

2B

where v, and v|| denote, respectively, the perpendicular and parallel

1
&= §msv‘2| + uB = const, u-= = const, (1.1)

particle velocity to the magnetic field of strength B. The invariance of
the magnetic moment holds, with a good degree of accuracy, even if
electric fields are present. These relations are exact to leading order
in the particle gyro-radius r;; = m;v, /(¢;B) (also known as Larmor
radius),” and v|| is in first approximation the parallel velocity of the
guiding centre, that is the point at the centre of the circle about which
the particle gyrates.

Because of energy and magnetic moment conservation, particles
near the coils where the magnetic field is stronger drop their parallel
velocity and eventually bounce back towards the plasma centre. The
reflection of the sign of v|| arises from the force due to the parallel gra-
dient of the magnetic field which, in case of a vanishing electric field,
determines the parallel motion:

d 0| B-VB
msw = —ﬂT. (1.2)
The force on the right-hand-side increases as VB increases and is in-
dependent of the particle charge, hence is the same for both ions and
electrons. Particles with appropriate speeds spiral repeatedly back and
forth from one end to the other.3

For a particle with energy & and moment y, the mirror field, which

is required to be smaller than the maximum one (Bmax), is

& &

Birror = — < Bpax, 0T

< u. (1.3)

max

Referring to figure 1.3, at z = 0 we have u = msvi /(2Bmin) so that we
find that mirror configurations cannot confine particles which have

ﬂ Bmax _ 1

Bmi

(0
This relation, known as mirror criterion, identifies the so called parti-
cle loss cones, i.e. regions in the velocity space for which particles that
are lying inside are not reflected within the ends of the magnetic bottle
(see Fig. 1.4).

These particle losses along the field lines can be eliminated by closing
the system. Closed configurations typically have a shape which resem-
bles the one of a doughnut and are characterised by a strong longitudinal
field. Examples of closed configurations include tokamaks and reversed
field pinches (RFPs), both of which are symmetric in the longitudinal di-
rection,* and stellarators, which instead exhibit helical symmetry. The
material discussed in this report will be focussing on tokamaks.



1.2.2 Tokamaks

A tokamak device, which confines a toroidally symmetric doughnut-
shaped plasma in a vacuum vessel, consists essentially of four major
elements:

toroidal field coils,
e iron core (or solenoid in modern machines),

* external heating systems,

poloidal field coils.

We shall now briefly describe the purpose of each of these components.

The current flowing in the coils linking the plasma (see Fig. 1.5-(a))
produces the longitudinal (or toroidal) magnetic field denoted by By,,.
From Ampére’s law, taking the line integral along a circuit inside the coils
as indicated by the dashed line in figure 1.5-(b) shows that such a field
decays proportionally to 1/R, where R is the radial distance from the
symmetry axis. The outer midplane where the field is weaker is usually
referred to as low-field-side, while the inner region where B is stronger
is called high-field-side. With stationary but spatially inhomogeneous
B and weak E, the equation of motion for the position vector r of the
guiding centre of a particle with charge ¢, and mass m; is

dr B ExB my?

= —_ 4 — +
at BT TR T BB

BxVB+ B”B x(B-VB). (14)
Apart from the contribution parallel to the magnetic field, the right-
hand-side of (1.4) is composed of three drifts: the £ x B-drift

ExB
BQ

VExB =

’

the V B-drift

— msv J—
Uvp = 9% BBB VB

MAGNETIC CAGES 7

Figure 1.5: Toroidal magnetic field and
toroidal field coil geometry. (a) side-
view, (b) top-view.

Figure 1.6: VB drift induced electric
field, and corresponding outward E X B-
drift.
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Btor@

Figure 1.7: Qualitative ion projected tra-
jectory in the presence of a helical field.
Starting off from point A on surface 1,
the particle moving along the field line
undergoes a downward shift crossing the
surface 2 at B. As the particle keeps its
helical trajectory, it will meet surface 3
at point C (downward shift with respect
to surface 2). Continuing in its path, the
ion crosses surface 2 again in D (down-
ward shift with respect to 3), and finally
will return at point A.

Figure 1.8: Schematic representation of
the current induction in a tokamak due
to a varying field generated by a cen-
tral solenoid: from Faraday’s law, a time
varying magnetic field flux through the
surface ¥ induces a linking electric field.
A plasma current then appears due to
Ohm’s law.

and the curvature drift

Veurv = ms—v”B x (B -VB)
curv gsB4 .

With E = 0 and a purely toroidal magnetic field (Vx B = 0), the par-
ticle experiences a vertical motion due to the VB and curvature drifts.
These depend on the particle charge, and because ions will drift in the
opposite direction with respect to electrons, this motion produces charge
separation. As a consequence, an electric field is generated, and its in-
teraction with the toroidal field drives a further drift, the £ X B one.
Contrarily to the VB or curvature drifts, this is independent of the elec-
tric charge so that is the same for both ions and electrons. Since it points
in the outward direction along R, this drift keeps expanding the plasma
eventually leading to its loss (see figure 1.6). Therefore, the toroidal field
alone is not sufficient to confine the particles, and an additional field in
the poloidal direction B, must be added.

With this supplementary poloidal field, usually much smaller than
the longitudinal one (B, < Bior), the magnetic field lines become heli-
cal, winding around the plasma and lying on nested surfaces. The par-
ticles which gyrate around the field lines, slowly drift vertically up and
down. An intuitive pictorial explanation of this behaviour is depicted
in Fig. 1.7, while a more detailed, although not exhaustive, analysis of
the particle motion in a complex magnetic field is given in appendix A.
Charge separation is therefore prevented and individual particles are
confined. The additional poloidal field is sustained by letting a current,
usually denoted by 1, flowing in the plasma along the longitudinal direc-
tion. To generate this current old tokamaks used an iron core with the
plasma acting as the secondary winding of the transformer: by varying
a current in the primary winding, a plasma current is induced. Mod-
ern machines employ a central solenoid to generate the magnetic flux
change needed to initiate the plasma current (see Fig. 1.8). A diagram
of a tokamak configuration, showing the direction of the poloidal and
toroidal fields with the associated sustaining currents and the iron core,
is depicted in figure 1.9.

The plasma current, apart from generating the poloidal field required
for particle confinement, also serves as a heating source. Indeed, since
the plasma is not a perfect conductor, as it has a finite resistivity, it can
be heated-up by the flowing current thanks to the Joule effect. This is
known as Ohmic heating. The power of heating Py generated by the
current Ip is

Py = RyI},

where R, is the plasma resistance. However, as the plasma temperature

T increases, the plasma resistivity (and thus its resistance) decreases,

3/2

typically with a dependence of the form 7™°/* (more details on this

will be given in §2.2 and chapter 13). Therefore, the Ohmic heating
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Icoil' Bpol | .
|~ Primary
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pr “tor

Helical field line

Figure 1.9: Diagram of a tokamak with an iron core. A varying current in the primary

—~

winding creates a varying magnetic flux. This induces a current /p in the secondary
winding (the plasma itself), and in turn generates the poloidal magnetic field Bpo). The
toroidal field Bior is sustained by a poloidally flowing current in the toroidal coils (cf.
Fig. 1.5).

becomes gradually less effective, and eventually negligible at sufficiently
high plasma temperatures. This means that the heat transferred through
the plasma current is limited to a defined level. If the temperatures re-
quired to sustain thermonuclear fusion conditions are much larger than
those achieved by Ohmic heating alone, additional means of heating
are required to reach the threshold where fusion can occur: these in-
clude the injection of electromagnetic waves (RF, from radio-frequency)
or energetic neutral particles (NBI, from neutral beam injection).

The last element which is essential for tokamak operation is the set
of coils mounted around the exterior of the mechanical shell, i.e. the
vessel in which the plasma is contained. These coils, known as poloidal
field coils, are used to control the plasma position (both horizontal and
vertical) and shape (the latter has a strong impact on plasma stability).
They also provide the vertical field required to maintain the radial force
balance. A more detailed discussion on the plasma tendency to expand
radially is given in chapter 4. A sketch of the positioning of vacuum
vessel, toroidal and poloidal field coils (including the primary winding
or central solenoid) is shown in figure 1.10.

This concludes our brief description of the main elements and key
features which characterise the tokamak device. In the next chapter we
shall focus our attention on the physical models employed for describing
the very core of the tokamak, i.e. the superheated gas contained in the
magnetic cage.

MAGNETIC CAGES ¢

vacuum

vessel = poloidal
DA/ field coil
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Figure 1.10: External coils positioning
in a tokamak.
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The MHD framework

The main goal of this chapter is to provide the essential information on
the magnetohydrodynamic (MHD) model. This consists of a set of fluid
equations coupled to Maxwell equations. Despite its mathematical sim-
plicity, it is capable of describing a large variety of phenomena observed
in experiments, and therefore is widely used in modelling the dynamics
of tokamak plasmas. We do not attempt to present a complete and de-
tailed derivation of the MHD equations, for which the reader is referred
to other excellent sources listed at the end of this chapter. Rather, we
outline which are the main steps and ideas involved in the derivation of
the magnetohydrodynamic equations, and provide an intuitive discus-
sion about the physical consequences and limitations associated with
this framework. Some more advanced beyond-MHD models, which are
of interest in tokamak physics, are also briefly presented.

2.1 Ideal MHD

The MHD model gives a description of the long-wavelength and low-
frequency dynamics of a macroscopic single fluid plasma. Faster phe-
nomena associated with smaller length-scales' are not captured by the
MHD equations. For these dynamics different approaches are needed,
which however are not discussed in this report.

The starting point of the derivation of the MHD model are the mi-
croscopic kinetic equations. The plasma kinetic description is based
upon the concept of distribution function. We associate to each parti-
cle species labelled by s, e.g. electrons and ions, a different distribution
function f;. This function, which is defined in a 7-dimensional space (3
spatial coordinates, 3 velocity coordinates plus time), gives the number

! These are typically associated with
micro-instabilities, whose non-linear evo-
lution determines energy and particle
transport.

Unless otherwise specified, the time de-
pendence will always be denoted by the
variable ¢.
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2 Inaplasma consisting of electrons and
a single ion species this set of equations
forms the so called two-fluid model.

of particles of the species s per m? at position x and time ¢ with velocity
components between v, and v, +duy, v, and v, +dv,, v, and v, +dv, (here
the triplet (x, y, z) indicates the familiar Cartesian coordinates) through
the relation

fs(x,9, 2,05, vy, 0, t)dvydvydo,.

Its time evolution obeys the Boltzmann kinetic equation

of; F of (of.
5“’"’1‘57'%—(5);

where F is the force acting on particles and (df;/d¢), is the time rate of
change of f; due to collisions. When collisions are ignored and forces be-
tween particles are electromagnetic, the equation above takes the name
of Vlasov equation. Thus, in order to solve the evolution of the electric
and magnetic fields, we must couple the Boltzmann/Vlasov equation to
Maxwell’s equations. For the sake of simplicity, we assume a fully ionised
globally neutral plasma consisting of electrons and positive hydrogen or
isotopes ions with charge number Z; = 1. As a matter of notation the
subscript ¢(i) refers to electron(ion) related quantities.

The fluid variables of each species s such as e.g. particle density
ns(x, t) and fluid velocity u(x,¢) are defined as the integral over the
velocity space of the product of f; with a function ¢(v) of the microscopic
velocity v, that is

ns(x,t):/fs(x,v,t)dg’z),
m@nmmn=/ﬁumnw%.

These are called moments of the distribution function f;. The tem-
poral evolution of these moments is obtained by multiplying the Boltz-
mann equation by the function ¢(v) and then integrating it over the
microscopic velocity variables ». This yields a set of equations for each
species s which are usually referred to as the multifluid equations.”
Unfortunately, the system of equations obtained from this procedure is
not closed, in that the time evolution of any moment of the distribution
function will depend upon the next higher order moments (e.g., the den-
sity evolution depends on the flow velocity, the flow velocity evolution
depends on the viscosity tensor, etc.). The process in which additional
information is used to express the latter quantities in terms of the for-
mer yielding a complete set of equations is known as closure. There
are several types of closures, and one of the simplest involves a trunca-
tion in which higher order moments are assumed to vanish, or simply
prescribed in terms of lower moments.

In the closure scheme employed for deriving standard MHD, the
plasma is assumed to be collisional (fluid limit), so that the pressure
tensor becomes isotropic with a negligible heat flux. Furthermore, dis-
placement currents and net charges (£9V - E) are set to zero in Maxwell’s



equations. Neglecting displacement currents implies that the electro-
magnetic wave phase velocity is much smaller than the speed of light,
and the characteristic thermal velocities of ions and electrons are non-
relativistic. Neglecting the net charge implies that i) the characteristic
frequency of plasma behaviour is much smaller than the plasma fre-
quency wyy, ii) the plasma characteristic length is much longer than the
Debye length Ap,3 and iii) the ion and electron number densities are
equal i.e. 7, = n; = n. The latter condition is known as quasineutrality
approximation. As a final assumption electron inertia is neglected, that
is m, — 0 (m, is the electron mass), and dissipation effects as well.
Thus, after defining macroscopic one-fluid variables as linear com-
binations of the two-fluid variables,* one obtains the following system

(3—/; + V- (pu) =0, (2.1)
ou
p(a+u~Vu):—Vp+‘]><B, (2.2)
E+uxB=0, (2.3)
OB

VXE=—— )
X TR (2.4)
V-B=0, (2.6)

where the energy equation, which provides the closure, is®

d(2)_
i) -0 7

which, by means of (2.1), can also be expressed as

%+u.Vp+FpV-u:0. (2.8)

These are referred to as ideal MHD equations which form the ideal
MHD model. In the equations above, p = m;n is the plasma mass
density, £ and B the electric and magnetic field, J = en(u; — u,) the
current density with e the ion charge, p = p; + p, the plasma kinetic
pressure,6 I' = 5/3 the adiabatic index, and d/dt = 0/0t + u - V is
the convective derivative.” In (2.5), po denotes the vacuum magnetic
permeability. The momentum of the fluid is carried by the ions, i.e.
u ~ u; with
ExB B B
u:T+u||E:uL+u||ﬁ. (2.9)
It is instructive to discuss briefly the physical interpretation and con-
sequences for some of the equations of the system above. Equations
(2.4)-(2.6) are pre-Maxwell equations, indicating low frequency electro-
magnetic behaviour. The mass density equation (2.1) implies that the
number of particles is conserved (no ionisation or recombination phe-

nomena, etc.). Equation (2.2) which is referred to as the momentum

IpEAL MHD 13

3 The plasma frequency and Debye

length are wy = \nge?/myeq and Ap =
Vr,/wpe respectively, with the thermal
velocity defined as V5, = +2kpTs/m;.
ng is the plasma density, ¢ the ion charge,
kp the Boltzmann constant, 7; and m;
the temperature and mass associated
with the s species.

4 The oneluid evolution equations are
obtained by adding pairs of the two- fluid
equations multiplied by mass and charge
factors.

5 This is the equation of state.

6 Here p = nkp(T; + T,) with T the tem-
perature of the species s.

7 The convective derivative, also known
as total derivative, gives the time rate of
change of a physical quantity in an ele-
ment of fluid moving with the local flow.
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Magnetic helicity is conserved too.

UAt

G
dS =dl x (uAt)

Figure 2.1: Volume element swept out
by a surface S moving with the fluid in
a magnetic field with velocity u viewed
at time ¢ and ¢ + Af. The shaded area
is the side surface spanned by the length
element d/ of the contour Cj.

equation describes the momentum balance. Equation (2.3) tells that the
plasma is a perfect conductor, i.e. the electric field in the moving plasma
frame is zero. This equation has an important consequence: it implies
that the motion of the fluid element is glued to the one of the magnetic
field lines. This is known as frozen-in theorem, or flux freezing, mean-
ing that if a fluid element is displaced, the magnetic field will follow it
accordingly and vice versa. Total energy and momentum are also con-
served. These are the so called ideal MHD conservations laws, whose
proofs are outlined in the next subsections.

2.1.1 Freezing of the magnetic field

Consider a surface $7 = §(¢) of contour C; at time ¢ crossed by a mag-
netic field B. As § moves in time, each line element comprising it moves
by a distance #A¢, so that at time ¢ + At we have S(¢) — S(¢ + At) =8
with contour Cy, as shown in figure 2.1.

The flux ®,; across the surface S is defined as

CDM:/B-ndS,
N

where z is the unit vector normal to the surface §. The rate of change
of the magnetic flux through the open surface §' can be written as

do 1
M — lim —[ B(t + At) - ndS —
So

dt At—0 At B(t)- ndS

S1

We Taylor expand B(¢ + At) = B(¢) + %At + ..., and obtain

d®y I
—— = lim
dt t—0

0B 1
— - ndS + — B(t) - ndS —
/Sz ot At ( Sy

B(t) - ndS)

(2.10)
Let us consider the closed surface delimited by the surfaces $7, So

S1

and the lateral side spanned by the surface dS of length uA¢ as in Fig. 2.1.
Because of (2.6), from the Gauss divergence theorem, the flux through
this surface is zero, i.e.

0= [ B(t)-ndS—- | B(t) ndS+
S S1 G

B -dl x uAt,

where the minus sign in the term with §; is because the unit vector nor-
mal to that surface is not pointing outwards, and 4! is the infinitesimal
element of the contour (7 (see Fig. 2.1). Using the result above into
(2.10) gives

—dCDM = lim [f a—lr’.-rza'AS'—

dt At—0 | J g, ot G
The first term on the right hand side can be evaluated using (2.4) and
Stoke’s theorem. Thus, taking the limit Az — 0 one has $1 = Sy = §
with €71 = Cy = C, so that

@:—fdl-(E+uxB). (2.11)
dt C

B-dlxu




Therefore, using (2.3) and assuming that the velocity # coincides with
the plasma velocity, one has that d®j;/d¢t = 0. This demonstrates that in
ideal MHD the total magnetic flux is conserved, i.e. the magnetic field
lines move following the plasma motion, being frozen into the fluid.

2.1.2 Energy conservation

Another quantity that is conserved in ideal MHD is the total energy.®
Dotting (2.2) with # and using (2.1) yields

2 2
%(%)+V-(p%u):—u-Vp+u-JxB:—u-Vp+j-E,

where use of (2.3) has been made in the last passage. By means of
Faraday’s law we easily have

1 1 1 0B2
J-E=—E-VxB=-—V-(ExB)- ——.
Ho Ho 2uo 0t

Finally, equation (2.8) gives

SCAY (0 2 A
u-Vp_at (F—1)+V (F_lpu).

Therefore, by collating these results together we get

2 2 2
B/l_'_[)_'_B):_V.(u p

at\ 2 "T-1 2u

The left-hand-side is the rate of change in time of the sum of kinetic,
internal and magnetic energies, whereas the divergence term on the
right-hand-side represents the flux of kinetic and internal energy, the me-
chanical work due to pressure forces and flux of electromagnetic energy
through the Poynting vector.9

We now integrate the expression above over a volume V' (which may
include a vacuum region) such that the normal and tangential compo-
nents of # and E are vanishing on the surface enclosing this volume.
This shows that the total energy (dV is the infinitesimal volume ele-

2 2
_ (e, P B
U—f(2+r_1+2#0)dV

is conserved in time.

ment)

2.1.3 Momentum conservation

Proving that the global momentum is conserved is a rather simple task.
We first observe that by means of (2.1)

Ou _d(pu) dp _ d(pu)
Por™ "ot "oi T Tau

_ d(pu)
Y

+uV - (pu)

+ V- (puu)— pu-Vu.
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8 This conservation law will be ex-
ploited when certain properties of equa-
tions (2.1)-(2.8) will be discussed in the
context of the stability of an equilibrium
subject to small perturbations.

9 The quantity %u + pu = %[Ju can
be interpreted as the enthalpy flux.
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This tensor has diagonal elements equal
to unity, while the off-diagonal ones are
zero.

>

Figure 2.2: Plasma volume V' enclosed
by the surface X used in the proof of the
virial theorem.

The current term is rearranged as follows

2

(VxB)xB:—V(B—

BQ
2)+B-VB=—V-(7£)+V-(BB),

with I;; = (I);; = 6;; is the diagonal unit tensor. Finally, Vp = V- (p1).
Plugging the results above into (2.2) gives

d(pu) B? 1
5 - v p£+2#0£+puu BB],

Mo

which has the same structure of (2.12) where the left-side describes the

(2.13)

acceleration. We thus conclude that the total momentum is conserved if
the same boundary conditions as those used in the derivation of the en-
ergy conservation are fulfilled. Relation (2.13) is used for the derivation

of pressure jump conditions at the plasma-vacuum interface.

2.1.4 The virial theorem

This theorem states that it is not possible to confine a plasma only with
currents flowing within the plasma itself. We prove it by contradiction.
Assume a plasma at equilibrium to occupy a bounded area enclosed by
a surface X associated with a volume V' as shown in figure 2.2. There
are no rigid current-carrying conductors inside or outside the plasma.
From (2.13), the equilibrium condition is V - " = 0, i.e. no forces, with
the tensor 7" given by o

(p B’ )1 ! BB+
- uu.
2p0 Ho p

It is immediate to see that 7;; = 7;; and

B2 B}
Ti=p+ — -~ + pu?
11 p 2#0 /J() p
The following relation holds
0 Ox; 0T},
V(e L) = g ) = Tt e w2 T VL =D,

where the symbol Tr denotes the trace of the associated tensor. It follows
that Tr(T )=3p+5 - St pu®. Therefore, one has
B’ 1
X (]) + —)I — —BB + puu|-ndz,

BQ
0</(3 +—+pu2)dV:/
4 4 20 > 20 Ho

where z is the unit vector normal to the surface X. Let the volume be

a sphere of radius r with r — co. Since X encloses the plasma, we have
plz = ulz = 0. The magnetic field decays at large radii at least as a
dipole field, i.e. B ~ 1/r% whereas in spherical coordinates (r,6, ¢) we
have dX ~ r? and x ~ r. Thus, in the equation above the integral on
the left takes some positive value while the one on the right is vanishing,
hence the contradiction.



2.2 Resistive MHD

The condition of magnetic field freezing can be violated, i.e. the mag-
netic field can diffuse through the fluid element, if the ideal constraint is
relaxed and the plasma is allowed to be resistive. In such a case equation
(2.3) is modified by including resistive dissipation effects: in its simplest
form it becomes

E+uxB=n], (2.14)

where 7 is the plasma resistivity which, generally, can depend upon x
and ¢. Equation (2.14) is called the Ohm’s law. The system of equations
(2.1), (2.2), (2.4)-(2.6), (2.8) and (2.14) forms the so called resistive
MHD model. Using Faraday’s law, equation (2.14) can be cast as

(Z—l::VX(uXB)_VX(nJ)’

which is called the induction equation.

By comparing with (2.11), the inclusion of resistivity allows the mag-
netic flux to diffuse, i.e. is not glued anymore to the fluid element. As
a consequence, in a resistive plasma oppositely directed magnetic field
lines can break and reconnect (see Fig. 2.3). During this process, called
magnetic reconnection, the magnetic field energy is converted into
kinetic and thermal energy. Magnetic reconnection in tokamaks is in-
voked to explain certain phenomena associated with severe confinement
degradation (e.g. the formation of the so-called magnetic islands whose
analysis will be addressed in chapter 14).

We point out that there are many ways to model plasma resistivity,
and one of the most widely used is the so called Spitzer model. In
this model plasma resistivity arises from electron-ion collisions, and is a
decreasing function of the electron temperature*’

7 ~ 732
P

In summary, accounting for the plasma response through the induc-
tion equation, the MHD model system describing ideal and resistive
plasmas can be written in a compact way as

% v (ou)=0.

ot
p(i—l:+u-Vu):—Vp+ij,
0B
E:Vx(uxB)—Vx(n]),
0
6—‘1:+u-Vp+I“pV-u=0,

VXB:ﬂOJ, V'B:07

where the ideal limit is obtained by setting 7 — 0. This is the set of
equations that will be used throughout the following chapters.
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Figure 2.3: Typical reconnection event
for oppositely directed field lines.

10 Under certain conditions, the resistiv-
ity of a plasma tends to be much higher
than the Spitzer resistivity. In such a case
we talk about anomalous resistivity.
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11 Recalling the discussion in §2.1, this
means that collisions are so frequent that
the plasma is assumed to behave as a per-
fect gas such that (2.7) or (2.8) hold.

2 The fluid-kinetic model studied in
Bondeson (1989) recovers the standard
(ideal) MHD marginal stability bound-
aries (i.e. loci in some appropriate pa-
rameter space for which the growth rate
of a perturbation is vanishing) in the
limit of a cylindrical static plasma with a
Maxwellian distribution function for
both ions and electrons

13 Diamagnetic drifts represent fluid
flows for which there is no corresponding
motion of the particle guiding centres.

2.3 Domain of validity of the MHD model
The MHD model assumes a collision-dominated plasma, for which'*
Vrtila ~Vrte/a <1,

where 7, is the s — s particle collision time, and a is the characteristic
length of the system, much longer than the Debye length (thermal ve-
locities V7, have been defined in sidenote 3). This implies that the dis-
tribution function for both ions and electrons is nearly Maxwellian and
the macroscopic length scale is much longer than the mean-free-path.
The validity of the MHD model can be summarised by the following
conditions (Freidberg (2014)):

A2y
1 — High collisionality, (ﬂ) ULIRPS|
m, a
L,
2 — Small gyro-radius, — « 1
a
2 1/2
L 1
3 — Small resistivity, — (&) <1
a m; VT,-TH

where 77, = V7,/Q; is the ion gyro-radius (cf. section 1.2.1) and Q; =
¢;B/m; is the ion cyclotron frequency (¢; and m; are the charge and
mass of the ion). The small gyro-radius condition is normally fulfilled in
tokamaks as long as the magnetic field is sufficiently strong. The third
condition implies that, despite the high collisionality, resistive diffusion
is still small or negligible. In tokamak plasmas resistivity is usually a
small quantity so that this condition is safely fulfilled as well. The main
issue is caused by the first requirement: in fusion relevant plasmas the
assumption of high collisionality is never fulfilled. Nevertheless empir-
ical evidence during many years of fusion plasma research has shown
that the ideal MHD model provides an excellent theoretical framework
for the description of several phenomena observed in experiments.

To resolve this issue modified kinetic MHD models are introduced
(see e.g. Freidberg (2014))." A brief account of a hybrid framework
in which the plasma response parallel or perpendicular to the magnetic
field is treated kinetically or fluid-like respectively, is given in the next
section where two beyond-MHD models are discussed. We also highlight
the discussion on closure in magnetised plasmas by Fitzpatrick (2014).

2.4 Advanced MHD models

In the next two subsections we sketch the basic equations which charac-
terise two extensions to the MHD framework, namely the drift- MHD
and guiding centre plasma models. The former attempts to capture
the effects arising from the two plasma populations, namely ion and elec-
tron drifts'3, whereas the latter aims to describe kinetically the dynamics



along the magnetic field while retaining the fluid description across it.
These two models are widely employed in describing tokamak physics,
however they are not always presented in a transparent way. Thus, al-
though these are not used in the following chapters, we think it is helpful
to provide a concise summary of their corresponding fundamental equa-
tions.

2.4.1 Drift- MHD

The drift-MHD (or FLR from finite Larmor radius) model is suitable
for describing phenomena which are slower compared with the ones
predicted by the fast ordering employed for deriving standard MHD.
Many of the approximations used to derive the drift- MHD model are ex-
tremely crude, but the resulting set of equations has the great advantage
to be simple enough to be manageable analytically, and yet contains sev-
eral important physical effects such as diamagnetic drifts, temperature
gradients and field curvature. Many FLR models are available in the lit-
erature: these are scattered across many references, and sometimes they
are presented in some obscure fashion. Below we report a ready to be used
model set of drift MHD equations adapted from several references (see
Hazeltine (1992), Ara (1978), Kadomtsev (1970), Mikhailovskii (1998))
which, in the authors’ opinion, is fairly physically transparent and simple
enough to be handled analytically. This is

dp .
6t+v [o(u +u™)] =0,
Ou .
Jel E+u-Vu+u -VuL):—V])+_]><B,
E+uxB+M:n]
2¢n ’
op

a+u-V[)+FpV~u=O,

having defined V| = b(b - V) with b = B/|B| and

_BxVp
"~ 9enB2’

*

with # and #, given by (2.9). To close the system, the equations above
are augmented, as usual, by Maxwell’s equations (2.4)-(2.6). Note that
in the drift model just presented, FLR corrections enter the density, mo-
mentum and Ohm’s law equations. An approximation that is commonly
used is the so called hydrodynamic ions limit (Hazeltine (1978)), in which
temporal changes of the ion pressure are balanced by convection yield-
ing
Vou;=V-(u+u”")=~0.

This turns out to be quite handy for evaluating inertia arising from
plasma compressibility.

ADVANCED MHD MODELS
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Figure 2.4: Schematic view of the parti-
cle motion in a magnetic field identified
by its parallel and perpendicular veloci-
ties, | and v, and by the gyro-phase an-
gle pg. g is the angle lying in the plane
perpendicular to the magnetic field be-
tween a reference direction and the gyro-
radius vector.

Other drift MHD models which appear in the literature retain the
same structure of equations above but have different expressions for e.g.
the Ohm’s law equation or the pressure evolution.

2.4.2 Guiding centre plasma

As previously mentioned, the high collisionality condition is normally
violated in tokamaks. Moreover, the presence of a strong toroidal mag-
netic field decouples the parallel dynamics from the perpendicular one.
Indeed, a particle may do several turns along the field line before under-
going a collision so that, although the fluid motion across the magnetic
field can be regarded as fluid-like, the fluid description is not appropriate
to describe the parallel dynamics.

One of the models that have been proposed to solve this problem is
the guiding centre plasma (GCP) model developed by Grad (1967). In
this model the dynamics along the magnetic field is described by a colli-
sionless kinetic equation which serves as an equation of state providing
the required closure.

Neglecting collisions, the Vlasov equation is expanded to first order
in the gyro-phase angle ¢, (see Fig. 2.4) and then averaged over it. This
eventually yields the drift-kinetic equation for the averaged distribution
function f;

oF

6_]§+(m+v|lb) Vi + [ojus - (5-Vb) - b - VE] o

Jv||

0, (2.15)

with E; = uB + ;—‘XQ)E - % where y = 0% /2B is the particle magnetic
moment (note that compared to the definition in Eq. (1.1) here we drop
the particle mass), ¢; the charge and the parallel electric field is given
by E|| = —b - VOg. As before, we defined b = B/|B| and denote the
parallel and perpendicular projections of the velocities with respect to
the magnetic field by )| and v, respectively. Note that », in the drift-
kinetic equation is the perpendicular fluid velocity as given in (2.9), i.e.
the fluid drift due to the electric field. In the derivation above use has
been made of the conservation of the magnetic moment, i.e.

d
Eoo

i (2.16)

Because of the gyro-averaging, f; depends on 6 variables: the three spa-
tial coordinates x along with |, 1 and time.

Thus, assuming the plasma to be a perfect conductor, the resulting
GCP equations are

Oip +V - (pu) =0,
ou
p(a+u-Vu)=—V-£+‘]><B, (2.17)
E+uxB=0,



where P = p, I +(p|—p.)bb with I the diagonal unit tensor. The parallel
and pe?pendigular pressure are defined as moment averages according

py = st/dgvf;(vu —b-u),
[)¢=st‘/d3vf;vi/2,

where the sum is carried over all species s of mass m; and the integration

to

(2.18)

extends over the whole microscopic velocity space.'* The number and
mass densities are given by

ns:/dgvf;, p:stns.
s

As before, the system is closed by Maxwell’s equations (2.4)-(2.6). We
will briefly mention the guiding centre model in Appendix B when dis-
cussing some properties of anisotropic tokamak equilibria.

Thus, having completed the presentation of tokamak-relevant MHD
models, the next chapter will be devoted to the exposition of some useful
mathematical tools which are needed to embed these models in complex
geometries.
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Curvilinear coordinate systems

In this short chapter we introduce some basic concepts about the mathe-
matical properties of curvilinear coordinate systems which will be exten-
sively used in the following analyses when the problem of the equilibrium
and stability of a tokamak will be addressed. The discussion broadly fol-
lows the excellent exposition by Balescu (1988) and is kept at a very basic
level. All the results are presented without a proof, and the reader in-
terested in a deeper exposition on this subject is referred to the book by
D’haeseleer (1991), or any other book on tensor calculus. Although not
particularly engaging, the properties listed here provide a fundamental
and powerful tool widely used in modelling tokamak physics. Hence,
unless already familiar with the topic, the reader is strongly encouraged
not to skip the reading of this chapter.

3.1 General properties

A coordinate system is an arrangement of reference lines or curves
(axes) used to identify the location of points in space. When the axes
are pairwise perpendicular, the coordinates are said to be orthogonal.
Otherwise, we generically refer to curvilinear coordinate systems when
the orthogonality condition is not fulfilled. Depending on the intrinsic
symmetries of the physical problem under consideration, certain coor-
dinate systems can be preferred to others, and in some cases it is more
convenient to work with non-orthogonal ones. This indeed proves to
be particularly true for tokamak physics, as it will be clear in the next
chapters. We shall thus provide a brief account of the properties of non-
orthogonal coordinates.

Let us take a point P in space, characterised by its three Cartesian

It is simpler to describe a spherically
symmetric problem in spherical rather
than Cartesian coordinates.
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Figure 3.1: Curvilinear coordinate sys-

1, 92, 93

surface.

tem (g

) adapted on a constant ¢’

coordinates x, y and z. The three unit vectors along the three axes,
orthogonal to each other, are denoted by i, j and k. Assume that P lies
on a surface. It is convenient to introduce two vectors ez and e3 tangent
to the surface and a third one denoted by e; pointing, say, outwards
from the surface in P. It is possible to introduce three curves (¢!, ¢2,
¢%) passing through P, tangent to e1, ey, e3 respectively. These lines are
called coordinate lines and are shown in Fig. 3.1.

Therefore, we have a coordinate system in which any point in space
is described by the following relation

X=X (91, 92, 93) )
where x = (x, 9, z). We define the length d¢ between two adjacent points
by (i = 1,2,3 not to be confused with the Cartesian unit vector along

the x axis)

dt? = dx* + a,’y2 +d2? = gijdqidqj, (3-1)

having used the Einstein summation convention for repeated indices
with i and j running from 1 to 3. The quantities g;; are called the
covariant elements of the metric tensor and are defined by

oxox by by 0o
&ij = dqi dg) ~ dq' 0q7  Oq' dgi = &ji-
The determinant of this matrix, denoted by the letter g, has a simple

physical interpretation: the infinitesimal volume element dV = dxdydz
transforms according to

dV = \gdq'd¢*dg® (3.2)

in the frame identified by the coordinates ¢’. We call the quantity /g
the Jacobian associated with the system (¢%, ¢2, ¢°).

Conversely, one can think of the coordinate lines ¢’ as function of x,
namely the Cartesian coordinates, through the relation ¢’ = ¢’ (x, 9, z),
and thus introduce the contravariant components of the metric tensor
which are defined in an analogous manner:

ia i ia
I N

ij e
Ox 0x 0y 0y 0z Oz

ji

It is easy to check that
3
D ging" =] (3-3)
n=1

where 6{ is the Kronecker delta, and det(g’/) = 1/g. The covariant and
contravariant components of the metric tensor are linked by the relations
g = GY/g and g;; = gG;; where G;; (or G) represents the cofactor
of the matrix element g*/ (or g;;).

Let us now define the two sets of three vectors (i = 1,2, 3):

ox . 0y . 0z ., 0¢' . 9¢' . d¢’

1

Togt T et T w T

€



These are not necessarily unit vectors. The set of vectors e; is called
the covariant basis, while the set e’ is the contravariant basis. The
latter is also denoted as ¢’ = Vg¢'. The contravariant basis vectors e’ are
perpendicular to the constant coordinate surfaces whereas the covariant
basis vectors ¢; are tangent to the coordinate curves. This is sketched in
Fig. 3.2.

It immediately follows that

e ¢; = gij
Vg Vgl =g".

It is important to note that the covariant or contravariant vectors are
not necessarily mutually orthogonal. If, however, e3 is orthogonal to
e1 and ey we have g;3 = g3; = 0 for i # 3 and

g22g33 _g12g33 0
gij=¢g _g12g33 g11g33 0
0 0 g11g22 _ g12g12

(3-4)

Also note that in this case by exploiting (3.3) one obtains

1/g33 = g%.

The following relations hold

Vg' = (e2 X e3)/ Vg, (3.5)
e1 = Vg(Vg*> x Vg%). (3.6)
and equivalent expressions for the other basis vectors are obtained by

circular permutations. The determinant of the metric tensor matrix g is
computed by means of

e1 - (ez X e3) = /g, (3-7)
7 (Vq2 x Vq3) =1/z, (3.8)
with the triad (e1, eo, €3) being right handed if \/g > 0. Again, the remain-
ing expressions are obtained through cyclic permutations of the indeces.
Finally, we have ¢; - V¢/ = §7.
We can now define for a generic vector 4 its covariant (4;) and
contravariant (4’) components, that is

A= A,Vql = Aie,-. (39)
This gives the rule for raising and lowering indices, that is

Ai:gijAja Ai=gijAj,
e =gVg, V' =ge.
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Figure 3.2: Example of the direction

of contravariant and covariant basis vec-
tors. Vgl is perpendicular to the plane
tangent to the vectors e9 and e3 at the
point P.
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The cross products can be written in a
compact form as

) 1 ..
(AxB) = @s”kAjBk,
(4 x B); = \/ge,; ;A B,

where £//F = €k is the Levi-Civita sym-
bol (a tensor) which is +(—)1 for any even
(odd) permutation of the indices (ijk)
and o otherwise. Other properties of the
Levi-Civita symbol can be found in any

tensor algebra textbook.

As a minor remark we point out that in
Cartesian coordinates, vector operations
are sometimes more easily handled by
looking at vector components. As a sim-
ple example we consider the operation
A - VA where A = |A|a with a = A/|A].
Let the index i denote one of the x, y
or z components, and d; the derivative
along one of the three coordinates. We
find that

(4-V4); =|Ala;0;(|4la;)
= |A|2a,-6,-aj + a]-ai('),-lA|2/27

which shows that 4 - VA = |4|?a - Va +
a(a - V|4/2/2).

Figure 3.3: Cylindrical coordinate sys-
tem (7, 6, z) with unit vectors (7, 8, 2).

The scalar and cross products between two vectors 4 and B are given

by

A-B=A'B;=A;B/ = g, A*B/, (3.10)
;1
(AxB)' = @ (A4;By — A B;), (3.11)
(AxB), = Vg (Aka - Aka) : (3.12)
Gradient, divergence and curl operators are written as follows:
Oou
(Vu); = e (3.13)
q
1 0 .
V- A=—— (vg4'), .
ag VEA) (319
.1 (04 04; 1 ;04
(VxA) = —(—k——z) = — iRk (3.15)
Ve \d¢/  og%] & o ¢/

Note that V x Vg’ = 0.
Finally, terms of the form VA4 are evaluated by using the Christoffel
symbols (of the second kind)
04\ 04; o4\ o4 ;.
e ) R a
7"/ q q q

where

i_ %-ei _ ﬂ [agmf +agm/c B agjk]
TR gk 2 [ogk  dq7  ogm|
Although the latter two identities will not be used in the calculations
presented in this report, they prove to be particularly useful when dealing
with flow convection problems in complex geometries.
In the next subsections we report a brief discussion on the particular
case of cylindrical and toroidal coordinates, which are extensively used

in the tokamak physics community.

3.1.1  Orthogonal cylindrical coordinates

Let’s identify the triplet (ql, qz, q3) with (7, 6, z) where r is the radius,
0 the angular variable and z the azimuthal coordinate as sketched in
figure (3.3). The length element d¢2 is given explicitly by

dt? = g dr® + goed6? + g,.dz* + 2g,0drd0 + 2g,.drdz + 2gy,d0dz.

The Cartesian coordinates (x, y, z), when written as a function of (r, 6, z)
become
x=rcosf, y=rsinh, z=z.

It follows that g, = 1, gog = 72, g = 1, and g9 = g, = g, = O.
These are the proper orthogonal cylindrical coordinates. Note that
the off-diagonal components of the metric tensor associated with vari-
ables along which the system exhibits symmetry vanish.



We now point out that tokamaks are often modelled as cylinders
of length L and periodic in the azimuthal (z) direction. Hence, let us
introduce the variable ¢ = z/R with Ry = L/2x. Then, the parametrisa-
tion of (x,y, z) of a toroidally symmetric system with circular concentric
surfaces of radius r is given by*

x = (Ro + r cos ) sin ¢,
9 =(Ro +rcosb)cos g, (3-16)

z =rsin6.

The quantity Ry is called the major radius (or radius of curvature) and
the length element becomes

dt? = dr? + r2d6* + (Ry + r cos 0)2d¢>.

Intuitively, if we now think of stretching the torus to such an extent that
the ratio Ro/r becomes infinite, we obtain the following metric coeffi-
cients

&rr = 1, 8o = 72’ 8oy = R?)’ &ro = 8rp = 809 = 0,

with 4/g = rRy. It is immediate to convince ourselves that the result-
ing metric is equivalent to that obtained by working in proper cylindri-
cal geometry. Approximating tokamaks as cylinders characterised by
metric as the one given above is usually referred to as the cylindrical
approximation. If the radius of curvature R is large enough, we may
be tempted to employ the cylindrical limit. Unfortunately, this approx-
imation is not adequate to describe most of tokamak MHD problems,
either the equilibrium or stability ones, for which a fully toroidal analysis
is required.

3.1.2 Orthogonal toroidal coordinates

Luckily, extending the coordinates just discussed to properly embody
toroidicity, and yet avoiding the complication of the non-orthogonality of
the basis vectors is immediate. Let the geometry of the system consist of
nested concentric circular surfaces labelled by the variable » where 6 and
¢ are the poloidal and toroidal angles respectively (cf. Fig. 3.4). The
angle 6 always increases counterclockwise in the poloidal plane. The
relation to the Cartesian coordinates is given by (3.16) and the metric
tensor coeflicients are

gr=1 go= 72, 80 = 8¢ = 8oy = 0,
gs6 = (Ro+1cos0), g =r(Ro+rcosb).

The power of the orthogonal toroidal coordinates manifests itself when
expressing the gradient, divergence and curl operators. Letting (#, 8, ¢)
be the mutually orthogonal unit vectors along the radial, poloidal and
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! The angle 6 is oriented counterclock-
wise and ¢ increases clockwise starting

from the y axis.

Figure 3.4: Concentric toroidal coordi-
nates with a circular cross section.
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toroidal directions, we have the following (fairly simple) representation
for the above-mentioned differential operators
0A, 104, 104,

va=%: 2%, M
ar T roe? T Ras”

_ 1 (00RA) _9(RAs) _O(rdy)
V'A_E( or o0 ag )
1 (0(RAg)  3(rda)) .
VXA—E( 90 - (9¢ )T
1[04, O(RAg)\ . 1(0(rds) oA, )\,
+E(a¢_ ar )0+?( ar _ae)¢’

where R = Ry + r cos 6. Finally, one has

~ ~

Fx60=4¢,

with the remaining relations obtained by circular permutations. Al-
though these coordinates capture many important features of toroidal
systems, the majority of the problems arising in equilibrium and sta-
bility analyses are best tackled in non-orthogonal frames (we explicitly
employ orthogonal toroidal coordinates when discussing particle orbits
in complex magnetic fields in appendix A).

Summarising, we now have all the theoretical tools for understanding
the principles of tokamak dynamics:

i) — A basic understanding of what a tokamak is and which key
components characterise it

ii) — A physical model which can describe low-frequency,
long-wavelength plasma dynamics

iii) — The mathematical tools needed to describe complex

geometries, such as those of tokamak devices

The three tools listed above will be used in the next chapters first for the
description of tokamak equilibrium, and then for assessing its stability
against various types of perturbations (to each of which a chapter will
be dedicated).
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Part I1

EQUILIBRIUM







Tokamak equilibrium

This chapter is dedicated to the description of the equilibrium in a toka-
mak. The fundamental concepts of magnetic surfaces and safety factor
are introduced and discussed. The derivation of the Grad-Shafranov
equation, i.e. the force balance equation for a toroidally symmetric de-
vice, is then presented. This does not follow the usual textbook proce-
dure, rather it exploits the power of the formalism of curvilinear coordi-
nates written in such a way that the connection with the actual geometry
of the physical system is more evident. A brief discussion on a particu-
lar analytically exact solution, namely the Solov’ev equilibrium, is given
before introducing the approximate solution methods based on the thin
torus ansazt. We discuss the ordering of the relevant physical quantities,
and the order-by-order solution of the Grad-Shafranov equation. Finally,
we address the equilibrium condition in the vacuum region separating
the plasma from the surrounding vessel. Two additional “boxes” provide
a more “intuitive” derivation of the Shafranov shift, and a brief discus-
sion on the equilibrium condition for toroidally rotating plasmas.

4.1 Magnetic surfaces, safety factor and plasma
B

A static equilibrium (0/0t = 0 and # = 0) is described by the force
balance equation (cf. (2.2))

Vp =] XB. (4.1)
It is trivial to show that

B-Vp=0, (4-2)

J V=0 (4-3)
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Figure 4.1: Right handed cylindrical
(R, Z, $) and toroidal (r, 6, ¢) coordinate
systems. The dashed line lying on the

surface of radius r indicates a B or J
field line.

! The toroidal derivative might not be
zero for vector quantities.

2 At fixed R and Z, ie. dr = do = 0,
the square of the length element is 4¢2 =
2o0dd” (see (3.1)).

indicating that both magnetic field and current lines lie on constant
pressure surfaces (isobars). A surface which is covered by a magnetic
field line is called magnetic or flux surface (it will be described later the
motivation behind this nomenclature). More rigorously, a given smooth
surface § with normal vector # is a flux surface of a smooth vector field
B when B - n = 0 everywhere on S, that is the field B does not cross the
surface § anywhere. The relations above show that pressure is constant
along the field (or current) lines.

Let us assume that closed toroidally symmetric nested isobaric
surfaces exist. The innermost surface, which collapses to a single line,
is called the magnetic axis. Each of these surfaces is labelled by the
variable r (the so called flux label, also the reason for this will be clear
later), which has the dimension of a length and is zero on the magnetic
axis, so that p = p(r) and Vp = %Vr. We often refer to r as the ra-
dius (implicitly of the plasma column). We introduce the right handed
coordinate system (7, 6, ¢) as shown in figure 4.1, where 6 and ¢ are the
poloidal-like (short way around the torus) and geometric toroidal (long
way around the torus) angles respectively. In this report we take the
poloidal-like angle 6 to be always counter-clockwise. It is impor-
tant to stress the fact that constant § curves may not necessarily be
”straight”. This reflects the freedom in choosing the poloidal angular
variable: constant 6 curves are indeed rays centred on the magnetic axis
if 6 is the geometric poloidal angle, but this might not hold true anymore
if different definitions of the angular variable, which turn out to be more
convenient forfcertain problems, are taken. Finally, toroidal symmetry

requires that g—¢ = 0 for any scalar function f.*

The coordinates (7, 6, ¢) are associated with the basis vectors

(er, €9, €4), covariant basis,

(Vr,V0,V¢), contravariant basis.

The scalar product of these quantities yields the metric tensor coef-
ficients discussed in chapter 3, and because of axisymmetry we have
gro = gop = &7 = g% = 0 while gyy = 1/g%% = R? (the exact expressions
of the remaining terms is not required at this stage).® Let /g be the
Jacobian associated with (7,6, ¢). In this coordinate system, equations
(4.2) and (4.3) read

B-Vr=B =0,
J Vr=J =0.

We decompose the magnetic field into two components, one parallel and
the other perpendicular to the toroidal direction. This leads to

B=FV¢—-Vy(r)xV¢=FVep+B,. (4-4)

The divergence-free condition is fulfilled by the equation above, as well
as the requirement of vanishing radial magnetic field. i.e. Eq. (4.2).
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Now consider a ring-shaped ribbon S, stretched between the mag-
netic axis and the surface labelled by r at constant 6 as in Fig. 4.2. The
infinitesimal surface is

d3, = 27Rd,

where the length element d¢ = \/g,,dr is obtained from (3.1).3 The unit
vector normal to this surface is (see (3.4))

ey X ey Vo Vo Vg

n, = = = = VQ
? leg X e, |V [¢%  R+/grr

We find that the quantity ¥ measures the flux of the magnetic field
through this ribbon, indeed (Vr - VO X V¢ = 1/4/g)

r
: B - nydX, = 27r/0 B -Vo+[gdr = 271(1//(7) - 1//(0)).
b
Hence, we refer to ¢ as the poloidal flux. From (4.4) one sees that B
is invariant apart from an arbitrary additional constant in . Thus, we
set for convenience (0) = 0. We may therefore define the poloidal flux
as

1 r o
U(r) = 2—/ / B - VO+/gdrdo. (4-5)
T Jo Jo

It is then trivial to see that constant p surfaces correspond to constant
surfaces. From this, isobaric surfaces are also called flux surfaces and
the variable r is referred to as flux label. As a matter of terminology,
any function which is constant on a magnetic surface is called surface
quantity.

Analogously, let now §; be a surface in the (R, Z) plane at ¢ constant
with normal unit vector n; = V¢/|V¢| = RV¢. Its associated infinitesi-
mal surface is dX; = %drd@. One can then introduce the toroidal flux
function @ via

r 2
d(r)= | B-ndx, = / B - Vo+[gdrdo, (4.6)
Sy 0 0

having set ®(0) = 0. Finally, from (4.3), we have

. 1 (0By 0By\ 1 OF
0=m/" ==\ %5~ 55| = a0
VZ\ 80 8¢ ) g a6

which shows that also F is a function of r, i.e. F = F(r).
We shall now introduce two quantities of fundamental importance
in tokamak physics: the safety factor and the plasma .

4.1.1  The safety factor ¢

The equation for a magnetic field line, that is a line which is tangent to
vector field B at each point, reads

B =cd¢,

3 Note that we work at ¢ fixed and the
integration along the toroidal coordinate
gives the factor 27R.

Figure 4.2: Surfaces Sy and S; used to
calculate the magnetic fluxes ¢ and .
The surface Sj covers the full range 0 <
¢ < 27 and it can be taken between the
magnetic axis and any circle R = const,
Z = const lying on the magnetic surface.
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Figure 4.3: Trajectory of a field line with
qg=23/2.

4 In cylindrical geometry the safety
factor takes the simple form

_ TBT
7= RoBy

with By and Bj the physical toroidal and
poloidal magnetic field, and Ry the posi-
tion of the magnetic axis.

where ¢ is a proportionality constant and d€ = dre, + dfey + dpes is a
differential vector tangent to the field line. This is equivalent to Bxd¢ =
0. This yields

B’ B¢

a0~ dp  °

which can be rearranged giving

d _B

0 B (4.7)

Integration of the equation above over a poloidal circuit along the flux

_Ap 1 [ B

surface yields

Viewing the field line from the top of the torus, we select a toroidal
angle ¢y from which the field line starts off. After one poloidal turn, the
field line will be at a different toroidal location, i.e. ¢+ A¢. This means
that g measures the progression of the field line over the toroidal angle after one
Sull poloidal revolution. If ¢ = m/n with both m and = integers, the field
line will return in its original position after m toroidal and n poloidal
transits around the torus (see figure 4.3). If the value of ¢ is irrational,
the magnetic surface is covered ergodically by the field line. We call the
quantity ¢ the safety factor.4

The safety factor can also be expressed in terms of magnetic fluxes.
Indeed, from (4.6) we readily have

do 1 [*
—_—=— B?\gdob.
dr 2r 0 \/E
Thus, plugging gB’ = dy/dr into (4.8), and using the expression

above, gives

_do

=
which is the rate of change of the toroidal flux with the poloidal flux.
Later we will see how the safety factor relates to the current density

profile.

4.1.2 Plasma

The ratio of the kinetic pressure p over the magnetic pressure B2/2u
can be used as an indicator of the plasma performance. This ratio is
denoted by . There are several definitions of g in the literature, and
the one that we adopt in this report is

_ 2popv(a)

B 2
B,

(4-9)

where By is the magnetic field on the magnetic axis, a is the value of
the flux label r at the plasma boundary and py is the volume averaged
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pressure, that is®

(4.10)

As a matter of notation, in the remainder of this chapter By will always
denote the axis value of the magnetic field. In standard tokamaks
B is usually a small number, ranging between 1% and 10%, while higher
B values have been attained in more compact devices, although with a
smaller magnetic field.

With a smooth pressure profile, one finds that g is typically propor-
tional to the ratio of the pressure on the axis (0) and B2, i.e.

_ 240p(0)
B B
Notice that, according to definition (4.9), 8 is a global quantity, i.e. it
does not capture the local features of the kinetic pressure. For cases in
which the local structure of the pressure profile is needed, in particular
information about its gradients, it is more convenient to use the local

beta value
2p0p(r)
B

Both g and S;,, play an important role in determining equilibrium and

ﬁloc(r) =

global MHD stability properties against small perturbation.

4.2 The Grad-Shafranov equation

The aim of this section is to derive an equilibrium equation for the
plasma toroid, written in terms of p, ¥ and F (or alternatively ®). We
start by noting that (4.1) gives a trivial identity 0 = 0 when dotted with
either ¢y or ¢4. Thus, projecting (4.1) along the e, direction and using

(3.12) yields

dp
== e(sB-yB). (411)

As mentioned earlier, in an axisymmetric configuration we have g,4 =
gog = 0 and R? = gso = 1/g%%, so that B? = F(r)/R? and \/Eje =
—l%odF/dr. Using these results into (4.11) we obtain

@ ___F dF_ .y

Furthermore, by means of (4.4) one has
1
/10]¢:V¢-V><B:V-(B><V¢):V-(ﬁvw). (4.13)

Since both p and F are function of r only, we can safely divide (4.12) by
dy /dr. Thus, using the equation above we get6

. 1 dF dp
A*y = RV - (ﬁvw) = _Fﬁ - uong, (4.14)

5 The denominator corresponds to the
volume enclosed by a flux surface of ra-
dius 7.

If J¢ = 0, the left-hand-side of (4.12) is
function of r only while the right-hand-
side depends also on 6 which indicates
that no equilibrium with toroidal nested
closed flux surfaces can exist.

0 Notice that Vr = g'"e, + g"%¢y. Since
the ¢y projection of (4.1) vanishes, then
dotting it with e, is equivalent to project-
ing along Vr. Hence the Grad-Shafranov
equation is an equation for the radial
force balance.
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7 This equation can be derived in a more
general way without assuming nested
flux surfaces by exploiting the diver-
genceless of the magnetic field and cur-
rent density.

8 Analogous equations can be derived for
toroidal systems for which the axisym-
metry constraint is relaxed. Note that
in the numerical solution of the Grad-
Shafranov equation one can prescribe as
an input the shape of the toroidal cur
rent density or the safety factor instead
of FdF/dy.

which is the celebrated Grad-Shafranov equation.” This is a non-
linear, second order elliptic partial differential equation for the equi-
librium flux . The geometry of the associated flux surfaces is com-
puted after prescribing the functions p(¢) and F(¥) (or more specifi-
cally FdF /dy), namely the pressure and poloidal current distribution,
and the boundary conditions or external constraints on ¥ itself (these
may be the shape of the last plasma surface).® The way it is written
is particularly powerful, in that the left-hand-side is independent of the
system of coordinates on a given flux surface.

The solution of (4.14) can be tackled either numerically, usually in-
volving an iterative procedure for the inversion of the operator A* un-
til convergence is reached, or analytically. Most of the analytical ap-
proaches are based on a series expansion in the small curvature ansatz.
Before moving to the discussion of these approximate methods, which
form the backbone of the tools employed in the stability analysis, it is
instructive to present an exact solution of (4.14), although limited in its
applicability.

4.2.1 The Solov’ev equilibrium
Let us write the operator A* in cylindrical coordinates (R, Z, ¢) as (cf.
figure 4.1)
d (1oy\ ¢
AYy=R—|-%=|+—-
V=RoR (R aR) Y2
The right-hand-side of (4.14) is simplified by choosing

dp dF
Y =—q F—=
Ho m a, m b,
where @ and 4 are constants. This yields
o (Loy) oy 9
@(Eﬁ)'F@——b-i‘R a. (415)

We seek an up-down symmetric solution based on the expansion

=) hRZ™".
k=0

Imposing fr>2(R) = 0, a particular solution of (4.15) is given by

(d—co)(

1
W= Q(CoRQ -0Z?+ 5

R* - R2), (4.16)

where ¢ is an arbitrary constant, and R, the position of the magnetic
axis (i.e. the position for which dy/dR|z-¢ = 0). This is the so called
Solov’ev equilibrium. An example of the various ¢ = const surfaces
parametrised by (4.16) is shown in figure 4.4. Despite the rather restric-
tive profiles for pressure and poloidal current, there is a wide degree of
flexibility on the shape of the boundary surfaces that can be obtained.
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The Solov’ev solution has also the pleasant property that R and Z
can be explicitly written as functions of ¢ and an appropriate angle-like
variable ©. Let us define

r= 0w Ry = R - 2

and tan® = g/f so that y = f2+ g2. It easily follows that 2 = i cos’> @
and g2 = y sin? ® which gives

2
R(r,0) = Roy |1+ == cos©,
Ry

rifa — ¢y sin ®
\/co (1 + 123—:) cos ®) - b/R(%

Z(r,0) =

2y
R(Q)(a—co)

value of r at the boundary surface, the quantities a, ¢y, 7, and Ry can be
expressed in terms of R;, = R(rp, ), Roys = R(7,0), Rpig = R(7p,Op)
and Z,,,x = Z(rp, Oyr) (see figure 4.5) where ©y is determined by solving
0Z[00|,=,, = 0.

Although other exact solutions can be found, either by generalising

where we introduced the “radial” variable r = . Letting 7, the

the procedure above or with different p and F profiles, these usually lack
the required flexibility to describe the broad variety of plasma scenarios
encountered in the experiments. Therefore, an alternative method is
devised which, despite the fact of being highly approximated, has the
great advantage of providing algebraically simple results, yet complete
of all the relevant physical ingredients.

4.3 Large aspect ratio expansion: The plasma so-
lution

We consider a torus of nearly circular up-down symmetric cross section
with nested flux surfaces within. We further assume that the magnetic
axis lies on the equatorial Z = 0 plane. The R position of the magnetic
axis, namely the major radius, is denoted by R(. As in the previous sec-
tions, we use the coordinate system (7, 6, ¢)9 with the toroidal symmetry
constraint 9/d¢ = 0.

Figure 4.4: Constant flux surfaces com-
puted with the Solov’ev solution Eq.
(4.16) with parameters Ry = \/m and
(@) ¢g = 0, a/b = —1/R2, (b) co/b = 1,
a/b = 1.8533, (c) ¢y/b = 1/4, a/b =
0.0367.

Z max

e

Rin Rmid R0 Rout

Figure 4.5: Definition of the geometric
parameters for the Solov’ev equilibrium.

9 In this toroidal right-handed coordi-
nate system, the poloidal angle is always
counterclockwise (cf. Figs. 4.1 and 4.5).
In old papers, though, this angle is often
taken clockwise with the direction of ¢
flipped.
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Figure 4.6: Sketch of a circular tokamak
geometry: (a) cross section and (b) toka-
mak top view.

The metric tensor is (cf. (3.4))

&grr &ro 0
gij=|89 &g O
0 0 g
g0g?  —g70g?? 0
=g|-g"%¢" g"g¥ 0 :
0 0 grrgb’é _ (ng)Q

1% Here A is zero on the axis and max-
imum at the plasma boundary, i.e. is a
shift relative to the magnetic axis. Of-
ten in the literature the Shafranov shift
refers to the displacement of the flux sur-
faces relative to the geometric centre of
the outermost one. In this case the shift
is zero at the plasma boundary and max-
imum on the magnetic axis.

In early tokamak experiments it was found that the plasma under

went a displacement during the discharge, leading to a contact with
the surrounding structures. This suggested to parametrise the R and Z
coordinates of the flux surfaces with a Fourier series of the type

R(r,0) = Ry +rcosf — A(r) + Z R, (7)) cos m0, (4.17)
m=1
Z(r,0) =rsinf + Z Zsm(r)sinmé. (4.18)
m=1

with A(7)/7, Rem(7)/ 7, Zs m(r)/r << 1. We refer to R, and Z;, as the
shaping parameters. This parametrisation relates to the Cartesian co-
ordinates (x, y, z) through (cf. chapter 3)

x=Rsing, y=Rcos¢, z=2Z2

and the metric coefficients and Jacobian associated with the coordinate

. 6_R2+ 6_ZQ
&rr = or or )’

OR\*  (0Z\®
oo =(z9) +(z3)
_OROR 0Z0Z (4.19)
0= 5r 00 " or o0’
g0 = R,

system (7, 6, ¢) are

VE =/ 8s0 [gwgee - (gre)Q]-

It is trivial to show that g,4 = gg4 = 0 due to axisymmetry.

The quantity A(r), known as the Shafranov shift, measures the in-
ward displacement of the flux surfaces with respect to R(.'° Equations
(4.17) and (4.18) ensure the up-down symmetry with respect to the equa-
torial plane. If the up-down symmetry constraint is relaxed, we should
allow for sin mé and cos m6 terms in (4.17) and (4.18) respectively. The
radial variable r extends up to r = 4, and the radius a is called minor
radius: it corresponds roughly to the distance of the outermost plasma
flux surface from its geometric centre (cf. figure 4.6).
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We introduce the large aspect ratio approximation, which consists
in assuming that the torus is thin, that is

< 1.

a
£= —
Ry
The parameter ¢ is called the inverse aspect ratio.

Now, the aim is to solve perturbatively the force balance equation
written as an appropriate power series in the small parameter . We
recast Eq. (4.12) in a more convenient form as

dp/B;  F dF

dy
= - - - ¢-7 | g2
Ho—gr BgR2 dr KoJ dr / 0’ (4.20)

where we recall that By is the value of the magnetic field on the axis. This
equation depends on the flux quantities p, F and ¢, and on the shape of
the magnetic surfaces through the metric coefficients appearing in the
toroidal current

¢_L[ﬁ gody) _ 0 (g d_df]
mJ = Zlar\vgar) a0 \vg) ar| (4-21)

Hence, assuming that the profiles for the pressure p and the toroidal
current J¢ are prescribed functions, from (4.20) we can derive the equa-
tions for 7, A and the shaping parameters, whose solutions will deter-
mine the equilibrium. Note that this is slightly different compared to the
approach employed for the Solov’ev solution, in which the pressure and
toroidal field profiles were imposed.

Thus, the solution strategy consists in the following steps: i) deploy
an appropriate g-ordering of the equilibrium quantities and determine
the approximate expressions of the metric coefficients, and ii) plug the
resulting expressions into (4.20) and solve it order by order in . We
shall now go through each of these steps one by one.

4.3.1 ¢&-ordering

Let us assume that the pressure is a regular and smooth function of r
with no strong localised gradients. The first term on the left-hand-side
of (4.20) is proportional to the ratio of the kinetic pressure over the
magnetic pressure, i.e. S. As discussed before (cf. section 4.1.2), this

1

quantity is typically a small number,"* so that we order

pop/ By ~ €,

with the symbol ~ meaning “of the order of”. The toroidal component of
the magnetic field is**

B-e¢ F
Biyy = — = 2,
to |8¢| R

so that, letting /) = F(r = 0), we obtain

F ~ Fy = RyBy.

It will be clear that imposing the current
density corresponds to giving the safety
factor profile ¢.

1 High-8 tokamaks, for which g ~ &,
and their associated pressure limits are
not discussed.

12 Recall that leg| = Zss = R.
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This corresponds to a weak plasma shap-
ing for which the flux surfaces are nearly
circular.

13 The meaning of the small oh notation
should be clear, i.e. o(g) ~ .

The toroidal field is usually stronger than the poloidal one. Thus
under the assumption By, /By, ~ €, and noting that B, ~ F|V¢| and
Byo ~ fj—‘f|V¢|, we obtain from (4.4)

dy
= ~ eRoBo.

From this, the contravariant toroidal current density is ordered as

By

¢ gL
IJOJ 8(lR()'

The metric coefficients appearing in /¢ can be easily computed by
noting that, normally, the experimentally measured shift of the flux sur-

faces is much smaller than the minor radius. Therefore, we let

A~egr,

2
Rc,m ~ Zs,m ~ &,

yielding (hereafter we will use the notation f'(r) = % or f'(r) =

W for a generic function f)

gr=1-2AcosO+...,
g99=7'2+...,

gro=7rA'sinf+...,

; (4.22)
.o :Rg (1+2—c039+...),
Ry

\/§=7‘R0

>

1+(RLO—A')COSG+...

where the terms omitted in the & expansion are of order &2,

We shall note that by employing this & ordering and using the expres-
sions for the metric coefficients above, we can write the flux ¢ as a func-
tion of the safety factor ¢. Indeed, since B? = y'/+/g and B? = F/R?,
by means of (4.8) we have
F 2n \/E

—db. (4.23)

V=0 )y R

Expanding R and the Jacobian in &, it is immediate to obtain'3

1 [N

r
d@z—(l 2).
o ), w207 R L+

Therefore, to order &£ we have

rF

W' = R (1 + 0(32)) . (4.24)

Now we can proceed in solving (4.20) order by order in &.
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4.3-2 Equilibrium at leading orders

We impose that the pressure p and the safety factor ¢ are known func-
tions. By inspecting the pressure and toroidal current terms in (4.20),
both of order £2/7, it is evident that

F=RyBy[1+g(r)+h(r)+ f(r)+...],

2
gr)~ &% h(r)~& f(r)~&" (425
Thus, plugging this into (4.24) yields
, 1B
v= 2 (14 0). (4.26)

The expression for the term involving the toroidal current density is
gy ,_ T "
AN — — +
'R RZ R )

a ’ ’ N
g () ) e

Since this does not have non-oscillating (in #) terms of order &3 it follows

oW ~———

cos 6. (4.27)

that in Eq. (4.25) we must set £ = 0. Furthermore, at leading order one
has J? ~ (r¢’)" /r. In most experimentally relevant situations, /¢ has a
finite value on the magnetic axis. Thus, in order to fulfil this condition,
we must have " ~ 7% with @ > 1 near the axis. In this report we restrict
the analysis to the @ = 1 case. Cases with ¢ > 1, which will not be
discussed, describe the so called current-hole configurations in which the
toroidal current vanishes at r = 0. Note that for « =1 Eq. (4.26) yields
a finite ¢ at the magnetic axis, whereas ¢(0) — co when @ > 1.

Hence, by means of (4.26) the current density can be expressed to
order ¢ as a function of the safety factor ¢ through the relation

B, r2\’
o= 20 17 28
HoJ rR(Q)(q) (4.28)

From this, the total plasma toroidal current I, is easily computed and

S

where the latter estimate has been obtained by setting /g ~ rRy. Fig-

reads

ure 4.7 shows some experimentally relevant shapes of the safety factor
and current density.
Thus, to leading order (4.20) gives

/JO_p/ . /+ (7‘2(//,2)’

8 =0, (4-30)
B? 2r’R3 B}

which is the radial force balance for a straight screw-pinch, namely
a cylindrically symmetric configuration with a strong longitudinal field

21—_(a)
)
~
¥ (b)
51

£
(c)
0 1
0 0.5 1

r/a

Figure 4.7: Typical safety factor and
associated toroidal current density pro-
files in tokamaks: (a) monotonic, (b) hol-
low, and (c) strongly reversed configura-
tion, the latter exhibiting a current-hole
if /% — 0 on the axis.
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We flag an abuse of notation for the func-
tion under the sign of integration. How-
ever, its meaning is obvious, and the
same notation will be used in other in-
tegral expressions.

and a small poloidal field (equivalent to a tokamak with an infinite radius
of curvature). The equation above can be easily integrated, and using
(4.26) we obtain an & expansion of the function F correct to second
order which reads

1_uo(pjp<0))_/’ r_ (2_’9')4r+...
B2 0 Rg? 7

F = R()BO , (4_31)

where p(0) = p(r = 0) and the constant of integration has been chosen
such that /) = RoBy. The quantity

(4.32)

is known as magnetic shear and plays a key role in determining the
tokamak stability properties (this will be discussed in the next chapters).
To next order in &, equation (4.20) is oscillating in 6 and yields

’ /7 2 A4 ’
cosf — v A"+2(“’//) A'—L —l—é cos .
RyBy Ty’ Ry r

Using (4.30) for expressing g’, we obtain an equation for the radial dis-

0=

Ry

placement of the magnetic surfaces

144 2 R ’
0:A”+(1+2L,)A’+L;p_i
roy W) Ry
o (3 29"\, 2m0Rop'g® 1
A+ = -+ .
(r q) /B2 R (4-33)

where the second equality has been obtained by means of (4.26). This
expression is usually solved numerically, although exact analytical solu-
tions can be found with simple p and ¢ profiles. The two constants of
integration appearing in the solution of (4.33) are determined by requir-
ing that A vanishes on the magnetic axis. This implies that at the
plasma boundary A has a finite value.

By means of the identity

’” n21’
%+2¢ _rwy]

VoWt
we can integrate (4.33) once giving
, 1 /r "9 1 QuorRoﬁ’
A= r(y’) (———( dr, (4.34)
r)* Jo Bo )’

where the limits of integration have been chosen in order to avoid sin-
gularities at r = 0. Interestingly, we note that the toroidal field does not
enter the expression above. Using (4.26), equation (4.34) can be recast
(to leading order in &) in a more compact form as

i(r)
)

N = RLO (,81,(7) + (4.35)
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having defined the poloidal plasma

9 RQ 2
B(r) = T [py(r) — p(r)]. (4.36)

22
rBO

with py given by (4.10), and the internal inductance by

qQ r 73
b =2% [ San (4:37)
r 0o 9

Note that the quantity 3, is proportional to the ratio of the kinetic pres-
sure over the poloidal magnetic field.

Intuitively, the shift of the flux surfaces, i.e. their compression in the
low field side of the torus, balances the outward force in the VR direction
due to the so called tyre tube (due to pressure) and hoop forces (due
to the self-inductance of a current carrying circuit), represented by first
and second terms on the right-hand-side of (4.35) respectively (both are
briefly discussed in the next subsection).

By assuming ¢; to be small compared with the pressure term, one
has A’ ~ RLOIBP(’)' Thus, as the magnetic pressure is increased, the shift
compresses the surfaces on the outboard side so that the increasing of
the magnetic pressure balances the outward force.

There is no limitation to the maximum g if the last closed surface
enclosing the plasma is directly surrounded by a ideally conducting wall.
However, in a realistic experimental situation a vacuum region separates
the plasma from the neighbouring structures. In such a case, a vertical
field is required to maintain the equilibrium (see section 4.4.1) which
increases with 8. Adding this field produces a separatrix with an X-
point (a point of null poloidal field) on the inner side of the torus (cf.
figure 4.14). Working at fixed current, as § is increased, the external
vertical field must be increased. This moves the X-point closer to the
plasma. A limit in S is reached when the X-point “fouches” the outer-
most boundary plasma surface. Some estimates presented at the end
of section 4.4.1 indicate that the critical 8 is of the order of 1/e. Since
our analysis focusses on the low § case with 8, ~ 1 at most, we are not
concerned with this equilibrium £ limit.

In principle, however, such a limit could be eluded if the plasma is
heated sufficiently rapidly (with respect to the magnetic skin-time scale)
so that the magnetic fluxes would be frozen into the plasma. Additional
net currents will be then induced, and the separatrix will be kept outside
the plasma. This is the basis of the flux conserving tokamak concept.
The interested reader is referred to Freidberg (2014) for its thorough
discussion.

To summarise, the equilibrium of a circular tokamak whose flux sur-
faces are parametrised by (4.17) and (4.18) is completely defined to lead-
ing order by the relations (4.26), (4.30), (4.31) and (4.33). For shaped
cross-sections (e.g. as in Fig. 4.8), the expressions listed above are mod-

Figure 4.8: Typical cross-section of a
tokamak plasma with divertor.
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14 One of the most used flux sur-
face parametrisation with the inclusion

of shaping is
R =Ry +rcos(d+ Ts sinf) — A,
a
Z = xrsin6,

where x and § measure the plasma elon-
gation and triangularity respectively.

Figure 4.9: Toroidal ribbon surface for
the computation of the tyre tube and
hoop forces.

It is easy to see that [VR| = |VZ| =1.

ified by the inclusion of the shaping parameters (primarily elongation
and triangularity).'#

4.3-3 Tyre tube and hoop forces

Pressure is the amount of force applied perpendicular to the surface per
unit area. Mathematically, for a surface ¥ with normal vector = such
that /X = ndX one has

dF = pd¥,

where dF is the force applied to the surface dX which is acting in the
same direction of z. Assume that constant pressure nested circular flux

surfaces centred in R, can be parametrised as
R=R;,+pcos®, Z=psinO. (4-38)

The metric tensor coefficients and Jacobian in the coordinate system

(0, O, ¢) associated with the parametrisation above read (see section 3.1.2)

gp =1 goo=p" go=gue=gos=0 +g=pR. (4-39)

From (3.4) it follows that g#? = 1 and g®° = 1/p?.

We take dX to be the infinitesimal toroidal ribbon with unit vector
normal to the surface # = Vp such that dX = 27rpRd®n (cf. (3.2) and
figure 4.9). Projecting dF along the VR and VZ directions gives

R

dFy = dF - VR = 2np5pRd,
Z

dFy; = dF -VZ = Q"I’Z_de@'
1)

By integrating in ® the two expressions above and using (4.38), we ob-
tain the net forces Fg and Fy. It is immediate to see that F, = 0 whereas

Fr = 2772]),02,

which gives an outward force in the VR direction. This is the tyre tube
force, which is analogous to the force experienced by a rubber tyre which
tends to expand due to the air pressure within.

The hoop force is similar to the tyre tube one, with the kinetic pres-
sure p replaced by the magnetic pressure B2. Using (4.4) and imposing
F = F(p) and ¢ = ¥(p), it is immediate to see that B> ~ 1/R?. This
yields

do.

dFg —BRI/{ W 40, dFy« £ é 9p

As before, integrating in ® shows that there is a net force outwards in
the radial direction.
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4.3-4 Equilibrium with local steep gradients

We shall now briefly discuss the properties of equilibria characterised
by the presence of localised steep pressure gradients. Let us consider
a large aspect ratio tokamak with nearly circular cross section. We use
Egs. (4.17) and (4.18) to parametrise the flux surfaces adopting the
same ordering employed earlier for the Shafranov shift, that is A/a ~ ¢.
Other shaping parameters are assumed to be of higher order, and thus
they will be dropped. We further assume that A’ ~ & with ¢ a continuous
function of the minor radius. It follows that we can still use (4.22) for
the expressions of the metric tensor coefficients.

Now, suppose that the pressure pop ~ SQBS is locally a step function
with the step located at some point r, such that p’ o 6(r —7,). Deploying
the same expansions for ¢ and F, i.e. (4.24) and (4.25), the equilibrium
condition is determined on the left and on the right of r, by equations
(4.26) and (4.30) whose solutions are (4.31) and (4.33) respectively. We
must now compute the jumps across 7,. From (4.30), we expect g to
be discontinuous at this point while ¢’ is continuous at leading order.
Hence, from (4.24) we infer that a discontinuity in " appears at order
€. Therefore, we may still approximate ¥’ ~ rBy/q, so that we are
allowed to write the Shafranov shift as (4.34). Plugging the stepped
pressure profile into this equation shows that A" is discontinuous at 7,
while A itself remains continuous with both A/a and A’ still of order e
as we assumed above. It follows that that A” o 6(r — r,), i.e. it has a
spike at 7.

We shall now extend this highly idealised case to a more realistic
situation in which the pressure is not a step function but decreases suffi-
ciently rapidly in a narrow region such that pugap’/B} ~ & (see Fig. 4.10).
This means that we are locally “promoting” the order of the pressure gra-
dient. Hence, following the discussion above, from balancing the terms
in (4.33) we have at leading order

w__ 2Ropop’q?
rA” = —% ~1, (4-40)
0
whereas A/a ~ A’ ~ &. Upon introducing the quantity
2Roptop’q*
oot wan
0

which is known as the ballooning parameter,'> equation (4.40) can be
cast as rA” = a.

Moreover, we may write (cf. (4.26))*°
, 1B
Y= 70 1 +v), (4-42)

with v ~ erv’ ~ &%. Therefore, by means of (4.30) we see that g ~ g2
and rg’ ~ € so that
_ HoRop’

F =
By

(4-43)

i /
||6p
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Figure 4.10: Example of localised steep
pressure profile and its associated gradi-
ent.

15 It was first introduced in the context
of ballooning mode analysis, that we will
address in the following chapters.

16 Note that this is a proportionality
equation between the poloidal flux and
the safety factor. Usually, when the equi-
librium is solved numerically one can ei-
ther impose ¢ or the toroidal current. If
the input is a smooth J¢ then ¢ is ex-
pected to have a small jump, or vice versa
if a smooth ¢ is imposed as an input.
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Figure 4.11: Forward shifted flux sur
face (dashed line) with flux ¥ = ¥o(r) +
Y1 cos 6 with g > 0 an increasing func-
tion of r and |y /¢¥o| < 1. On the equa-
torial plane for R > 0 we have yo(r) +
U1 = Po(r = A) ~ wo(r) - A%, so that
A=y /(0.

The equilibrium of a large aspect ratio tokamak with circular cross sec-
tion and localised steep pressure gradients is known in the literature as
s — « equilibrium model or s — @ model in short. This equilibrium
model will be extensively employed in chapter 12.

4-3-5 An almost intuitive derivation of the Shafranov shift

The parametrisation (4.17) and (4.18) has been chosen because we al-
ready knew, somehow, how the flux surfaces would look like. Here we
show how the displacement of the flux surfaces naturally appears. Con-
sider a coordinate system consisting of concentric nested toroidal sur-
faces centred in R, with radius p as in (4.38). Here the variable p is not
a flux label and R, is not the magnetic axis. The associated metric
tensor coefficients are given by (4.39). Hence, from (4.13) the toroidal
current density is written as

1 [ O (_powlop \, 0 (_ 0w/oe ]
PRy + pcos®) [dp \R, +pcos®) 30 \p(Ry + pcos®) /|’
(4-44)

poJ? =

We plug this into (4.14) and expand for p/R, < 1 giving

o
2p dp 1+R—COS® 0 anr//

R 1+ 2L coso|ug L + pL B

g( TR, )“Odw+ v S [”ar ap 392]

9 Oy 0 o\ _
[ap ( p) cos® + 70 (cos G%) ] =0. (4.45)

We seek a solution of the form ¢ = yo(p) + ¥1(p, ®) with ¥1/¢g ~ p/R,.
Let us expand a generic quantity f as

f(¢)—f(wo)+( {;) it

Thus, when the form of  given above is plugged into (4.45), it produces
to first order in p/R,

wim(), +3 (% ), oo e )
dy ay |, pop\" dp
( d*p 1 (d*F?
z —— — —
Rytto (dw?)wo T3 ( ay? )wo /1
cos®
+

% RQ dap) O + Y +ia2ﬂz
pap Pop

R, ), o ap | 52 9@2

By setting to zero the first line, we obtain (4.30), that is the radial pressure
balance for the general screw-pinch. It is evident that for having the
next order to vanish we must require 1 ~ cos ®, which shows that the
constant ¢ surfaces are shifted along R (cf. Fig. 4.11), at least to first
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approximation. Therefore, writing 1 = —~A=>" cos ® and using the radial

o (dp g
(8], %)
- ay o (9,0)

which is equation (4.33). It is important to stress that, contrarily to the

W
op
pressure balance, after some algebra we get

dp |dp?2  \p — Oo/dp ) dp| Ry

derivation presented earlier, here is the magnetic axis which undergoes
the radial shift.

4.4 Large aspect ratio expansion: The vacuum
solution

In experiments, in order to prevent the plasma from touching the sur-
rounding structures, a vacuum region separates the plasma column from
the containing vessel.'7 The absence of currents in the vacuum yields
the equilibrium condition

VxB=0. (4.46)

The aim now is to determine the shape of the flux surfaces in this region.

Let us employ the coordinate system (r, 6, ¢) with r labelling the sur-
faces of constant poloidal flux as defined in (4.5) and let the magnetic
field to have the same form as in (4.4). The condition J7 = J¢ =
implies that F is constant in the vacuum (this reflects the ~ 1/R decay
of the toroidal magnetic field). Thus, the magnetic equilibrium in the
vacuum is determined by the equation

J’=0. (4-47)

Because of the hoop force, the magnetic surfaces are expected to be

displaced in the vacuum as well.'®

Hence, we parametrise them with
equations (4.17) and (4.18).

Assume for the moment that the metallic wall surrounding the plasma
at distance r = b > a with 1 — a/b < 1 is a perfect conductor. Since
b ~ a, we deploy the ordering 6/R( ~ &. Therefore, the procedure for
obtaining the vacuum solution consists in first expanding /¢ in & and
then solving (4.47) order by order in the inverse aspect ratio. Using
(4.27), the leading order of (4.47) yields ry’ = const, so that by means
of (4.26) we obtain (compare with (4.28))

g~ 1’ (4.48)

which holds up to order &,
By combining (4.26) and (4.27) we get r J¢ ~ (r?/q)’ which can be
integrated across the plasma boundary r = a giving

1 1 a+o
_ ~ [
(@10 ga—9) /H S

17 Note that this is an approximation of
a much more complex situation.

18 This is because the magnetic field is
stronger on the inner side than on the
outer side of the current carrying torus.
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19 This does not hold for diverted con-
figurations, such as the one shown in
Fig. 4.8 for which the plasma bound-
ary identified by the separatrix is not
smooth. In such a case, the ¢ profile di-
verges logarithmically at the edge (see
Wesson (2011)). Diverted geometries,
however, are not analysed in this report,
which only focusses on limited plasmas
with a smooth boundary.

20 Given the normal vector # = Vr/|V7|
from plasma to vacuum, the plasma-
vacuum jump conditions are

n- (Bnac - Bplasma) =0,

# X (Boac = Bplasma) = 0

where we assumed no surface currents at
the plasma boundary.

21 Note that often in the literature the
coordinate system of 4.3.5 is used. In
such a case A; = 0 and the substitution
A}, — —A}, must be performed.

with 6 — 0. The right-hand-side of the equation above can be made ar-
bitrarily small if the function under the sign of integration is not singular
at the boundary, i.e. there are no surface current densities (in short sur-
face current). This shows that the safety factor profile is continuous
at the plasma-vacuum interface.'9
To the next order in &, equation (4.47) yields

L) (4.49)
which is equivalent to (4.33) computed with p = 0 and ¢ ~ r2. This
shows that (4.33) can be used both in the plasma and vacuum region.
As discussed in the previous section, equation (4.33) can be cast as

d 9 9 2/.1()7'R()p, 1

— 4 A’] ’ et iiube’ SENNE Y

= |rwra]+rw) ( TR
In analogy with the calculation above, without surface currents we inte-
grate it across the plasma boundary giving

3 a+o 73

¢ (A’(a+6)—A’(a—6))=—/ T

92(4) a—o qQ

2uoRop’g* 1
ng Ry

dr,

where we made use of (4.26). The right-hand-side of this equation van-
ishes if p’ is not singular, so that A’ is continuous at a. This is equivalent
to requiring that the poloidal component of the magnetic field is con-
tinuos a the plasma-vacuum interface.>® Finally, we impose the obvious
constraint A(a + 6) = A(a —9). Thus, denoting with A, the displacement
of the magnetic surfaces in the vacuum region, the solution of (4.49)
supplied with the interface conditions at the plasma edge given above
reads

2 < 2
a 2Ry , 7\2 r r
Av —Aa+4—R0 (1—7Aa) [1— (;) +—1In (;), (450)

having introduced the notation A, = A(a — ¢) and A}, = A’(a - 6).
With a perfectly conducting wall at distance 4 from the plasma, the
shift of the flux surfaces is written as*

A(b)—Ay b b li(a) 1 a?
g () + o 52 -3) - 53)

Hence, letting the wall to be at distance 4, expanding (4.50) for b/a ~ 1
yields
Ay(B) = Ay +AQ(b—a)+....

This indicates that the magnetic flux is compressed in the vacuum region
right up to the vessel wall. Flux compression therefore prevents further
plasma expansion (see Fig. 4.12). Here it is evident the importance of
the poloidal field for the plasma confinement, in that the longitudinal
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(toroidal) field does not enter the expression for the equilibrium position
of the plasma in the vacuum chamber.

Unfortunately, in reality the vessel wall is not a perfect conductor,
and the poloidal flux can only remain compressed for times typically
much shorter compared to the ones of experimental interest. It turns
out that an external vertical field B, must be applied to maintain
the plasma in equilibrium, preventing the expansion in R due to the
radial force. Although not strictly necessary for the stability calculations
of the next chapters, the evaluation of B, is of high importance for
experimental purposes, therefore we shall discuss it in the next section
for a large aspect ratio tokamak with a circular cross section.

4-4.1 External vertical field

Assume that there is no conducting wall surrounding the plasma. In the
vacuum, the condition of no currents implies that (4.46) holds. Let us
employ polar coordinates (p, ®, ¢) which relate to the flux ones (7,6, ¢)
through (cf. (4.38))

R, +pcos® =R =Rp+rcosf—A, psin®=2Z=rsinf. (4.51)

We choose R, to be the geometric centre of the last surface enclosing
the plasma labelled by p; (see figure 4.13). This means that R, = Ry —
A(a). The associated metric tensor coefficients are given by (4.39). By
inverting (4.51), the flux coordinates are then written in terms of the
polar ones via

+ (Aa _A)
P

r=p—(A,—A)cos®+..., 6=0 sin®. ..,
where here A has to be considered as a function of p such that A(p;) = A
with A, following the notation introduced in (4.50).

With a magnetic field written as (4.4) where F is constant and ¢ =
Y (p,®) (cf. §4.4), we exploit axisymmetry (Vp - V¢ = VO - V¢ = 0) to
obtain J* = J® = 0, so that the equilibrium in the vacuum is determined

by equation (4.47). Denoting the vacuum flux by y**, this becomes (cf.
(4-44))

i 0 8l//ext L1 10 1 awext
Op \R; + pcos® dp pé)@ R, + pcos® 00

Although this equation admits an exact solution expressed in terms of
toroidal (ring) functions, we shall seek a simplified form for the flux
which is valid in a region near the outermost plasma surface.
Expanding for p/R, ~ &€ < 1 and focussing on a solution of the form
Ut = yo(p) + Y1(p) cos O with ¥q ~ ey, the equation above yields

o\ 0 () v pav
3p p@p op \" dp p R, dp

R

Figure 4.12: Sketch of the poloidal flux
compression in the outer midplane for
a plasma surrounded by a perfectly con-
ducting wall.

Figure 4.13: Polar (p,0,¢) and flux
(7,6, $) coordinates.
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22 We use the fact that

a’By _ poRoly
q(a) T o

where I, is the plasma current.

Thus, the vacuum flux can be written not too far from the plasma as

Yt = Co+Clln;+ Cop +§+§%(lnp—%)] cos ©. (4-52)
The constants C; (i = 1,2,3) are determined by requiring that in ab-
sence of surface currents the normal and tangential components of the
magnetic field are continuous at the plasma boundary. We denote with
Y'" the poloidal flux inside the plasma. Exploiting again axisymmetry
and the fact that dy'"/d60 = 0, it follows that at the plasma boundary

one has at leading orders

ad/in
3/0 Pb

B dl//ln
Cdr

(:81’( )+ UG )) os@],

- aB() [
g

having used equation (4.26) and 0A(p)/dpl,, = dA(r)/dr|, with %A; =
Bpla) + 1i(a)/2 (cf. (4.35)). Since

20plp,

1 a”l’ BQZL(’)_l/I’ B¢=£,,
\/_8(9 Vg Op R?

the continuity of the tangential magnetic field implies dy'"/dp|,, =
Ay*** |dp|,, whereas the vanishing of the radial component of B requires

Bf(pp) =0
Therefore, the interface conditions become

B =-

Cs 1 1
S r A lnae=-2=1]= )
Cot—3 + o, (n 2) 0, (4-53)
G Cs & 1
7+|:02—ﬁ+@(1nd+§) cos ®
aBO ( z( )) }
+ cos®|, .54)
q(a) Byla) (4-54

having approximated p, ~ a. Defining A = Sy(a) + l;(a)/2 — 1 with
R, ~ Ry, we easily obtain

a’B, a’B,
— 2 =
g(a) 2Roq(a)
a4B() 1
C3=——[A+=],
3 2¢(a)Ry ( 2)

so that the vacuum flux is??

Ryl I 2
Kooy 0Pln£+—'u0p m? + A+1 1_a_ p cos 0.
2n a A4n a 2 02
(4-55)

The magnitude of the external field required to maintain the equi-
librium is obtained by subtracting from y“** the contribution due to the
toroidal current itself. Let us write y** = y*" + y/VF where ¢ is
the flux due to the plasma current and "% is the additional external

= (A-Ina+1),

wext — CO +
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one. For a current loop of radius R, which carries a current 7, in the ¢
direction one has (Jackson (1999))?3

wcur — _MORgIP ﬂ [(2 - kQ)K(k) — 2E(k)

o R, k ’
4R/R,

K = ,
(1+R/R,)* + Z2/R?

where K(k) and E(k) are the complete elliptic integrals of the first and
second kind respectively.®4 By means of (4.51), expanding in powers of
p/R, yields
2 3
1(p 1(p
E=1--|— — = O+...,

il +3la] oo

so that to the required accuracy we approximate
8R

~In—% + 2 cose.

4
Vi-k2 P 2R,

Collating these results together and letting R, ~ R, gives

Ek)~1 Kk)~In

Ryl 8R 8R
wcurz_’uo O[J[ 0 L(ln_o_l

In— -2+
2r t Je,

, 9k, ) cos ®] . (4.56)

When this flux is subtracted from (4.55), we obtain for p > a

8R 1
l//VF%COTlSt+¥ ln—O+A—§} (R - Ry).

Vs a

Since Bz = %&/xVF /OR, the magnitude of the external vertical field
needed to maintain the equilibrium is found to be
N ,UOI/) (1 8Ry 1)

~ n—+A-—
4-7TR()

B
+ a 2

Note that B, ~ &2B (the logarithm is a slowly growing function of its
argument so that we let In(Rg/a) ~ 1). The effect of such a field is
sketched in Fig. 4.14. One notes the appearance of a point of poloidal
field null (X-point) in the high-field-side.

Using this result, the equilibrium g limit discussed at the end of sec-
tion 4.3.2 can be estimated as follows: let ® = 7 so that R = Ry — p
with p < Ry and assume [, > 0. From (4.56), the magnitude of the
magnetic field at Z = 0 and close to R( generated by the plasma current
scales approximately as %.25 Let a = |R — Ry| be the radius of the
plasma. The X-point will intersect the outermost plasma surface when
B, ~ %, so that for Ry/a sufficiently large the critical 8, setting the
equilibrium limit is

Bp(a) ~ Ro/a.

23 If B = -V x V¢ the associated vector
potential is 4 = =y V¢. From this

A-Vo
Ay = 52 = —y/R.
t 2 v/

The quantity A4;,, is used in Jackson
(1999)-

24 The elliptic integrals K(k) and E(k)
are defined as

[}

n/
E(k) = V1 - k2sin? ¢dt
0
=2, A(-5. 5%,

where 9F] denotes the hypergeometric
function.

We use a right handed cylindrical coor-
dinate system (R, Z, ¢).

25 Note that

a(!/cur B ad/tur ap N awcur (9@
OR = dp OR 9O OR’

and % = 0 for ® = m. We also take

In8Ry/p ~ 1.
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Figure 4.14: Total poloidal field due to the combination between the one generated by
the plasma current and the externally applied one. Note the presence of the magnetic
separatrix and the X-point.

Toroidally rotating plasmas

To increase the temperature, beams of neutral particles can be injected
into the plasma. This may induce a rotation in the direction of the injec-
tion due to momentum transfer and if this rotation is sufficiently fast, it
can impact the equilibrium. The equilibrium condition for a stationary
rotating plasma is (cf. (2.2))

pv-Vo=-Vp+ J xB, (4-57)

where the magnetic field is given by (4.4) (we use the same coordinate
system employed in §4.3). Let the variable r label isoflux surfaces such
that B" = 0, i.e. ¢ = y(r) (isoflux surfaces may not correspond to isobars
as it is shown below). The rotation is typically in the toroidal direction,
so that v = v¢e¢. Hence, writing £ = —V®g where ®f is the electric
potential, the projection of (2.3) along B shows that @z depends only on
the flux variable r. Multiplying (2.3) by e, shows that » is a flux function
as well. We call Q(r) = »%. Dotting (4.57) with es gives J” = 0 showing
that /' = F(r) is a flux quantity, whereas the ¢, projection yields
ROR 0p
925% =59 (4.58)
We assume strong parallel electron thermal conductivity which ensures
isothermal flux surface, i.e.

B-VT =0 (4.59)
so that 7 = T'(r). For the sake of simplicity 7 = 7; = T,. Hence, writing
p=m;n and p = 2nT, equation (4.58) can be integrated giving

mj 2
o= % = poe™iT
where pj is a function of r and .#Z? = pQQRg /2p is the Mach number.
Expanding in ¢ yields

2
./12(%2—1)

(BR) = pge 15, (4.60)

0= po 1+2.///2RLOCOSH+...), (4.61)



LARGE ASPECT RATIO EXPANSION: THE VACUUM SOLUTION 53

which shows that the constant density (or pressure) surfaces are radially
shifted with respect to the flux surfaces (cf. Fig. 4.11). This is due to
the centrifugal effects which also enter the expression of the Shafranov
shift A through a modification of the pressure term. We see that rotation
effects become significant when .# ~ 1.
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Straight field line coordinates

In the previous chapter we mentioned that for a toroidal coordinate sys-
tem (7, 6, ¢) where the variable r labels the flux surfaces and ¢ is the
geometric toroidal angle, there is a degree of freedom in choosing the
definition of the poloidal angle 6, i.e. its definition is not unique.’ De-
pending on the problem under consideration, certain definitions turn
out to be more useful, or easier to handle mathematically, than others:
for example, for plasma diagnostics related problems the proper geomet-
rical angle is often the preferred choice. This, however, is not the most
convenient definition when dealing with analytic stability calculations.

We see from (4.7) that, given 6 and ¢ the (generic) poloidal and
toroidal angles, the infinitesimal increment of the field line position in
the toroidal direction per increment in the poloidal one is

If we select a particular flux surface, the pitch of the field line, that is
the ratio d¢/d6, can depend upon the poloidal variable 6. For stability
analyses, however, it is much more convenient to have a constant
pitch angle on each flux surface of radius r. Hence, to remove such
a dependence on the poloidal angle, we introduce a new angular variable
¥ such that the magnetic field lines on a given flux surface are straight
(see figure 5.1), that is

dp
i g(r).

This new angle, namely , is called the rectified poloidal angle.

Using the coordinates (7, 9, ¢), from (4.4) the equilibrium magnetic

! 1t is possible to introduce alternative
definitions of the toroidal angle ¢ as well.
In this report, however, ¢ will always de-

note the geometric toroidal one.

Figure 5.1: Field lines on a cut open
magnetic surface for (a) arbitrary flux
coordinates, and (b) straight field line co-
ordinates.
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2 Hereafter the symbol g will always
denote the Jacobian of the system (7, ¢, ¢)

Figure 5.2: Cross section of a shaped
plasma showing the levels of constant
geometric (a), and straightened (b)
poloidal angles. Dashed lines indicate
isobaric surfaces.

field components are

B =0, (5:1)

B = 3? (5.2)
F

B¢ (53)

with /g denoting the Jacobian associated with this straight field line
coordinate system.”? This means that the ratio

B¢_F\/§

BY (//'R2

=q(r) (5-4)

is a flux function (i.e. constant on a flux surface), yielding to the equiv-
alent requirement that

55 3 =0 (55

09 \ R? ’ ’
which also corresponds having /gB? to be a flux function. Relation
(5-4) gives a very simple representation of the safety factor.

Because the mapping § — ¢ is one-to-one, we can think of the angle

6 as a function of r and ¢ (analogously ¢} can be viewed as a function
of r and 0). Figure 5.2 shows the curves of constant straight angle (note
that it can become highly distorted near the edge). Thus, the aim of
this chapter is to find i) how to represent the equilibrium geometry in
terms of this new straightened angular variable ¢, and ii) derive the ap-
propriate expressions for the covariant elements of the metric tensor.
In doing so, we must first resolve some subtleties related to the higher
order solution of a tokamak equilibrium. This initial step is discussed
in the next section.

5.1 Higher order tokamak equilibrium

In the previous chapter the equilibrium was solved only to first order
in £. However, this is not sufficient for the correct computation of the
metric tensor coefficients to the accuracy required for later analyses.
This means that the equilibrium must be solved to the next order in &.
Let us use the (7,6, ¢) coordinate system introduced in chapter 4, and
parametrise the flux surfaces as

R=Ry+rcos@—A+E(r,0), Z=rsinf+S(0), (5.6)

with E ~ § ~ &?r. The symbol Vg, identifies the Jacobian associated
with these coordinates. Using (4.25), we see that

FF’ , r 12, 2A ,
B§R2:g 1—2R—Ocos0+g+3R—gcos 6+R—O +f+..
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where the prime indicates differentiation with respect to the radial vari-
able. From an inspection of (4.20), it is thus clear that £ and § must
generate terms proportional to cos?6 when expanding the coefficients

goo/+/g, and gro/~/g, appearing in (4.21) (cf. (4.27)) to higher order.
Let us introduce the quantities

OR OE
Ci=R =cos0-AN+E, (C= 28 :—rsin9+%,

0Z oS
Di=Z"=sin8+S8’, Dy= 20 =rcos9+%.

It follows that (cf. section 4.3.1)

&rr = 012 + Di gro = C1Gy + D1Dy,  gpg = CZZ + D%’

\/Eu = R,‘ 'grrggg — g;zé} = R (ClDQ - DlCQ) .

From this it is fairly easy to see that
OE oS
gro ~ rA’sin6 + (% + rS') cosf — (rE' - %) sin 6,

OE oS
Goo ~ r - 27% sin 6 + 27% cos 6,

1+ (L —A') cos @ + (M+E')cose
R() r

+ 18 - OE/[09 sinf — LA’COS20— A
R R

\/Eu X TR()

>

r 0 0

so that the metric tensor coefficients that enter the equilibrium toroidal
current density can be written to the first two leading orders as

g _ T 1+ (A' — L) cos 6 + (OS/GH —E') cosf
vz, Ro Ro r
OE |6 A’ A 2
(S + / sin@—r 00529+—+A'2c0529+r—,c0528,
Ry Ry R?
&0 _ = A’sin @ + (A’— L) A’ sin 6 cos 8
Vg, Ko Ro
1)
+ (8S/89 —E') sin @ + (S' + M) cos@}.
r

(5-7)
When these expressions are plugged into (4.21), in order to have the
required cos? @ dependent terms, we must impose

E(r,0) = E(r)cos6, S(r,0) = S(r)sinb.

An expression for E(r) and S(r) is now needed.

57
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3 For x < 1 one has

1

TTarsa2 S lmext@ b

4 This indicates that there are no addi-
tional non-oscillating (in 6) terms of or-
der 2 in (5.6).

Introducing A, = A’ — r/Ry, from (5.7) we shall formally write3

11
= [14+A.cosO+u(rne)], 2L-L
Ve, Ro

ﬁgu B TRO
. 1
% = —0 [A, Sirl@ + tQ(r’ 0)] B

where #), #; and 3 are quantities of order &2 which are defined as follows:

[1+ Ascos@ + t1(r,0)],

S— ~ _ E_ 2 ’ A
to=—|=+E|cos?0— S +=]sin’6 + A,2+r__r cos? 0 + —,
r r R(Q) RO RO
S ( _ E\ .. . 12 N ( A
h=[=-Ecos’0-|S - =|sin?0+ A’l+r——r cos? 6 + —,
r r R(2) R() RO

c_5
tQ:[(A’—L)A""S +S’—E’]sin0cos€.
Ry r

With a simple manipulation it can be shown that the toroidal current
density at the two leading orders is written as

1
o]’ = — |0y + {09/ AY + Aur'Y = 9/} cos
0

06 1

It is important to remind that for a given shape of the safety factor, the

+ (' t) + Ay’ A =AY cos? 0+ ty(ry’) —y (5.8)

expression for the poloidal flux is given by (4.23) and includes contribu-
tions up to order &2 which enter the equation above.

By inspecting (5.7), we observe that no further corrections propor-
tional to cos 6 appear in /¢ beyond the one originating from terms of
order £.4 Noting that cos?8 = (1 + cos 26)/2, Eq. (4.20) generates two
equations to order &3: one is obtained by averaging it in 6, whereas the
other is obtained by multiplying by cos 26 and integrating in 6 from 0
to 2. The former provides an expression for f’ while the latter, after

plugging (5.7) and (5.8) into (4.20), yields

_ ANali ~ 37,232 ’ ,
C" + 1+2“ﬂ Q—3£,= O‘g +6—T—3A + 3NN
’ r r2 (w/)l Ré RO
2r w" [ 3r? 9 Ar
- —AN'"+—|—+3A" - —A"|, .
Ry ¥’ \ R Ry (5:9)
having defined
C=E-S. (5.10)

The equations above determine, say, £ while S remains a free function
whose choice allows for several alternatives. Upon defining P = E + S,
we cast (5.0) as

R =R0+(r+%13)cosH—A+ %C’cosg,
Z=(r+3P)sinf — Csiné.



It is clear that P corresponds to a relabelling of the flux surfaces and C
determines their ellipticity.>

A particularly clever choice is to take a linear combination of £ and
S such that in the straightened coordinate system gys/+/g = Ro/r at all
orders. This will be elaborated more in detail in the next sections.

5.2 The rectifying parameter

Let us assume that the pressure profile is smooth and does not present
narrow regions of sharp gradients. Taking into account the results of the
previous section, we take the parametrisation of the flux surfaces to be
the one given by Egs. (4.17) and (4.18) , i.e.

R=Ry+7rcosf—A+ Ecosé,
Z =rsinf + Ssin@

where the expression of the Shafranov shift is given by (4.33) and E ~

S ~ &%a. As discussed earlier, we can view the poloidal angle 6 as a

function of the rectified one ¥} and of the labelling variable r, that is
0 = 0(r, ),

with 0 < ¥ < 2. The aim of this section is to find an explicit form,
though approximated, of 6 expressed in terms of . Although most

of the problems encountered in the stability analysis do not require an

accuracy correct to order &2, here we work out the full computation.’®

In analogy to what we did in the previous section, after introducing
the coordinates (7, ¥, ¢) we define the quantities

_ E
Ci=R = (1+E’) cosf —r@’ (1+—) sinf — A/,
T

) . E
Co=R=-7r0 (1+ 7) sin 8,

Di=Z"=(1+ 5') sinf + r@’ (1 + E) cos 6,
r
Dy=7Z7= ré(1+ §) cos 0,
r
having used the notation f’ = df/dr and f = 9f/89. The covariant

components of the metric tensor are thus written as (cf. section 4.3.1)

g =CP+ Dy,
gro = 0102 + D1D2, (5.11)

99 = 022 + D%,

and the Jacobian associated with this coordinate system is

V& = R\[grrg99 — g% = R(C1Dy — D1Cy) .
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5 From (5.9) we infer that such an elon-
gation is small as long as 8 is small.

0 Terms of the order of &2 are needed for
the correct evaluation of the metric coef-
ficients in the s — a equilibrium model
with steep gradients. This will be dis-
cussed in Sec. 5.4.
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If 9 = 0 + v(r,0), one has

B? BY Lo
B¢ BY 90
Recalling (5.4), in line with the notation
employed in earlier sections this gives 1+
g—‘é = /g, /+/€ and averaging it in 6 yields

VE/R? = & [ g, /R%d6, so that

av _ 2myg, /R? .
= 2—{ - .
00 0 " \/zu /Rldb'

A(r,9) can be obtained perturbatively
from the equation above.

It is immediate to verify that to leading order

. _ 8 _, E (
ﬁ = Lo1-Acoso+|E + s cos? @+ S+ =|sin?0|. (5.12)
R2 R r r
According to (5.5), this quantity only depends on the flux label r. We
then write

0=109+Ar,9), (5-13)

where 1 ~ &€ < 1 known as the rectifying parameter is a periodic
function of ¢ such that A(r,0) = A(r,27) = 0. The quantity A is then
expanded in € as

A= /11(7“, 17) + /12(7, 19) +..., (514)

where 17 ~ &, 19 ~ €2 and the dots indicate higher order corrections.

Plugging (5.13) and (5.14) into (5.12) yields

Vg

. _ S f -, E
1_(L+A')cosﬁ+/ll+(E'+—)c0s2ﬁ+(S’+—)sin219

R Ry Ry r r
AI 2 A . .
+ 3{_04-;?(2) cosQﬁ+R—0+/12+(A’+RLO)(/llsinﬂ—/llcosﬁ) .

Imposing the condition (5.5) and solving order by order in &, after some
algebra we obtain

A = (Ri + A’) sin 9,

0
o ( (5.15)
sin29 | . 4, E-§ 3r r?
=— E-S) - - AN - — —2A7?.
e (S e L
Note that to leading order we have
ve 1
R? Ry
Therefore, we can finally write the angle 0 in terms of r and ¢ as
ezﬂ+(L+A')sinﬂ+.... (5.16)
Ry

We have now all the elements to compute the metric tensor coeffi-
cients in these new straight field line coordinates. This is carried out
in the next section for a tokamak equilibrium without steep pressure
gradients. In such a case the accuracy of (5.16) proves to be sufficient
for the correct evaluation of the metric tensor coefficients needed for
the stability calculations. The stability analysis of equilibria which ex-
hibit localised regions of sharp pressure variations requires a more care-
ful computation of the geometric coefficients, and this will be detailed

in §5.4.
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5.3 The metric tensor coefficients

Let us assume that ,uop/Bg ~ uor[)’/Bg ~ &2, By means of (5.11), the
elements of the metric tensor in the straight field line coordinates intro-
duced in the previous section can be easily obtained (cf. (4.22)) and
their expressions at leading orders read

gr=1-2A"cos?+...,

2
oo = (r_ +rA + r2A”) sind+...,
Ry

3
r
o9 = 2+ =—cos®?d+ 2r2A cos D + ... .,

Ry (5-17)
2
g¢¢=R3 1+—rcosﬁ+... ,
Ry
1 1
—:—[1—£c05ﬂ+... .
\/g rRy Ry

We refer to the quantities g;;//g (the indices i and j run over (7, %, ¢))
as the metric coefficients. Unfortunately, the expressions of the metric
coeflicients computed from (5.17) are not, generally, accurate enough
for what is required in the stability analysis. In (5.17), we must thus
include higher order terms meaning, more specifically, that second order
corrections in the smallness parameter € have to be evaluated. The best
strategy for tackling the problem, which is a rather long and boring
procedure, and to avoid an unnecessary amount of algebra is divide et
impera: we compute separately 1/4/g and g;;, and then we evaluate their
product to the relevant orders in &. Let us introduce the symbol of
poloidal average

1 2
=g [ rav (5.18)

Exploiting the results of the previous section, a tedious calculation
shows that to second order in & we have

1 1

_ A~

V& ~7’R()

. ) A, )
1+A.cos¥—A—-AAsind+ (A'z— rR_) cos? ¥
0

>

. . A _ S _E
+ A2 - A dcos® + — — (E'+—) cos® ¥ — (S'+—) sin®
Ry r r

(5-19)

where A is given by (5.14) and we recall that A, = A’ —r/Ry. We remark
that one has to account appropriately for the correct orders of A in the
expansion above.

Now one notices that

r 2A 72 r r
R2=R?>|1+2—cos®¥ — — + — cos> ) — 29— (A’+ —)sinzﬂ ,
0 Ry Ry RZ Ry Ry

(5.20)

61



62 STRAIGHT FIELD LINE COORDINATES

7 1t is often found in the literature E =
-S.

8 Primarily for the computation of the
m = 1 internal kink.

from which it immediately follows that
(RYY = —rRy (A" +3A" /1 +1/Ry). (5.21)
Since RQ/\/E = (RQ/\/@, by means of (5.19) and (5.20) we readily obtain

co R _Ro
\/E r

We notice that one may think of r as a function of another labelling

A r? A (E+S8) E+S§

Ry 2R2 2Ry 2 2r

parameter 7, i.e. r = 7(7). Denoting with /g. the Jacobian in this new
variable, we choose 7 such that RQ/\/_F = Ry/7. Since /g, = dr/d7+[g,

from the equation above we have

Ry _ Ry

2r

1 /7%A rt _ |\ dF
(R_O+4__]{(2)+r(E+S)))Z

T r

This can be easily solved yielding

=1

r =

FA P 1,
- (r—+r—,+—(E+S)).

2Ry 8R; 2
Therefore, in an equivalent manner, we conveniently choose £ and §
such that”

_ A rd
Ry 41{3 (5:22)
that
so tha Ro
= o (5-23)

Now it remains to compute the expressions for the coefficients g,,/+/g,

go0/~/g and g,9/+/g. We can write g;;/+/g as a sum of an averaged and
a fluctuating (in ) part as

&:ﬁ)+(&),
Ve e \velL

where

J~=f =

The analysis of MHD instabilities for equilibria without sharp pres-
sure gradients® requires knowledge of the expressions of (g,,//g) and
(g99/+/g) with an £? accuracy, while it is sufficient to evaluate their fluc-
tuating part to first order in &. For this purpose only A7 is needed (cf.
(5-15)). We anticipate, however, that cases with large p’ will need the os-
cillating part of the metric coefficients to be computed with an accuracy
of order &2 (this will be discussed in detail in the next section). There-
fore, for the sake of clarity as we did for the computation of the rectifying
parameter, we present below the full calculation correct to second order

in €.
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Let us start with g,,//g. A quick algebraic manipulation gives

grr = 1-2A cos ¥ + 20 A sin 9 + r217% + A"
+2rA’ A" sin 9 + 2(E’ cos® 9 + S’ sin® ).

Thus, by using the results above, we obtain

9 r? A A
TR I VX
4Ré Ry Ry

1
=—11
\/E TR()

7‘2 9 7'2
A+ N+ 1NN,

By _

2 Ry

for the averaged part, and9

grr 2 , r
E— =——— A"+ —]cos®®
(\/é’)N R ( Ro)

for the fluctuating one where C is given by (5.10) and the dots indicate
as usual higher order corrections. Hence, we write

A 2 2
S YNC B N By N NN
0 2 Ry

+(C_”—A'2 el rA’A”) cos2d|. (5.24)

The derivation of ggy/+/g is somehow simpler. Let us write
.9 ) 5o 9 )
go9 =T (1+2/l+/l )+27(Esm P+ S cos” ).
It easily follows that

A? 32 A
+ +—+ —
2 4R% Ry

(gl’;% T

V& Ro

oo 2r , ro(rA 5 —/)
=—| =—A"cost?+— +=A“-C"|cos20+....
(\/g )N Ry Ry (Ro 2

Thus, collating the two results together gives

)

A% 3t A
1+2A cos? + — + — + —
COS 9 433 RO

&
)

N = =

r
Ry

%l

A5
+ (r . (5-25)

R + QA’Q - C") cos 20

9 A periodic function f in the variable
¥ can be written as a sine-cosine series

=+ ZAmcosmﬂ+Bmsinmﬂ,

m=1

where the coefficients 4,, and B, are

given by
1 Y
Ap = — f cos mid?,
T J-n
1 Y
By =— f sinmddd.
T J-n
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Figure 5.3: Example of the straight
field poloidal angle distortion due to a
steep pressure gradient radially localised
within the shaded region. In such a case,
¥ becomes nearly discontinuous where
the pressure gradient is large due to the
discontinuity of the first derivative of the
Shafranov shift (cf. (5.15) which can be
inverted to write 9 as a function of 6).

Computing g,9/+/g also does not require a lot of algebra. We start
from noting that

gro = P2 +rA sind + 722’4 + rA’ A sin® + rA’A cos

! (E’ -8+ E_S)sinQﬂ,

2 r
which shows that g,9//g is & times smaller compared to g, //g and
g9v/~+/g- By multiplying the equation above by (5.19), it is immediate to

see that (g,9/4/g) = 0, so that we obtain

A1 5N A"
M=52 A+ 2 S sing+ (22 +
\/g R() r R() 2Ro 2R0

A2 C” ¢’ 3C)\sin29
) ‘ (5-26)

SAA” 4 oo L Y o0
* e T T 9y T 2]

Thus, for straight field line coordinates, the geometry of equilibria
which satisfy the conditions uop /Bg ~ porp’ /Bg ~ &2 is completely de-
termined by equations (5.21)-(5.26). To complete the framework which
is required for the stability calculations presented in the next chapters,
it only remains to account for modification of the metric coefficients in
presence of localised steep pressure gradients. This is discussed in the
next section.

5.4 Metric of the s — @ equilibrium model

Let us assume that, globally, the ratio of the kinetic over magnetic pres-
sure is of order &2, but allow for localised strong pressure gradients. This
is what characterises the so called s — @ equilibrium model introduced
in section 4.3.4 which is relevant for the discussion of ballooning modes
addressed in chapter 12. Hence, the aim of this section is to derive the
appropriate expressions of the metric coefficients in the narrow region
where such gradients occur.

First notice that the enhancement of the pressure gradient can locally
”promote” the order of some quantities like, for example, the second
derivative of the Shafranov shift (see (4.40)-(4.43)). It follows, and this
is a crucial subtlety, that care has to be taken any time the derivative
operator acts on e.g. A’ if the differential operator acts on some
expressions involving A’, then terms proportional to A” may appear
whose order would be lower than the one of the original expression
prior to differentiation. Notice that this reflects the fact that A’ becomes
nearly discontinuous when large localised pressure gradients are allowed
(see the discussion in section 4.3.4 and figure 5.3).

Hence, the expressions for the coefficients L, M and N, and their
derivatives, must be modified accounting for such enhancements. Notic-
ing that G = Ro/r is guaranteed by the choice of the function S (cf.
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(5.23)), we anticipate that the quantities that will enter the stability anal-
ysis of the s — @ model are

(N) AN)Y (NY" (M) (M) (L)

Nil Nitl Niul Mil Mi,l [‘il (5'27)
No N, N Mo M La

with the notation 4., = ﬁ 02” AT g9,

The computation of the coefficients above is easily accomplished
by means of equations (5.24)-(5.26). Following the discussion of sec-
tion 4.3.4, we allow r,u()])(’)/Bg ~ g and let A” — a/r with the assumption
that @ is constant and of the order of unity. By means of (4.40)-(4.43)
and (5.9), we immediately see that 7C” ~ & while C’ ~ C/r ~ £2.° We
are now ready to evaluate the expressions of the metric coefficients for
an s — « equilibrium.

Anticipating that only the leading & order is needed, all the entries
marked in light grey in the table above are at least of order &2 and
thence they can be dropped (note that (M) = 0). Quantities that will be
employed explicitly are

1 2 2
() (1+%), Lip~--2

s IR
r 1
Ny~ —, (NY = —, (5-28)
(N = o0 (Y~ 5
i
M+ z__.
+1 +2R0

All the remaining terms in (5.27) are of order & at most whose explicit
expression is not required.

We shall point out that the approximations above do not account for
terms of the form o with £ > 2 which may appear at higher orders in
the e-expansion of (5.24)-(5.26). Such terms, however, can be expected
to be small under the assumption that, also in the case of locally steep
profiles, the metric tensor coeflicients can be written as a converging
series in .

In conclusion, the expressions for the metric coefficients represented
by (5.21), (5.23)-(5.26) and (5.28) will form the geometrical basis to
be used in the stability analysis of the various MHD perturbations ad-
dressed in the following chapters.
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Part I1I

IDEAL STABILITY







General remarks on ideal MHD stability

It is inevitable that a plasma which is in its equilibrium state will be
subject to some sort of perturbations: these can be, for example, a small
fluctuation of the magnetic field caused by external conductors, or a
modification of the temperature profile due to local power deposition,
and so on. Thus, the natural question to ask is whether such an equi-
librium is stable or unstable with respect to small deviations from its
initial state. We say that the equilibrium is unstable if the perturbation
grows in time pushing the system away from its original equilibrium
state. Otherwise is stable. We refer to growing perturbations as insta-
bilities (often we simply call them perturbations or unstable modes,
the reason of the latter will become clear later).

In some cases plasma instabilities can be dangerous, either leading
to a severe deterioration of the plasma performances or putting in dan-
ger the structural integrity of the device.® In other cases instead, they
might have a beneficial effect, helping e.g. in controlling the plasma im-
purity content or enhancing the exhaust of the fusion ashes (namely
the Helium fusion by-product).

Thus, with the aim of maximising tokamak performance, many ef-
forts have been devoted to the understanding of the driving mechanisms
of such events, and to the identification of their stability boundaries.
MHD instabilities in tokamaks can be divided into two main families:
ideal instabilities and resistive instabilities. We talk about ideal in-
stabilities when the plasma is modelled as a perfect conductor, whereas
we refer to resistive instabilities if a small amount of plasma resistivity
is allowed. We shall focus on ideal instabilities first.

Before diving into the mathematical analysis of the various MHD
perturbations, it is instructive to provide a brief account of the basic

1 This happens when sudden and violent
transients occur. Disruptions (a rapid
collapse of the plasma column) and Edge
Localised Modes (ELMs) are such a kind
of phenomena. Both are associated with
extremely high heat loads. Disruptions
also induce severe structural mechanical
loads.

The ideal instabilities discussed in
this report are intermal and external
kinks, infernal, Mercier and balloon-
ing modes. Their understanding pro-
vides the basic tools for the comprehen-
sion of many of MHD events observed in
experiments.
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2 This is the ideal MHD model. The ef-
fects of plasma resistivity on the stability
will be discussed in part four.

3 This is because the plasma is static.
With a stationary equilibrium flow, the
equation for p is needed.

concepts which the ideal MHD stability framework leans on. This is the
aim of this chapter.

6.1 Linearised MHD

The whole MHD stability framework is based on the concept of lineari-
sation. To explain it, let’s take a generic physical quantity f, either a
scalar or a vector, and assume that it can be written as the sum of an
equilibrium (indicated by the subscript zero) and a fluctuating (denoted
by a tilde) part, viz.

f=fo+T. (6.1)

The linearisation approach basically expands the equations in which
f appears to first order in the fluctuating part. All the physics of the
interaction of the fluctuation with itself, the so called non-linearities, is
neglected.

We start with the system of equations (2.1)-(2.6), and (2.8).% Let us
assume that the plasma is in a static equilibrium state (i.e. no equi-
librium fluid flows), and add a small fluid perturbation & (also called
fluid displacement). This quantity is related to the plasma velocity
through the relation

u = %
S ot
Plugging (6.2) into the MHD equations, and retaining only the first order

(6.2)

fluctuating terms yields

p ==V -(po&),
82¢ I ~
poW:—Vp+ijo+joxB,
B =V x(£xBy), (6.3)
p=—-€-Vpo—TpV-§&,
VxB=pu],
V-B=0.

For the sake of simplicity, we assume isothermal flux surfaces (cf. (4.59)),
so that both py and pg are flux functions.

It is immediate to recognise that the equation for the perturbed mass
density can be ignored.3 Thus, by combining equations (6.3) together,
we easily obtain a single vector equation for &:

¢ 1
POW =V(§-‘ -Vpo +Fp0V.§) + ’u—OV X [Vx(f x By) | x By

1
+ — (VX By) XV X(&XBy). (6.4)
Ho
The equation above is often written in a compact form as

e
pog = F(£), (6.5)



where the linear operator F is known as MHD force operator. This
equation must be supplied with the appropriate boundary conditions.
These are discussed below.

6.1.1 Boundary conditions in linearised MHD

Let us assume that a vacuum region separates the plasma from an ideally
conducting rigid wall,# with the vacuum magnetic perturbation obeying

VxB,=0. (6.6)

Hereafter the subscript » will indicate a vacuum quantity. We further
impose that there are no electric fields at the equilibrium.

The physical quantities appearing in equations (6.5) and (6.6) have
to fulfil the correct matching conditions at the plasma-vacuum interface
and at the wall. These are computed from Maxwell’s equations assuming
that the displaced surface moves with a normal velocity z - u, and choos-
ing a reference frame comoving with the plasma surface. The quantities
in the original fixed reference frame are obtained from those in the mov-
ing one by applying the Galilean transformations® py = p, By = B and
Ey = E + u x B, where we used the subscript M for denoting quantities

in the moving frame. Hence, at the plasma-vacuum boundary we get

n-(B-B,) =0, (6.7)
n X (B-B,)) = ukK, (6.8)
n X (Ey — E, ) =0, (6.9)

with z being the unit vector perpendicular to the perturbed surface and
K the surface current density.

Let us now consider an infinitesimal Gaussian pillbox lying across the
plasma-vacuum surface as shown in figure fig. 6.1. For the case in which
there is no flow across the plasma surface, integrating (2.13) over the
pillbox and letting the width approaching zero but keeping the surface
area finite (Jackson (1999), Boyd (2003)) gives

[p + B*/2u0] =0, (6.10)

where [-] = (-),+e = ()r,~ With € — 0, and r, denoting the plasma-
vacuum surface. Here we used the fact that since the plasma is mod-
elled as an ideal conductor, the normal component of B on the plasma
surface is vanishing (i.e. it remains a magnetic surface). This relation
guarantees that in a region of a rapid variation of kinetic (p) and/or
magnetic (B?) pressure there is no infinite acceleration of the plasma
element. Hence, equation (6.10) gives the jump condition of the total
pressure (kinetic and magnetic) at the perturbed plasma-vacuum sur-
face. We now notice that a scalar quantity f evaluated at the perturbed
plasma-vacuum surface takes the form

f = ﬁ)(rpert) + f(rpert) ~ ﬁ)(?’) + ‘f : Vﬁ)(f) + f(r)’ (6~11)
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4 The particular case of a plasma sur-
rounded by a resistive wall is discussed
in appendix E.

5 This is not strictly correct as one
should use Lorentz transformations.
However, for nonrelativistic systems this
approximation proves to be very accu-
rate.

Figure 6.1: Pillbox of volume V extend-

ing across the plasma-vacuum surface §.
The jump conditions are computed by
letting £ — 0. Note that z = Vr/|Vr|.
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6 A more rigorous procedure for solving
linearised equations involves using the
Laplace transform.

where et and r denote the position of the perturbed and unperturbed
surface respectively. It follows that (6.10) can be cast as

_ By(r)- B(r) B3 (r)
[[)(T) * Mo * f . V([)()(T) * 2/.1() )]plasma

[ Bl B0 .. VB§<r>] ,

Ho 2#0 vacuum

having written explicitly the dependence upon the radial variable.

At the ideally conducting metallic wall surface we impose

ny X Ey = O, (6.12)
Ny - OB, /0t = 0, (6.13)

with 7, indicating the unit vector normal to the wall pointing towards
the plasma. Equation (6.13) follows from (6.7) having used the fact
that inside a perfect conductor the magnetic field can be non-zero but
independent of time. Therefore, we can write (6.13) as m, -E,, =0,
where B, is the fluctuating (perturbed) magnetic field.

If the ideal wall is facing directly the plasma, the appropriate bound-

ary conditions at the plasma-wall interface are

n-B=0, (6.14)
E=0, (6.15)

n-u=0, (6.16)

where here z and n,, coincide apart from the direction along which they
are pointing.

6.1.2 Eigenvalue properties

In order to resolve the time dependence in (6.5), we attempt a solution
of the form

fx,0) = f(x)e +c.c., (6.17)

where y is a complex number and ¢.c. stands for complex conjugate.
This is the so called normal mode analysis,5 which is the approach
that will be used throughout this report to investigate MHD stability.
The real part of y is associated with the growth of the perturbation’s
amplitude, whereas the imaginary part to its rotation frequency. Hence,
the study of stability basically boils down to the analysis of the real part
of y.

A remarkable property of the ideal MHD model is that for the case of
a plasma directly surrounded by a perfectly conducting wall the operator



F is self-adjoint, meaning that for two arbitrary functions § and p
satisfying the boundary condition (6.14)-(6.16) one has

/V 7 F@dV = /V £ Fi)dv,

where V' is the volume enclosing the plasma with a corresponding in-
finitesimal volume element dV and the overbar indicates the complex
conjugate.” This is proved in the next subsection. The self-adjointness
property of F also holds when a vacuum region separates the plasma
from the ideal wall (a proof of this is given in appendix C.).

The operator F being self-adjoint implies that y?, its eigenvalue,
has to be real. Hence, if y* > 0, we have two real solutions, one with
v > 0 (growing mode) and one with y < 0 (damped mode). If the eigen-
value y is positive, we call it the growth rate (for simplicity, we shall
always use this terminology also when vy is not positive or real). The con-
dition y = 0 identifies the so called marginal stability boundary (or
marginal boundary in short). If y? < 0, then y is purely imaginary in-
dicating a stationary oscillation which does not grow in time. It is worth
to point out that the spectrum of F contains both discrete eigenvalues
and continua, the latter however only appearing for y? < 0, i.e. in the
stable domain (Freidberg (2014)). Therefore, within the normal mode
approach, we may just focus on assessing the existence of exponentially
growing modes.

6.1.3 Self-adjointness of the force operator F

We follow the proof in Bernstein (1958) which leverages the energy con-
servation (2.12) in ideal MHD. Let us assume that the plasma is directly
surrounded by a perfectly conducting metallic wall. Using the results
of section 2.1.2, the total energy U = K + W, where K and W are the
kinetic and potential contributions, is conserved. This means that for
small deviations from the equilibrium, which is supposed to be static,
we have®

0
— (0K + W) =0,
5; OK + W)

1 o£\?
oK = = =) 4.
Q/Vpo(at)

with V' the plasma volume and 4V the infinitesimal volume element.

where

Here the fluid displacement £ is a real function.
By dotting (6.5) with % and integrating over the plasma volume V
we obtain

J6K o€ aow
— = = F)dV =——. 6.18
TR Y TR o1 (0.18)
We shall consider the integral in the expression above as a functional of

the two functions & and g—f, that is

o€ (%€
/I/E-F(f)dV—,/ (at"f)'
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7 Loosely speaking, F is an operator act-
ing on fluid displacement functions f; of
a Hilbert space with inner product

finf)) = /Vf - fydv.

For a mathematical description of oper-
ator theory in MHD, the reader is re-
ferred to Lifshitz (1987). Note that the
self-adjointness property of the force op-
erator holds only in ideal MHD.

8 Take

K = Ky + 0K,
W = Wy + oW.

with Ky = 0 and W) constant.
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9 We use the definition W = W(req +
&-M

Let Wy be the potential energy at the equilibrium position ., i.e.
Wo = W(r.,). Taylor expanding W in & gives

Wireg + €)= Wo 4 £ W,y + 266V (TW)]|,, +..

Since we are in a neighbourhood of the equilibrium, we have VWW|,, = 0.
It follows that the functional 6W is a quadratic form in &:9

) doW - (0F o¢
6W—(5W(§,§), and W-éW (E,§)+6W(§,E)

Additionally, 6W is symmetric in its arguments, i.e. for arbitrary £ and

n
oW, &) = W&, n).

Hence

oW 9 ) 9
= _zaw(at,g) _zaw(g, m).

Now, the crucial step is to recognise that & is algebraically indepen-
dent of g—f. Thus, in (6.18) we replace g—f by 7, and readily obtain

/V 0 FE)AV = F (.€) = ~26W (1.€) =
_%W ()= F (6n) = /V £ Fp)dv,

showing that F is self-adjoint. Note also that

1
SW = —§/V§ L F(&)dV

having omitted to write the arguments of the functional.

A 7brute force” proof of the self adjointness of the force operator ¥
including a vacuum region separating the plasma from an ideally con-
ducting wall is given in Appendix C. In the next sections we introduce
three ideas which prove to be fundamental for the understanding of
tokamak dynamics, namely the parallel gradient operator, the magnetic
shear and mode coupling.

The energy principle

The self-adjointness property of F allows to derive a minimising princi-
ple, known as energy principle, which determines whether or not an
equilibrium is stable without solving explicitly the differential equation
000%€/0t? = F(£). Focussing on the case of no vacuum region between
plasma and ideal wall, the energy principle states that the equilibrium is
stable if and only if

1
6W:—§/V§-F(§)dV20
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for all trial displacements & which satisfy the appropriate boundary con-
ditions, with the integration carried over the plasma volume (the energy
principle can be extended to the case of a vacuum region separating
plasma and ideal wall). A very readable proof of the energy principle
can be found in Biskamp (1993) and Goedbloed and Poedts (2004).
Although not used in the following calculations, the energy principle
becomes quite handy when one has a guess on the form of & for an
unstable perturbation. One can plug this trial function &, although not
being the exact solution of the linearised equation of motion, into the
integral above and check whether the result is negative proving that the
equilibrium is not stable.

Furthermore, we can gain an intuitive physical understanding of the var-
ious stabilising and destabilising contributions by inspecting the terms
appearing in 6W. A little algebra shows that (£ is taken to be a real
quantity)

3 | 82| 2
SW = ifv[m+FpolV-§l F(E-Vpo)V- &

—&- Jox VX (&XBy)|dV. (6.19)

The first and second terms, both positive and thus stabilising, are asso-
ciated with magnetic field line bending and plasma compression respec-
tively, the former due to the |B,|? term. The remaining terms can be
negative, and hence acting as instability drives.

6.2 Parallel gradient and magnetic shear

In the previous chapter we introduced the straight field line coordinate
system (7,9, ¢), in which the ratio ¢ = B?/B” depends only on the flux
label r. Because # and ¢ are cyclic variables, any physical quantity f
must be periodic in ¥ and ¢ so that it can be decomposed in a Fourier
series

=D fua(r)e ™). (6.20)

The quantities f,,, are called Fourier harmonics (or simply harmon-
ics or modes), and m and n are the poloidal and toroidal mode num-
bers respectively. We refer to the pair (m, n) as the mode helicity, as
these two numbers measure the angular twisting of the perturbation. For
a fixed n, the various harmonics with different m’s form the so called
poloidal spectrum.

Very often terms of the form

B-V

appear (for sake of simplicity we drop the subscript o in writing equi-
librium quantities). This is called the parallel gradient operator. We



76  GENERAL REMARKS ON IDEAL MHD STABILITY

1 The power of the straight field line
coordinates manifests clearly in the ex-
pression of the parallel gradient, having
exploited the fact that the ratio B?/B? is
a flux function.

11 There are some special cases for which
the field line bending stabilisation can
be strongly reduced over a broad region
even if k£ - B # 0. This is what happens,
e.g., with the m = 1 internal kink mode,
which will be studied in detail later.

(a) k (b) k

Figure 6.2: Field line movement following a displaced plasma flux surface associated
with a wave vector k. (a): magnetic field parallel to the wave vector. (b): magnetic field
perpendicular to the wave vector.

already saw in chapter 4 that equilibrium magnetic field lines lie on iso-
baric surfaces, this being expressed by the relation B - Vp = 0. In such
a case, p can be viewed as a series of the form (6.20) for which all but
the m = n = 0 terms are vanishing.

Let us now consider a perturbation of the form

A = Ay u(r)e’ ™9 = 4, ,(r)e* T,

having introduced the wave vector £ = mV#-nV¢ with r = re,+0ey+dey
(cf. Sec. 4.1.1). That is, we allow only a single harmonic in the expansion
(6.20).

When we apply the parallel gradient to 4, we obtain®

B-VA~:i(Ic-B)A~:iB¢(ﬁ—n)A~.
g

Because of the frozen-in theorem the field lines are either bent if £ - B #
0, or rigidly displaced if £ - B = 0 while following the fluid motion.
This is schematically shown in figure 6.2. It turns out that the situation
depicted in Fig. 6.2-(a) is energetically unfavourable compared to the
case of Fig. 6.2-(b). This is because the magnetic energy term in (6.19)
associated with field line bending is

IB,| < k- B.

For a given a perturbation with mode numbers m and #, it can be
possible that its parallel gradient is zero for some values of ¢. The radii,
namely the flux surfaces, for which £-B = 0 are called resonant surfaces
or resonances. We thus expect the perturbation to develop where the
stabilisation associated with the bending of the field lines is minimised,
i.e. where £ - B = 0.*

The most dangerous case occurs when there is an extended region
for which ¢ ~ m/n. In such a situation the perturbation can develop
over a large plasma portion. Things however are mitigated by the fact
that ¢ can be a varying function of the radius r. The magnetic shear is
defined as (cf. Sec. 4.3)

_e

.

and measures the radial rate of variation of ¢ (cf. Fig. 6.3). Configu-

s

rations with large values of magnetic shear generally exhibit improved



stability because of the reduced radial extension of the region where k-B
is small for the helically resonant mode. Intuitively speaking, the fluid
can ”slip through” the magnetic cage when the wave vector is orthogonal
to the field (cf. Fig 6.2-(b)). If one thinks of the magnetic field lines lying
on each flux surface as a sequence of cords, then for a sufficiently strong
twisting from one surface to another, the fluid element is less likely to
escape. This provides a very efficient stabilising effect, although things
might be slightly different when the ideal constraint is violated.

6.3 Mode coupling

In the two preceding sections, we introduced the perturbed MHD equa-
tions (see (6.3)) with appropriate boundary conditions, and provided
an intuitive picture of the meaning of the parallel gradient operator and
the effect of a sheared magnetic field. This discussion was developed
by considering a fluid perturbation characterised by a single harmonic.
The most general solution of (6.5), however, is typically a superposition
of modes of the form given by equation (6.20).

Let us first notice that ¥ depends on r and ¢, and because of the
equilibrium axisymmetry there is no dependence upon ¢. This means
that Fourier harmonics with different toroidal mode numbers behave, at
least linearly, independently of each other.'®* The situation is radically
different when we consider the poloidal spectrum for a fixed z.

In order to make it more transparent, let us employ, instead of (6.5),

the following model equation

Y2 poé = FE, (6.21)

where .7 is a differential operator which depends on both 7 and ¢, and
¢ is of the form (6.20). We take po to depend only on r.

As a matter of notation, for a generic quantity A(r,}) one defines its
mth (poloidal) Fourier projection as

1 2r ]
Ap(r) = o /0 Ae ™ 49,

The nth toroidal projection is computed similarly by replacing the poloidal

angle with the toroidal one.
Hence, the (m, n) Fourier projection of (6.21) is

1
(2m)?

with the integration carried out from 0 to 27 for both of the two an-

Y200Emn = / Fee M) g9,

gular variables. On the right hand side of this equation we have the
convolution of .# and £. This leads to'3

’yngé:m,n = cgzO,O‘fm,n + Z ﬁm’,Ofm—m’,n- (6-22)
m’#0
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Y3

Y2

P

Figure 6.3: Highly exaggerated example
of a sheared magnetic field across three
flux surfaces. k indicates the wave vector
of the perturbation.

In cylindrical geometry, in contrast, the
dependence upon ¢ disappears.

12 This makes # a good quantum num-
ber.

13 The convolution of two functions f
and g of the poloidal angle ¢ is denoted

by (f ¢)m and is given by
(f&m = f)gm + Z S gm-m’-
m'#0
where the angular brackets indicate the
poloidal average as defined in (5.18).
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One then realises that the equation for the evolution of &, , is not “monochro-
matic”, in that it may include contributions from other harmonics. This

is what we call mode coupling or toroidal coupling (because it is in-
duced by toroidicity). This feature plays a crucial role in explaining
the dynamics of several MHD instabilities and it will be thoroughly dis-
cussed in the next chapters.

We would like to stress that this effect is completely absent in cylin-
drical plasmas. Hence, care has to be taken when interpreting tokamak
dynamics using results borrowed from analyses carried out in cylindrical
geometry.
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Distilled stability equations

Although equation (6.5) encapsulates the whole physics of linearised
MHD, it is not easy to handle in its form. We are thus interested in
deriving a suitable set of coupled differential equations simple enough
to be analytically manageable, and yet sufficiently flexible to describe
a wide variety of phenomena. We show that, eventually, this set will
consist of three equations only which, remarkably, are able to capture
the fundamental physics of many phenomena observed in tokamaks.
These are called eigenmode equations or stability equations; they
also form the basis for the development of the resistive theory. This
chapter is thence devoted to their derivation.

We first rearrange the ideal MHD equations in a form easier to han-
dle mathematically in a tokamak geometry. Then, specialising to the
case of a nearly circular plasma cross-sections, a set of coupled dif-
ferential equations is derived through a careful ordering of equilibrium
and perturbed quantities.® The procedure for obtaining the stability
equations is based on an inverse aspect ratio expansion. Particular
emphasis is given to the effects of mode coupling induced by toroidicity:
one finds that the dynamics of a specific poloidal harmonic is determined
by the coupling with the first neighbouring sidebands (or satellite har-
monics) while contributions arising from farther Fourier harmonics can,
generally, be ignored. We work out the derivation in such a way to have a
fairly easy comparison with the results obtained in cylindrical geometry
for a screw-pinch (see appendix D).

The analysis presented in this and the following chapters is
carried out in the straight field line coordinate system described
in chapter 5. Salient equations and quantities, which will be extensively
used in the rest of this report, are put in a box to facilitate their identi-

! MHD instabilities that are not mod-
elled within the framework discussed in
this report are those requiring a more
advanced physics model (Alfvén eigen-
modes are such of a kind for which ki-
netic extensions prove to be essential), or
a more careful treatment of the plasma
geometry (this is needed to describe
shaping induced perturbations).

2 Recall that in §5.1 we found that a
small elongation is needed to satisfy the
equilibrium at higher orders.



80 DISTILLED STABILITY EQUATIONS

3 This means that we are addressing sta-
bility via normal mode analysis.

We multiply by the Jacobian in order to
eliminate the ¢ dependence in the paral-
lel gradient.

fication. In the remainder of the report it is always assumed that ¢

takes positive values.

7.1 Convenient form of the linearised MHD equa-
tions

We shall first rearrange the linearised MHD equations in a form which is
more convenient for simple analytic manipulations. As usual, the equi-
librium is supposed to be static. For this purpose, the set of equations

that we need are:

p(g_l;+u.Vu):—Vp+]XB, (71)
oB
= = Vx(@xB), (7.2)
%+u.vlj+]"pv-u=0, (7-3)
VXB =/,

Allowing the perturbed quantities to have a exp(y?) time dependence,3
the aim is to rearrange the equations above to obtain a single eigenvalue
equation for the contravariant radial projection of the fluid displacement

§&=¢-Vr,

with eigenvalue 7.

Let us write /0t — 7y and denote equilibrium quantities with the
subscript 0. The dependence upon the perturbed current density can be
eliminated by means of (7.4), that is

Jr= L 9B, _ 9By
wl" = =\%5 "3 |

oL (9, 0B,
/10] _\/E(a¢ 67)’ (7'6)

. 1 (0By OB
¢ — |V _ r
HoJ \/g( ar 819)'

Linearising (7.2) and dotting it by Vr and V¢ yields respectively

VEB' = \gBy - V&', (7.7)
VEB? = \gBo - VE! — \gV - (£B)). (7.8)

From Eq. (7.3) and exploiting the fact that py = po(r) we get

p=—p¢" +Ap with Ap=-TpV-E&. (7.9)



Here Ap represents the compressible contribution to the perturbed
pressure, or simply compressibility. We get an equation for Ap by
dotting (7.1) with B and then perturbing it. Using (7.7), this gives

poy'Bo-§ =B -Vp=-Bp;+By-V (p¢" - Ap)
=—By - VAp. (7.10)

Equations for B” and B? are obtained by means of (7.5) and project-
ing (7.1) along ey, so that one has

ovgB®  0gB" 0gB’

o0 or o6 (7.11)
op _ -
9072519 == 81109 + ngoqur - VngBg)
op P 5 B(‘f gos ONEB? 9By
=—- = VgB') - — 22— - .
(919+J0 ( g ) /le \/E (919 a¢ ) (7 12)

where we recall that Bj = 0 and g44/+/g is independent of ¢ (cf. (5.5)).

Finally, to close the system we first apply the operator V¢ - V x ﬁ to
0
(7.1), and then linearise to obtain*

2 7o ¢
y2 [0 (po d ( po J' = ol
L2 (B - = (B2 )| =By - VL + B- VL
z [ar(Bgfﬂ) aﬂ(Bgf )] T " B
B? 1 _
— Jo- V= —V¢-V— x Vj, (7.13)

having used the fact that V - Jy = 0. This is known as the vorticity
equation because of the analogy with its fluid-dynamical counterpart.

If a vacuum region is allowed, we must add Eq. (6.6) to the set
of equations above and supply appropriate boundary conditions at the
plasma-vacuum interface as discussed in the preceding chapter.

In summary, the equations that we need are formed by the system
(7.6)-(7.13)° which can be employed to address MHD stability both in
cylindrical and toroidal configurations. In the next sections we will show
how the desired equation for £” with eigenvalue y in toroidal geometry
will be generated by combining Eqgs. (7.6)-(7.12) with (7.13) whereas a
brief account on the derivation of the eigenmode equation in a straight
cylindrical screw-pinch is carried out in appendix D.

7.2 Orderings

For achieving the goal of obtaining a set of simplified equations, the first
crucial step to take is to deploy an appropriate ordering of equilibrium
and perturbed quantities. The aim of the next two subsections is thus
to carefully detail such orderings.
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4 Rising or lowering indeces follow the
rules given in chapter 3.

5 This set of equations forms the basis
for the analysis of resistive instabilities as
well, although some small but profound
modifications will be required.



82 DISTILLED STABILITY EQUATIONS

6 Remember that the symbol ~ means

“of the order of”.

7 Recall that, for an axisymmetric sys-
tem, the transformation rules from co-
variant to contravariant vector compo-
nents are

Ay = grrAr + gm\Aﬂ,

Ay = grﬂAr + gﬂﬂAﬂ’
Ag = gppA®.

Ts a

Figure 7.1: Example of ¢ profile with a
m/n resonance.

8 All MHD instabilities, including the re-
sistive ones, in tokamaks can be grouped
into two families: global modes and lo-
calised modes.

7.2.1 Equilibrium

The equilibrium analysis has already been discussed in chapter 4, hence
we just summarise the most important results.
From (5.3), the contravariant toroidal component of the equilibrium

magnetic field is written as®

B! :%’ with f = rBo[1 + o(£”)], (7.14)

having made use of (4.25), with By denoting the on axis equilibrium

magnetic field. Furthermore, the following relation holds

L., _(RY (R)F
G F

(7.15)

where we recall that angular brackets denote poloidal average as de-
fined by (5.18).
The g-ordering of the metric tensor coeflicients is

a? a?

gr~1 go~ea go~a NE~— Lo~ =

€
with g,4 = gy = 0.7 Other equilibrium quantities, such as pressure,
follow the usual ordering introduced in section 4.3.1, and are assumed
to fulfil the condition rf(’) ~ fo with fp denoting a generic equilibrium
quantity.

The particular case for which ,uopo/Bg ~ &% and uorp(’)/Bg ~ g will
be addressed separately in chapter 12 when the stability of ballooning
modes will be investigated.

7.2.2 Perturbations

As mentioned earlier, for the sake of convenience in this report it is
assumed that ¢ > 0. Let us denote with 7, the radius at which ¢ =
m/n (cf. Fig. 7.1), that is the resonance, with both m and n positive
integers different from zero. We take ¢ ~ 1, a condition which is
usually fulfilled in tokamaks, so that m ~ n. Moreover, the plasma cross
section is assumed to be nearly circular in line with the analysis of
chapters 4 and 5.

In a region sufficiently far from 7, we assume that for any perturbed
quantity f one has

ri—]: ~ mf. (7.16)

Letting Ar be the mode radial extension, the relation above states that
Ar ~ r/m. Hence, if m ~ 1 the perturbation does not have strong gradi-
ents and extends over a broad region. This is what characterises global
modes. On the contrary, localised modes (or small-scale modes) have
m > 1 with Ar small enough so that rf//f > 1.8



Now, the crucial step for understanding tokamak instabilities is to
realise that, as discussed in the preceding chapter, the spectrum of the
perturbation is not necessarily monochromatic, but it may contain sev-
eral harmonics whose coupling is induced by toroidicity. We first point
out that since the equilibrium is toroidally symmetric, harmonics with
different » numbers do not interact linearly, whereas coupling involves
poloidal harmonics with different m’s. We say that z is a good quantum
number, and thus we focus on a single z at a time.

Let’s imagine for the moment that experimental evidence shows
some MHD activity in the form of a global helical fluid perturbation
with dominant poloidal and toroidal mode numbers m and n, both of
the order of unity (see e.g. figure 7.2). For a given n, we may Fourier
expand the perturbed fluid displacement & as

é.:j — é:ilei(mﬁ—nq&) + §i+1ei[(rn+1)0—n¢] + fi-ﬂiﬁm_l)ﬂ_mp] ..., (717)

with the index j running over (r,%9,¢). Since = is fixed, we omit to
write the subscript # in the Fourier components. We recall that the set
consisting of all the harmonics with different poloidal mode numbers is
called the poloidal spectrum.

When the spectrum of the perturbation is dominated by the har-
monic of helicity (m, n), we order

&~ ~ et (7.18)

We further assume that the contravariant projections of ¢ for a given
poloidal number are comparable in magnitude, that is

1
—&p~ &) ~ €. (7.19)

where £ = m — 1,m,m + 1. Harmonics with poloidal mode numbers
m+1,+2 ... are called sidebands or satellite harmonics whereas we
refer to the one with mode number m as the main (or dominant) mode.
We anticipate that mode coupling for global modes in a tokamak with cir-
cular cross section typically involves first neighbouring sidebands only.9

We now discuss the ordering of the magnetic field. As long as £ —ng
remains of the order of unity,'® from (7.7) one has

rBo&y ~ (VgB e (7.20)

Therefore, the perturbed magnetic field can be expanded and ordered
in a way similar to that of Egs. (7.17)-(7.19), which is

(VEB Imi1 ~ (VEB s ~ e(VEB I
_ - _ (7.21)
“(VEB ). ~ (VEB"): ~ (VEB).

Any other perturbed quantity appearing in equations (7.6)-(7.13) can be
written in terms of £ or B, so that similar arguments apply.
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& [aul]

Figure 7.2: Example of the spectral
structure vs normalised minor radius of a
perturbation dominated by the harmonic
with poloidal mode number m.

9 Plasma shaping induces couplings with
higher order harmonics. For example
elongation couples m and m + 2 modes.

19 This means far from the resonance ¢ =
l/n.

In the following sections we show how
these orderings, which have been kept
fairly general for the moment, can be fur-
ther refined.
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11 Tn a tokamak, wy is typically of the or-
der of MHz. The order of magnitude of
the growth of MHD modes ranges from
few milliseconds (< 1072wy ) to few mi-
croseconds (~ wy).

To transform back to SI units one has to
replace p — pop. The same applies with

p.

Having examined the orderings of the fluid and magnetic perturba-
tions, we shall discuss the magnitude of the growth rates. Upon defining
the Alfvén frequency wy and the Alfvén speed ¢4 as™*

By
Ro~/Hopo’

we distinguish between fast-growing modes that have characteristic

wy = Cq = R()(UA, (7.22)

growth rates comparable with w4 and slow-growing modes which grow
on slower time-scales. For fast-growing modes we may let

Y
o1 (7:23)

whereas the appropriate ordering for slow-growing instabilities is

AN . (7.24)
Wy

Typically, y/w4 < € which implies that we should take y/w4 ~ ¢ with
0 < & some small parameter. Nevertheless, the ordering above works
quite well without complicating the algebra, and therefore we stick to it.

We point out that the preceding remarks apply to global modes, i.e.
instabilities with m and n of the order of unity, and far from resonances.
Few modifications of the orderings given above are required when deal-
ing with small scale modes, or when a resonant surface is approached.
These are thoroughly detailed in section 7.3.2 in and §7.4.

Hence, we have now all the logical elements to derive the required
stability equations for both global and localised perturbations in toka-
maks. For the sake of simplicity, hereafter and in the remainder of
the report we normalise 1 = 1.

The structure of the eigenmode equations

The equilibrium of a large aspect ratio tokamak is determined by the
moments of (4.20). The leading order solution has the form of a cylinder
force balance equation (cf. (4.30)) and effects related to toroidicity, such
as the Shafranov shift, appear to the next order.

Similarly, one can imagine that the eigenvalue equation of the fluid dis-
placement is of the form (6.21) and its “moments”, namely the Fourier
projections, yield the following system of equations (see (6.22))

72p0§m = rg\()é:m + Z gm’é:m—m’,
m’#0

2
Y Poéms1 = jogmtl + Z ym'é‘mil—m”
m’#0

where .7 is a differential operator which depends on r and . Here %,
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represents its cylindrical part, i.e. roughly speaking the one which does
not vanish when ¢ — 0, while the “coefficients” %, with m’ # 0 are
toroidal corrections. One sees that if .%,, (m’ # 0) are not vanishing,
the spectrum of the perturbation must be composed of several poloidal
harmonics, i.e. mode coupling occurs. In a low-g tokamak with nearly
circular cross section the following is expected to hold

7y 1 g4 1 g7

Hence, given the decomposition of the fluid perturbation as in (7.17),
stability is typically determined at leading order by the first two equations
of the system above.

7.3 Auxiliary quantities: Global modes

To derive the eigenmode equations we require a more precise character-
isation of the expressions for the perturbed fluid displacement, pressure
and toroidal field. More specifically, here we want to determine &2, £
\/EBZ, Apm and App.q. This is the aim of this section. We focus on
global modes first, assuming that the spectrum is dominated by a main
harmonic of helicity (m, n) accompanied by & times smaller sidebands
with mode numbers (m + 1,7z), i.e. Eq. (7.18) holds. We point out
that in a nearly circular tokamak only the first neighbouring sidebands
contribute.

The analysis is carried out in two regions: one far from a resonant
point 7, for which m — ng = 0, and one close to 7, if such a resonance
occurs in the plasma. It will be shown that, with some appropriate ap-
proximations, the latter can be viewed as a limiting case of the former.
The generalisation to localised instabilities is addressed in §7.4

7.3.1 Behaviour far from resonance

We select the poloidal and toroidal mode numbers m and = respec-
tively, and assume to carry out the analysis sufficiently far from any
resonance ¢ = m/n, if this occurs within the plasma. We shall focus on
cases with either m — ng ~ 1 or m — ng ~ €. The latter is typical of
plasmas with a safety factor flat and close to the value m/n over a broad
region while the exact resonance is still avoided. The growth rate can
conform to the ordering of either fast-growing or slow-growing modes.
A summary of the orderings of m — ng and y employed in this section
is shown in table 7.1.

Let us start by Fourier analysing (7.11) which gives

(VEB"): = - (VEB ), + §(VEB (7.25)

Table 7.1: Global modes orderings for
m—ng and y/wy.
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12 Hereafter we take r ~ a.

13 We anticipate that this argument re-
mains valid even for the case of harmon-
ics of equivalent magnitude as described
in §7.4.

where the prime indicates, as usual, differentiation with respect to the
radial variable and the subscript ¢ denotes a generic Fourier harmonic.
According to (7.17), if m is the mode number of the dominant harmonic,
from (7.9) it is immediate to recognise that p,.1 ~ £pn, and by means
of (7.19) it can be shown that Ap ~ 82335,’”/a at most."® Plugging this
result, in conjunction with equation (7.25), into (7.12) shows that

VEB? ~ ¥ Byér. (7.26)

Therefore, it follows from (7.8) and the fluid expansion (7.17) that
to leading order we have

() + imel - i%ﬁ =0,
% (v ) + i+ DE” - lm; 1652il N (7.27)
where we implicitly used (7.16). Exploiting (7.27) we can write
(V-8 ~ % (rép) + iméy, = ingy = i (% - n) &
(V- &t = il2m £ 1) = n)é) (7.28)
¥ mzo rdjf + (1 F mp, - ir%f,"i],

having dropped higher order coupling terms which are &? times smaller
compared to the leading ones.

Upon an inspection of (7.10), we see that the dominant contribution
to the compressible part of the perturbed pressure is

B y*
(m — nQ)A[)m = lﬁy(é‘ﬂ + qfq})m' (729)
074

Thus, expressing Ap in terms of the divergence of ¢ through (7.9) and
(7.28) with ¢ ~ 1, we can write

FPO 5 qZ,yZ . ,)/2 é:r
—(m—ng)” + —-— fZ’VSZ—Q—m,
B0 wY wy a

where we used the ordering (7.19) for estimating (¢9), ~ aé,. Contribu-
tions due to couplings with sidebands have been dropped as they enter
at higher order.’ This shows that

&~ &% a (7.30)

at most, either for fast or slow-growing modes. Notice that the smallness
of £5 holds true even when m — ng ~ &, and by comparing with (7.28)
this indicates that the flow associated with the dominant mode can be
regarded as nearly incompressible. Therefore, from the first expression

of (7.27), we can safely set (for many computations we can use ffi =0)
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1 ,
&y =——(rén). (7.31)

imr

To obtain Ap,, we plug (7.30) into (7.28) and then multiply by I'py.
This shows at once that rAp, /Bg ~ g*¢T at most. Thus, we infer that
Apn is not an important quantity, so that we may set

Apm = 0. (7.32)

Now, analysing the compressibility contribution due to the sidebands,
from (7.10) and using (7.30) we obtain

2
[2(m +1) = n]Apus1 ~ iBI 1560 .
Wy
having assumed that the orderings represented by Eq. (7.19) hold. Un-
der the assumption that %(m +1)—n ~ 1, we use (7.9) and (7.28) once
more, so that the equation above gives

2 32 2 dfT
1 +1) - 2 R2y— A mil = % 0 y_ m 1F r
(om0 =+ R ) A = T |
(7.33)

where ¢; = \/Tpo/po is the sound speed.*# 1t is straightforward to see
that R3y?/cf ~ (y/w4)*/B.

Although the ordering (7.24) would imply (y/w4)? ~ 8, in tokamaks
slow growing perturbations usually have (y/w4)?/8 < 1. Consequently,
the term proportional to the inverse of the sound speed in the equation
above is typically small, and it can be neglected. Notice that this holds
even more close to the marginal stability boundary for which y — 0.
For fast growing modes, which are instead characterised by (7.23), we
find that the second term on the left-hand-side of (7.33) scales as 1/,
thence dominating over the first one. Therefore, two limiting expressions
of the sideband contributions to Ap are found:

B2 42 r%u (15 me, .
+ — , slow-growing modes,
mR a)i [(m + 1),11 - 72]2

B2 ([ d¢r
+ T8 —2 m
* B mRo ! d

Apmrl ~

+ (1 Fm)é,, |, fast-growing modes.

(7-34)

r

This shows that Apy,.1 ~ 63B§§,’n /a for both fast-growing and slow-
growing modes.

We finally need to obtain an expression for (\/EB¢ )m- Let us analyse
slow-growing instabilities first. In such a case plugging (7.9) and (7.25)
into (7.12) produces to leading order in &'

14 Generally ¢;/Rg < wy. For a Deu-
terium plasma with 77 = 5keV, n =
1020m=3, By = 37T and R = 3m one has
wy ~1.6x10°Hz and ¢; /Ry ~ 3x10°H z.

15 To speed up the algebraic manipula-
tions, a useful and intuitive trick consists
in taking r ~ By ~ 1 and 1/R( ~ &.
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\/_

(VEBm = S| opis o (VEE )

]() (\/_ )m £y
PG s

where (7.14) has been used and contributions due to compressibility
have been dropped owing to the results above. It is evident that (vgB?)./ B
is £2 times smaller than £7,. We also see that the equation above only
depends on &5, and (ygB")n so that using it in (7.25) allows to express
(@Bﬁ)m as function of ¢], and (\/23’),,,.

For fast-growing instabilities, equation (7.26) will turn out to be ac-
curate enough for the estimation of the perturbation of the toroidal field,
whose exact expression is not explicitly required. Therefore, without any
harm, we shall formally use (7.35) for fast-growing instabilities as well.

7.3.2 Layer ordering

We are now concerned with the behaviour of a global instability in
a neighbourhood of the resonance 7, for which m — ng = 0. For a
fixed toroidal mode number 7 of the order of unity, suppose that the
poloidal spectrum of the perturbation is composed of a dominant mode
m accompanied by its sideband harmonics with mode numbers m +1. In
the derivation presented earlier Eq. (7.16) was assumed to hold. When 7,
is approached, however, the perturbation usually develops strong radial

16 This will be explicitly shown in the gradients'®. We only focus on slow-growing modes and deploy the
following chapters. following estimates
df r—r
r_f,\,i’ m/q—nz—ns( s) ~ &, l~g, (736)
dr & Ts Wy

where f is a generic perturbed quantity and s ~ 1 is the equilibrium
magnetic shear at ;. We refer to (7.36) as the layer ordering, and the
region near the resonance is called inertial layer. The derivation that
follows is in many ways similar to the one of the preceding section.

We assume that (7.18) still holds, so that p,+1 ~ €pn. Now, equation
(7.25) is always valid, hence by means of (7.7) and thanks to the layer
ordering one has

_ _ 1 -
(VEB ) ~ (VEB'In ~ ~—(VEBIn ~ Bol
- _ 1 -
(@Bﬂ)mil ~ (\/EB¢)mil ~ E(\/EBT)mil ~ BOfyrn-
while instead of (7.19) we formally let

fmi1 8§m (l =1, ¢)’
9 r 9 1 r (7'38)
gm ~ fm ~ _‘fm’ §m+1 ~ §m+1 ~ _gm'
re r

(7.37)

Let us start by noticing that from the definition of Ap given in (7.9)
17 This because we take (V- &), ~ &7 /. we have Ap, ~ ngf,’n/a at most,'7 and using it in (7.12) shows that
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\@B‘b ~ &gByé;, at most.

We now rearrange equation (7.8) in a more convenient form to obtain

1 d( 6) gt 199
J€) | o 5}. (7.39)

VeB? _fo[fo ar 99 ¢ 00

This is employed for expressing the £th Fourier projection of the diver-

gence of the fluid displacement as'®

ag/or

(V-&) = vz ; +ilE] _”‘fz
OEIOr\ . (OVEIOD
+Z[( et () e

'+0

Bq} ’ //

- —ng, X, (<Wf§) . )fg b it m)E?
0 0

| (PE) e+ (M5 et ] o

where we recall that angular brackets indicate the poloidal average.

Imposing that the perturbation of the toroidal magnetic field scales
according to the estimate given above, Eq. (7.40) implies that (V- &), ~
&r, which then yields \gB? ~ &2Byér, (cf. (7.26)). By virtue of the
afore-mentioned orderings, using this result in conjunction with (7.39)
shows that (7.27) holds. It will be clear later, that the contributions due
to ygB? can be dropped near 7y, so that the exact expression of the
perturbation of the toroidal field is not required. Hence, without loss of
generality, we can use (7.35) both farfrom and close-to the resonance.

Therefore, one can approximate (cf. (7.28))

(V&) =i (% - ) £8 + o(et], 1),

y (7-41)
r (df_m_iﬁgz)_ ™

(V- &t ~ilkmx 1) - nlé) | F mRo \ dr

We may now write the full expression of (7.29), which remains valid
within these orderings as well, yielding

B

B2 /’l n R2 U_)2 - B2 (m/‘l - Tl) X 0(8§m/7’)
0 0 A
2
Y <g1919> ¢ (grﬂ)m’ r (gﬂﬁ)m' 9 (-R )m ¢
_:u_2|:—2<:m+ —Qé:m—m/_'— 9 f — 9 f ]
wy' Ry 7;0 R, Ry T Ry 7T "

(7.42)

It is implicit that equilibrium quantities must be computed at the res-
onance. It follows that g;ﬁ is not larger than &¢),/a (for both fast and
slow-growing instabilities), so that equation (7.31) remains valid. By re-
peating the same operations which have been employed earlier, one then
finds that Ap,, ~ 83B§§,’n/a at most so that we are allowed to use (7.32).

89

18 Remember that (7.14) holds.
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Recall that ¢y is the sound speed which
is defined below (7.33).

19 Contrary to global modes, we do not
consider fast-growing localised instabili-
ties.

20 This is similar to the ordering given
by the second equation of (7.21).

Finally, for the compressibility arising from the neighbouring side-
bands we follow the analysis performed in the preceding section giving

Birs y* dg;,
mR() a)[%l dr '

1 . 2
(F + R(Z)Z_Q) Apms1 = + (7-43)

This is equivalent to (7.33) where on the right-hand-side only terms con-
taining the radial derivative of £], have been kept.
In summary, within the layer ordering we can still use (7.30)-

(7.32), (7.34) and (7.35) with the replacement r% - %%.

7.4 Auxiliary quantities: Localised modes

A slight modification of the derivation presented in §7.3 is required when
localised modes, i.e. small-scale perturbations with by m ~ n > 1, are
considered. This is detailed below, where we appropriately carry out the
analysis far-from and close-to the resonant points.

7.4.1  Small scale modes far from resonances

As usual, let us fix # and assume that (7.16) holds. Small-scale modes
can be viewed as perturbations which are highly localised about their
associated resonance. Thus, we may approximate (cf. (7.36))

(r —7m)

m/qg—n=-—ns ,
m

where 7,, denotes the position of the resonance m — ng = 0 and s is the
magnetic shear at r, which is taken to be of the order of unity. Letting
m ~ 1/¢ (and also n ~ 1/¢), in the region sufficiently far from the
resonance we suppose that m — ng ~ 1. The growth rate is assumed to
conform to the one of slow-growing perturbations and thus is ordered
as (cf. (7.24))"

X e (7.44)
(0y]

It is now important to understand that the poloidal spectrum of
localised perturbations may exhibit a main harmonic, (like Mercier
modes discussed in chapter 11) or it can be a superposition of multi-
ple modes coupled one to another (as for Ballooning modes discussed
in chapter 12).

In the former case, (7.18) holds with the spectrum being dominated
by the harmonic with poloidal mode number, say, m ~ n. From (7.7)
and using (7.11), we see that in this region (cf. (7.20))*°

B()frrn ~ (\/Egr)m/a ~ (\/ggﬁ)m ~ (\/§B¢)m (74—5)

at most. Owing to this scaling we balance each term appearing in Eq.
(7.39) by ordering &J ~ £0 ~ &n/a. In particular, by comparing with
(7.40) as we did in the previous section, to leading order we write (V -
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E)m ~ €/ a (cf. (7.41)) which then gives p ~ £2B3&), and fp ~ £fy for
{+ m.

Considering now the case when the poloidal spectrum is composed
of several modes, since m is large, we may expect that each of these
harmonics becomes essentially indistinguishable from one to another
(see figure 7.3). We shall therefore replace (7.18) and the first of (7.21)
with ‘ A _

£l ~ Emo1 ~ Emo

(\/Egi)rrwl ~ (\/Egi)m—l ~ (\/EBl)ms

having implicitly assumed that we are dealing with modes which have

(7.46)

resonances within the plasma. Thus, if (7.46) holds, far from the reso-
nances of the m,m +1,m + 2,... modes, we expect to have p; ~ p, and

Boél, ~ (\NEB)1/a ~ (VgB"), ~ (VEB?)s, (7-47)

where ¢ denotes a generic harmonic. By means of (7.39) and (7.40),
an argument similar to the one discussed earlier shows that in this case
(V&) ~ &1 /a.

One therefore infers that, for localised instabilities featuring either
a single main helicity or a multiple equivalent helicities spectrum, the
compressible part of the perturbed pressure scales as Ap ~ £2B3¢], /a at
most.

Plugging these results into (7.12) easily shows that (7.26) and (7.27)
remain valid. Note that the two equations of (7.27) appear at the same
order if (7.46) applies. It follows that (7.28) holds. Hence, using (7.29)
we find f,‘f, ~ &%¢7 [a which is (7.30). As before, this shows that

Apm ~ &' Byé] | a, (7.48)

meaning that in this region the contribution due to compressibility is
negligible.
Finally, working out the coupling contributions in (7.12) gives

_ B),
VBB = | et s HEDNEDE] )
which is (7.35) in the limit of large m. No other Fourier harmonics of &7
or y/gB? are needed.

In conclusion, the equations required for the analysis of instabilities
with large poloidal mode numbers far from their associated resonances
can be simply obtained by taking the m > 1 limit of those for global
modes derived in the previous sections.

7.4.2 The inertial layer of small scale modes

We now investigate the dynamics of localised modes in a neighbourhood
of the resonance r,, where m—ng(r,) = 0. From (7.16), the mth harmonic
is expected to be localised about r,, with a radial extension Ar ~ r/m. If

m—1 m m+1

r/a

Figure 7.3: Poloidal structure of a per-
turbation with m > 1 featuring multiple
harmonics. The near resonance region
associated with each harmonic is high-
lighted in grey.
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21 If the magnetic shear is small, this ar-
gument is expected to hold even more
due to the increased separation between
resonances.

Far from the resonance one has z ~ 1.

m is sufficiently large the separation between neighbouring resonances
is of the order of 1/ms, that is (71 — 7)/Tm ~ 1/m with s ~ 1 (s is the
magnetic shear at r,,). Therefore, around r,, we conveniently take each
projection (radial, poloidal or toroidal) of the fluid displacement of the
sidebands to be & times smaller compared to the respective one of the
dominant mode m as in (7.18).>* We thus order the magnetic field and
the fluid displacement according to (7.37) and (7.38) respectively.

Now we introduce the variable z = m(r — r,)/7,. In the region close
to r, we let z ~ & and deploy a layer ordering analogous to (7.36)

, (7.50)

and let the magnitude of the growth rate to be given by (7.44). Note
that this implies mu — n ~ . According to the orderings above, a quick
investigation of (7.40) gives (V - &), ~ &7, /a so that Ap,, ~ SQBgf,rn/a.
The mth Fourier component of equation (7.12) then gives

B2 .2 9h O~/gB?

0 Y _op P = o | 86 OVE =
R0 021 = g5 * SO VBB - B (@ oo *B)
0@y

from which it is immediate to see that \/§B¢ ~ &¥By¢7 at most. As
in the discussion of the dynamics of global modes near a resonance,
this quantity will turn out to be unimportant in the region close to 7,,.
Using again (7.39), we recover both (7.27) and (7.41). We now basically
perform the same operations of section 7.3.2: i) by means (7.29) one
first finds (7.42) which implies ffl ~ 0 also in this case, then ii) we show
that Ap,, =~ 0, and finally iii) we obtain equation (7.43) from which (7.34)
follows (terms with radial derivatives being the dominant ones).

Thus, in light of these results auxiliary quantities associated with
the perturbed fluid displacement, pressure and toroidal field can
be computed from equation (7.30)-(7.32), (7.34) and (7.35) apply-
ing the appropriate orderings to the radial derivative and mode
number for small and large scale modes farfrom and close-to res-
onances.

7.5 General form of the eigenmode equations

By using the results obtained in the previous sections we can now de-
rive a set of eigenmode equations only involving the perturbed radial
fluid displacement. The following analysis will be carried out focussing
on global modes, i.e. perturbations with m ~ n ~ 1. As mentioned
in the previous section, the resulting equations can be straightforwardly
extended to deal with localised perturbations by letting m > 1 and em-
ploying suitably the orderings discussed earlier. Similarly, the behaviour
close to a resonant point is obtained by allowing enhanced radial gradi-
ents of the perturbation.
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We leave the expression of the quantity Ap,.1 unspecified: this will
be given by either one of (7.34) depending on the ordering of the growth
rate and poloidal mode number.

The boxed equations appearing in the following and preceding
sections will form the basis for the stability analysis discussed in
the next chapters.

7.5.1 Equation for the main mode

We shall analyse equation (7.13) by adopting the divide et impera ap-
proach. Let us introduce the quantity

kj=mu—mn with pu=1/q, (7.51)

where k|| is (loosely speaking) referred to as the parallel wave vector.
The quantity u is usually called the rotational transform. We start
from noting that, by means of (7.25) and (7.35), to the leading orders

we have?? 22 Here we used the trick
sryv \ \/_ 899 899
= 1 £y (\/EB )m &rr ~ — (=)= <_>
¢ - _ SUUNINST Jm 2,87 r R2
(VET*)p = — (<@> = EDVEB |+ Ve

g

R2>

2l
m

£ G (7.52)

m’#0

Ry ,
Fopofm <

J0 (f %)

having used (5.5) and the fact that 1 — 4 ~ ﬁ with

nQ 72

_— ~

2 12
mRO

Notice that we retain &2 corrections to the dominant terms. The quantity

C™ accounts for coupling with the sidebands:

m _ d grﬁ) >4 (gﬁﬁ) >0
C" =—| = B ) e B
m dr[(@ m/(«/g ) + NG m,(\/g ) ]

—im| [ B (g”ﬂ) B e |- .
zm[(@) VBB o+ (B2) (" (7.53)

Proceeding further, from the equilibrium force balance equation®
we immediately have to leading order

B? im ~
(\/—]0 ) = EP(\/EB¢)m, (7-54)
() m 0

where

(7.55)

P = [Rop+ Divess|.

93

7'

0

23 That is [)(’)/Bg = \/E(](;9 —](;’5/9)-
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This is known as Sturm-Liouville form.

Recall that (7.15) holds.

Thus, by combining (7.52) and (7.54), a simple algebraic manipula-
tion shows that

(\/_Bo V——\/_Jo

¢
0 0
k)| gﬂﬂ (‘/_ I grr B
ko (706 (., (EBOm|| | n .
"By | B2 ”f"fm‘T)] * o\ 2| (VD
{0 Ry , Jo (\/_ 3 )m w
—i|nu R_(Z)+_ROBO B_Opoé:m < +1 kllmz;;oc

(7.56)

Note that we did not express (\/EBW),” in terms of &/ : this will turn
out to be more convenient when analysing resistive MHD stability in
chapters 16 and 17.

Let us define the quantity

k== (7.57)

I %
="k

where £)| is given by (7.51) and f; by (7.14). The relation between
(@B’)m and &), obtained from (7.7) then reads

(\/ggr)m = irfb’k||§,rn = irlgufzn.
This is employed to recast the first term on the right and side of (7.56)
in the more convenient form

@ ’ 14 (7.2<N>122 d‘ffn) + (<N>(T]E||)’)’]E||§r

_’k"[<N> 1+h | rdr\T44 g 1+4

(7.58)
having adopted the notation used in §5.3 to denote the metric coefficients
(see Egs. (5.24)-(5.26)).

The remaining terms in (7.13) are much easier to evaluate. We write
the perturbed pressure as p = p + Ap with

b =€’ (7.59)

which is the convective contribution. Exploiting (7.32), the terms pro-
portional to the equilibrium current density and perturbed pressure read

(x/_B vJ : > (VEB )w + ) DY (7.60)
0 m m’#0
VEVY -V xVj| == impi(— et 2 [5G+ Exen)]
0 m m’#0

(7.61)
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with the functions D" and E!”, which describe the coupling with other
poloidal harmonics, being defined as

) j0¢ ! ~ ]0¢’ _
D =2 NEBww +im (2| (VEBwow  (7.62)
BO m’ B() m’
m’ 1 , . ’ . 1 ’
E)(X)= = itm—m) Xy —im = X, (7.63)
BO m’ BO m

Finally, the left hand side of (7.13) is computed by means of (7.27)
and (7.30) yielding at leading order

0 0
2 -
4 [ar(gz)fﬁ) 619(B¢§’)] B
1d (¥ sdé,)| ¥ ;
el b ) [( 2-1)- ]fm . (7:64)
rdr | w?
where we retained mass density radial non uniformities.

Thus, making use of (7.7), (7.14) and (7.15), we collate (7.53), (7.56),
(7.58), (7.60)-(7.64) to obtain the eigenmode equation, for the domi-

By
imR

nant harmonic

1d (rXN) ;,dé;, 1(eky\ . fo
o (m’fnw) M vl Bk o

. P2 oy r? ky[rP , (R?Y  (R*F’

2 o _ LR i A _ r
+ m*By RoB, + - R(Q)P nr— (2) 0( 7 72 ) m
+imB, Z [zknc,,’;’ +D" — E™ () - Eﬁ'(Ap)]

m’#0
Bi(1d [y ,d¢; 2 i
—0 m Y 2 0| ger

- ~ L m®-1)-r2er |, .

Ro |7 ( 2 o2 [(m ) rpo]fm (7.65)

Plasma inertia, that is the growth rate y, appears on the right hand side
of (7.65) and in the Eﬁ,(Ap) terms. These are referred to as inertial
contributions.

With the particular choice of coordinate system given in chapter 5
for which ]; =
(notice that the factor 4 is actually a cylindrical contribution)

1%, the cylindrical limit is obtained by simply setting

C™ -0, D" -0, E™ >0, (RY) -0,
1 T (7.66)
Ly - —, (N)— —
(L) — R (N) = R

In this case, letting y — 0 and taking into account & corrections which
do not arise from toroidicity, equation (7.65) reduces to the so called
Newcomb equation,* i.e. the equation for the radial fluid displacement
in a straight screw-pinch at marginal stability (that is equation (D.2) in
appendix D).

24 From Newcomb (1960). See also

Rosenbluth (1958) and Suydam (1958).
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This will turn out to be of crucial impor-
tance in the analysis of the m = 1 internal
kink mode in the next chapter.

For many applications it is useful to isolate the dominant contribu-
tions appearing in equation (7.65). These are obtained by writing the
toroidal current density in terms of /E||, ie.

Jo,_ 1

m{ = —
Bk

(1w + al (W) £57). (7.67)

Hence, by means of (7.66) and exploiting the fact that at leading order
fo/r = Bo (see (7.14)), we get

~ B
14 = "R (1 - m")k). (7.68)

r

PN , 7’ , ¢
: (—<N>(rk") ) - w2y (L) - mﬁ% :

Using this result into (7.65) yields

d ¢, r
- (ﬁkﬁW) - rki(m* - 1)¢;, = 0. (7.69)
As a final remark, we point out that equation (7.65) can be formally

written as

d (5. 4én
E(rﬁdr

where fi and f; are some functions of 7 with fi ~ 1 and f; ~ 2r&7, this

) - rkj(m® - 1)é), + fo =0,

holding true also for fast growing instabilities with y/wy4 ~ 1.

In summary, the linear dynamics of the dominant mth harmonic is
fully described by equations (7.34), (7.51), (7.53), (7.55), (7-57), (7-59)s
(7.62), (7.63) and (7.65), and its simplified expression given by (7.69).
What is missing now is an equation for the sideband harmonics. This is
worked out in the next section.

Local behaviour about a resonance at marginal stability

Suppose that the radial fluid displacement obeys Eq. (7.69). We are
interested in the behaviour of £;, in proximity of r; where | = 0. Assume
m > 1. Upon introducing the variable x = (r — r;)/r,, near this point we
write

& l+arx” (v>0),

and approximate £ oc x. This means that we are looking at perturbations
which are not vanishing at r;. When this form of &/, is plugged into (7.69)
we obtain

av(v+1Dx"2 = (m?-1) =0.

This is solved by setting v = 2, meaning that at marginal stability the
eigenfunction of an ideal mode obeying (7.69) approaches the resonance

with vanishing radial derivative.
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7.5.2 Equations for the neighbouring sidebands

The derivation of the equations for the sidebands follows the one em-
ployed for the main mode. Luckily, it is much simpler. Let us assume
that m — 1 # 0, meaning that we consider m > 1. In line with the
arguments of earlier sections, we suppose that the only non-vanishing
harmonics are those with poloidal mode numbers m and m + 1, and the
magnitude of the m + 1 sidebands is € times smaller compared to that
of the mode m. Furthermore, working within the assumption of slow-
growing modes, inertial corrections can be neglected since they are of
higher order. We start from the equivalent of (7.56), where only the
leading order contributions are retained. This is

B¢ (mxDu-n
B V——\/ =
V&Bo- 8oV B¢ " m=1

r DT\’ ’
(R—szB >mﬂ)

2
(m 1) (\/_B )m+1 — l(m + 1)0;}_1

(7.70)

Notice that differently from (7.52), corrections due to mode coupling
are of the same order as other terms.

It is immediate to verify that (yg Jo - VB?/ Bg )m+1 is negligible com-
pared to other terms and thus it can be dropped. The remaining contri-
butions are

(\/_B VJ 2
B’

0

J 0 > (VB )1 + DEL

m+1

= E;llﬂ(P),

m=+1

1 .
VBV V5 XV}

0

where D%l and EXl, are given by (7.62) and (7.63) respectively, and

m=+1
the term proportional to Ap,, vanishes by virtue of (7.30).
Hence, making use of (7.58) and (7.68), the equation for the side-

bands can be cast as

14 ( (n = P 22 - 17 - 2l D

r

+ z—(m +1) { [(m+1)u - n] 1 + Dm+1 ;—,'llil(ﬁ)} =0. (7.71)

Upon a simple inspection, we shall note that this equation could have
been derived directly from (7.65) by replacing m — m+1 and exploiting
the fact that &, ~ &£;, (the ordering of the magnetic field components
follows accordingly). This concludes the derivation of the sideband
eigenmode equations for m > 1.

When m = 1, we have to provide an additional equation for (1/gB”)o.
This is because this quantity cannot be expressed in terms of the radial
field through (7.25) due to the appearance of diverging terms propor-

tional to ﬁ Since this affects modes with m = 1 only, we leave the

97



98 DISTILLED STABILITY EQUATIONS

discussion on how to deal with these quantities to the next chapters
where the stability properties of such perturbations are addressed.

Each of the next five chapters will be focussing on one of the insta-
bilities mentioned at the beginning of chapter 6.
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The m =1 internal kink mode

In this chapter we analyse the MHD instability known as the m = 1 ideal
internal kink mode (or simply internal kink mode). We call internal
mode any perturbation whose associated radial displacement vanishes
at the plasma edge. The typical feature of modes with poloidal mode
number equal to 1 is the fact that at each toroidal section they corre-
spond to a rigid shift of the flux surfaces. This helical perturbation has
particular relevance in tokamaks when the poloidal and toroidal mode
numbers are equal, that is m = # = 1. In such a case, this mode can be
driven unstable if a ¢ = 1 resonant surface appears within the plasma.

The importance of the m = 1 internal kink comes from the fact that it
has been associated with the phenomenon, observed basically in all toka-
maks, of sawtooth oscillations (or sawteeth).! These oscillations are
quasi-periodic relaxation events which cause a sudden drop in the tem-
perature and density in the centre of the plasma (see figure 8.1). They
have been experimentally associated with the growth of a m = n =1
perturbation: during the cycle of this oscillation before the temperature
crash, a m = 1 internal mode develops when the safety factor on axis
is less then unity (¢(0) < 1). Although the explanation, albeit rudimen-
tary, of the sawtooth cycle requires a step beyond ideal MHD (this will
be elaborated further in chapter 15) the understanding of the linear dy-
namics of the m = 1 ideal internal kink mode proves to be of crucial
importance.

This mode has been first studied in cylindrical geometry by Shafra-
nov (1970) and Rosenbluth (1973). However, it was soon realised that
the cylindrical description was inadequate, and thus a proper toroidal
treatment was presented by Bussac (1975). It was found that the inclu-
sion of toroidal effects cancels out entirely the cylindrical contribution

1 Sawteeth have a detrimental effect on
the energy confinement because of the
temperature modulation (this is a serious
concern when aiming at ignition), and
can potentially trigger other helical per-
turbations. Nonetheless, sawteeth may
help in avoiding accumulation of impu-
rities and fusion ashes (Helium).
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Figure 8.1: Example of the time evolu-
tion of the electron temperature during a
sawtooth oscillation at three different ra-
dial locations (a) and the electron tem-
perature radial profile vs minor radius
right before and shortly after the temper-
ature drop (b).
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Figure 8.2: Safety factor (a) and leading
order radial fluid displacement (b) asso-
ciated with the m = n = 1 internal kink
mode.

Trf ] iy ‘

I (a/\;ls//\/) ! ty
TF 1 TF
I\FI\_J\

T1

T, [a.u.]

T2

(b)

0 n O n n

t() tl tz 0 T Ty a
Time minor radius

leading to the realisation that cylindrical results are in some cases, mis-
leading.

The complete analysis of the internal kink mode requires by far the
largest amount of unpleasant algebra compared to any other MHD in-
stability. Since the calculations can be quite involute, here we present,
hopefully clear enough, a step-by-step derivation. The calculations we
carry out will eventually provide an expression for the growth rate of the
mode and its stability boundaries. A brief discussion of the stability of
the m = n = 1 mode with a non-monotonic safety factor is also given.

8.1 The general form of the growth rate

Let us take a monotonic safety factor profile with a single m/n reso-
nance, similar the one shown in figure 7.1. An ideal conducting wall
is assumed surrounding the plasma, implying that the perturbed fluid
displacement at the boundary is vanishing at all orders (cf. (6.16)).

We assume that the spectrum of the perturbed fluid displacement
consists of a main harmonic of helicity (1, z) accompanied by & times
smaller sidebands with mode numbers (0, z) and (2, #) respectively. Since
the equilibrium is almost circular, it will be clear that no further side-
bands are required. For the sake of simplicity we also suppose that at
equilibrium p’ = 0 and assume that y/wy ~ &. Setting m = 1 while
keeping n generic (so that k| = u —n), the leading order of (7.65) reads

(cf. (7.69)) i
d 31.2 { _

Because of the singularity at r; where ¢ = 1/, i.e. the resonance, we
solve the equation above for r < r; and r > 7, separately. The solution
which is finite on the magnetic axis and zero at the plasma edge is

C, r<ry,
&= { (8.2)

0, r>r

where C is a constant (cf. Fig. 8.2). An example of the resulting flux
surfaces displaced by such a perturbation is shown in figure 8.3.

We now seek a solution of the full equation (7.65) of the form & =
C + Xj where X; ~ £2C. By means of (7.34) for the slow-growing mode
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Figure 8.3: Example of the displacement of the flux surfaces due to the m = n =1
internal kink at various toroidal angles (the Shafranov shift has been neglected).

case, a quick computation shows that at leading order Apy = 0 and
Ap; = 0 both on the left and on the right of r;. Away from ry, it is
immediate to see that due to the orderings given in §7.2 the inertial
contributions in (7.65), viz. Elﬂ(A])) and the whole term on the right
hand side, cancel (this is seen by plugging App and Apy in (7.63)). Thus,

to second order in & Eq. (7.65) is formally written as
—— |k —— ]|+ UC =0, 8.
rdr ( W dr ) " ®3)

having defined U = Uy + Ur¢ ~ &* (TC standing for toroidal coupling)
which is obtained from equation (7.65) with

DA N
== ) - Ry - 222
B |7 1+7 r B
Ry | P2 r? P\ ((RY  (ROF
+ FO ROBO + nu R—gP — nr/c|| (R_(%) —po( F - F2 )
(8.4)
Upe = B0 [z‘k cm'+D’"’—Em’(;3)] 8.5)
TC = CB s 1161 1 1 ) -5

where we recall that p is given by (7.59).

Up to now, the growth rate y did not appear in the equations that
we presented above due to the fact that the right-hand-side of (7.65) van-
ishes. This is because d¢]/dr = 0 at leading order. However, inertial
contributions should not be neglected in the region near the step of &7,
i.e. close to 7, where strong radial gradients of the perturbed displace-
ment develop. Indeed, although y/w, is small, in this region d&]/dr
becomes large and its product with the growth rate can be of order of
unity. Therefore, in proximity of r; we employ the layer ordering (7.36),
that is

e

ar " e Rimomes

where s = 7,¢; is the magnetic shear at 7, and x = (r — r,)/7; ~ €. As
mentioned in the previous chapter, we refer to the region close to 7, as
the inertial layer.

101
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2 Note that the singularity in r; appear-
ing in (8.1) and (8.3) is resolved by the
inclusion of inertia. At marginal stability
plasma inertia is negligible and discon-
tinuities in the perturbed quantities can
appear.

3 This argument can be generalised
for other instabilities such as Mercier
and ballooning modes discussed in chap-
ters 11 and 12.

Figure 8.4: Graphical example of the
asymptotic matching technique. The
layer solution (solid line) joins smoothly
on the left and on the right of 7; the exter-
nal one represented by the dashed line.

If we change the radial coordinate from r to x and deploy the order-
ing given above, in a neighbourhood of r;, we can reduce (7.65) to the
following form?

dx

=0. (8.6)

2 d r
( 2s2xQ—i-(1+%)y—2) jm
wy X

The factor % originates from the contribution of plasma compressibil-
ity and is usually referred to as the inertia enhancement factor (the
box at the end of this section explains more in detail how to include such
a term). Let us rescale the Alfvén frequency as d)i = wi /A + %). Note
that the thickness o7 of the inertial layer can be estimated by balancing

the two terms in the big round brackets in (8.6) giving3

or Y

—_—~

s nsO4

(8.7)

The solution of equation (8.6) which reduces to (8.2) for wyx/y > 1
(i.e. far from 7;) is easily computed and reads

g=< [1 _2 arctan( i )] . (8.8)

179 big v/@y

The growth rate is then obtained by requiring that moving away from 7,
equation (8.8) matches smoothly (i.e. with a continuous first derivative)
the asymptotic behaviour of the solution obtained from (7.65) when 7; is
approached. This technique is known as asymptotic matching, and a
visual example of how this procedure is worked out is shown in figure 8.4.

Far from r; Eq. (8.8) yields
@y
dx ~  mnsix?

(8.9)

In proximity of the resonance, accounting for regularity of the solution
on the magnetic axis, equation (8.3) gives

C rs—€
- o < TUdT, r<rs,

dXi r3n2s2x? ./0

dr o

2

(8.10)

r> T,

B )
r3n2s2x2

where ¢ is a generic constant of integration and € is an infinitesimal
positive quantity with the dimensions of a length (if not specified, the
dimensions of € will be clear from the context). Therefore, by comparing
(8.9) and (8.10), we finally obtain the expression for the growth rate y:

p /-rs—e
rins 1+ % 0

Note that the matching for r > 7, is automatically achieved by a suit-

x rUdr. (8.11)
wy

able choice of ¢y. The relation above shows that y/wy ~ &% for s ~ 1.
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Although this ordering differs from (7.24), we could have consistently
ordered a priori y/wq ~ 0, rdé]/dr ~ &7/6 and x ~ ¢ with § ~ g2
yielding the same conclusions. This shows that the typical time-scale of
growth of the internal kink is small, and in experiments it usually falls
in the range of few milliseconds (with w, of the order of some mega-
hertz). Also note that the dependence upon the inverse of the magnetic
shear may enhance the growth rate if s is not large at r,. The marginal
stability boundary, i.e. the state for which y = 0, is identified by the

Ts—€
/ rUdr = 0.
0

This could have also been obtained directly by multiplying (8.3) by r¢]

relation

and then integrating from 0 to a.

Hence, to complete the analysis of the m = 1 internal kink it “only”
remains to evaluate the integral in (8.11) by calculating U for r < ;.
Unfortunately, this is quite a laborious task.

We tackle the problem as follows: we first derive an expression for
the m = 0 and m = 2 satellite harmonics. By means of the resulting
expressions for these sidebands, we reduce Ur¢ to a form which depends
on C only. We then rearrange the function U separating the cylindrical
and toroidal contributions to finally evaluate the integral in (8.11). This
eventually leads to the desired expressions for growth rate and stability
criterion. We warn the reader that the following sections will contain
many mathematical details, which unfortunately cannot be sacrificed if

the algebra wants to be understandable.

8.1.1 Inertia enhancement

In this box we show how plasma compressibility, i.e. Ap, modifies iner-
tia. We shall keep m generic. Starting from (7.34) and assuming that
the mode grows slowly, we employ the layer ordering (7.36) giving in
proximity of the resonant surface 7,

where ¢, is the value of the safety factor at ;. Hence, noting that
(1/B%).1 = 7/Bo, (8.12)
it follows that (7.63) becomes
ir
E;_rrzl(Ap) ~ ¢F0Apm¢1'
We thus have

27 B} y? d*¢;,
R() (,():2(1 de '

imBy Z Ey(Ap) = -

m'=+1

4 Use of (8.1) must be made.

This only part is algebraically formidably
long and tedious. Most of the times it is
either skipped or presented it in such a
compressed way that it is almost impos-
sible to understand what is going on.
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5 Multiply (7.25) by £, then take £ = 0
and average in .

6 This automatically implies that 66 =0.

7 Apy = 0 follows from (7.32). Note that
from (7.7) one has (\/EB’)@ = iBoflgcfg.

Plugging this result into (7.65) yields close to 7,

d 2 2 72 dé,,
— 1+2¢7)— =0.
I (k” +(1+ qs)wi Ix 0

Equation (8.6) then follows with ¢, = 1/x.

8.2 Equations for the satellite harmonics

We require a detailed knowledge of the function U appearing in (8.3).
The function Ur¢ depends upon the sideband radial fluid displacements
and magnetic field components (¢ = 0, 2)

&, (VEBNe  (VEB'):

through the coupling coefficients Clm', D{”' and E{” We refer to the
m — 1(= 0) harmonic as the lower sideband, whereas the m + 1(= 2)
mode is the upper sideband. Hence, an explicit expression for the
satellite harmonics needs to be derived.

8.2.1 Lower ¢ = 0 sideband

Making use of (7.25) and (7.26), it is immediate to see that> (\/EB”)O ~
s?aByé], and employing this in the Oth Fourier projection of (7.7) we also
get &) ~ ng{. Therefore, we can safely set £ = (\/EE’)O = 0. Notice
that we could have arrived to the same conclusion by an inspection of
(7.71) requiring that £ is finite on the axis.”

Let us now introduce the quantity

by =r(u—mn/m).

The expression for (1/gB”)y is obtained by multiplying (7.12) by 1/Bg’
and then averaging it. Using the fact that pp = Ap; = 07 and under the
assumption that fg ~ fg) ~ &&], inertial contributions can be neglected,
so that to leading order one has

Ry B,

Y, = sy _ 1000 r\/ . r rlb(/) r
0= (gB") = . N_1(hé]) —ihM_1 &7 + ng , (8.13)
0

where we used (7.25) again and

(JS /B = —qp}/BL. (8.14)

Hereafter the notation for the metric coefficients follows the one em-

ployed in Egs. (5.25) and (5.26).
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8.2.2 Upper ¢ = 2 sideband

It is clear that (7.7) allows us to write (@B’)g in terms of £J. Also, by
means of (7.25) and (7.26), the quantity (\/3319)2 can be written as a
function of (\/’EB")Q, and thus of &J. This yields

(VgB") =2iBolsé;,
D 1 DT\’ Al
(VgB")2 ~ - Z(@Br)Q = —Bo[ly&y]"
The equation for & obtained from (7.71) reads

i e

E(ra[Qlu —n]? 7 ) - 3r[2u — n]?&;
+ 21-%0 [i(2u—n)Cy + Dy - E5(§)] =0.  (8.15)

Assume now that the analysis is carried out for r < 7y, for which
(VEB™)1 = iBohC, (\gB”)1 = -Bol]C.

Upon defining
(8.16)

by means of (8.12) and (8.14) it is possible to show that®

1 pleiV — 9l 2 b\
r[Dy — Ey(p)] = —2ilyr (T,uB()) C,

ir(2,u - n)Cl = -2iByCly [(Nllll + l'M_lll)/ -2 (Llll - ZM_111/)]
2

B , ” 2 ’” ’
- iR_zzg[(zl(rg)') ~2 (12 (- n)) r{+ ;To (1 +20) |c.

(8.17)
having used the fact that M_; = —M;, whereas N_; = Ny and L; = L_;.

By expressing p in terms of { through (4.33),% after some rearrange-
ments we write the intermediate step

r [i2u = n)Cy + D} — E)(§)]
,BO NG ’ ’ 271 ’ 4
_ QZR—CZQ[(12(7‘§) Y+ r (Y + (— o - —u) rg]
0 r r
= zi}f—zczg [ (r(lad)') - 41724 -1 (%(rlzy)' }

Referring to equations (7.58), (7.67) and (7.68) we have the following
relations (notice that these can be straightforwardly extended to the case
of arbitrary poloidal mode number)

LIrBXY) = (rBX’) + () bX,

Lty - [2rk)'T = Hu - n/2).

The sign on the non-homogeneous term
of (8.15) reflects the choice of the
parametrisation or R which is R = Ry +
rcos®? + .... In the literature, we can
often find it multiplied by a minus fac-
tor. This is because in the latter case
the poloidal direction is flipped, that is
R=Ry—rcost+....

 Note that My = T N =

% (f - ﬁ) and [ =1}/

9 We use the fact . t/hat

2
rA” + A"+ r/Ry = (r{)’ so that R—‘”;’O =
uBj

—p[(rg)'+2(1+’7/")g—(3+’7"’) RLU]
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1% Remember that k|| ~ (r — ;) close to
rs and xd(x) = 0.

11 Thanks to the regularity condition at
the axis and either at a or at the ¢ = 2
surface if it exists in the plasma, we can

write
i
r {+L‘1 Xf(r)’ r<7s,
gg _ X2(Ts)
c X5 (r)
> > Ty,
CQX{(TX) T >0

where ¢; and ¢9 are two constants.

When the two results above are plugged into (8.15) we finally obtain

r

d dé ,
—(l2u - n*—2) - 8ri2u - g

d (3 92d{ 2
[E(r [2u — n] E) —3r[2u — n] {} C, r<ry 6.18)

0, r> Ty,

The jump condition for the derivative of & at r; is obtained by inte-
grating (8.15) across the ¢ = 1 surface and exploiting the Dirac-delta
singularity of the main mode, i.e. % ~ 6(r — 1) (cf. 8.2)'° where we
implicitly assume that £5 does not diverge at r; (an account of the math-
ematics employed for carrying out these computations is outlined in the

box at the end of this section). The only contributing terms come from

50
d(\/gf 1 and d(ﬁo:?l)

a4 _ 2
"2y T2

where the right-hand-side of the equation above has to be evaluated at

, respectively, in 01 and E1 This yields

Opo

O

,U,A +— C=- |:TAN + 3N’ — RL] C, (819)

Ts

Ts

r =75 and [-] = (*)r,+¢ — (-)r,—e with € — 0. The last equality is obtained
by means of (4.33). A further integration shows that [¢]] = 0, i.e. the
upper sideband is continuous at 7;.

We now need to identify the appropriate boundary conditions for &;.
The sideband &) must be finite on the magnetic axis. Furthermore, if no
g = 2 surface is in the plasma, then £/(a) = 0, otherwise we require that
&, is regular, meaning finite, at the ¢ = 2 resonant surface. Let X, and
X; be the solution to the homogeneous equation (8.18) for r < r; and
r > r; respectively."* X, satisfies the regularity condition on the axis,
whereas X; fulfils the aforementioned requirements for &; either at the
plasma boundary or at the resonant ¢ = 2 surface. We introduce the
quantities (do not confuse the symbols s and §)

d

b= LK) o= S g, §=

bi(rs) 1
g 1 (8.20)

where ¢; is given by (4.37). By requiring continuity of &) at r; and im-
posing the jump condition (8.19), we finally obtain

Lo (St Bl S+ By(rs)] X (r)
A+ + — —— . 1 <7y
& _ 2Ry Ro( 1+b-c¢ )Xé(ys)
C | e (84 By(r) + BB/ + 5 + By(rs)]) X(r) N
Ro 1+b-¢ X:(r,) s
(8.21)

where use of (4.35) has been made. It is worth noting that some inertial
contributions, i.e. terms which depend on y, may appear at the resonant
surface of the m = 2 mode if this occurs within the plasma. This is
because of the sharp gradient of & at this point (this is analogous to what



has been discussed in the previous section about inertia at 7). However,
it is rather immediate to convince ourselves that these corrections which
will eventually appear in (8.11) are negligible as they enter at higher
order. Therefore, we will ignore them altogether. Now we have all the
elements needed to evaluate the integral of the function U.

8.2.3 Integrations across a point

It is rather common to see these sort of integrations, particularly when
abrupt steps in the coefficients of the integrated equation appear. To
explain how to deal with them let us take the model equation

d( df
E((llz)'def‘i‘/l —0,

where 7 varies from o to 1 with 7y some position within this interval and
a; are regular functions of r which are continuous and different from
zero. We take A(r) = 6(r — r9) and integrate this equation once yielding

arf’ +F(r) =0,

where F(r) = for (a2(0)f (@) + 6(0 — 19)) do. It is obvious that if f is non-
diverging (i.e. an integral of f exists), then the function F is discontinu-
ous at most at ry. Dividing the expression above by a1, which is supposed
to be non-vanishing, a further integration shows that

"F()
f+/ al(g)dg = const.

The continuity of f across 7y is evident. Note that if A(r) = §'(r — 7p),
then f becomes discontinuous.

8.3 Evaluation of fors rUrcdr

In Uz it is more convenient to split individually the contributions from

the m —1 = 0 and m +1 = 2 harmonics. This is written as Uyc =
©) @

Uy + Uj i with

0 iRy . R
Ure = g, iFICL + D1 = EX(P)].

9 iRy . _ _ 14
Uz(“c) = CB, [ kllcll +D11_E11(P)]-

We shall analyse the contribution from U1("2C) first. A rather tedious
algebraic manipulation shows that
Ry d¢) /

U = hiyN 10 e 8
T rc = ¢ [\ + 12W+ 1269 | (8.22)

T
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12 Equation (8.18) can be written as
L) = CL() for r < 7s.

where
T12 = N_1 (lll, — l/lg) 31M—1lll2 - _ﬁ
21 2 /JBg’
MQ:h(NJQY—SHd%LJ—thU;1+MﬂJ
P
32 (2 - —) + 04 BQ )

having used (8.12) and (8.14). Note that the terms proportional to the
pressure originate from D! and E;. The following relation holds (recall
that ¢ is given by (8.10)):

’ ’ . ’ . ’ p,
T12 - U12 = —12 (N—lll + lM_lll) - 2(L1[1 - lM_lll) + 1’2 ( 0 2)
i ruBg;

= 515G 12 = WG} + D} ~ B (p)]
_ 1 —d 3 nQdé, nQ — 1
= R_o E(r [/J—g] Z)—BT[#_g] f] = R_OQ(O’

where in obtaining the last line we compared with the right-hand-side of
Eq. (8.17). Note that the relation above defines implicitly the operator
£.*% Therefore, integrating (8.22) by parts from 0 to 7, — € with e — 0
and exploiting (8.18) yields

Ts—€ 5 R L [re nee .
/ rU}c)*dr =T [(Tufz) - / (T, — Uh) 52‘”}
0 0
Ry

M| -7 [ osa]

2.3 7s—€
[ROTN% - % (ﬁ'% - {%)] —/0‘ Z8(0)dr.

From equation (8.21) we write
£
Cc

where the subscript s means that the quantity is evaluated at 7;, and v

BRI

=0+ 21+ 4b),
rs

ry—€

reads

re [ =3[+ c[Pfa+ 5+ By(ry)]
“Ro ( 1+b-c¢ ) '
Expressing 772 as a function of { gives
2,2

_n (S{s+3§s_3_)s
O

T
2,7 4R,

so that one readily has

/n_erU@)m—"z”‘2 32 +v) (2o = 2 ) 4 ve, (1 + 4b)

rs—€ 2
+ / [rlgg’z + 3%{2] dr. (8.23)
0
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We now focus on U;Og. Since po = —p(&] = 0, it then follows that
Ei(ﬁ) = 0. Therefore, by means of (7.53) and (7.62) it is possible to
show that

Ry
CBy

, Py
L (MYy) —ihMYy - —3Y)
uB,

0

0) _
rUrc =

7’

RO ’ RO ’ . TPO
=——— (MY + — | {IM +ilhM; + — | Y. 8.
CB()(l 1Y0) cBg |+ ihdh B2 0 (8.24)
where Y is given by (8.13). Thus, we have
2
dr

r

rg—€ © ) re—€ 7‘p6
rU,.dr =R / N + i My + —
/0 re  Jo 1 ,uBg

—/H‘&[f w31 —ird (8.25)
o A ) CERC Y B B 25

where we exploited the fact that the integration is carried out for r < r,.

Therefore, collating (8.23) and (8.25), we eventually obtain
Ts—€ n?rs2 Ts

/ rUpcdr = —= |3 ({+v) | & — — |+ vEs (1 + 4b)
0 4 Ry

+/rj r12{'2+3§§2+r3 z g“’+§§—i )
o | 2 r 2 r’ Ry] Ro

dr.

(8.26)

We may let € = 0 in the integral on the right hand side.'3 It only remains
to evaluate the integral of Uj. This is discussed in the next section.

8.4 Integrals involving the function U

The evaluation of the integral of the function U given by (8.4) is a te-
dious and rather straightforward procedure, which nevertheless requires
several mathematical steps. We shall carefully go through each of them
in order to make the algebra more transparent.

The strategy for tackling this problem is to write Uy as a sum of a
cylindrical (Uy,) and a toroidal (Uy,) contribution such that Uy = Uy, +
Up;. Let us start by writing

1 r
<L>:r_R0(1+$)’ <N>:R_o(1+‘/V)’

where ., /" ~ &% and their expressions are obtained from (5.24) and
(5.25) reading
9 r? rA’ 2

A 72 72 "2 r 12 N
L =——=+4d—+ — + 20"+ A"+ — A" +rA'A”,
4R2 " Ro Ro 2 Ry

A7 32 A

N +—+—.
2 4R Ro

13 This is because there is no domain
ambiguity of the quantities under the
sign of integration.
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14 The cylindrical approximation for the

safety factor ¢ = RBé has been used.

We use the relation y = 171 +n to express
' and p’’ as a function of /. Moreover,

one has
Ny , 1
’ ’ _ _ ’
hijhV' = " r(rA7) 5,0

Furthermore, we exploit the choice of the parametrisation in chapter 5
for which one has G = R¢/r. From this it follows that f;/r = F /R, where
F is given by (4.31) and its expression is the same in both cylindrical
and toroidal geometry. Hence, by means of (7.67) with m = 1, we obtain

f/ ]¢ f By [1 R
iy (By) o 2ofmur)]

r
where the subscript ¢y/ indicates the cylindrical part. A fairly straightfor-

ward manipulation shows that the cylindrical and toroidal contributions
to Uy are given, respectively, by

by (k| (5
O Bg 1+4 r o B(‘f ol
Ry r? rP ' , (Q)F'
. ROBO PP - nrk” é + 5o | (827)
l ’ ’
h .z—ll[ (r ,u,/V)] _Dogry (ge8)

Uy, = 7 (7‘/V11) Bg

A quick comparison of (7.65), (8.3) and (8.27) with (D.2) and (D.8)
shows that we can approximate'4

QTPI 7'2
~ g2 2220 T,
We now write
1 U
Uy = (1 - ﬁ) U, + ( >+ Um) (8.30)

The computation of the last term in brackets in the equation above con-

cludes the analysis of the stability of the m = 1 internal kink mode. This

requires few manipulations which will be explained below step-by-step.
First define the integral quantity

W = / (U(’f n UOt) dr.

A little rearrangement shows that (8.28) can be recast as

N 112 ’ ’ / 7 p(’) 2y/
U0t=[</V—g—7(T=/V)]ﬁ_llll‘/V_nll(?"/V +7JV)_E<R>’
0

and thus, by using (5.21), we can write

W—/rsdr 7—3( -n)( +3n)—nl—1(r3ﬂ/')’
- 0 R2 /'l lu r

0

2
v P, 3 1
+[W—$—§(rﬂ)] + 2R, O(A + = —R—O)], (8.31)
0
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having dropped the infinitesimal quantity € as we did in (8.26).'> We now
express the coefficients appearing in the integral above as a function of
{ (see (8.16)) by means of the following relations:

) -

rt 3 4 51 !
{ T { + 7,32;2;/ ,
4R2 2R0 2R

N B a0
’[‘/V_g_i(”m] TR TaR 4R

’ 3,92 2
RS (a3 L) (8 8
B() r Ry 2 r Ry

—rPuu (¢ - ! I 3¢ _ 3
HEEA® " 2g, r Ro)
Plugging these formulae into (8.31) yields
rt r3 % !
év r év 3yt
W= / dr AT 21{0““)
. ((r%')' 30 3 a7

2
_ Y2 1
R | 4m, 2% T3¢ ( “)) 2

P, 30 3, r \(, .3 3
(e o) e ag )l - R |

(8.32)

n(n — )

Although (8.32) appears complicated, this equation can be greatly
simplified by some integrations by parts and using the following relation

3 o o\l P, 3¢ 3)
T el e

2

= 313§2 + 2%+ 0 ({ + 3§) 7(7252)’

ru? | 9 6 (., 3¢
L R—o(“T)]

2

=3rtu' ¢ +

Therefore, with some straightforward manipulations, one has

3 7\ 12
W = / a’r[n(n - u)— ( {) (9/vt2 +4npu — nQ) - rl§§’2 - 37252

n? ([, 32\* 3n? , 93 ,
P — |+ =) - () - P
4 r 4

9 3r
2R} g

2% 2R

15 No ambiguities appear so that the in-
tegration can be carried up to r; without
concerns.

The two relations below prove to be very
useful:

Ts [2
/ dr nl—1+L
0 T 22
75 4

_ (

== ) g

s 11 112 3 ¢ er\!
‘/0' d?’(ﬂ7+ﬁ (754/)

7s .
—/ drup' 3¢l
0

(el
2Ry

Note that ¢’ + 3¢ /r = (r32) /2.
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That is [1(’) < 0and u(0) > 1.

Since up’ = (u%)'/2, the last term in the expression above can be inte-
grated by parts, and rearranging we get

3n? 9n? 13 3n Ts r3
W:__ + 5 __ 5 _
2 3 12
sln(, 30\ w+n/2 79 9 9 412 9,9
+r0 | =+ =] - + —-n°)+ 7l +3=
' 2({ T) R pra e T TR

The calculation is almost over. By means of (4.37) we can write

/ dr—(u -n%) = RQ, (8.33)

and carrying out the obvious integrations we finally have

W= -3 (a—i) (4’5—%) L
0

47 2R 2Ry] 2R2
75 12 2 2
_./ rl2? + 3272 4 o8 z §'+3—§ pr dr. (8.34)
0 2 r Ro

This concludes the analysis of the integrals appearing in (8.11). The
stability of the m = 1 internal kink mode can be fully determined by
the results contained in equations (8.26) and (8.34). Its discussion is the
aim of the next section.

8.5 The stability criterion

By means of (8.30), we are finally able to express the integral in (8.11)

rs—€ 1 7s rs—€ UO
/ rUdr = (1 - _z) / rUy.dr +/ r ( 2‘ + Uy, + UTC) dr,
0 n 0 0 n

(8-35)
where U, in the first integral is obtained from (8.29). If (8.35) is posi-

as

tive instability occurs, whereas stability is achieved when the total
integral is negative (cf. (8.11)). Before discussing the full toroidal re-
sult, we highlight some properties of the m = n = 1 internal kink mode
in a cylinder. In such a geometry Uy, = Ur¢ = 0, so that the stability is
determined by Uy, only. Inspecting equation (8.29), it is immediate to
see that for any decreasing pressure profile with ¢ < 1 over 0 < r < 7,
where 7, is some position within the plasma, the integral of U, is pos-
itive. This leads to the conclusion that as long as there isa ¢ = 1
resonance in the plasma the internal kink in a cylinder is always
unstable for a monotonically decreasing pressure profile.

We now show that the inclusion of toroidicity opens a window of
stability at low pressure. With n generic, plugging (8.26) and (8.34)



into (8.35) and writing {5 = r;[B,(r;) + § + 3/4]/ Ry gives the following

expression
rs—€ 1 Ts 9 754
rUdr = |(1- — rUpcdr — n —5oWr, (8.36)
0 n? ] Jo Ry
where we defined
_ 88(1+b =) +9b(1 — ) — 24be(By + §) — 16¢(1 + b)(By + 5)?

16(1 + b —¢) ’
(8.37)
having employed, for the sake of simplicity, the short hand notation 8, =

T

Bp(rs). Letting n = 1, the system is stable against the m = 1 internal kink
mode when 6 Wr > 0. This is the so called Bussac stability criterion. In
general, for n # 1, it is found that 6Wr is numerically smaller compared
to the integral involving U, so that the stability of modes with n > 1
can be described fairly well in cylindrical approximation. In tokamak
experiments, however, it is unlikely to have ¢(0) below 0.7, so that only
perturbations with » = 1 turn out to be relevant.

It can be recognised that since the coefficients 4, ¢ and § depend
solely on the current profile distribution (that is the safety factor profile)
a critical value of B, above which the internal kink is unstable may be
identified. An example of the numerically computed critical values of
Bp(rs) for a ¢ profile of the form

r2

Ji2r@ = (r/ayn)2dr

is shown in figure 8.5 (this corresponds to a current profile /¢ o (1 -

g=qo (8.38)

(r/a)*)"?). One sees that, contrarily to the cylindrical case, the
toroidal internal kink mode is stable for sufficiently low values of
By

Unfortunately, although (8.37) is general, it is not of easy interpreta-
tion. A simplified stability criterion, and the associated critical 8, can
be obtained for safety factor profiles of the form

2
r
()
Ts

with A¢ < 1 small enough so that there is no ¢ = 2 surface within the

g=1-A¢ , (8.39)

plasma. Let the functions X, and X, obey the homogeneous equation

(8.18). Upon writing
XQi:xi+y,», X;:xe+ye

with y;/x; ~ y./x. ~ Ag, we set C = 0 and expand (8.18) for small A¢g
with the safety factor given by (8.39). For X, this yields

d dei _

E(’ E)_?’”"‘O’

d 3d,yl 4'Aq d 5dxl‘ 3 _
z(" E)_Mi_? ar\" ) =0
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Here we used (4.35) and (4.37) to express
all equilibrium quantities as function of
Bp and § with the latter being defined
in section 8.2.2.

0 0.2 0.4 0.6 0.8
rs/a

Figure 8.5: Critical 8, versus the po-
sition of the ¢ = 1 resonance from Eq.
(8.37). The coefficients 4 and ¢ have been
obtained by solving numerically the ho-
mogeneous equation (8.18) with a safety
factor of the form (8.38) (Bussac (1975)).
Instability occurs for 8, above the corre-
sponding curve. r; is modified by vary-
ing the value of ¢ on axis.
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The solution of the equation for y; and
e can be found either by applying the
method of variation constants or expand-
ing y = Ar® + BrP.

The same applies to X; with the obvious substitutions. It follows that
the leading order solutions satisfying the conditions at the magnetic axis
and at the plasma boundary are

xpocr,  x, o (a/r)® —71/a.

Thus, it is quite easy to see that to first order in Ag one has

ad ‘a3rs 2rsr3 16 a\’r
Xf"‘rs‘;”?(b(z) 7‘52(;) )‘?Aq(z) P
The computation of the parameter & is immediate and gives b = Ag/3.
The quantity ¢ is obtained by expanding [r(X;)'/X/];, to first order in
Aq so that for sufficiently small 7;/a one has ¢ ~ 3Aq — (r;/a)*. Finally,
by means of (8.33) it is straightforward to see that § ~ Ag/6. Plugging
these results into (8.37), and neglecting the term (r,/a)* in ¢ gives the
following stability criterion

(1-¢(0)) (,8;, <o. (8.40)

144)

Note that within these approximations, the value of the critical pressure
is independent of ¢(0).

It is worth to point out that stabilisation of the m = 1 internal kink
mode can be achieved in a high-pressure plasma with g, ~ 1/& (Krym-
skii (1979), Crew (1982), Tokuda (1982), Manickam (1984)). This result
is not captured by our analysis which has been carried out within the
ordering 5, ~ 1.

On the (im)possibility of global m > 1 internal modes

Let us assume that the safety factor is of the form shown in figure 8.o-
(b) and take ¢ > 1. Apply the standard low-8 ordering 8 ~ 7B’ ~
g2, The leading order of the eigenmode equation for a generic fluid

displacement X is formally written as (cf. (7.69))

(k2 + yz) ‘fl_):] —r(m* - 1) (/cﬁ + y%) X =0,

d
dr
with y2 = y2(1 + 292)/50124 where a constant mass density profile has been
chosen. For the sake of simplicity we assume that X is a real valued
function. We let k|| ~ m ~ 1, i.e. we consider global modes. After
multiplying the equation above by X and integrating from o to a with
the boundary condition X(a) = 0 we obtain

2__/ [BkQIX * + r(m?* - 1)/c | X%
Yn = Athpﬂxw2+mm2—1nxu '
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The right-hand-side is negative (and of the order of unity) indicating
stability. This shows that no global internal modes with m > 1 are
allowed with a monotonic safety factor of the form of Fig. 8.2-(b) and
k)| ~ 1, that is a magnetic shear of order unity, within the low-3 ordering.
However, if ¢ has a different shape (i.e. k|| is ordered differently), or the
mode is strongly localised with m > 1, instabilities with m > 1 can occur
(this will be discussed in the next chapters).

8.6 The m =1 internal kink with a hollow ¢

Configurations with a non-monotonic (or hollow) ¢ profile above unity,
having a small or weakly reversed magnetic shear in the core region, are
part of the family of the so called hybrid scenarios. Although the ab-
sence of the ¢ = 1 surface makes them intrinsically sawteeth-free, MHD
activity is still observed experimentally. In particular, these scenarios
can be affected by m = n = 1 activity which, similar to sawtooth oscilla-
tions, can either induce a severe deconfinement of the population of fast
particles which are needed to provide the necessary heating power to
sustain the fusion reactions (see chapter 1), or lead to a plasma collapse
by driving secondary instabilities (or both).

In this section we show how an internal perturbation with mode num-
bers m = n = 1 can develop even without the presence of a resonant
¢ = 1 surface when the safety factor is hollow and its minimum remains
sufficiently close to 1.

Let us consider a safety factor profile as the one depicted in figure 8.6
with its minimum value ¢y, close to 1. The radius 7; is such that ¢(r;) =
gmin- We further assume that the difference between ¢ on axis (¢go) and
gmin is of order of unity. Following the same steps outlined in (8.1.1) it
is easy to see that for n =1

Ry ' 2y? 1d [ 4d&]

—i— EP'(Ap) = S x——[r"—].
ZBOm,:Z+1 1 (Ap) wixrdr(r dr

Then, the full eigenmode equation for the m = n = 1 internal kink mode

is

1d

- + Upé] + Urc =0, (8.41)

- ( .
3 1+/I/ﬁ 33/_2 dé]
dr

+ —_—
1+4 Bg wi

where U is given by (8.4), and from (8.5) we defined
g iRO . m’ m’ m' [
Urc = CUrc¢ = Bo Z [’k||C1 + D" - ET" (p)|-
m'=+1

We consider cases with 0 < y/w, < 1. Since y is a small number and £,
becomes of the order £ when r; is approached, the leading order solution

These configurations are envisaged to be
a candidate scenario for continuous toka-
mak operation. This is because of the
high fraction of non inductively gener-
ated current and global good confine-
ment.

0 +

Figure 8.6: Example of an experimen-
tally relevant inverted ¢ profile. Here ¢q
denotes the value of the safety factor on
the magnetic axis. Note that as the cur-
rent is increased, ¢ drops and its mini-
mum may dangerously lie close to one.
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Note that £; is discontinuous at the ¢ =
2 resonance, if this exists within the
plasma, where /o = 0. Moreover, /; ~ &
at rg.

Note that we allow £|| to vary with r.

of equation (8.41) is still given by (8.2). It is easy to convince ourselves

that small corrections due to .4#” and 4 in the first term of (8.41) can be

dropped. Hence, we let .4, 4 — 0 and also approximate /€||/Bo ~ k.
We now multiply (8.41) by r¢] and integrate from O to a. This gives

a 2\ 1 dE&T 2 a .
/ (k2 + 325 |i| dr:/ r(Uo|g{|2+UTcg{) dr.  (8.42)
0 wy dr 0

Let us analyse the right-hand-side first. It is immediate to see that for
r > 1, the contribution to the integral due to the term containing U is
negligible. Upon defining

70 _ o ©
0% = cu

iy and Ufg, - cu?

TC
a simple inspection of Egs. (8.13), (8.22) and (8.24) with some integra-
tions by parts shows that

/ rUchidr ~ CQ/ r(U;OC) + U}zc))dr.
0 0

Now, because of the step-like nature of the leading order of the radial
displacement, we expect that contributions to the left-hand-side of (8.42)
should come only from a region close to r; where £] has large gradients.
We can therefore approximate the function under the integral sign with
its local behaviour close to r;. Thus, integrating (8.41) from 0 to a radius
sufficiently close to 7, gives

df{ N C for: r (U() + UTC) dr
dr Pk + 3%)

Wy

having exploited the fact that to leading order &7 is given by (8.2). Using
these results, (8.42) transforms into

r=1

/“ /(;: T (U() + UTC) dr
O3 (kﬁ + 37—2)
Wy

With some simple rearrangements, and introducing the variable z =
wa(r = 1,)/(rsV3y) with y > 0 the equation above reads

-1
2
T

= — L 5Wr. (8.43)

N2 :
RO

Wy

/ dz
S wﬁkﬁ/(ByQ)

having used (8.36) with 6Wr given by (8.37). Near r; we may expand
k)| as

kH — /.13—1 ’ \/§y 2. 1.2
V3y/ws  V3ylwa 4
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with the subscript s indicating, as usual, that the quantity must be eval-
uated at ;.

When the safety factor is monotonic as the one used in §8.1, we
recover the expression of the growth rate given by (8.11) by setting ; = 1
and neglecting terms proportional to z? or of higher order.

With a non-monotonic safety factor profile instead (cf. figure 8.6),
we let pi — 0 and take u; < 1. Thus, the integral on the left-hand-side
of (8.43) becomes

/°° dz B /°° dz
272 2y 2
Lagh/Gr%) Jew gy (A + B2z )
1 [~ 1 1
=53 dz - (8.44)
2i J_o A+‘F77295” A+‘F7729;’22+i

where A = w4(1 — u;)/(V3y) > 0.

The integrals in the expression above can be evaluated by means of
the residue theorem accounting for the poles as indicated in Fig. 8.7.
This gives

/°° dz x VA+i-VA-i
1+ wjkﬁ/(372) 2%iVA  V1+A?
T

T (241 + A)(A + V1 + A2

with 4 = ‘f L rQqs". By plugging this into (8.43) we finally obtain

[ 77 1/2
rs_q‘)—,f%/ﬁ [1 + @} / = _T_A?(;WT
P d ¥ R(Q) ’

where 72 = 3y? /(uz1 +(6 q)2 having approximated 1 — s = 6¢. When the
safety factor is above unity, the system is stable if 6Wr > 0, while for
a given value of 6Wr < 0 instability occurs when ¢pi, < 1+ d¢.. The

critical value 6¢, which identifies marginal stability is

32 _ T
(69.) —Rg Wd W,

One can extend these findings to negative values of A, that is ¢, < 1,
only if the safety factor does not drop too far below 1 such that the
separation of the two ¢ = 1 surfaces is not larger than the width of
the inertial layer. We stress the point that these results hold as long as
q0 — gmin ~ 1. When the two values differ only by a small amount, the
eigenfunction of the m = 1 harmonic is not given by (8.2) anymore, and
a different approach to the stability analysis must be deployed. This
case, and its generalisation to perturbations with poloidal and toroidal
mode numbers bigger than unity is addressed in the next chapter.

Im(z) Im(z)

/' ‘\
Vi—A

/
[ e N.@
/

.
AT ./ AN
S

2 Re(z)

/
2

2
2
2

—Vi—A V—i—A

2
0

Figure 8.7: The shaded areas indicate
the loci of the poles of (8.44) for A > 0.
Note that we choose the argument of a
complex number z = x + iy such that
—n < arg(z) < « to conform to the nega-
tive real axis branch cut, having defined
the principal root \/_ = |z[e?28)/2 =

' |Z‘+x + lsgn(y) Zz=x . Furthermore

w1th —00 < A< o0 purely real we have
VizA = iV-iFAand VA+iVA-i =
V1+A2,

Defining X = V1 + A2 we have
(X -AX +A) =X2-A2=1,

so that X — A =1/(X +A).

The case of two distinct ¢ = 1 reso-
nant surfaces, requires a more convo-
luted analysis (Hastie (1987), Kuvshinov
(1988)) which is not discussed in this re-
port.



118 THE m = 1 INTERNAL KINK MODE

References

¢ M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Func-
tions, Dover Publications (New York, US), 1964.

¢ M. N. Bussac ef al., Phys. Rev. Lett. 35, 1638 (1975).

¢ G. B. Crew and J. J. Ramos, Phys. Rev. A 26, 1149 (1982).

e A. H. Glasser et al., Phys. Fluids 19, 567 (1976).

¢ R.]J. Hastie et al., Phys. Fluids 3o, 1756 (1987).

e A. M. Krymskii and A. B. Mikhailovskii, Fiz. Plazmy 5, 501 (1979) [Sov. J.
Plasma Phys. 5, 279 (1979)].

e B. N. Kuvshinov and A. B. Mikhailovskii, Fiz. Plazmy 14, 778 (1988) [Sov. ].
Plasma Phys. 14, 457 (1988)].

¢ J. Manickam, Nucl. Fusion 24, 595 (1984).

¢ A. B. Mikhailovskii, Reviews of Plasma Physics Vol. 9 p. 1 (Ed. M. A.
Leontovich), Consultants Bureau (New York, US), 1986.

e A. B. Mikhailovskii, Instabilities in a Confined Plasma, Institute of Physics
Publishing (Bristol, UK), 1998.

¢ F. Porcelli et al., Plasma Phys. Control. Fusion 38, 2163 (1996).

e M. N. Rosenbluth ef al,, Phys. Fluids 16, 1894 (1973).

e V. D. Shafranov, Zh. Tekh. Fiz. 40, 241 (1970) [Sov. Phys.-Tech. Phys. 15, 175

(1970)1.

S. Tokuda et al., Nucl. Fusion 22, 661 (1982).

e L. E. Zakharov, Fiz. Plazmy 4, 898 (1978) [Sov. J. Plasma Phys. 4, 503 (1978)].



Infernal modes

Infernal modes are a particular class of internal kinklike perturbations,
i.e. helical distortions with a principal poloidal harmonic of helicity
say m/n located within the plasma, which can be driven unstable by
pressure gradients when the safety factor is flat or the magnetic
shear is small over a wide region. The significant reduction of field
line bending stabilisation over the broad region of weak magnetic shear
(this is due to the first term in (6.19)) allows pressure effects to dominate
the dynamics of the perturbation, potentially triggering the instability.
The important feature of infernal modes is that, similar to the m = 1
internal kink mode with a hollow safety factor, they do not necessarily
require an exact ¢ = m/n resonance to occur. An example of safety
factor profiles prone to developing infernal modes is given in figure g.1.

With a flat safety factor over a vast portion of the plasma, even very
small pressure gradients can destabilise these perturbations, therefore a
careful optimisation of the current and pressure profile must be deployed
in order to operate in instability-free conditions. Hence, the aim of this
chapter is to describe the driving mechanisms of these perturbations,
and to identify the associated (in)stability regions in the appropriate
parameter space.

Although infernal modes are more commonly observed in reversed
shear configurations (an example of a typical ideal MHD perturbation
in shear reversed experiments is shown in Fig. 9.2), here we focus primar-
ily on cases in which the safety factor is monotonic and flattened across
the whole internal region (cf. profile (a) in Fig. 9.1). Thus, the analysis
of the infernal instability is divided into two domains: a core low-shear
region extending from the magnetic axis to some radius in which the
safety factor is flat with with ¢ ~ m/z, and an outer high-shear region

3|3

Figure 9.1: Model safety factor profiles,
monotonic (solid line, (a)) and weakly
reversed (dot-dashed line, (b)), which
may be susceptible to infernal modes.
Note that these are highly simplified pro-
files: in experiments the transition of ¢
from flat to sheared at ry is smoother.
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The m = 1 version of the infernal mode is
also known as quasi-interchange mode

q(a)f

q0

Qmin

¢" [a.ul]

(b)

0 0 a

Figure g.2: Example of experimentally
relevant safety factor (a) and fluid fluctu-
ation £ (b) associated with infernal-like
perturbations with poloidal mode num-
ber m > 1 for gmin > 1 (see e.g. Man-
ickam (1996), Fredrickson (1996), Ok-
abayashi (1998)).

! These can be included if shaping ef-
fects, such as elongation and triangular-
ity, are retained.

In the low shear region we still have
£0) 20,

where the magnetic shear is of order unity. Similar to the analysis of
chapter 8, we consider an ideal metallic wall directly interfaced with the
plasma, i.e. there is no vacuum gap. We also strictly assume ¢ > 1, so
that m = 1 internal kink modes do not develop.

The derivation of the governing equation is carried out separately in
the low and high-shear regions by taking the appropriate limiting cases
of (7.65) and (7.71). The dispersion relation, that is the relation which
links growth rate and equilibrium quantities (pressure, current etc.), is
then obtained by joining the resulting eigenfunctions at the transition
point between low-shear and high-shear regions. To simplify the algebra,
we work out the calculations with a highly simplified yet physically rele-
vant pressure profile. These techniques are also applied to address the
stability of infernal modes in scenarios with a non-monotonic safety fac-
tor. A more detailed analysis of the case when an exact m/z resonance
appears in the plasma is briefly discussed at the end of the chapter.

9.1 High-shear region equations

We first examine the region of high shear for which ru’ ~ k|| ~ 1, which
extends from 7y to the plasma boundary. We shall consider global slow-
growing modes for which y/wy4 ~ € (cf. §7.2). Similar to the analysis of
the m = 1 internal kink mode, we assume that the radial fluid displace-
ment ¢ can be decomposed in a Fourier series of the form (7.17), that
is

é:r — ég:nei(mﬂ—n¢) + §;+1€i[(m+1)ﬂ_n¢] + f;_lei[(m—l)ﬂ—nqﬁ] T (91)

where the sidebands are ordered according to (7.18), i.e. &, ., ~ €&,
and m ~ n ~ 1. Higher order poloidal harmonics are neglected." As
usual, we fix the toroidal mode number 7z (there are no couplings be-
tween different n’s) and omit to write the subscript z.

According to (7.65) and expansion (9.1), the radial structure of the
main mode m is described at leading order by (7.69), whereas sidebands
obey equation (7.71). Multiplying (7.69) by &7, which is assumed to be
a real function of r, and integrating from ry to a yields

r a al . r\2 g :
P

I mW " dr dr =0. (92)

The ideal conducting wall boundary condition (6.16) dictates &;,(a) = 0.
Since k|(r9) ~ € and k|| ~ 1 for rp < r < a, the first term in the equation
above can be set to zero, and so we are left with an integral of positive
definite quantities. Hence, in order for (9.2) to be fulfilled, we must have

&, =0, forr <r<a. (9-3)

Consequently, because of the vanishing of the dominant harmonic in this
region, coupling terms in (7.71) vanish as well. Thence, the sidebands
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obey equation

1d X dé:irn+ r
o | lm = D= =)~ [(m = 1) = 1)+ Do = P60 =0,
rdr dr

(9-4)
which is nothing but (7.69) specified for the harmonic m + 1 instead of

m.

9.2 Low-shear region equations

In this section we deal with the eigenmode behaviour where ¢ is flattened.
Within the low-shear region, we deploy the following ordering

W' =0, and kj=mu—-n~eg, (9-5)

and assume that expansion (9.1) still holds. Furthermore, for the sake of
simplicity we set o = 0. We shall analyse the equations for the sidebands
first.

9.2.1 Sidebands

In §7.3 we saw that the contravariant toroidal component of the per-
turbed magnetic field is £ times smaller than By¢7,/+/g (see equation
(7.26)). This allows us to write (cf. (7.25))

(VEB" ) ~ - (VEB )

with £ = m,m + 1. Using (7.7) and (9.5) we readily obtain r(\/EE’ﬂ)m ~
(@B’)m ~ erBy&),. From this, we see that the coefficients C;}_J and Dil
appearing in the equation for the sidebands (7.71) can be neglected: they
indeed depend upon the magnetic perturbation of the main mode, and
thus are small because £|| ~ & (cf. (9.5)).

Hence, using the fact that ¢ = m/n, we obtain

14 (e :

R )
O(m+1DEZ (§) = 0. (9.6)

2 r _m
rdr dr )_[(mil) ~ U

n230
Introducing the ballooning parameter (see (4.41))

_ 2Ropq’
B;

’

and making use of Egs. (7.59) and (7.63),” the equation for the side-

bands can be recast in a more compact form as

e o e B

As in §8.2, the m — 1 and m + 1 harmonics are referred to as the lower
and upper sidebands respectively. We now need an equation for the
main mode &;,. This is derived in the next subsection.

2 Recall that (l/Bg)il =r/Ry.
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With a constant safety factor, we have
Jé
(5

Y) = 0 at leading order. Moreover

0
recall that ]%’/r ~ By and (N) ~ r/Ry.

3 Note that the higher the ¢ the larger
the d¢ for which k)| ~ e.

9.2.2 Dominant harmonic

Following the analysis presented in section 7.5.1, the equation for the
dominant radial fluid displacement is given by Eq. (7.65). By means of
(9-5) and equation (7.55), we may write P = Rop;/By. Therefore, using
(7.67) we can simplify (7.65) to obtain at leading order

) . 2 der 2

1d B2 e 2| %n —m? - [k + L e
rdr I wi dr I wi

’ 2 ’

m Ropy | Ropy ((R*) (R*)F’ ¢

Bg By F F? n
. R() m/ m/ ~ _ m/ _

wimpt 7 |~ BN () - B (ap)] =0, (98)

m’#0

where we recall that p is defined by (7.59). By employing (7.34) and
(7.63) in the limit of small growth rates, the inertia enhancement factor
is easily computed (cf.section 8.1.1)

Ry / 2m?y? [1d [ 4dé; 9

- Em A — - _omy _ -1 r .
ey D Bu () =i | (PR | = - DELL (99)

2
p— nrwy

where we exploited the fact that ¢ = m/n.
The second line of (9.8) can be simplified by means of (4.31), (4.33)
and (5.21) yielding in the limit s — 0

, Bofa 2r 9, a 2
F=—|--—], (R =—-1Ro|—+—=].
92(2 RO) W= 0(7 RO)

This allows us to recast (9.8) as

1d | 4, dé, 9 ra [ n? a?|
m["Q dr]+[<1"">Q+R—o(ﬁ‘1)‘7 &
_mR w e
+ anB‘:) > |ow - Ex )| =0, (9.10)

m’'#0

where the term Q containing the inertial contribution, namely the growth
rate, is given by3

2 2 2 2 2
0= % (kﬁ + %(1 + 2%)) ~ (%9) + n;/a)Q 1+ 2%). (9.11)
4 4
In the last passage we approximated ¢ ~ m/n + d¢ with ¢ < 1, con-

forming to the ordering in (9.5).

For the last term in square brackets on the left-hand-side of Eq.
(9.10), a separate treatment is needed depending on whether m = 1
or m > 1. This is because, as discussed in sections 7.5.2 and 8.2.1, when
m = 1 the radial displacement of the lower sideband with m —1 = 0
vanishes and the associated poloidal magnetic perturbation computed

1

o . . 1 _
from (7.25) exhibits an apparent singularity of the type —— = 3.
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Let us analyse the m # 1 case first. From (7.25) and (7.26) we have

(@Br)mil = iiTBo%f:”il, (\/Egﬂ)mil =-———(r §m+1)

(1+ m)

When these are plugged into D!, with the help of (7.59), (8.12) and
(8.14) we obtain

w n lm[)
D [D _ g™ ()] 00

m’#0

1-m 94 ’ r—1+m 9 ’
m &7 —Mm &7
1+m (r g"”l) * 1-m (r §’"—1) ] )

Conversely, if m = 1 we follow the same steps employed in §8.2 to
show that &) = 0 while (@Bﬂ)o is given by (8.13), whose expression at
leading order reads

5 l’
having taken into account (qg.5). Thus, lettlng po — 0, one has
m’ m n By 9 (. 3.1\ 2er
Z D" — ET" (p) —z— ar (762) +aéq|.
m’'#0

Therefore, we can finally cast equation (9.10) as

1d dér, n?
rdr[r dr } [(1 m2)Q+_(ﬁ_ )——fm

alr —-1-m ’ r —1+m B ,
2 1+m (72+m§’r"+1) 1w (72 m‘f’r"‘l) ]’ m>1,
a|r @,
_ = — =1.
2 ( ) * 34 "
(9-.12)

Hence, for infernal modes, the fluid perturbation of the form (g.1)
in the low-shear region is completely determined by equations (9.7) and
(9.12). We are now ready for the derivation of the dispersion relation,
which will be aim of the next section.

9.3 The dispersion relation

Let us first note that, since (7.65) does not exhibit singularities if ¢ >

m/n in the low-shear region, then £, has to be continuous in the domain

0 < r < a. Thus, thanks to (9.3), we have &} (r)) = 0. We may still This is a subtle point and it is discussed
suppose that this holds true if the safety factor drops below m/#n in the in the box at the end of this section.
shearfree region as long the condition |¢ — m/n| ~ ¢ is fulfilled in the

core so that the singularity at the m/z mode resonance is regularised

by inertia (i.e. there is no narrow inertial layer where strong gradients

develop). In analogy with the discussion presented in section 8.2.2, a

series of successive integrations of (7.71) across ry shows that both &7

and d§; ,/dr are continuous at 9. As for the m = 1 internal kink,



124 INFERNAL MODES

4 That is either g;n+1(a) =0 withno ¢ =

+1 : :
HL> resonance, or with &7 1(rs) finite at

the ¢ = mT+1 resonance 7y if it appears in

the plasma.

any inertia contribution coming from the resonances associated with
the sideband harmonics (the m + 1 in our case), if they appear in the
plasma, turns out to be negligible. We have now all the elements to
compute the dispersion relation.

We shall focus on the m > 1 case first. Equation (9.7) can be inte-
grated once giving

1+m

rraé;, (9.13)

’
-172m [, 2+
r +m(r ’”ffnﬂ) =L+

where L. are some constants. Multiplying the equation above by rl*?m

a further integration yields

2+2m r
2+m &1 _ T Li 1+m 1+m r
el =0+ 71 9m + 5 ‘/0 r"aé, dr, (9-14)

where C; are two additional constants of integration. It is obvious that
regularity on the magnetic axis requires C, = L_ = 0.

In order to have an expression the constant L., we evaluate (9.13)
at 79 exploiting the fact that &],(r9) = 0. This gives
rdé; i /dr

r

L+:ro_'"(2+m+
>m+1

) é‘::’n+1(7‘0)‘

70

The quantity £7 (7) is obtained by evaluating (9.14) at 7). Combining
this result with the expression of L, above gives

a )
Ly _1+m (2+m+c)/ g gy (9.15)

1+m rg+2m m-—_¢_ 0

where we defined (e — 0)
rdéf”nﬂ/dr

r
m+1

c = .
1r0+e€

Here ¢ is a well defined quantity thanks to the continuity of £] _; and its
derivative at 7y, and its expression is obtained by solving equation (9.4)
for ¢; | with appropriate boundary conditions.# Thus, plugging (9.13)
into (9.12) gives

1d | 4, dé, 9 ra (n? ;oo [(r"Ly
v [ | a-mte B (1) e 5 (55) -0
(9-16)

where L, is given by (9.15).

For m = 1, it is straightforward to show that one obtains precisely
(9.16) with the very same definition of L, given by (9.15).

Let us note that (9.16) is a linear function of £, so that &), /A4 with
A some number is still a solution of this equation. We thus divide the
equation above by 4 = fom r“m/rg“"affndr and cast (9.16) as

1d [, . dX
?E[’QW

n

+ (1—m2)Q+;—a(—2—1)}X
0

m2

r\"1+m (2+m+¢
70 2 m-—_¢




where X = &) /A. The general procedure to obtain the growth rate
consists in first solving (9.17) with the boundary conditions X (r9) = 0
and either X(0) finite for m = 1 or X(0) = 0 for m > 1,°> and then
computing the following expression

70 Tl+m 1 70 rl+m
Xdr = — rdr =1. a8
/0 rgﬂ"a[ r A./o rg“"agm r (9.18)

To compute the integral above, an exact solution of (9.17) is required
which, in general, has a complicated form even for simple pressure pro-
files. It follows that in most cases the associated dispersion relation is so
involved to be of no practical use.

Upon inspecting (9.16), we see that the key physical ingredient char-
acterising the “infernal equations” (9.7) and (9.12) is the presence of a
pressure gradient in the low-shear region which drives the coupling be-
tween the main mode and its neighbouring sidebands. Now, one notices
that (9.18) involves an integral of a¢;,. This induces us to conjecture
that the exact shape of the pressure gradient is not really fundamen-
tal, as this appears under a sign of integration over the whole low-shear
region. Thus, in order to simplify the analysis, and yet having a mean-
ingful result, we take a top-hat pressure profile with the step located at
0 < 1y < 19 as shown in Fig. 9.3. We denote with p; and py the values
of the pressure on the magnetic axis and at r, < ry respectively. Hence,
we write

a = —2Ro[po —pl]qzé(r - r[,)/Bg = 150(r — rp)a,

where py < p1 = po(0) with 6(r) indicating the Dirac-delta function of
argument r. The expression above defines the parameter
= _gRolp2 —2111] 2
) BO
Here we shall approximate ¢* ~ (m/n)?.

Thus, instead of using (9.17) and (9.18), we follow an equivalent
but slightly more straightforward procedure which requires (9.16) only.
Following the mathematical steps indicated in the box at the end of this
section, with such a pressure profile, a double integration across r, shows
that £; is continuous at this point. Hence, its expression which fulfils
the correct boundary conditions at r, and 7y is readily obtained

(r/rp)m_l, r <1,
En =1 (r/r)" = (r/re) ™! (9-19)
(rp/10)™ L = (rp/10)™™~ 1’

where, for the sake of simplicity, we normalised ¢;, to unity at 7.

We point out that the eigenfunction of the m = 1 infernal mode
differs from the typical top-hat function associated with the internal kink
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5 This determines the two constants mul-
tiplying the two independent solutions of
the homogeneous second order differen-
tial equation.

Note that this instability driving mecha-
nism is exactly the same as the one of the
m = 1 internal kink mode.

Figure 9.3: Model stepped pressure pro-
file. The location and height of the
step may be determined by imposing that
the global 8 and pressure peaking factor
have some given values.
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Figure 9.4: Safety factor profile (a)
and associated eigenfunction of an un-
stable m = 1 mode (b) showing the
smooth transition from infernal to kink-
type structure of ¢] as the value of ¢
on the axis (gg) drops below unity (see
Hastie (1987) for a full numerical treat-
ment). The horizontal dashed line indi-
cates the ¢ = 1 level.

6 This corresponds to the case of vanish-
ing current outside ry (see Eq. (4.28)).
Notice that we do not consider d¢ cor-
rections to the expression of ¢ as these
are of higher order.

qo < 1
Q=1 —
S qo<1
i 5,
[ RS CEEEE R o
L@ o~ (b)
0 70 a 0 70 a

analysed in the previous chapter in that it is smoother. It is worth to
point out that in such a case the structure of the eigenfunction of the
unstable perturbation transitions continuously from infernal to kinklike
(i.e. stepped) as ¢ drops below unity and ¢(0)—1 becomes more negative.
This behaviour is shown in figure g.4.

Thus, exploiting the Dirac-delta behaviour of @ and taking ¢ ~ m/n,
we multiply Eq. (9.16) by r and integrate across r, yielding

=0, (9.20)

-

2+2
df,’nﬂ +7pa/c n? ol+m (2+m+¢ ’p+m
Tp m—c¢

r — 1|+« ——
pQHdr Ry \m?2 ) r(f”’”

where Hr,, = ()r,+e = (*)r,—e with € indicating, as usual, an infinitesimally
small positive quantity. Using (9.19), one has

3% B 2m
rp |:|: dr ]] . = —1 _ (yp/m)Qm . (9.21)

It only remains to calculate an expression for ¢. This can be easily

obtained by assuming that the safety factor is increasing parabolically
in the high-shear region, that is ¢ = m/n(r/r)? for r > r.% With such a
safety factor, the solution of (g9.4) reads

m —2-m
4 () + 4 (7)

(m+1Du—-n

g:n+1 = ’ (9'22)

where 7, = 194/(m +1)/m. If ry < a, that is the position of the ¢ = 2
resonant surface is inside the plasma, A; and 4y are chosen such that
&' ., isfinite at 7. For the case of r; > a we instead require that £7 . (a) =

0. This then yields

4 -1, 7y < a,

i a 242m
A1 - (—) , Ty > a.

Ts
Therefore, by means of (9.22), the quantity ¢ is readily obtained:
2+ 3m+ mﬁ—i(n/rg)%%

A
1+ A_i(rs/rO)Q-'—zm

¢ =

(9-23)
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By plugging (9.11), (9.21) and (9.23) into (9.20) we finally obtain the

dispersion relation for the ideal infernal instability:

(E)2+2m _2] (r_p)Q+2m
70 70
TpQ¢ n? oq 2
"R (HT)}(W) ’ (924

where either 7, = r; for 7, < a, or r, = a for r; > a. The growth rates

)’2

2,,2
na)A

9

m
1+2% ) =
(+n2) 2m ey

1 7 2m
_(E) { 21+m

and the associated stability regions obtained from (9.24) are shown in
figure g.5. The destabilising role of the pressure gradient is evident, as
well as the field line bending stabilising effect represented by the term
proportional to §¢. Note that the farther the central ¢ from a rational
value, the more stable the system. It should be noted that we allowed
negative values of 6¢ < 0 under the assumption that inertial effects
(i.e. y? terms) are strong enough to regularise the singular behaviour at
the resonant point where ¢ = m/n. A more detailed discussion on the
instability dynamics when ¢ drops even further and inertia regularisation
is severely weakened will be discussed later.

This exhausts the analysis of infernal modes of arbitrary m and =
mode numbers (m > n) in scenarios with a monotonically increasing
safety factor. In the next section we shall briefly address the problem of
infernal stability in hollow ¢ plasmas.

Eigenmode behaviour across steps

By inspecting (7.65), we formally write the equation for the main mode

& as
d d&ér
- (ﬁ f;") ~ fuén = fi =0, (9:25)
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Figure 9.5: Growth rate for n = 1 (a),
n = 2 (b) and n = 3 (c) infernal modes
with rp/a = 0.5, Ry = 10, rp/a = 0.4,
@ = a./(m/n)%> = 0.062. The shaded ar-
eas in (d) indicate the instability regions.
The mode numbers of the dominant har-
monic are indicated.
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7 In computing these coefficients one has
to take into account possible resonances
of the m + 1 harmonic. These may occur
in either of the regions 0 < r < r; and
r9 <r<a.

where f; is a continuous function, with f; and f; discontinuous at most.
We take fi # 0 everywhere but on the magnetic axis. The infernal or-
dering assumes that f; ~ fo ~ &2 for r < ry (low-shear region), whereas
fi ~ fo ~ 1for r > ry (high-shear region). We let f3 ~ &2 across the whole
domain. Integrating (9.25) across ry gives

2] -

Due to the continuity of fi, one has fi(r)) ~ &2 so that this equation

r)—€

does not provide information on the &% order of d&7 /dr at 7. Therefore,
dé7, /dr may be discontinuous at 7.
Contrarily, after integrating once (9.25) from o to some radius r, we may

dy 1 [T,
2= 7 | e+ e

having assumed that this expression is well defined on the magnetic axis.

write

We notice that the right-hand-side of this equation is of order 1 across
the whole plasma column. A further integration across ry shows that &,
is continuous at this point.

9.4 Infernal modes with a reversed ¢ > 1

We shall consider a non-monotonic safety factor similar to the one of

figures 9.1 (profile b) and g.2. Let us assume that ¢ ® m/nforr <r <

and focus on modes with m > 1 (m # n). In analogy with the analysis

of §9.1 we multiply (7.69) by &;,, and integrate from 0 to r; and from 7y

to a. This shows that £, = 0 for 0 < r < r; and for rp < r < a, and thus

implies that the sidebands fulfil equation (9.4) outside the flat-¢ region.
From (g.13) we obtain

1

’ +
(rQimé:;zil) — LirliQm + Tmrlimaé:rrn' (926)

Evaluating the equation above at r; and ry respectively gives

rEmp. dér /dr
1 =+ . ~ m+1
Eran(n) = 0————, with &y = (r—) ,
m+1 2 +m + Cil :’lil 1
yrmp, dér - /dr
2 + . o m=+1
& q(r) = ————, with & = (r—) .
ml 2+ m+ éeo * i ”

Here, the constants ¢, and ¢.9 are obtained by solving the equation for
the sidebands, that is (9.4), in the regions 0 < r < r; and 79 < 7 < a7
The constants L, are found by integrating (9.26) from r; to ry yielding

Qxm)P*Q2+m+ )2+ m+éw) [, 1’2 r=magr dr
Li =

— (2t m + Eeo)(2m — Eq)rE2m

(2 £ m + Cuq)(2m — Eug)r2=2m :

2
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Contrarily to the case of monotonic safety factor, the constant Z_ is not
vanishing. However, if r1/r9 — 0, (9.15) is recovered with L_ = 0. By
means of (9.26), equation (9.12) becomes (cf. (9.16))

d | 5. dé,
E[err

+7r

2
a-m)Q+ & (% —1)]5,'"

1+m 1-m
L L_

T+m  1-m 9-27)

Analogously to what we did in §9.3 for the derivation of (9.20), we
assume that the pressure has a step located at some position 11 < r, < 1y
such that @ = 7,6(r — rp)a, with @, defined as before. Normalising
&,(rp) = 1 for convenience, the dispersion relation is then obtained by
integrating equation (9.26) across r, yielding®

VQ[V%H +_r/,ac n—2—1 +ﬂ r;’L++r[j’”L_ =0
P<Uar 1y, " Ry \m2 2 \1+m 1-m ’

where instead of (9.21) we have

& (Tp/TQ)Qm - (Tp/ﬁ)zm
rp[{ dr Hy B _Qm[l — (rp/m9)?™][1 - ("p/’l)%]'

For sufficiently small r; /79 the dispersion relation above reduces to (9.20).

As for the case of the m = 1 internal kink mode with two ¢ =1
resonant surfaces, the stability analysis of scenarios with a hollow safety
factor with a broad region of flattened ¢ ~ 1 is much more complicated
than the one just discussed (Kuvshinov (1989g), de Blank (1991)). We
point out, however, that if r; is either close to ry, or sufficiently near to
the axis the results of §8.6 or §9.3, respectively, should apply.

We should finally note that instabilities exhibiting an infernal-type
behaviour, i.e. characterised by a dominant mode of helicity (m, n) with
m and n of the order of unity accompanied by two smaller sidebands
with poloidal mode numbers m + 1, can be observed also in scenarios
with small but finite magnetic shear as long as the pressure gradient
is strong enough to drive mode coupling. This is elaborated more in
detail in the next section.

9.5 Hybrid kink—infernal perturbations

In the preceding sections, we wrote ¢ = m/n+d¢ in the low-shear region
and allowed d¢ to take positive and negative values. The eigenfunction
was assumed to vanish at the transition point between low and high
shear regions under the assumption that inertial effects are comparable
in amplitude with those associated with field line bending, that is

kH ~ )//a)A. (9~28)

8 Notice that Ly~ a,.

129
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9 This means that pressure driven
toroidal coupling is allowed to still oc-
cur at leading order, but inertial effects
only matter in a neighbourhood of the
¢ = m/n resonance.

However, if an exact ¢ = m/n resonance appears at some radial
position r; within the plasma, a radical change in the character of the
eigenfunction may be expected either close to marginal stability when
inertia is small or when 6¢ becomes sufficiently negative so that ordering
(9.28) no longer holds (this was hinted in figure g.4). To treat such a case,
we have to tweak the infernal analysis outlined in the previous sections.

Let us consider the case of a monotonically increasing safety fac-
tor in which, for 0 < r < r,, both ru” and £ are small quantities of order
& while for r > r; we take s ~ 1.9 Furthermore, we keep 8 ~ & and im-
pose the usual ideal wall boundary conditions at r = a. For simplicity,
we focus on marginal stability (y = 0) only and assume ¢ > 1.

In the region of large shear, one still has &} (r > ;) = 0 (see (9.3)).
Where the magnetic shear is small instead, that is for 0 < r < r,, we let
the perturbation obey equations (g.7) and (9.12) with (cf. (9.11))

Q=K

where now £ is a function of r. In addition, differently from what has
been discussed in §9.3 but analogous to the m = 1 internal kink mode,
we allow &, (r; — €) with € — 0 to be finite.

Therefore, we find that integration of (9.7) across r, yields

—1F + ’ 1 i m
)], =5

having used the notation a(r;) = ;. It easy to see that & | are contin-
uous at r,, hence we are left with

rdf:nil _ rdgyrnil + 1+m
dr re—€ - dr Ts+€E 2

aséy(rs —€). (9-29)

This shows that, contrary to the ”“standard” infernal case, the radial
derivatives of the sideband harmonics have a jump at r;. Notice that
this relation bears a close resemblance to (8.19).

Proceeding further, we have that both equations (9.13) and (9.14)
still hold with € = L_ = 0. Thus, evaluating (9.13) at r; — € and using

(9.29) gives (cf. (9.3))
rdffnﬂ/dr

r
m+1

Ly=r"2+m+0)é (r), (= .
ro+e

Finally, getting &7 ,(r;) from (9.14) (again, this is computed at 7; — €)
we find that the expression for L, is given by (see (9.15))

L, :1+m(2+m+5)/“‘671+ma§;d7_
0

1+m p22m\ m—¢

Plugging (9.13) into (9.12) eventually yields the desired equation for
&; only, namely (9.16). Now, if we adopt the same procedure employed
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earlier and exploit linearity, we can recast (9.16) as'®

P) 9 ]
1d 3k||dX 9 k|| ra (n?
B s la-md) 2y [ -1 x
rdr (r n2 dr (¢ m)n2+R0 m?

(r)'”1+m(2+m+é)
+al|— =0,

Ts 2 m—_¢

where the normalised fluid displacement X is subject to the condition

(9-18))
rs—€ 7.1+m
/ ——aXdr =1.
0

rsz+m

This provides a functional relation between, say, ¢ and § at marginal
stability. We note that the equation X conforms to is formally the same
as (9.17), but the appearance of an exact resonance modifies the bound-
ary condition at r; which now reads (this is immediately obtained from
the equations above)

Rol+m (24 m+¢ n?
X(r - = 2= ( T )/(1—ﬁ) (9.30)

We shall now elucidate how the appearance of an exact resonance
influences stability even when the magnetic shear is very weak. Let us
denote with ¢y the safety factor at the axis and r; some radial position
within the plasma. We take ¢ = 2(r/ r,)? for r > r, (see sidenote 16
above) so that the constant ¢ is fully determined."* Upon introducing
the parameter Ag = g9 — m/n, for r < r, we choose a safety factor of the
form

q = qo, go > m/n (Aq positive),

1= 15+ (o= D)L= )]

go < m/n (Aq negative).
When ¢p > m/n we impose X(r;) = 0, otherwise X has to conform to
(9.30). With a parabolic pressure profile p = po(1 — r2/a?) the resulting
stability boundaries computed numerically for the m = 2, n = 1 infernal
mode are show in figure g.5. In contrast with fig. 9.5-(d), we see that as gg
drops below the rational value m/n (= 2/1 in our example) the marginal
boundary curve in the 8 — gy plane is not symmetric with respect to the
m/n level and stability is worsened when Agq is negative.

We shall conclude with a brief investigation of the eigenmode radial
structure. Computing (9.13) at r; — € and using (9.29) yields
der ldr

r
m—1

2—-—m+

n+e) & (rs—e€)=0.

Since the third term in brackets on the left-hand-side is generally differ-
ent from zero, one must have &; _,(r; —€) = 0. This result in conjunction
with the constraint of vanishing radial fluid displacement at the wall
requires that &7 | =0 for r > 7.

19 Thanks to the smallness of the mag-
netic shear we approximate

2Rop’m2
Bgn2 .

We just mention that techniques similar
to those we just discussed can be applied
to deal with cases with a hollow ¢ as the
ones treated in §9.4.

1 In analogy to (9.23), here we have

2+ 3m + mo(rpeq/1s)2H2m
1+ 0 (g [15)242m

¢ =

with 7,,,1 denoting the resonance of the
m + 1 mode where 0 = -1 if 1 < a
and o = —(a/rp+1)>t2™ otherwise.

25

2.25¢

o
N

1.75F

Figure 9.6: Marginal values of gy for
the infernal mode with a dominant m =
2, n = 1 harmonic as a function of
B defined as in (4.10) with \/g = rRy.
The lower curve has been computed with
rs = 0.6 and € = 0.3 for some different
values of A as indicated. Instability oc-
curs within the shaded areas.
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Figure 9.7: Structure of the radial fluid
displacements of the m = 2,7 = 1 infer-
nal mode computed with the same pa-
rameters of Fig. 9.6 with gy = 1.85.

Hence, normalising by 4 = /073_6 rltm [y2tmagr dr, the behaviour of

the satellite harmonics in the low-shear region conforms to equations

(this holds true even when there is no ¢ = /m/n surface)
:n+1 _ 1+m

L m—2+mfé+r_2_m/rr1+ma/)(dr ,
A 2 Ts m—¢ 0

Xm-1= _§;1—1 =2 = 17"‘_2 /h—f e X dr - /T " Xdr
"4 2 0 0 ‘

Xn+1 =

An example of shape of the radial eigenfunctions when the m/z reso-
nance appears in the plasma is shown in figure g.7. We see that beyond
the standard infernal character in which the pressure gradient drives
the coupling with the first neighbouring sidebands, the displacement of
the dominant harmonic acquires a kink character in that, similar to the
m = 1 internal kink mode, it has an abrupt discontinuity at the position
of the ¢(r;) = m/n resonance. This induces a jump in the radial deriva-
tives of the satellite harmonics at ;. The sudden jump in X is gradually
smoothened as inertial effects becomes strong enough to remove the
singularity at 7.

References

¢ D. Brunetti et al., Plasma Phys. Control. Fusion 62, 115005 (2020).

H.]J. de Blank and T. J. Schep, Phys. Fluids B 3, 1136 (1991).

e E. D. Fredrickson et al., Phys. Plasmas 4, 1589 (1997).

e C. G. Gimblett et al., Phys. Plasmas 3, 3369 (1996).

¢ R.J. Hastie and T. C. Hender, Nucl. Fusion 28, 585 (1988).
e H. A. Holties et al., Nucl. Fusion 36, 973 (1996).

¢ ITER Physics Expert Group on Disruptions, Plasma Control, and MHD and
ITER Physics Basis Editors, Nucl. Fusion 39, 2251 (1999).

e B. N. Kuvshinov, Fiz. Plazmy 15, g10 (1989) [Sov. J. Plasma Phys. 15, 526
(1989)1.
e J. Manickam et al., Nucl. Fusion 27, 1461 (1987).

¢ J. Manickam et al., "MHD Stability Studies in Reversed Shear Plasmas in TFTR”,
Proceedings of the 16th International Conference on Fusion Energy (Montreal,
Canada, 7-11 October 19g6) Vol. 1 p. 453 Paper No. IAEA-CN-64/A5-2, Inter-
national Atomic Energy Agency (Vienna, AT), 1997.

e M. Okabayashi et al., Nucl. Fusion 38, 1149 (1998).

e T. Ozeki et al., Nucl. Fusion 33, 1025 (1993).

e S. A. Sabbagh et al., Nucl. Fusion 29, 423 (1989).

e S. Takeji et al., Phys. Plasmas 4, 4283 (1997).

e F. L. Waelbroeck and R. D. Hazeltine, Phys. Fluids 31, 1217 (1988).
e C. Wahlberg and J. P. Graves, Phys. Plasmas 14, 110703 (2007).

e L.E. Zakharov, Nucl. Fusion 18, 335 (1978).



External kinks

External kink modes are current driven instabilities which can develop
when the plasma is surrounded by a vacuum region. Their effect is to
produce a global displacement of the plasma column which is non van-
ishing at the edge. An example of a corrugation of the plasma boundary
induced by an external kink for different m poloidal mode numbers is
depicted in figures 10.1 and 10.2. Depending on the parallel wave vector
associated with the perturbation and the shape of the current profile,
these type of instabilities can grow on Alfvénic timescales, that is within
few microseconds.

Although it is not uncommon to observe high-m external kink modes
in the early phase of the discharge (i.e. when the current is ramped-
up and the value of the edge safety factor decreases, see (4.29)), long
wavelength external kinks, primarily modes with m < 3, are generally
deleterious. In fact, their uncontrolled growth, which typically happens
on much shorter timescales than those of the response of feedback con-
trollers, is likely to make the plasma column to touch the surrounding
structures, leading eventually to a complete loss of confinement (namely
a disruption).

Hence, for steady and safe tokamak operation, these instabilities
must be avoided. It is therefore of crucial importance to identify pre-
cisely the physical conditions under which external kink modes develop.

This is the aim of this chapter, in which we discuss the conditions
favouring the onset of such instabilities, giving particular emphasis to the
impact of the shape of the plasma current and the effect of a surrounding
ideally conducting wall.

1 1
R/Ro R/Ro

Figure 10.1: Perturbation of the plasma
boundary induced by a m = 1,...,4 ex-
ternal kink. For a mode with toroidal
mode number 7z the lobes rotate n
times for one toroidal revolution (see fig-
ure 10.2).

e iy

Figure 10.2: Example of the 3D struc-
ture of a m = 4, n = 1 external kink per-
turbation.
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R, R
Figure 10.3: Plasma and conducting
wall geometry.

1 Recall that wy = By ith normali-

Ro+/po
sation pg = 1.

10.1 Eigenmode equations

The geometry of the system is shown in figure 10.3. It is assumed
the presence of a perfectly conducting wall at position 4 > a such that
b/Ry ~ €. The most general Fourier expansion of the radial fluid dis-

fr — Z é_‘;l’nei(mﬂ—nqﬁ)’
m,n

placement is

where all the Fourier components are allowed to be, in principle, of the
same order. Let us fix the toroidal number z and, as in §9.1, we take
k)| ~ m ~ 1 with k| given by (7.51). Since coupling between harmonics
with different toroidal mode numbers does not occur, we may write

&= Z gr’ne"(”“?_”‘/’) (n fixed), (10.1)

having omitted, for the sake of simplicity, to make explicit in &, the
dependence upon the toroidal mode number zn. In order to model the
fast timescales typical of the growth rates of current driven external kink
instabilities, we let y/w4 ~ 1 while 8 effects are kept to be of second
order in &.* This highlights the fact that external kink modes are current
driven perturbations. Now we shall discuss the governing equations,
treating plasma and vacuum regions separately.

Within the plasma, a perturbation of dominant helicity (m, n) obeys
(7.65). By means of (7.14), (7.57), (7.67) and approximating (L) =
1/(rRy) and (N) = r/Ry, it follows that to leading order the dynamics
of the harmonic &}, in expansion (10.1) is described by

14d | . 2\ dg; o I
-—lr3(kﬁ+7—2)ﬁ]— (m?—l)(kﬁ+7—2)—7—2ﬂ &, =0,
rdr w? dr wy wy PO

(10.2)

where we recall that k|| is defined in (7.51). Notice that pressure terms do
not appear, and no coupling between harmonics with different poloidal
mode numbers occurs at this order. The inertia enhancement factor
associated with plasma compressibility (cf. (7.34)) is also absent due
to the ordering of the growth rate and § which makes this contribution
to be &2 times smaller compared to the dominant terms. An important
point to stress is that contrarily to the m = 1 internal kink and infernal
modes, it is crucial to include mass density gradients.

Focussing now on the vacuum region, the governing equations for
the magnetic perturbation are (cf. (6.6))

VxB=0, V-B=0.

This allows us to write the vacuum perturbation as B=V X, with y
obeying
Viy =o0. (10.3)
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Expanding y in a form similar to (10.1), equation (10.3) yields at leading

order
D)

(rxm) - mTXm =0.
It is clear that the large aspect ratio cylindrical approximation proves to
be accurate enough. Hence, the description of external kink modes in
a torus is exactly the same as the one in a cylinder. Since B!, ~ y/,, we
multiply the expression above by r, and then take the radial derivative
to eventually give

2
[r (VeB,)') = =B, = . (10.9)

Imposing the boundary condition (6.13) at the perfectly conducting wall,
the solution of (10.4) reads
N (f)m - (é)m (10.5)
"o\b r
In the vacuum, the safety factor increases parabolically (cf. Eq.
(4.48)) and is continuous at the plasma-vacuum interface a in absence

of surface current densities. Hence, we introduce a fictitious vacuum
displacement ¢, such that®

VEBy, = rlm(a/r)*/q(a) - nlé, (10.6)

where ¢(a) denotes the value of the safety factor at the plasma boundary.
We can thus recast (10.4) as follows

1d 3 Qdé:v
-— |7k
rdr [r I dr

] — (m* - Dkjé, = 0. (10.7)

Since pg = 0 in the vacuum region, we see that £}, with &, obey the same
equation, that is Eq. (10.2). We may therefore identify them employing
the symbol &), also to denote &,, bearing in mind that the vacuum per-
turbation is obtained by solving (10.4) for B?. The dispersion relation
is then derived by joining the plasma and vacuum solutions applying ap-
propriate boundary conditions at the plasma-vacuum interface. These
calculations are carried out in the next sections.

10.2 Necessary condition for instability

Assume that there are no surface currents at the plasma boundary so that
g is continuous at r = a. Boundary condition Eq. (6.7) forces B, and
thus &7, to be continuous at the plasma-vacuum interface. Therefore,

multiplying (10.2) by r and then integrating across a yields

9 dé_‘;n ate R2y2
a||ki+ y—z — ——pola - €)&,(a) =0, (10.8)
wy dr B2

a—e

In a cylinder one has g"” = 1, g%’ =

1/7%, g% = 1/R2, g"" = ¢’ = 0 and
Vg = rRy. Note that in such a geometry
there is no distinction between rectified
and geometric poloidal angles.

2 Notice that we are not concerned if &,
is singular at some locations a < r < .

We use (6.11) with the condition ny-Bjy =
0 (it is easily show that the equilibrium
field is continuous at r = a).
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Note that ¢(a) > m/n is a sufficient
condition for stability. This translates
into a constraint on the plasma current
I, which we recall scales as Iy « 1/g(a)
(see (4.29)).

where € is, as usual, an infinitesimally small positive quantity. Notice
that we allowed radial excursions of the mass density across the plasma
boundary, and took pg(a + €) = 0 meaning no plasma beyond r = a. A
trivial rearrangement of this expression gives

2 ate 2,2
m df,’n/dr] R3y ( dél ldr )
al——n - = pola—e€) |1 +a——— . (10.9)
(q(a) ) [ & oo B2 £ lame 9
Furthermore, the following relation holds
d [ .2 der 2 2 ’ 2
£ (L) -y o | 2 ear | - s
T\owy @ Wy Wy wy
(10.10)

Thus, if we multiply (10.2) by r¢;, and integrate from 0 to a — e,
under the assumption that &), is a real valued function, by means of

ol

(10.10) we obtain

2
2\ g7 12 m dé,,/dr Ry df,’,,/dr
a’|é,l [a(m—n) e ’_ BQ P(a—f)( A

—/ rk? (r2|—'"| +(m2—1)|g;|2) dr
0 dr

[ 7—31 (1r&5) P+ m?1€12) dr = 0

Plugging (10.9) into this equation yields

a—€ 2
[ (l0g? s nie, ) ar -

2 —
3ierpe( M\ dénldr _/“ o (o %enl? o2 qyer 2
a’|Enl @ n) e e ) rk | ‘ dr| +(m? = 1) 2| dr.
(10.11)

It is thus evident that instability can develop only if the first term
on the right-hand-side of the expression above is positive. By means of
(10.5) and (10.6) we can easily compute

a—df;’/dr = 2m mtl+(m-1) (%) . (10.12)

& ave” m—ng(a) 1-(2)*"

The last term of (10.12) is always negative. Therefore, ¥? in (10.11) may
become positive only if

m
g(a) < — (10.13)

that is the external kink mode with helicity (m,n) can be made
unstable only if its associated resonance occurs in the vacuum. We
stress that this is a general result independent of the shape of the current
and mass density profiles inside the plasma.



10.3 Marginal boundaries

The marginal stability boundaries are readily obtained from (10.8) by
setting y = 0, yielding

( m )2 [dg;, Jdr
——n| a .
g(a) €
The first term in the square brackets, which is associated with the vac-

_dedr

a+e én

B } =0. (10.14)

uum solution, is given by equation (10.12), while the second is obtained
from solving (10.2) in the region r < a with vanishing y. It is worth
noting that the marginal boundaries are independent of the shape of
the mass density profile.

For generic current profiles, the solution of equation (10.2) is typi-
cally tackled numerically. However, an exact analytic solution can be
found for a current profile of the form

RYJ? {Q/qo, r <,

10.1
BO 0, r >, ( 5)

with 7p < a measuring the extension of the current channel. The corre-
sponding ¢ profile is flat and equal to go for 0 < r < 79, while ¢ = go(r/79)?
for r > 9.3 It is immediate to verify that ry/a = /go/¢(a). Integrating
(10.2) across 79 shows that both dé7,/dr and &), are continuous at 7.
Hence, with such a safety factor profile, the expression of &7, fulfilling
the regularity condition on the magnetic axis is easily obtained and reads

(r/ro)" ", r <m,

En = CX (1)) ™" + (m ~ 1~ ngo)(r/ro)"*" (10.16)
, T >,

m— ng
where C is a constant. Using this form of the plasma displacement, we

can compute

dé; /d 2

ag’"—/r =m+1- 2m - ng(a) . (10.17)
&n lae 1+ (m—1-ngo)a/r)*™ m—ng(a)
Plugging this result and (10.12) into (10.14) gives*
2
m 1 1

—n — - — | =0. (10.18)

(q(a) ) L+ (m—1-ngo)a/r)*™ 1 (2)*"

This equation is satisfied either when ¢(a) = m/n (cf. (10.13)) or when
the term in the square brackets cancels. We shall now analyse separately
instabilities with poloidal mode numbers m =1 and m > 2.

10.3.1 m = 1 external kinks

We start by noticing that if m =1 and a/b — 0, Eq. (10.18) is fulfilled
only for ¢g(a) = 1/n. Let us take the equilibrium mass density profile to
be a step function, that is (see figure 10.4)

pox H(a—r1), pyod(r—a), (10.19)
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3 This form of ¢ extends smoothly into
the vacuum region.

4 If g(a) < m/n, according to (10.28),
instability occurs when the term in the
square brackets on the left-hand-side of
(10.18) is positive.



138 EXTERNAL KINKS

Po

Figure 10.4: Model equilibrium mass
density profile for the computation of the
external kink stability.

5 Exploit the relation ¢y = qa(ro/a)Q.

This comes from the fact that in the limit
of b — oo from (10.18) one has m — 1 =

ng(a)(ro/a)® < ng(a).

where H denotes the Heaviside step function and ¢ is the Dirac-delta
function. With such a mass density profile, the solution of (10.2) for
m = 11is & = const. This result holds even for y # 0, and, more
importantly, is completely independent of the shape of the current
profile (with a ¢ profile which is finite on the magnetic axis).

When this expression for the m = 1 radial displacement is plugged
into (10.11), by means of (10.12) we obtain

92 2

y—Q:Q(L—n) ( 1 - 1 ) (10.20)

o g(a) 1-ng(a) 1-(2)?
Notice that this equation could have been equally obtained from (10.9).
We see that in the no-wall limit ((a/b)> — 0) the growth rate y? is
always positive for ¢(a) < 1/n. For the n = 1 mode, which turns out be
the most dangerous one, this leads to the celebrated Kruskal-Shafranov
stability criterion

q(a) > 1.

This criterion sets a hard limit on the maximum allowed current that
can be carried by the plasma. A window of stability appears for small
values of ¢(a) if an ideal wall with a/b finite surrounds the plasma.

10.3.2 m > 2 external kinks

In the limit (a/4)*" — 0 and using (10.13), equation (10.18) provides
a sufficient condition for stability expressed by the maximum extension
of the current channel. This is>
10\2 m-—1
G <5
a m
Since 7y/a has to be smaller than unity, the widest window in ¢(a) within
which instability can develop is identified by the following relation:

m-—1

< q(a) < % (10.21)

More precisely, whenever g(a) < m/n the plasma is expected to be stable
if (see (10.18))

M > M. (10.22)

qo m—1

If wall effects are taken into account, (10.18) yields the instability

window )
m-—1+ (ro/b)lm

n(ro/a)*

Under the assumption that (a/b)*™ < 1, for a given g(a) < m/n the

m
< q(a) < >

maximum extension of the current channel required for stability is

2 m-1  (m-1)" (a\2m
() - )

a) " ng@ " Tngla \B



The stabilising role of the wall, allowing for a wider current channel, is
evident.

An example of the region of instability for safety factor and mass den-
sity profiles used in the calculations above in the no-wall limit is shown
in figure 10.5. Wider regions of stability can be accessed by allowing the
current to have different shapes (Wesson 1978).

10.4 Growth rates

We assume an equilibrium mass density of the form of Eq. (10.19), and
the dispersion relation is given by equation (10.9) with po(a—€) = po(r =
0). For the particular case of a flat current, (10.9) can be solved analyti-
cally (a numerical solution is typically needed for more general current
profiles). Setting p; = 0 in (10.2), for r < a the radial displacement
reads

g ot

des, /dr
38

= m—1. Thus, by means of Eq. (10.12)

a—e

It follows at once that a

we then have

Yoo Y 11 (
0)124 _2(7(4) Tl) [m—nq(a) 1_(%)2,,1 . (10.23)

This expression reduces to (10.20) for m = 1. Since y/wy ~ 1, it is
seen that the instability grows on Alfvénic timescales meaning that for
wy of the order of megahertz (which is a typical value for currently
operating tokamaks) external kinks can grow within few microseconds.
Notice that, if a/b — 0, for a given g¢(a) (with ¢o/¢g(a) = 1) there are
always some m and » mode numbers which yield instability, that is no
stable regions can be identified (cf. 10.5). Moreover, one sees that the
stabilising effect the ideal wall at fixed a/b becomes less effective as m
increases.

However, by comparing with Fig. 10.5, we are induced to infer that
more peaked current profiles should mitigate this virulent growth.® This
is indeed the case as exemplified by figure 10.6 where the growth rates
obtained from the numerical solution of (10.2) for two current profiles,
one flat and the other parabolic, are shown.

0.8 m=1
< 0.6
3
oy 04
= m=2
N 02 m=3
0 (b) m:/\4
0 1 2 3 4
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25

q(a)/q0

1.5

Figure 10.5: Marginal boundaries and
expected instability region (shaded area)
for the no-wall external kink stability
with the stepped current profile. The ver-
tical axis measures the peaking of the
current (the flatter the current the more
unstable the plasma).

6 This is not expected to hold for the
m = 1 mode whose growth rate is inde-
pendent of the shape of ¢, or current (cf.
(10.2)).

Figure 10.6: No wall (a/b — 0) growth
rate of the » = 1 and m = 1,...,4
modes versus ¢(a) for a flat mass den-
sity profile with the current of the form
R3J%/By = %(1 —(r/a)?)” with v = 0
(a) and v = 1 (b). With such a profile
one has ¢(a)/qo = 1+ v. High-m modes
are stabilised if the edge current gradient
is sufficiently small.
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On the instability condition

Let us take a current profile of the form (10.15) and assume that we are
close to the stability boundary identified by (10.22) with ¢(a) far from an
integer (that is we focus on a neighbourhood of the oblique lines in figure
(10.5) such that k) (a) > R? po(O)y /BQ We now write the perturbed
plasma displacement as

£, = Xo + X, (10.24)

where both X; and X, are regular at the magnetic axis with Xy/Xy ~
(y/w4)*. We expand (10.2) in orders of (y/w4)? and by means of (10.10)
we obtain (' = d/dr)

2(X,) = (r3k|2|X0’) r(m? ~ DX, = (10.25)
LX) + 1 [172 (1 Xo)'] - m® 7 r Xy = 0, (10.26)

where ¥2 = RZpo(r)y?/B2. Multiplying (10.26) by Xy and integrating
from 0 to a — € (€ has the usual meaning) yields

@’k (a) [Xo Xy - X X{ ] / X08(Xo)dr
= -a*y [ Xo + 1 Xo Xy, + / o ([(TX)] +m2X2) dr, (10.27)
0

having made use of (10.25) with Xj a real valued function. Plugging &7,
from (10.24) into equation (10.8) gives

a/cZ(a) (§v|a+e - X()’la—é) d/CZ(d)X | /}_/2 [rXO, + Xo]a—e =0,

where, for the sake of clarity, we used &, for denoting the vacuum per-
turbation (see (10.7)). When this is used in (10.27) to eliminate X, we

get
CEi(@Xo(a =) [&1],, = X, ] - K@ [XX(],
_ /O g (10X 1? + m2X3) dr.
Dividing this expression by Xo(a — €)¢;,(a) and exploiting the fact that

1/¢é7.(a) = (1 — Xo/X0)/Xola—e with &7 (a) = &,(a), to leading orders in
(y/w4)?* we finally obtain

dfv/dr dX()/dr
( ) [ XO a—€
2X2(a) / (7X0) I+ MQXOQ) dr, (10.28)

having dropped € in the argument of Xj. It is clear that instability
occurs when the left-hand-side is positive. This is computed from
Egs. (10.12) and (10.17).



GROWTH RATES 141

References

e T.]J. M. Boyd and J. J. Sanderson, The Physics of Plasmas, Cambridge Univer-
sity Press (Cambridge, UK), 2003.

e R. Carruthers and P. A. Davenport, Proc. Phys. Soc. B 70, 49 (1957).
e M. Kruskal and M. Schwarzschild, Proc. R. Soc. Lond. A 223, 348 (1954).
e M. Kruskal and J. L. Tuck, Proc. R. Soc. Lond. A 245, 222 (1958).

¢ A. B. Mikhailovskii, Instabilities in a Confined Plasma, Institute of Physics
Publishing (Bristol, UK), 1998.

e V. D. Shafranov, Atomnaya Energiya 1, No 5, 38 (1956) [J. Nucl. Energy 5, 86
(1957)]-

e V. D. Shafranov, Zh. Tekh. Fiz. 40, 241 (1970) [Sov. Phys.-Tech. Phys. 15, 175
(1970)].

e J. A. Wesson, Nucl. Fusion 18, 87 (1978).

e J. A. Wesson, Tokamaks, Oxford University Press (Oxford, UK), 2011.






Mercier modes

We showed at the end of chapter 8 that in a toroidal plasma at low-g with
a monotonic ¢ profile and a magnetic shear of the order of unity, no
long-wavelength global internal modes are allowed if the ¢ = m/n reso-
nance occurs within the plasma. However, with a small shear, along with
infernal modes, highly localised pressure driven short wavelength per-
turbations (m > 1) can also become unstable.

These instabilities cause a localised ripple of neighbouring flux sur-
faces yielding an interchange of the associated fluid elements. From this,
the name interchange modes. Such perturbations, which are typically
characterised by a poloidal spectrum with a dominant Fourier harmonic,
are found in the literature under many names: in a cylinder these are
usually referred to as Suydam modes, whereas in a torus they are known
as Mercier modes, after Suydam (1958) and Mercier (1961) who first
described such instabilities in cylindrical and toroidal geometry respec-
tively. Sometimes these perturbations are also called flute instabilities.
In this chapter, we shall restrict our attention to interchange modes in
a tokamak, thus hereafter we will address these instablities as Mercier
modes (we may still have a brief mention to Suydam modes when the
specific case of a cylinder is considered which is a trivial reduction of
the toroidal one).

Although rarely seen in tokamaks (an example of an interchange-
type fluctuation which might be observed in present tokamak experi-
ments is shown in figure 11.1), the techniques employed in the stability
analysis of Mercier modes, particularly subtle in some points, are usu-
ally employed in the analytical treatment of their resistive counterpart,
namely resistive interchange modes, and also for the more commonly
observed instabilities known as ballooning modes (the latter will be
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Figure 11.1: Example of an interchange-
like perturbation with a core inverted
pressure profile and ¢ > 1 (see In
(2000)). (a) Safety factor and pressure
profiles. (b) Radial fluid displacement of
the Mercier instability.

N Of

1
R/Ro

Figure 11.2: Example of the flux surface
distortion due to a m = 30 interchange
perturbation localised about its resonant
surface (indicated by the dashed line).
Compare with Fig. 10.1.
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discussed in the next chapter even though we will study their stability
properties using some alternative methods). Here we present a detailed
exposition of the derivation of the eigenmode equations for Mercier
modes, and a thorough discussion of the associated stability boundaries
and growth rates.

11.1 Eigenmode equation

As for the instabilities analysed in the preceding chapters, the following
derivation is based on the results presented in §7.4 and §7.5. As usual, we
let po /Bg < &% with rp; ~ po and look at a single toroidal harmonic at a
time with fixed » > 1. Since n > 1 and ¢ ~ 1, it necessarily follows that
m >> 1. These short wavelength perturbations are assumed to be highly
localised about their resonant surface 7, for which & |(r;) = mu(r;)—n =0
(cf. (7.51)). This means that, ideally, the flux surfaces that get distorted
by these instabilities are only those in a very narrow neighbourhood
around 7;. An example of a flux surface perturbed by an interchange
instability is shown in Fig. 11.2.

Following the logical steps discussed in §7.2, we assume that per-
turbed quantities fulfil the condition

i m > 1, (11.1)

with x = (r — r,)/r,. Hence, the mode radial extension is expected to be
proportional to % so that we order x ~ 1/m. From this, we approximate

k|| = —nsx, (11.2)

where here s is the magnetic shear at r,. It follows that nx ~ 1 and
kj ~s.

Using these estimates and the orderings presented in §7.4, from
1

(7.55) one can write to leading order in -
Ry

P~ —p)
BO ]JO’

where it is implicitly assumed that ) = p((r;). The eigenmode equa-
tion is given by (7.65) which, for the sake of clarity, is reproduced below
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for a flat mass density profile (p;, = 0):
1d (rXN) ., dér 1 (aneky . e
—— B By |= | ——=| - m2E (L) - m=2 (2
rdr(1+h [r7 A M P e mr<B§’>
P? oy r? ki [rP ' (R?Y  (R*)F’
2 ’ r
B —Popr2 || = -
+ m” by R0B0+ mR(Q) nrm2 R(Q) 0( I 72 ) én
vimBy . ik G+ D — E () - ElY (Ap)|
ml
Bly2[1d ( ,dé!
oY 3%5m 2 T
=—— "= |- — | - -1 , .
87 [14(4952) e s
where p is given by (7.59). Notice that we allowed the poloidal spectrum
to contain more than one harmonic. It will be clear that, to the required
accuracy, we can take
C B () (N > =
* Ry’ R
We shall now analyse each term in the equation above one by one.
By means of the above-mentioned ordering, and the discussion pre-
sented in §7.4, we easily obtain
li 1’2<N> 2 déer . ﬂQSQBgi 2 dé;,
rdr\1+h I dr Ry dx dx |’
Employing (7.68), the second term on the left-hand-side of (7.65) can be
cast to leading order in 1/m as
1 (aneky . A/ B 2
Making use of (4.31), (4.33) and (5.21) the third term is rearranged as
follows We employ the relations
’ (R® = =Ry (a + 2r/Rg + 25A"),
P2y o ki (rP\" | ((RY  (RHF oo il B
RB+——2P—7’LT—2—2 —Po 2 - ) F' = —RoB by 9
oBo  m Ry m= \ R§ F ——00—§+W(—s)-
_RoGpp)®  srpy (<R2>' B <R2>F’)
B g?ByRy "°\ F F?2
by | 2r 1 ,
%EO[R—O(l—P)+(I+2.YA:|, (11.4,)

where « is the ballooning parameter defined by (4.41) which is ordered
as @ S &. Note that the expression above is intended to be evaluated
at 7,. In cylindrical geometry one has (R%)’ = 0, and the following
replacement should be made:

’ 21, ’
o ﬁl—i( +a+ 2N | - — 1?0(‘
By | Ry q> RoByg?
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We shall analyse now the inertial contributions exploiting the find-
ings of section 7.4.2. The right-hand-side of (11.3) is readily cast as

1d 2 dfrrn 2 . 2 d2§,rn 5.
- y_grs - 7_2(m2 - 1)§m ~ 7_2 9 mzfm s
rdr [y dr w? w? dx

while the term involving Ap is obtained from (9.9) and reads

Ry , om?y? (d*¢T
im E™(AD) ~ m 2T .
im BO; Rep = (e

Note that in cylindrical geometry this term does not appear due to the
fact that no coupling occurs between harmonics with different poloidal
mode numbers. We may point out that for sufficiently small growth
rates, inertial contributions should matter only very close to the mode
resonance where the radial derivatives of &), are expected to become

e

imR / , '
_m2§;n) =20 Z[z‘kHC,',’,‘ + DY — EX(p)] .

large.
By collating these results together, we obtain

G d&r 9
%(xl jx'”)—{mzx2+f—2 3(1—l)+%+m'

qZ
L 7A+20) (a%’n

n2s2w124 dx?

n?s2By
(11.5)

It is clear that, from balancing all terms in the equation above so that
they are of similar magnitude, the magnetic shear must be small hence
we take s ~ €.

We now analyse the right-hand-side of (11.5), namely the contribu-
tions due to couplings with the neighbouring sidebands. Similar to the
term which generates the inertia enhancement factor, these corrections
vanish in a cylinder, thence the following analysis pertains toroidal ge-
ometry only. By means of (7.63) and (8.12), one can verify that

mRy
n?s2B,

EZI(I;) ~ ?_Qé:;til’ (11.6)

with m” = +1 which is valid also when rd¢; | /dr ~ mé) .. Explicitly,
one has

+ rn lp’ r d :n+
Ep) =~ (mfmﬂ + dx-l) -

Without loss of generality, we assume that (11.1) holds for the m +1

modes as well so that
d i 1 (11.7)
m=1dr ' 7

Thus, from (7.49) we see that (\/§B¢)m¢1 ~ Bye?¢! and by means of
(7.25) we obtain r(\/EBﬂ)mﬂ ~ (\/géf)mﬂ. Hence, we can write

(@Br)mil ~ TBOét:nil’ (@Bﬁ)mil ~ B()f,rnil- (11.8)



Employing (8.14), one has from (7.62)

mR / a

m r
~ . 11.
n23230 m m32 é‘:mil ( 9)

Due to the smallness of the magnetic shear, it is immediate to recognise
that this contribution can be neglected when compared with the one
involving E . The remaining term is evaluated using (7.53) which gives

%k”Cm/ ~ ?5,’“1. (11.10)
Thus, since £s/a < 1, we may neglect the contribution arising from
(11.10) compared with the one associated with (11.6).

Using the condition s << 1 once more and thanks to the fact that
A ~ ra, equation (11.5) can be cast as

dér, ar 1 a?
(<x +YE) =R ) - [mPa ) + T L R [
— % Em,( A) = — Z mg :’H—l (11 11)
= n252B() . m p - l m+1— x ) .
having defined
2 1+92 2
y?{ A S et 4 (1+297) (11.12)

n’s2w?
Taking the sidebands ¢, ., to be of higher order compared with the
harmonic &}, they are expected to obey equation (7.71). Since the mag-

netic shear is small, this equation can be reduced to (9.6) or (g9.7). For
localised perturbations with m > 1 this is cast as

d? , ma | d ,
(w — m2) §Mi1 = iT (a + m) fm’ (11.13)
which, assuming once again that (11.7) holds, shows that

frrnil ~ a’frrn’

implying that the right-hand-side of (11.11) is a quantity of order ‘;—jf;
Equation (11.13) can be readily integrated giving

d , ma _, n
(%””)fmﬂ =gt G

N L P
When these expressions are plugged into (11.11) we obtain

(e >j"‘)—[ o+ o (1 )|

mx _ C_e—mx) )

2ms2
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This is essentially the localised m > 1
limiting case of (9.12) where Q is given
by (9.11) with k|| = mu — n.

Note that since m > 1 one can replace
m — m + 1 with no harm.

(r/rs)™ = emln(r/rj) ~ emln(1+x) ~ ¢™MX
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1 Compared to (8.7), the inertia

enhancement factor is generalised to
modes with m > 1.

The requirement that £}, is well localised about its own resonance implies
that C. — 0.

Note that we could have obtained the same result by ignoring terms
proportional to @? under the assumption that the pressure gradient is
sufficiently weak. More specifically, taking the ratio between the second
and third term in square brackets in (11.11) and asking that the result is
small yields @ <« €. Therefore, in equation (11.11) all the @ dependent
terms but the one proportional to (1 — 1/ ¢?) may be dropped. These
conditions are fulfilled by ordering

a~e? s~e

Thus, changing variable from x to z = mx, the equation which gov-

erns the dynamics of Mercier (or Suydam in a cylinder) modes is

d dgrrn y T
o ((z2 + mQy%,)W) - (22 + mgy%, + U) & =0, (11.14)
where
- %, cylinder,
N senoqg
U = ar, 1 (11.15)
Ry 1- P , torus.

Note that we let U ~ 1. As mentioned earlier, in a cylinder there is no

inertia enhancement arising from the sideband compressibility, so that
2
y

m . FOllOW—

for this case we must perform the replacement y% —

ing the same reasoning which led to (8.7), the width of the layer where
inertial contributions become relevant is approximately*

or yvl+ 2(m/n)?

Ts nswy

(11.16)

In the next sections, information on marginal stability boundaries,
growth rates and mode radial structure is extracted from the analysis of
equation (11.14).

11.2 The Mercier stability criterion

Since m > 1, the perturbation is highly localised and we may let z to
vary from —co to +oo. Let us assume &), to be a real function. In the
limit of z — oo, Eq. (11.14) reduces to

d 2 dfrrn 21 _
& ( dz ) =0

whose solution which decays at infinity is proportional to exp(—|z|)/z.
This shows that both &7, and 2£;, are square integrable for —co < z < o
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if £7, is well behaving at the origin. Hence, we multiply (11.14) by &},
and integrate from —co to +oco. This gives

o dé:r 9 58 dé‘r
2.2 m 7|2 _ 2 m
" rH ,[oo (’ |7 &l )dz B ,[oo [Z dz

’ + (22 + U) |§,’n|2] dz.

(11.17)
Using Schwarz inequality, we have® 2 For a square integrable real function
1 [ ) © dEr 2 S the following relation holds
[ aras [ A7 o
4 J) o o 1 dz 17 5. 1% |1 = df?
—[/ fdz] = —/ z2——dz
so that 4 [J-co 2 J) o dz
o d 79 (e8] . 1 oo df 2
mQﬁz/ (' j’” + If,’,,IQ) dz < —f (22 +U + Z) €7 [2dz. (11.18) = [/ zf 5-dz
—oo z oo —co

o 2
Hence, if U + 1/4 > 0 the right-hand-side of the expression above is < [ /_ 2 (j—];) dz
always negative, and therefore stability is guaranteed. Note that we
could have drawn the same conclusion by using the equality (which holds
for a function decreasing as exp(—|z|) for z — o)

o dere 1 (g 1 \?
2 m| T yer |2 — m T
[m (z P 4|§m| )dz [m (z P + 2§m) dz.

We may now infer that U + 1/4 = 0 identifies the marginal stability

boundary, that is y — 0 for U — —%, by arguing that perturbations
described by Eq. (11.14) are so localised in space about z = 0, so that
the contribution due to the term proportional to z? on the right-hand-
side of (11.18) is negligible. It will be indeed proven in the next section
that the stability boundary is identified by the relation U/ +1/4 = 0, this
eventually leading to the following stability criterion:

2rpi(r
sf:#(zs), cylinder,
_1 < s°B (11.19)
15 onpr) ., 9
TR (1 -q ), torus.
s B0

In toroidal geometry this is known as Mercier stability criterion, whereas

in a cylinder it takes the name of Suydam stability criterion. Note that In the literature, the criterion (11.19) can
this is a local criterion, in that it determines stability against localised be found written as eg. Dy < 1/4,
Dy < 0 or sometimes Dy > 0. It is

perturbations at a single resonant surface. Hence, the equilibrium is worth pointing out that plasma shaping

stable against Mercier (or Suydam) modes if (11.19) is fulfilled at each can strongly modify this criterion: elon-
radial position. gation of the flux surfaces alone is detri-
Since in tokamaks the safety factor is usually larger than unity for mental for stability, whereas adding a

11 t of tri larity i

most of the plasma radius, it is clear from (11.19) why, with a decreasing Smas amotmt O Franguiariy improves
it (Lutjens (1992)).

pressure profile, Mercier modes are rare events. These may still develop

in regions where ¢ < 1, but in such cases they are typically overshadowed

by the m = 1 internal kink activity (some more detailed considerations

on the existence of Mercier modes are discussed in the box at the end

of this chapter).

The next section is devoted to the derivation of the dispersion re-
lation, i.e. the growth rate.
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The v = 0 case is discussed as the limit

v — 0.

3 This means that we are investigating
the behaviour close to the marginal sta-
bility boundary, i.e. y — 0.

4 These solutions can be analytically
continued for Re(X) < 0 in the complex
plane. Note that since 9Fj (4, B; C;0) =
GF(A-C+1,B-C+1;2-C;0) =1, it
follows that &7, is well defined for X = 0.

11.3 Dispersion relation and growth rate

Having established the conditions which allow localised perturbations
to be unstable, we now focus on determining their growth rate. This
requires a more advanced mathematical treatment, involving the deriva-
tion of a dispersion relation through the asymptotic matching of ap-
proximate solutions. Let us introduce the parameter

v=4U+1/4. (11.20)

Since (11.19) predicts stability for v > 0, we let U < —1/4. This means
that v is purely imaginary.

We recast equation (11.14) in terms of the variable y = z/(myn),
with yy a positive definite quantity, as

d dérn U
d_y ((1 +y2)§—y) - mgy%] (1 +y + )fm =0. (11.21)

We let yy to be small enough so that U/(mQﬁI) > 1.3 Hence, the
unity factor in the second term of the left-hand-side of (11.21) can be
neglected. The resulting equation is thus analysed in two limiting cases,
one for which y > 1 and the other with y < 1.

Starting with the large y case, &, obeys

dé;, U
yQ_) —my (y2+ ~
m=Yy

@ ( & )f,’,l =0, (11.22)

whose solution which is regular at infinity is

K
. <) (112
E4
where K, is the modified Bessel function of second kind. We call this
the outer solution.
In the opposite limit, when y < 1, Eq. (11.21) reduces to

a4 ((1 +9?) g’") -U¢r =0, (11.24)
dy dy

By letting X = —y, this is transformed into a hypergeometric differential
equation

d?&;, déy,
XA=X)0 T (5_ X) dX _5’"_’

whose two linearly independent solutions Y, (even) and Y, (odd) are*
Y, = oFi (4.B; C;—*),

(11.25)
Y, :yszl(A—C+1,B—C+1;2—C;—y2),
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where 37 is the hypergeometric function and
1(1 1(1
A=—-|-- B=_|- =1/2.
2(2 v), 2(2+v), c=1/
Therefore, for y < 1 one has

én = aYe + o, (11.26)

where ¢; and ¢y are some constants. This is referred to as the inner
solution.

The dispersion relation is obtained by matching asymptotically (11.23)

\/_

and (11.26) when 1 < y < % (this procedure is depicted graphically

in figure (8.4)). We first note that for y < ﬁ one has z <« \/E ~ 1.

myH
Therefore, we can perform a small argument expansion of (11.23) yield-
ing®
1 T(-v) (|2]\*
n~ 2727 (1 — .

which holds for both z < 0 and z > 0. The asymptotic behaviour of ¥,,
is obtained by applying formula (Lebedev (1965))

- T(c)['(b — a)
I'(c —a)l'(b)

)\~ ()T (@ — b)
+(1+?) T(c - b)(a)

1
oF1(a, b;c; —yg) = (1 +y2) o (a, c—b;1+a-b; T)}Z)

1
gFl(c—a,b;l—a+b; 2)
1+y
(11.28)
to Egs. (11.26). Thus, by letting y > 1 we easily get

2y 2y
|z| |z
1+A, 1+A, )
myn myu

_TorG-p  _ TorG-3
TGy T TGy

_1 1
Y, ~ |22 S A

where

(11.29)

Therefore, it follows that the inner solution behaves asymptotically as

1 2y A A
|z|727" 1+( 12| ) ade el s,
myn 1t ¢
én 1 oo (11.30)
urT”F+(|”) A2 79| <0
myn 1 —C
Matching (11.27) with (11.30) gives
A, + ZA o (- A, — 2A
A R S

1+2 reyy — 1-%

One can see that this equation can be satisfied only if ¢3/¢1 = 0 (even

£r) or cg/ep — oo (odd &]).

5 We use the relation K,(z) o I_,(2) —
I,(z) where I, is the modified Bessel
function of first kind.

This is valid for a — b # 0,+1,+2, ... and
¢ # ...,-2,-1,0. Note that here a, b
and ¢ denote generic numbers and must
not be confused with the plasma or wall
radii.
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0 Note that B" has opposite parity com-
pared to &. It is not uncommon to have
parity referring to B” rather that ¢, and
thus the odd(even) parity in B is referred
to as interchange(tearing) parity.

7 Letting an overbar to denote complex
conjugation, the argument of a complex
number ¢ is given by arg(¢) = —ilogﬁ =
—5log<. Note also that the Gamma func-
tion fulfils

I'() =T(c), logl'(c) = logl(c).

0
10—
(b)
107}
=
< 10 4
107}
-8 Lk ) ) .
0 7652 04 06 08 10
y T

Figure 11.3: Even mode eigenfunctions (a) and growth rates (b). In (a) the
solid(dashed) curve is the numerical solution of (11.21) with —U ~ 0.4(0.8) correspond-
ing to the diamond(square) in (b). In panel (b) the solid(dotted) line is the growth rate
of even(odd) modes computed from Eq. (11.33), whereas the numerical solution for
even modes is represented by the dots. The dashed vertical line gives the —U = 1/4
location.

It is a feature typical of high-m modes to have eigenfunctions with a
definite parity: even parity in ¢ is called interchange parity (or twisting
sometimes) whereas odd parity in & is referred to as tearing parity.°

Using the property of the Gamma function xI'(x) = I'(1 + x), the
resulting dispersion relation then reads

2 2(1
A +v)I<(; -3
2 | T2A-I2G+3)
(myH) _ 2( ) 2(§ j) (11'32)
2 l"(1+v)l"(z—§)
r2Q-vrxé +3)

even modes,

odd modes.

We shall now express the growth rate associated with even and odd
modes in a more explicit form.

Since v is purely imaginary we write v = iy with y > 0. Thus, by
exploiting the fact that x = exp[log(x) — 2ikn] and using (11.12), the
growth rate is 7
yg1+ 2¢?

wy -

kn 2 2
“——— =2exp |-— + —arg(T(1 + ix)) + —arg(T(§ - i%)
. p[ Y T X))+ Carg(l(g ~ %)

’

(11.33)
with ¢ = 1 for even modes, ¢ = 3 for odd modes and £ = 0,+1,+2,....

We first notice that, since the arg function is bounded, y — 0 only when
x — 0. Hence, by expanding (11.33) for y < 1, we obtain

1+2¢2 k
YIN"T2T _ g exp [——” +2%(1) - ‘P(t/4)} :

Swy X
where ¥ denotes the Digamma function. The ambiguity on the choice
of k is resolved by imposing that the growth rate does not present a

discontinuity for v — 0. From this, it follows that only £ = 1,2,...
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values are allowed with £ = 1 identifying the largest growth rate. We
also note that since ¥(1/4) < ¥(3/4), even modes grow faster than odd
modes. The numerically computed eigenfunction and associated growth
rates for Mercier/Suydam modes obtained from (11.21) are shown in
figure 11.3 where the comparison with Eq. (11.33) is also given. Finally,
the behaviour of the matched inner and outer analytic eigenfunctions
from Eqs. (11.27) and (11.27) is depicted in Fig. 11.4, which is also
compared with the numerical solution.

Some remarks on Mercier modes existence conditions

Inequality (11.19) poses very strict constraints on the instability
window of Mercier modes. It is evident that these perturbations
may become unstable if either ¢ < 1 with p) < 0, or ¢ > 1 and
py > 0. The latter case is rarely observed (pressure gradient
reversals are unlikely, particularly if in steady state and far from
the magnetic axis, cf. Fig. 11.1).

For the p; < 0 case, (11.19) suggests that these instabilities can
develop only where ¢ drops below unity, and they are mostly un-
stable in regions of weak magnetic shear, i.e. close to the axis.
However, although U ~ 1/s? can become large, vy scales linearly
with s (cf. Eq. (11.33)) meaning that Mercier modes developing
in these regions are expected to have very small growth rates.
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Ballooning modes

Numerical investigations of the highest attainable pressure in toroidal
devices initiated the interest in ballooning modes. These studies showed
that as 8 was increased too much, instabilities bulging in the outer edge
of the torus, the tokamak low-field-side (LFS), featuring a mix of poloidal
harmonics (ballooning character) were triggered. Unless the safety fac-
tor profile has broad regions of weak shear' the most pessimistic predic-
tion for the maximum achievable pressure is usually dictated by the sta-
bility properties of modes with large toroidal mode numbers (z — o).
We refer to such perturbations as ballooning modes.

Like infernal and Mercier modes, large-n balloonings are pressure
driven instabilities sharing with the former a poloidal spectrum which is
a superposition of multiple harmonics, and with the latter a pronounced
radial localisation. Differently from infernal instabilities, the spectral
content of ballooning modes is much richer in that is composed of a large
number of poloidal harmonics of similar amplitude (cf. Fig. 12.1) which
results in a much broader radial extension compared to that of Mercier
modes (infernal modes can be considered as a particular case of low-z
ballooning-type perturbations with a spectrum characterised by three
harmonics only). Figure 12.2 shows the interference pattern of several
and almost equivalent poloidal harmonics resulting in the bulging in the
region of weaker toroidal magnetic field.

In experiments, such type of perturbations are commonly observed
in regions where the local reduction of transport® allows large pressure
gradients to develop. These are referred to as transport barriers. They
can form either in the core or at the plasma edge, or both. Internal
transport barriers (ITBs) usually develop in scenarios with weak or neg-
ative shear, and infernal-type low-n precursors are often observed before

! In these cases the stabilising effect
of field line bending is reduced and
infernal-type perturbations are likely to
be triggered.

q
(m+1)/n
m/n 1:1—1
(m—=1)/n
&m

r
m+1

r/a

Figure 12.1: Harmonics of a generic
fluid displacement ¢ for a n > 1
ballooning-like perturbation.

2 This can be of particles, momentum,
and heat either for ions or electrons.
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3 ELMs, which are ubiquitous in H-mode
tokamak plasmas, are periodic bursts re-
laxing the edge pressure with a filamen-
tary structure accompanied by a sudden
particle and energy expulsion associated
with large heat fluxes onto the vessel wall.
Although ELMs may be helpful for the
flushing of the impurities which tend to
accumulate in the plasma, the heat loads
associated with these events are gener
ally not tolerable for the integrity of the
components facing the plasma.

[a.u]
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Figure 12.2: Rough example of the structure of a medium-n ballooning mode. The
poloidal spectrum in the angle 6 (chosen for convenience to be the geometric angle)
of the radial fluid displacement consisting of 20 harmonics ranging from m = 10 to
m = 30 is shown in (a). In (b) the contours (red for negative and black for positive)
of £7(r,0) = Y, €5,(r) cos(mb) are shown. The wiggly curve in (b) corresponds to the
distorted flux surface at the position highlighted by the vertical dashed line in (a). The
interference of the various harmonics forces the distortion of the flux surfaces to be
weaker on the high-field-side for all toroidal angles. In a realistic geometry the bulging
aligns with the lines of constant straightened angle.

a disruptive plasma termination.

Edge transport barriers (ETBs) are what typically characterise the so
called high confinement operating regime (or H-mode in short): discov-
ered in the early 8os in the ASDEX tokamak, the plasma was observed
to transition spontaneously into a state of improved confinement when
a threshold in the externally applied heating power was exceeded. This
transition from low to high confinement is known in tokamak jargon as
L-H transition. Associated with this confinement enhancement is the
formation of strong edge pressure gradients. When the pressure gradi-
ent becomes too strong, quasi-periodic relaxation phenomena affecting
the edge of the plasma known as Edge Localised Modes (ELMs) may
appear.3 Ballooning modes are believed to play an important role in
making ELMs occur. Figure 12.3 shows an example of the typical pro-
files associated with ETBs and ITBs (notice that ETBs and ITBs can
occur simultaneously).

The aim of this chapter is therefore to provide a detailed charac-
terisation of the phenomenology of ballooning modes. First we derive
an eigenmode equation which accounts for the richness of the poloidal
spectrum of ballooning instabilities for the cases of both weak and strong
magnetic shear; we then detail various mathematical techniques used for
tackling the solution of the eigenmode equation in these two limits. A
thorough discussion on mode parity, growth rate and marginal bound-
aries is finally presented.



pressure

safety
factor

(b)

12.1 The ballooning equation

It is instructive to discuss first the derivation of the ballooning equation
in regimes of small pressure gradient and weak magnetic shear (these
conditions are usually met near the magnetic axis).

Let us fix the toroidal mode number n > 1,% and express a generic

perturbed quantity f as
f — Zf'meimﬂ—imp. (12.1)
m

After selecting a poloidal harmonic, say the mth, we define k|| = m/q—n
with r,, denoting the radial position for which k|| = 0. Similar to the
analysis of Mercier modes, we deploy the ordering (11.1):
i% ~m~egl>1 with x=(—7,)/tm ~& (12.2)
f dx
assuming that (11.2) holds with n ~ m ~ &7 such that m/n = ¢ ~ 1.
According to the discussion in the introduction, we postulate that,
and this is the crucial feature which characterises ballooning modes,
different Fourier harmonics have similar amplitude. This means
that we can order the harmonics appearing in (12.1) as

f;,, ~ fmﬂ ~ f;nig ~ .. (12.3)

Each of these modes is expected to be localised about its resonant sur-
face with a radial extension of the order of the distance between the two
resonances of its first neighbouring sidebands.

The safety factor is expanded around r,, as

g~ 21+ sx),

where s is the magnetic shear at 7, which is assumed to be constant. It
follows that the resonances associated with the m + 1, m + 2, ... modes

are equally spaced, and their location is®

14
Xpee =x—, (€ =1,2,...). (12.4)
sm
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Figure 12.3: Pressure profiles in ETB
regimes before and after the L-H transi-
tion (a) and in scenarios with ITBs (b).
In (b) the shape of a safety factor typi-
cally seen in ITB plasmas is also shown.

4 Recall that harmonics with different n
behave independently.

5 Note that at leading order (7,11 —

"m)/Tm % (g1 = Tm)/Tms1-
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6 Since m > 1, it is not necessary to
specify on which m we restrict our anal-
ysis. In reality, as m gets larger the spa-
tial structure of the mode is so small that
the MHD single fluid limit becomes in-
appropriate. One should then refine the
analysis by considering, e.g., finite Lar-
mor radius (FLR) effects.

7 The inertia enhancement factor due to
the sidebands compressibility is obtained
using the orderings discussed in §7.4.

We assume that the poloidal spectrum of the perturbation is composed
of a very large but finite number of harmonics. For m and = tending to
infinity, the separation between adjacent resonant surfaces becomes in-
finitesimal and, as long as ¢ increases but remains finite, the position of
these resonances practically corresponds to 7,,.° The associated balloon-
ing perturbation is expected to be highly localised about the ¢ = m/z
surface so that the stability analysis can be restricted to a single flux
surface at a time, e.g. the one labelled by ¢. Stability should then be
only determined by 7 and the values of the equilibrium quantities at 7.

Upon introducing the ballooning parameter « defined by (4.41),
we now order the pressure and its gradient as po /Bg ~ &% and rpy ~ bo,
such that

a~e<xl, (12.5)

where s is regarded as a small parameter whose ordering is yet to be
determined.

In the particular regime of small pressure gradient and weak mag-
netic shear the ballooning mode analysis is based on equation (11.5)
which is reproduced below:

d ( ,d&, 2.2, @
dx(x dx)_{mx+s2

r—m(l—l)+g+m’

Ry %) 2
d2€::n r imRo . ' w ' s
+ 712'{ ( dx2 - m2§m) = _—n2s230 [l/c”Cm + Dm — Em (p)] , (12.6)

m’'#0

where yy defined by (11.12).7 Because of the assumption of strong lo-
calisation of the instability, it is implicit that all equilibrium quantities
are to be evaluated at 7,,.

We note that the terms proportional to E”, D™ and C!” scale ac-
cording to (11.6), (11.9) and (11.10) respectively, hence we see that D,’,’l”
is negligible compared to E", the latter also dominating over C? if

s < e . 1, (12.7)
&

having used (12.5) for the last estimate.
Now, according to (12.3), we take the radial displacement of different
poloidal harmonics to be of the same order, that is

g:n ~ é::nil ~ f:’liQ ey (12.8)

each of which with a radial extension Ax ~ % From the estimation of
the term E” , one sees the strength of the coupling between neighbour-
ing sidebands is proportional to a/s?. Hence, allowing for (12.8) and
assuming that coupling contributions enter at leading order into (12.6),

we let

a
Z" 1. (12.9)



By means of (12.5), and in agreement with (12.7), this relation im-
plies

s ~ Ve, (12.10)

showing that the magnetic shear is indeed a small parameter. Note that

sm ~ 1/+/e, which still indicates a pronounced localisation of the mode

structure. Thus, making use of Egs. (7.59), (7.63) and (8.12) we obtain

imRy
n?s2B,

Ey(p) =

d ;14—1
[mg-‘,’nﬂi T ] (12.11)

having exploited the fact that m > 1.

Simplifying further, we note that the term proportional to sA’ in
(12.6) can be neglected owing to the smallness of the magnetic shear
and due to the fact that A’ ~ . Hence, the contribution arising from
the terms inside the square bracket on the left-hand-side of (12.6) reads

Tm 1 o
—|1-=|+=.
Ro ( g* ) 2
Although this is formally a higher order correction, we retain it because it

proves to plays an important role in determining the ballooning stability

later on.8

Therefore, we collate these findings to write equation (12.6) as

d( 9 9 A&y, 9 ary, 1 a’

dx((x *Yh) dx) l («* +7H)+ s2R, 1 g° +2s2
;o 4 . dén

(mfmﬂ + dx+1) + (mgfm_1 - 1)] =0. (12.12)

This equation has exactly the same form of (11.11), which we recall can

&

a

+

2ms?

be viewed as the large m local limit of (g.12), where the only difference
lies in the ordering of @/s? and the amplitude of the sideband harmonics.
It is thus interesting to note that the dynamics of infernal, Mercier and
ballooning modes can be essentially described by one equation only in
which the flavour of the perturbation can be tuned by an appropriate
ordering of m and a/s2.9
Now, in analogy with the derivation presented in §11.3, we can
slightly simplify equation (12.12) by dropping some inertial contribu-
tions. According to the discussion of section 7.4.2, inertia becomes im-
portant in a neighbourhood of r,, where the mth harmonic is expected to
develop large gradients while dominating over the sidebands. In this nar-
row layer, whose thickness is estimated from (11.16), we let (cf. (7.50))
r
r% >m, (r-— rm)% ~ 1. (12.13)
Within this ordering, using (7.30) and (7.31), which were shown to hold
for small scale modes as well, gives

S]] AL

57 |5 Ge0) -5
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8 In real experiments, the aspect ra-
tio is not such a small number, so that
the physics contained in this term is ex-
pected to have non negligible impact on
stability. Note also that these terms re-
move the singular behaviour of &), at
x =0 when y =0 (cf. (12.12)).

9 Given m (large or of order one), the
structure of the poloidal spectrum of the
radial fluid displacement is roughly de-
termined by balancing terms of the form

d f34 a
ar ((7 - rm)2 d;n) and s_gfrrnil’

with r,, denoting either the resonance of
the mode (m, z) if this is in the plasma,
or some other convenient reference po-
sition. It is then evident that as long
as d¢),/dr # 0, the relative amplitude
between adjacent harmonics is propor-
tional to @/s2. Note that for the m = 1
internal kink mode for which d¢;,/dr =
0 at leading order, we can still have
& 1/ém ~ € evenif a/s? ~1.
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10 At leading order only terms propor-
tional to Ap; | matter.

1 This is a good approximation as long
as the perturbation is radially well lo-
calised.

where we recall that a) 32 / (R po). Similar arguments are invoked to

simplify E,"nl,(Ap), thus yleldlng (cf. (7.34) and (cf. (11.3))*°

szo w 27’ déy,
E™(Ap) ~ — | 2¢ : :
TRPICAGE ( ) (12.15)

2 dx
m’#0 wA

Therefore, we may drop the term m?y? in the second term on the
left-hand-side of (12.12) so that the ballooning equation in the radial
coordinate for small pressure gradient and small magnetic shear may
be finally written as

d 9 9. dér, 2 acpy 1 a?
G\ ) = et e S (1= 5 ) 5

@ ;o % ;%
+ Ims2 |:(m§m+1 + dx+1) + (m‘fm—l - dx 1)] = 0’ (12-16)

where £, = r,/Ro. In the large n limit each of the harmonics com-

&

posing the spectrum of a ballooning perturbation is expected to obey
(12.16). We shall now discuss how to extend this equation to the more
experimentally relevant case of a and s of the order of unity.

12.1.1 Extending to the s — @ equilibrium

The calculations that we present below become relevant when modelling
ballooning instabilities located in the edge region of plasmas with ETBs,
where both the magnetic shear and the local pressure gradient are fairly
large.

Such scenarios are typically described within the s — @ equilibrium
model (see section 4.3.4) in which large pressure gradients are allowed
to exist in a narrow region so that locally rp/ Bg ~ & while the global
pressure remains small, i.e. po /Bg ~ &2,

Ordering s ~ @ ~ 1, it was found that A/a ~ A’ ~ & whereas rA” = «

(cf. (4.40)). From this, Eqs. (4.31) and (5.21) may be written as

Ry p(')

F'~ - ,
By

(RY) ~ —rRyA” = —Rya. (12.17)

The geometry of the equilibrium is determined by the expressions of the
metric coeflicients given in (5.28). For the sake of simplicity we assume
a = const. M

As before, we fix n (which is a large) and select a poloidal mode
number m > 1 whose associated resonance is located at r,. Let us
consider a region sufficiently far from r,, where (see (11.2) and Fig. 12.4)

kj=mpu—n=-nsx ~1,
with x defined in (12.2). From (7.7) we immediately see that

(@Br)m = —irpBonsx&,, ~ rByé’, (12.18)
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and from (7.25) it follows that

(@Bﬂ)m ~ (\/Egr)m/f

Furthermore, using the expressions for the metric coefficients given in §5.4
one has <]o¢/Bg> ~ &/r, and from (7.49) we obtain

_ by

(VEB ) = B, in e (VEB 1.

We now consider the vorticity equation, namely (7.13), in which we
require that different Fourier harmonics are equivalent (cf. (7.46)
and figure 12.4). Thanks to the ordering of the growth rate (see (7.44)),
we ignore, for the moment, inertial effects by setting y — 0 and Ap — 0.
Thus, by means of the expressions above and using (7.14), (7.54), (7.55)

(7.60) and (7.61), the mth Fourier projection of the vorticity equation

reads Tm Tm+1 Tm+2

B ]0¢ B , R Figure 12.4: Ballooning mode structure
—insx(\/gjqj)m + <—¢>'(\/§Br)m + Z Dz - lmﬁ(])(’))Q.f,rn with shaded areas indicating the regions
B() m’'#0 0 where inertial effects are expected to be
1, ‘o negligible.
—im(—) pn = ) En (§) =0, (12.19)
B
0 m’#0
where D™ and E™ are given by (7.62) and (7.63) respectively, with §
defined by (7.59).
It is easy to see that

4
(VET I ~ (VEB /7", <‘%>'<@Br>m ~ e(NEB /7
0
JSIBD ~ (JL 1By ~ €7

It follows at once that the terms proportional to ( j0¢ /Bg5 )’ and D;’n" in
(12.19) can be dropped. Furthermore, from (12.17) one has

1., (R® (RHF _ a Rop,

(— = +—.
B(‘f F F? By Bg
Hence, equation (12.19) can be written as

7 X ey m’ (5
—insx(\ZJ)m - i B - > EN(p)=0. (12.20)
m’#0
The perturbed toroidal current is computed through (7.52) and (7.53)

which yields at leading order*” 12 The term k appearing in (7.52) is
approximated from the full expression
h = {gyo/\g)/G. We also exploit the

- 1 = ’ =
VBT == [OVEB ] = ) NEB ] o

2 [QMﬂ(\/EB’):nﬂ - immw@’)mg], (VEB st ~ s (VEB st ~ s (VEB -
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Use (R?/F), ~ (R?),/F.

13 By adopting ordering (12.13) we avoid
nasty calculations which might appear
when rpgo ~ 1/e. Density gradients
of this magnitude are commonly encoun-
tered in the region where edge transport
barriers develop.

where L, M and N must be evaluated using (5.28).

It remains to get an expression for E™ () which is a quantity that
depends on (1/Bg))’ = (R?/F)’. By means of (5.20), we notice that the
radial derivative of R? generates a term proportional to A"

dR?

== = 2Ry (cos 9 — rA” sin ﬁ)

Exploiting the fact that m is large, we obtain
ma . )

LRS-~ Z (st = By + 75 s

m’#0

(12.21)

The inclusion of plasma inertia is almost trivial: these corrections
become important only when the resonance is approached so that they
can be easily accounted for by allowing terms of the form (12.14) and
(12.15).23 Thus, collating these results together, and expressing (vg5" )
as a function of ¢], through (12.18), one finally has

d o dér,
dx ] B

2

(1 + %) m? x* + — gm
a r dg:nil

T oms? ;[mg’"ﬂ * Tdx

9
+xs_qzi:[ma

Note that this equation could have been derived directly from (7.65)

TfmiQ

d[(nsx ¥ wé; 1
dx

(nsx F2u)é, ot @ } =0. (12.22)

allowing for enhanced pressure gradients and accounting appropriately
for modifications of the equilibrium geometry.

For small @ and weak shear with a/s? ~ 1, Eq. (12.22) reduces to
(12.16) when €,, — 0. Therefore, by adding the small term proportional
to (1 — 1/¢?%), these two equations can be combined into a single one
reading

d

dx

T [ 2
(x2+ﬁ1)%}— (1+ %)m x*+ U+ —}fm

« [ aé .. ma
T oms? Z MmE a1 * a’njci " 7‘6;‘*2]

xq [ ma? dl(nsx ¥ W&, 411
+TZ (nsx F2u)é; o+ m ]—0-

(12.23)

where « is evaluated at 7,, and U is the same as (11.15) with the replace-
ment 7, — 7, that is

U = 3—2 (1 - —2) . (12.24)

We shall refer to U as the Mercier correction, whereas we call (12.23)

the generalised ballooning equation. Hereafter we only consider cases
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which are stable against Mercier modes, hence we take ¢ > 1 and a >
0 such that U > 0. Equation (12.23) can be used to analyse the stability
of ballooning modes both in low and high shear regions. Due to the
complexity of solving simultaneously a very large number of mutually
coupled equations, the problem of the ballooning stability is generally
tackled numerically. Luckily, characterising in a more precise manner
the underlying assumption of the equivalence of the poloidal harmonics,
a great deal of simplification is achieved by representing equation (12.23)
in a convenient Fourier space. This is elaborated in the next section.

12.2 Fourier space representation

Let us select a radius r,, and a poloidal mode number m > 1 such that
q(rn) = m/n. Suppose that the perturbation of the radial fluid displace-
ment is composed of a large number of harmonics coupled together.
Each of these is expected to be centred about its own resonance. No-
tice that, intuitively because the poloidal mode number is large, if j ~ 1
there should be no difference if we refer to the mth or the (m+ j)th mode.
Thus, one is allowed to assume that these harmonics are translation-
ally invariant with period equal to the spacing between neighbouring
resonances, that is (cf. (12.4))
Epx) =& J(xxd)=... =€ (xxld)=..., (12.25)

where d =1/(ngs) and ¢ an integer.'4

In analogy with (11.14), we introduce the variable z = mx so that
(12.23) becomes

d dé; 2
E[(22+m2y12_1)%]— (1+a )z +U+—]§m

2
a r dé:rrnil @,
L [@(fmﬂ* T2+ )
9
+4 %y, ia'deﬂ =0, (12.26)
s\ 4 dz

with Yy,.p = [usz ¥ gﬂ]‘f:nif
En(2) = & (2 £ L),

Since m is large (we ideally take the limit m — oo), the variable z is

. The invariance (12.25) transforms into'5

allowed to vary from —co to +oco. Thus, we take the Fourier transform

of the fluid displacement by defining

e = [ e@eta (12.27)

The space where ¢*(k) is defined is referred to as k-space. Exploiting

4 Up to this point we do not have any in-
formation about the parity of the various
functions {fz(x).

15 Exploiting this, the eigenfunction at
large z obeys

T
e L)

implying that &;, o< exp(—|z[)/z.
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16 The translational invariance assump-
tion (12.25) can be generalised by taking
f;ﬂ(z) = eﬁkof/xf,rn(z F¢/s). From this,
the argument of the oscillating terms (i.e.
the sine and cosine) in (12.28) must be
replaced with k/s — (k + kg)/s.

This is due to the Fourier inversion the-
orem.

the invariance (12.25), it follows that
[ = [ e w epeta: = e i,

/ Ymi[(Z)E_lkde = lsl,l (%) e¥lk€/s,

(%)

having performed the substitutions di; —ikand z — i di;c.

Hence, by Fourier transforming equation (12.26) to k-space we ob-

6
d2 2.2 * 0,2 d2 3 0’2 *
* (W"Mﬂ)(’“f) (“7)@‘”‘2—52]5

+ % [(e_ik/s +eF) 4 ik (e — otHl0) 4 %(Z_Qik/s - em/s)]g*
R)

tain!

+

d [[o? —2ik/s |, 2ik[s o —ik]s _ ik/s d¢”
—ﬁ{[z(e +e )+ aik(e —e )% =0.

By means of Euler’s formula and noticing that 1—cos(2k/s) = 2sin?(k/s),
after some algebra the expression above can be further simplified finally
yielding the ballooning equation in Fourier space (Connor (1978)):

%{[1 + (k —ozsiné)2 df*} - {U + mg)’?qu

dk

- % [cos E + sin E (k — a sin é)} }f* =0. (12.28)
s s s s

In order for the Fourier transform of £], and its inverse to exist, we must
have

[ et <o (12.20)

implying that £* must vanish for £ — +oco. Since the Fourier trans-
form preserves parity, even/odd functions in k-space are associated with
even/odd functions in real space.

Equation (12.28), with both @ and s of the order of unity, is gener-
ally solved numerically. Nonetheless, some analytical techniques can be
employed when the magnetic shear is either very large or very small. In
the latter case, instead of (12.28), we use its limiting expression obtained
directly from (12.16) for s, @ < 1 which is

* 2

%[(1 + kZ)‘f;;C ] - [U + a'T + mZ)/IZLI/c2 - ;71_2 (cosé + ksiné) ]f* =0.

(12.30)
Although there is a quantitative difference between the results obtained
from (12.28) and (12.30), their qualitative behaviour is fairly similar.
Moreover, the big advantage of using (12.30) instead of (12.28) is be-
cause the mathematical manipulations are much easier to handle, there-
fore serving as an excellent testbed for learning such techniques. The
two cases of large and small magnetic shear are discussed in the next

sections.



12.3 The small shear case

As just discussed, in this section the analysis is based on (12.30). For our
purposes, it is more convenient to write £* = X /[1 + k%112 and recast
(12.30) as

d2x U+ ;—22 + mQy%IkQ - %(cosf + k sin é) 1
5~ - g + 5o | X =
dk? 1+k2 (1 + £2)?
(12.31)
This equation features some oscillating terms which depend on £/s. If

0.

the magnetic shear is small, they will exhibit rapid oscillations on the
scale 27 /s. Therefore, the behaviour of X, and thus of ¢, is expected to
be composed of a fast oscillation over the variable y = k/s superimposed
on a more slowly varying function of £.

The method for analysing the marginal boundaries and growth rates
associated with (12.30) involves the elimination of the fast oscillations by
averaging over their period (averaging method). Let us write (12.31)

as
d*X
d—k2 - V(]C,X)X = 0,
. ‘ 12.32
vk )_U+%+m2y%,k2—s%(cosx+ksin)()+ (12.32)
A= 1+ k2 1+ k22
Introducing the smallness parameter ¢, we order
s~ 62, a~0 Emp~ 63, myg ~ 1, (12.33)

and separate the fast and slow length scales by writing

d 0o 190
— 5 — +-—.
dk ok  sdy

Note that within this ordering we have U~1andy/wy ~ s.
The eigenfunction X is expanded as (the deltas in brackets are tags
denoting the order of magnitude of the associated term)

X = Xo(k) + (0)X1(k, x) + (6*) Xo(k, x) + (68°) Xs(k, x) + ..., (12.34)

with the requirement that the functions X1, Xy, . .. vanish when averaged
in the variable y over a period of 27. Thus, equation (12.32) is solved
order by order in §, from 673 to 671, providing an expression for X;
(i = 1,2,3). These are then plugged into the zeroth order (in 6) of
(12.32), and averaging over y yields an equation for X;. Let us go
through each of these steps one-by-one.

To order 6~ we have

l@QXl +g(cos%—kksin/\/)Xo _0,
52 0y?  s? 1+42

THE SMALL SHEAR CASE
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17 For a function f(y) of period 27 we

have

2r 2r
fcos ydy = —/
0 0

2n 2n
[sinydy = —/
0 0

af
cosxwd/\/,
_df

SlnXWdX'

whose solution reads

a(cos y + k sin
X = WX EEID g, (12.35)

To the next order we have

1 6%X, 02/(232)X a (cos y + ksin y)
il - 0 — —

1

s20y2 1+ k2 52 1+ k2
a® ((1—k?)cos2y + 2k sin2y
=— Xos
252 (1 + k2)?

where the last passage has been obtained by using (12.35). Again, the
integration in y is trivial and leads to

2 ((1_ 12 .
ngaf_((l /c)cosQ)(+2/csm2)()X0‘

.36
8 1+ £2)2 (12.30)
Proceeding further, we get the equation for X3 by considering the order
671 of (12.32) which yields
o X @ (cos y + ksin y)

92521+ k2 2 1+ k2

1 8%X; s 20X,
s2 0xy2 s Okdy

XQ] =0.

Finally, the equation for X, is obtained by averaging (12.32) in y
giving

2 U + m2y2 k2
d* Xy 3 m=yy . 1 X
Cl/s2 W .
o )y sy s ksinn Ty =0

Carrying out the appropriate integrations'’ we finally get the eigenvalue
equation for ballooning modes in the limit of small magnetic shear:

(12.37)

2. U+m27?,k2+1—“72+%f—: o
dk? 1+ k2 (1 + k2)2 0=

The usual procedure for solving this equation is based on an asymptotic
analysis which employs the same techniques developed in §11.3 (Anton-
sen (1982), Correa-Restrepo (1985)). Here, we shall deploy a simplified
method to obtain the desired results.
For the sake of simplicity we take U = 0, and define
a? 7 at

bzl_T-{_ﬁs_Z. (1238)

Equation (12.37) is then written as

d2X, (mzﬁ,/c2

TE i T V(k)) Xo =0, (12.39)

with V' (k) = b/(1+k?). This is similar to a time independent Schrodinger
equation with a one dimensional potential.



A great deal of simplification can be achieved by i) noticing that
due to the smallness of the growth rate the term proportional to myy
becomes important only at very large & where V (k) is negligibly small,
and ii) replacing the potential V(k) with a Heaviside step function which
is vanishing for |k| > /4 such that its integral is equal to fooo dk/(1 +
k?)? = /4 (see figure 12.5).

By employing these simplifications, equation (12.39) is cast as

2
X,
% Xy =0, |k|<n/4, (12.40)
2
Xo o
X _ m?y% Xy =0, |k| > /4, (12.41)

dk?

with the requirement that Xj is smooth and continuous at £ = +m/4
(e = 0)
dXo/dk _dXy/dk

. 12.42
Xo +7/4—€ Xo +7/4+€ ( 4 )

With a positive growth rate (yyz > 0), the solutions of (12.40) and
(12.41) which are regular at infinity are easily derived and read

Xy = cle\@k + cge_\m, |kl < %,
= dye ™k, k>
= doe™"1k, k<-Z,

where ¢y, ¢9, d1, dy are some constants. It is evident that smooth matching
at +7/4 requires b < 0. The system given by (12.42) is solvable only if
Xo has definite parity, that is either even or odd. The odd solution has
¢1/¢9 = di/dy = —1, whereas for the even one we have ¢;/co = d1/dy = 1.
Thus, the corresponding growth rates are

_ bcoth(ﬂT\/Z) (0dd),

myH
myg = —Vb tanh (ﬂT\/Z) (even).

A positive growth rate is found if 4 < —4 for odd modes or 4 < 0 for
even modes. Since no real o?/s satisfies the relation b = d for d < —1/7,
solutions with odd parity are discarded. We then find that ballooning
modes of even parity can be unstable for -1/7 < & < 0 with the
marginal boundary identified by 4 = 0 yielding

2 16 V2
“T == (1 + T) . (12.43)

According to the equation above, when @ > 0 ballooning instabilities

seem not to occur in regions of negative magnetic shear.
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Figure 12.5: Approximation of 1/(1 +
k?)? with a step function which yields
the same integral for 0 < k£ < oo.
Surprisingly, at least for ideal balloon-
ings, this yields fairly accurate results not
too different from those obtained by a
more precise analysis (see e.g. Strauss
(1981)). The latter will be needed
in §16.2 for studying ballooning instabil-
ities augmented by resistive effects.

Letting @ to take negative values,
the marginal boundaries of ballooning
modes for small s and U = 0 are inde-
pendent of the sign of .
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8 Note that [~ dk/(1 + k?) = /2.
Hence, we substitute U/(1 + k%) —
UH(n/2 - k) where H is the Heaviside
step function.

19 Within our framework, we could have
obtained this result by replacing V (k)
with an effective potential Veﬁ(k) =(b+
U)H (kyy — k) with ks ~ 1. In such a
case only matching at |k,z| is needed:
remarkably, the marginal boundaries do
not depend on the choice of . It is im-
portant to point out that shaping effects,
namely plasma elongation and triangu-
larity, modify the expression of U. An
elongated plasma with positive triangu-
larity exhibits improved stability at low
magnetic shear (Krymskii (1981), Liit-
jens (1992)).

Solving (12.39) with the inclusion of the Mercier correction U>0
follows the same procedure described above with the potential ¥ now

replaced by'®
V=b+0, |kl < Z,
-0, T <k <%
=0, k] > 7.

Smooth matching at £ = /4 and £ = 7/2 yields the dispersion relation.
Also in this case odd modes are discarded if U is small, whereas the
marginal boundary of even perturbations is given by

Vb + U tanh (%m) + VU tanh (%\/5) =0. (12.44)

Stability is improved if 0 < U < 1, and ballooning modes of even
parity are marginally stable if # = —2U (a more refined analysis based
on asymptotic matching techniques gives & = —0/).*9 The inclusion of
Mercier corrections has a strong stabilising influence at low magnetic
shear.

Improved marginal boundaries at low shear

The marginal boundaries identified by (12.43) are not particularly
accurate at moderately small shear and pressure gradient. A bet-
ter estimate can be obtained by using (12.28) instead of (12.30).
For the sake of simplicity we set U = 0.

With the substitution

971/2
1+(/c—a/sin£) ] s
s

and performing the same expansion analysis in the small param-

f*ZXo/

eter ¢ employed in the low shear case, one arrives at the following
equation (Hazeltine (1985))

9.2 1 2 _3a!

P2X m2v2 k2 1 @ _ 3o
Y it i ~2 32X =0, (12.45)

dk? 1+k%  (Q+k2)? (1Q+k2)3
The algebra involved in its derivation is rather lengthy and is left
as an exercise for the brave reader. We set ¢ = %”S‘—j - 2"72, and, in

analogy to what we did earlier, we approximate

1 1

arep " HGR G 2 HG o h

with H the Heaviside step function. Carrying out the appropriate
matching at £ = 37/16 and £ = 7/4 (cf. (12.42)) yields even
and odd eigensolutions, with odd modes to be discarded because



no positive growth rate is found with real @?/s. The marginal
boundaries of even modes are given by the relation

3
V¢ + 1tanh (1—2 V¢ + 1) +tanh% =0.

This equation has solution ¢ ~ —1.317, so that the unstable region
in the @ — s plane lies between by the two parabolae

s ~0.220% s=~1.30% (12.46)

An exact solution of (12.45) in the limit y — 0 written in terms
of Mathieu functions has been obtained in Dominguez-Vergara
(1987) and Fu (1990) (see also Furth (1965) and Miyamoto

(1997))-

12.4 The large shear case

Now, we assume that both ¢ and the magnetic shear are of the same
order with s > 1. For this case we shall employ equation (12.28). The
stability analysis is approached through the construction of an integral
functional which is then evaluated by plugging a convenient trial func-
tion (integral approach, Hazeltine (1978) and Pogutse (1979)).

We assume 7y positive, even though it is allowed to be arbitrarily
small. To explain the idea behind the integral approach let us write a
model equation

YQb)X + £(X) =0, (12.47)

where Q is a function of £ and .Z is a linear differential operator such
that for two functions X7 and Xy which vanish at infinity one has

/oo Xlg(XQ)dk = /Oo ng(Xl)dk. (12.48)

We say that .Z is self-adjoint.
If we multiply (12.47) by X and integrate from —co to +oo, the fol-
lowing expression is obtained

B 7 XL(X)dk
C [T oxuk

2 (12.49)

The eigenvalue y? can be viewed as a functional of X. Let X, and
X = Xy + 06X be the solutions of (12.47) with eigenvalue y( and 7y re-
spectively®® with both X and 6.X vanishing at infinity. Omitting to write
the bounds of integration and assuming that ¢X is a small correction to
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20 That is y2Q X, + £ (Xo) = 0.
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Figure 12.6: The integrals in (12.50) are
evaluated with the help of

/ e dy = V. /0 y eV dy =T(2),

/ cos(Qty)e_dey =t v,

2 2
/_ y2 cos(2ty)e™ dy = ¢ ‘/7;(1—%2).

Noting that exp(2ity) = cos(2ty) +
i sin(2ty), the last two expressions are ob-
tained by computing through the residue
theorem the integrals of ¢ and yze_yz
over the closed path indicated in the fig-
ure with A — co. Furthermore one notes

that y sin(y) = —(d(cos ay)/da),=1.

Xo, from (12.49) we obtain

. [(Xo +6X)L(Xo + 6X)dk _ [ XL (Xo)dk [ 26X QXodk
[ [ QX0+ 6X)2dk T [ Qx2dk ( - [ 0Xx2dk
[ 26X % (Xo)dk

2 2 2

+ on.,iﬂ(Xo)dk ) +0(6X%) =y +0(6X7),
having exploited the self-adjointness of the operator .Z. This shows that
a small deviation 6 X from the original function X, produces a correction
of order §X? to the original eigenvalue y2 meaning that even with a
rough guess of the eigenfunction one can have a rather good estimate
of the true eigenvalue. We say that (12.49) is the variational principle
for y? in that the first order corrections to the eigenvalue are vanishing,
i.e. y? is a stationary point with respect to small variations 6 .X.

Hence, we multiply (12.28) by ¢* and integrate from —co to co. This
yields

00 %\ 2
/ dk{(1+(k—asin§)2)(‘i,i) +

- % (cos % + sin %(k — asin %)) ]|§*|2} =0. (12.50)
s

U + m2y?1,/c2

For the sake of simplicity we take U/ = 0 and focus on the identification
of the marginal stability boundaries, that is we consider the eigenvalue
m*y?, = 0. We have now to guess a sensible trial function to be plugged
into this expression.

Let us consider either (12.16) or (12.23) and compare the two terms

d ( Qdfrrn) @ dé:rrnil
X , — .

dx dx ms2 dx

The first one is related to the effect of field line bending, while the second
measures the strength of mode coupling. These must be of the same
order. Because of the equivalence of different Fourier harmonics (cf.
(12.8)), by letting d/dx — 1/Ax with Ax denoting the width of the
radial harmonic in the x-space and taking « ~ s, one has

Ax ~ i

ms
In §12.2 we introduced the variable z = mx, so that Az = mAx ~ 1/s.
It is a well known fact of the Fourier transform that a function strongly
localised in z is broadly spread in £ and the other way around. This

reciprocity of the widths in z and £-space is then represented by
AzAk ~ 1.

Because of this, the Fourier transformed function ¢* is expected to have
width Ak ~ s. Therefore, we choose the following trial function:

&= exp(—/cQ/sQ).



w 4+

Note that when this function is transformed back to the real x-space
one still obtains a Gaussian. When this is plugged into (12.50), after
working out the appropriate integrations (see Fig. 12.6) it is found that
the marginal boundaries in the @ — s space fulfil the relation

13 4
s2— ZeWBas + =

6 3

1
1+a/2 (1— ﬁ) —06_1/8:| =0.
(4

Figure 12.7 shows the marginal boundaries identified by (12.46) and

(12.51)

(12.51) compared with the ones obtained from the numerical solution
of (12.28). One notes two separate regions of stability: the one labelled
(1) is called first stability region, while the other labelled (ii) is
known as the second stability region.

From the existence of the second region of stability we may infer
that, starting from an unstable configuration and keeping the magnetic
shear fixed, stability can be reached again if the pressure gradient is
further increased to sufficiently large values. This is very appealing from
the experimental point of view because it indicates the possibility to
operate quiescently at high pressure. Now, upon increasing the pressure
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Figure 12.7: (a): Even modes marginal
boundaries in the @ — s plane computed
from (12.43) (dotted), (12.46) (dashed),
(12.51) (dot-dashed) and from the nu-
merical solution of (12.28) (continuous
line) with boundary condition (12.29)
and U = 0. In (a) the grey area indi-
cates the unstable region. (b): Associ-
ated eigenfunctions &* for the high (tri-
angle)/low (dot) shear case.
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Figure 12.8: Ballooning modes stabil-
ity region computed with the inclusion of
Mercier corrections with g,,(1 — 1/q2) =
0.2 (shaded area). The dashed lines are
the marginal boundaries computed nu-
merically of Fig. 12.7-(a). Note that the
first and second stability regions are now
connected.

gradient, large amplitude ballooning modes are likely to occur as soon as

the system Aits the marginal boundary of the first stability region: this

prevents the pressure to further build up making the second stability

region inaccessible (this argument is invoked to partially explain the

cycles of big ELMs). Hence operation at high pressure appears to be

impossible to achieve. However, the inclusion of Mercier corrections can

“connect” the two stability regions (see equation (12.44) and figure 12.8)

so that, at least theoretically, a stable trajectory from region (i) to region

(i1)

can exist.
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Part IV

RESISTIVE STABILITY







Resistive MHD in tokamaks: the basics

Up to now, the discussion focussed on MHD instabilities in an ideal
plasma. In this framework, plasma resistivity is set to zero, i.e. the
conductivity is infinite, so that thanks to the frozen-in theorem any fluid
displacement, which may be caused by a perturbation, is glued to the
magnetic field. As a consequence, the magnetic topology of the flux
surfaces, although distorted, is preserved.’

By allowing for dissipative effects in the form of a small but non
vanishing plasma resistivity 7, the flux freezing condition is not valid
anymore (see §2.2) so that rearrangements of the magnetic topology may
occur due to the diffusion of the magnetic flux. In the Spitzer model,
a fully ionised plasma with a single ion species with charge number Z;
has resistivity (expressed in SI units)

_4\/% Z,-ef\/melnA
1773 (o2 ks TP

where ¢, and m, are the electron charge and mass respectively, In A the
Coulomb logarithm,® g the electric permittivity of free space, kp the
Boltzmann constant, and 7, the electron temperature (in Kelvin).

Typically, resistivity is small for temperatures of the order of tens
of keV, 3 so that treating the plasma as an ideal conductor is a rather
good assumption when describing dynamics which occur on timescales
faster that those associated with resistive diffusion. This approximation,
however, fails to capture the behaviour of some phenomena observed
experimentally which can only be explained by allowing the plasma to
be resistive. We refer to these resistivity driven disturbances as resistive
instabilities or resistive modes.*

Usually, the onset of such perturbations is observed to occur below
the limits set by ideal MHD: in other words, a plasma which is ealthy

! Flux surfaces can be deformed but they
cannot break: any equilibrium smooth
flux surface is mapped continuously into
a new smooth and closed one. For any
point of the surface the correspondence
is 1-to-1.

2 This usually takes values around 10.

3 For a plasma with 7, ~ 1keV, 1 is com-
parable to that of Copper at room tem-
perature.

4 Commonly observed resistive instabil-
ities in tokamaks are those which break
and reconnect the magnetic field lines.
This process results in the formation of
magnetic islands (see next chapter).
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5 An extended resistive energy principle
can be derived but only for some special
cases (Biskamp (1993)).

within the ideal framework may still develop instabilities due to dissi-
pation mechanisms (resistivity in our case) leading, consequently, to
confinement degradation. The aim of this chapter is thus to provide the
basic tools for the description of the perturbed dynamics in a resistive
plasma.

Contrary to stability analyses performed with the ideal MHD model,
one cannot construct a self-adjoint force operator in the form of equa-
tion (6.5) meaning that stability approaches based on the exploitation
of an energy principle, as the one briefly discussed in chapter 6, can-
not, in general, be used.> This also implies that, within a normal mode
analysis, the eigenvalues are allowed to be complex valued.

Luckily, most of the machinery developed in the previous chapters,
based on the solution of eigenmode differential equations, is what is
needed to tackle the problem of resistive stability. Hence, we first write
down the fundamental equations of the resistive MHD model appropri-
ately expressed in a toroidally symmetric geometry. After presenting a
brief discussion about the regions where resistive effects become impor-
tant, the set of the resistive equations is simplified accordingly. Finally,
we discuss their solution and the structure of the associated eigenfunc-
tion from which the growth rate is extracted via an asymptotic match-
ing procedure which will be exploited extensively in the following chap-
ters. We recall that the analysis is carried out in normalised units
with py = 1.

13.1 Fundamental equations

For analysing the problem of resistive stability in tokamaks, we borrow
some equations from the ideal MHD model of chapter 7: these are Egs.
(7.9) and (7.11)-(7.13) namely the evolution equation for the perturbed
pressure, the equation for the divergence of B, the contravariant poloidal
projection of the momentum equation and the vorticity equation. For the
sake of clarity, we reproduce them below:

p=-pi" +Ap,  Ap=-TpV ¢, (13.1)
o o =5
6\{593 _ _(9\{53 _ 6\{9§¢B ’ (13.2)
poyés = ———+ JI (VEB") - (f}ﬁfa\/@;m - % (13.3)
2
—Jo-vi—;—w-vBingﬁ,

where the perturbed current density is computed by means of (7.6).



We notice that this set of equations is valid in both the ideal and re-
sistive framework. The plasma response is accounted for by allowing for
a small, although non-vanishing, resistivity in the induction equation.
This is then written as (cf. (2.14))°

0B

=, = VX@xB)=Vx(n]). (13-5)

As an immediate consequence, both equations (7.7) and (7.8) must be
augmented by resistive corrections leading to

~ o oo
@BT=V§BO-V§T—;( L (gf)), (136)

o e o e 1[00]0) 0]
VEB? = \gBy - V&7 - \gV - (§B)) y( B 39 |- (137

Due to the breaking of the ideal approximation, we must replace (7.10),
which is the equation for the compressible contribution of the perturbed

pressure, with
poy*By - € = -B'p)+ By -V (ppé” — Ap) . (13.8)

Thus, the resistive MHD analysis will be entirely based on the set of
equations (13.1)-(13.4), (13.6)-(13.8), where, as usual, we assume that
the equilibrium is static meaning that there are no mass flows.

Now, as for the ideal case, resistive stability will be studied by Fourier
decomposing the perturbation in the cyclic variables, namely the poloidal
and toroidal angles. Hence, for our purposes it is useful to write down
the poloidal and toroidal Fourier projections of some of the equations
listed above. This will turn out to be particularly useful when the impact
of toroidicity on resistive modes will be assessed in chapter 17.

Assume that a generic perturbed quantity can be written in a Fourier
series as in (6.20),” and consider the (¢, n) Fourier projection of equa-
tions (13.1)-(13.4). Equation (13.2) can be immediately reduced to (7.25)
while the covariant poloidal projection of the momentum equation, i.e.
(13.3), reads

J;
—in(N)(VEB ) - ) [(%)/’(f = )pe-v

'#0 0

2 ¢
e (Vaeo): = —z‘ﬂ%)ﬁz + <J—(;>(\/§Bf)g — itG(\gB?),
0 B, B,

b
) ((%)g - i”Mf’)(\/EBr)e—Zf +inNy(VEB”)e-e |. (13.9)
0

We use the notation introduced in chapter 5 for the metric coefficients
and recall that angular brackets indicate the operation of poloidal aver-
age as defined in (5.18). Proceeding further, the vorticity equation can
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6 Note that (2.14) implies that with a non
zero resistivity an electric field appears at
equilibrium which is given by Ey = 19 _Jp.

Within the Sptitzer model, we find that
7 = =3)moT | Ty. We further assume that
T~T¢.

7 Because of axisymmetry, the toroidal
spectral decomposition is trivial (i.e. one
simply substitutes d/0¢ — —in with n
the toroidal mode number).
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8 To convert to SI units one performs the
substitution n — n/u.

be arranged to give

[67( fl"‘) 5(39(%6)][::'[{#—”](@]‘%
0

]° ) (VBB (ves-v ¢) - if<i¢>'ﬁe
()
+Z [(—Oq,) (VEB)e—p + il (j—(;) (VEB")e-r
U'#0 0 0
—(Bi) (L~ Ve p+zf( ) B p], (13.10)
0

where the perturbed current density is given by the relation (cf. (7.52)
and (7.53))

(VESD)e = UNY(EB”),l" — it(L)(VgB"),
+ Z {[Mz'(\/ggr)z—w + Np(VgB") -]

2£0
~ il[Le(VEB e + Mp(\EB )01} (13.11)

The remaining equations, that is (13.6)-(13.8) and the expression for the
perturbed pressure, will be discussed later.

Although this set equations appears to have quite a complicated
structure, it will be shown that resistive effects become relevant only at
very specific locations where the perturbation exhibits strong radial gra-
dients. Allowing for this fact, the stability analysis of resistive modes can
be dramatically simplified by deploying an appropriate ordering near
these points. This will be addressed in detail in the next two sections.

13.2 Where resistivity matters

For the sake of a qualitative understanding, let us assume that the plasma
resistivity is a constant and write the induction equation as
0B

YT V x (u X B) + n9V*B, (13.12)

Ignoring the term proportional to u, we see that this equation has the
structure of a diffusion equation for the magnetic field in the variable
x/L where L is some characteristic length. The typical diffusion time
is then®
L2
Taiff = ——-
7o
Upon perturbing (13.12), we take the ratio of the last term on the

right-hand-side and the one on the left-hand-side to give

InoV2B| Mo d?
0B/ot| v dr?

(13.13)



We choose the characteristic length L to be the plasma minor radius (L =
a), and introduce a dimensionless parameter § known as the Lundquist
number? defined as
TR
S =T1R04 = —, (13.14)
T4
with 7 = a2/770 and 74 = 1/wg = Ro+/p/By (74 is called the Alfvén
time). This quantity estimates the ratio between the resistive diffusion
timescales and the Alfvén wave transit speed; in tokamaks this is a large
number typically falling within the range of ~ 10® — 10° for plasma tem-
peratures of the order of keV.
Thus, from (13.13) one sees that resistive effects become significant

when

d? Y
2
a W ~ Sw—A (1315)

Usually, resistive instabilities in tokamaks grow on timescales of the or-
der of several (tens of) milliseconds. With a typical Alfvén frequency of
the order of megahertz, one then finds that y/w4 ~ 10~ —107*. Hence,
with the large values of § mentioned earlier, it is evident that (13.15)
implies that resistive effects come into play where the perturbation de-
velops strong radial second derivatives.

Consider now for the sake of simplicity a generic perturbed quantity
f characterised by a single Fourier harmonic of helicity (m, z), with both
m and n of the order of unity and resonance located at r;. In line with
the findings of the previous chapters, we expect large radial gradients to
appear in proximity of r; where [7,(b - V£)]/f < 1 (b is the unit vector
along the equilibrium field). Therefore, according to (13.15), resistivity
is going to matter only in a thin layer around this singular point. This
is usually referred to as the resistive layer.

Sufficiently far from the resonance instead, the radial gradients of
the perturbation are weak so that the dynamics can be described within
the ideal approximation. We call this region, where the MHD equations
are solved in the 7 — 0 limit, the ideal region.

Thus, the stability analysis of resistive perturbations can be simpli-
fied as follows: far from the resonance we borrow the results obtained
in the previous chapters within the ideal MHD framework, whereas the
resistive layer equations are solved only retaining terms which contain
higher order derivatives. Now that we have a basic understanding of
where and how resistive effects enter into play, we shall proceed by de-
ploying an appropriate ordering aimed to obtain a simplified set of cou-
pled equations suitable for the description the restive layer dynamics.
This is discussed in the next section.

13.3 Resistive layer orderings

Let us first flag that because many of the calculations presented below
closely follows those of sections 7.3.2 and 7.4.2, some of the mathemati-
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9 This is a particular case of the
magnetic Reynolds number in a sys-
tem whose characteristic velocity is the
Alfvén one.
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1% With such an ordering of the layer ra-
dial variable x we can address simultane-
ously low-m and high-m modes.

1 1t is easy to prove that mode cou-
pling only occurs at higher order, so that
contributions due to neighbouring side-
bands can be safely dropped. It follows
that at this stage we can take the cylindri-
cal limit for the terms proportional to the
plasma resistivity. A more careful analy-
sis will be deployed in chapter 17.

cal steps are omitted (the reader is referred to the afore-mentioned sec-
tions).

Consider a low-8 plasma with ﬁo/Bg ~ rp(’)/Bg ~ &2, and fix, as
usual, the toroidal mode number n. Assume that the perturbation can be
decomposed in a Fourier series with multiple poloidal harmonics, each
of these with a dependence on the toroidal angle and time of the form
exp(yt — ing). We further assume that the growth rates are significantly
smaller than the typical Alfvén timescales. The analysis is carried out
in a narrow region very close to the radius r; where ¢ = m/n for some

poloidal mode number m. Thus, we conveniently take'®

r—17

v/wy ~ &, =x~¢&/m. (13.16)

Ts

Denoting with s the magnetic shear at 7y, it follows that
MU — N X —NSX ~ SE.

As for the ideal case (see (7.36) and (7.50)), fluctuating quantities
are expected to exhibit strong radial excursions in the resistive layer
about 7, hence we take (19 is the equilibrium resistivity)

2
%% ~1, and r% ~ % (13.17)
We allow these relations to hold for modes with either m ~ 1 or m > 1.

We now assume that in the resistive layer the spectrum of the dis-
turbance is dominated by the harmonic with poloidal mode number m.
Hence, the magnetic perturbation and the fluid fluctuation are assumed
to conform to the orderings given in (7.37) and (7.38). It turns out
that within these orderings most of the contributions arising from mode
coupling, apart from those associated with plasma compressibility, can
be treated as negligible corrections. Furthermore, in the layer analysis
poloidal harmonics of mode number m + ¢ with £ > 2 are ignored alto-
gether since their amplitude is supposed to be negligibly small compared
to the one of the first neighbouring sidebands.

Hence, the mth Fourier projection of (13.6) reads

d*(\gB )m
dr?

where only the terms with higher order derivatives have been retained

(VEB ) = ity By (mp — n) &7, + % (13.18)

t.ll

in the expression for the perturbed current.’* The expressions for other

poloidal harmonics are not needed. From (13.7) one has instead (cf.
(7-39))

GN 0> - (1 0(f € ag? ae?
(1_'7°y w)\/gB"’:—fO (7#+%—u% . (13.19)
0

We point out that the right-hand-side of the equation above is exact,
whereas the left-hand-side has been approximated by only considering

its leading contributions.



By means of (13.19) we find that the /th Fourier component of the
divergence of £ can be approximated as (cf. (7.40))

2 ’ N
(V- £)= [(1—’7°GN ‘9—) @B¢]€+(<(@ )ff

1 y o’ V&
\VEg/0 0
z(f,u—n)fZ +(§)[( \/E{ r)wg;_[,.k( \/;i ) fz g,]. (13.20)

From this, and employing the afore-mentioned orderings for the mag-
netic perturbation and the fluid displacement, one sees that (V - &), ~
&"/r so that

P ~ E°BEEL . (13.21)
Thus, to leading order in &, the mth Fourier projection of (13.9) yields
explicitly

0= —im(%)ﬁm — imG(gB?)pm — in(NYNgB)m,
0

which shows that (ygB%), ~ ?By&],. Repeating the same procedure for
the m + 1 harmonics one finds that (@Bd’)mﬂ is also small. Hence, by
plugging these results into (13.19), we see that both (7.27) and (7.41)
hold in the resistive layer as well.

Focussing on the parallel projection of the perturbed momentum
equation, one has (cf. (7.10) and (13.8))

R?y 9 Py =
2 r 9 0 r
ORz [§¢ Q(gmf + gooé )]Z—( %—'”)I’——,\/g :
(13.22)
By taking the mth Fourier component of this equation we see that £~
g&) [r at most; it follows that at leading order (cf. (7.31))
1 dé¢;
n =

im dr (13:23)
Exploiting the smallness of the toroidal fluid displacement, from the first
of (7.41) we infer that (V-§£),, ~ €] and Ap,, ~ sngf,’n/r, thence letting
us to set
Apy = 0. (13.24)
Retaining only the dominant contributions, the m +1 Fourier projec-
tions of (13.22) yield

. 7 7
FiptA Pt = "} (VEBo - E)ma1 ~ BEX0 .
0 A

It is important to stress that corrections due to poloidal harmonics other
than the m and m + 1 are assumed to be small enough so that they have
been ignored. By combining this with the second of (7.41) we obtain

ey
Tpo/B;

Bir g*y* dé;,
mR() “),24 dr ’

(13-25)

m+l ~ £
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A more precise expression for £J and f,‘i
will be derived in chapter 16.

(m+Du—-n=+u.
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Namely the the vorticity equation and
the one for the perturbed current.

12 Here we take x ~ 6x.

13 One can in principle avoid using
the Fourier transform and obtain a sin-
gle fourth order differential equation for

(VEB )m.

If the growth rate is sufficiently small, the second term in the square
brackets on the left-hand-side can be dropped, and we recover the usual
inertia enhancement factor for slow-growing instabilities (the § — 0
case with a non vanishing y will be briefly discussed in the next chapter).
This gives the estimate .1 ~ £3Ba&, /1.

We have now all the elements to derive the dynamical equations
in the resistive layer. By applying the orderings just discussed to Egs.
(13.10) and (13.11), and recalling that (1/Bg)i1 = r/By we obtain

y_2d2§,’n _ nsx d*(VEZB ) Ry d

m_—
“)124 dx? irBy dx? Bg dx

(ﬁm—l - ﬁm+1) . (1326)

Finally, employing the expression for the compressible contribution to
the perturbed pressure, we reduce (13.18) and (13.26) to the following
system of coupled linear equations:

1o d2 (VgBr)m r
1 _—_—-— | — = - .
[ riydx?| irsBy nSXE (13.27)

d*r  wsx d*(VEB)n
dx?  ir,By dx2

7’2 2
E(l +2¢7) (13.28)

A

where ¢; = m/n and s is the magnetic shear at the resonance. A more
refined analysis of the layer equations including higher order toroidal
effects will be presented in chapter 17.

Equations (13.27) and (13.28) govern the leading order dynamics in
the resistive layer whose radial thickness can be estimated as follows: let
us write d?/dx* ~ 1/(6x)%. From (13.27) and using (13.17), the order of
magnitude of the magnetic perturbation is (@B’)m JirBy ~ nsé;0x.1°
Plugging this into (13.28) yields (8.7). Relation (13.15) can be written
as 1/(6x)% ~ S wlA, and when this is combined with (8.7) we find that the
approximate width of the resistive layer around 7; is

1/3
J1+2¢2

Sx ~
x nsS

(13.29)

For tokamak-relevant values of S one finds that 6x < 1.

We point out that our analysis assumes that the mode resonance oc-
curs well inside the plasma. This implies that the boundary conditions
at the plasma edge, either with or without a vacuum gap, are those dis-
cussed in section 6.1.1 within ideal MHD framework. The next section
will be devoted to the construction of the resistive layer solution.

13.4 Solution of the resistive layer equations

Equations (13.27) and (13.28) can be reduced to a single one by deploy-
ing an appropriate Fourier transform in the radial variable x.'3 Let us
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introduce a smallness parameter eg > 0 whose definition will be given
later, and define

}’Za-

If e is sufficiently small, moving away from the resistive layer we may
allow y to vary from —co to +oo.
Upon defining the £-space Fourier quantities

v = [ Bl = [ aeta s
the induction and vorticity equations, namely Eqs. (13.27) and (13.28),
now read
k? dé”
1+ %—2 !,0* = pronSERi,
TSY €x dk
) ] (13.31)
Y 2324+ _ NS 2%
(1 +2¢,)k"¢" = — |k .
When combined together, these give
d k? d¢* 2(1+2¢2) k%,
dk\1+vr2/.2 £- y_22—2‘q_2§ =0, (13-32)
dk \1+VEk?/es dk wy ST ey
having defined for convenience
7o
V - .
iy
We choose as smallness parameter
er=58""/m (13.33)
where
7'32(4)14
S = ; (13-34)
o

is the Lundquist number introduced earlier with the replacement a — ;.
Then, equation (13.32) is cast as'*

d Kr  der 9 ox
a (m T ) =0 (1335
where
m? ;
Ve = ms K s;/wg g7 (1 +2¢)8*°. (13.36)
4

It is worth noting that (13.35) is independent of the sign of the mag-
netic shear. Hence, when solving the equation above, we have to bear
in mind that any time that s appears this actually means [s|.

Now, similar to what we saw in the analysis of ballooning instabilities,
we must require £*(k) — 0 for £ — oo in order to have its Fourier
inverse &;,(r) to exist. Since (13.35) is singular at £ = 0, we first find

We select a narrow interval about the res-
onance whose boundaries in the variable
9, that is the one which is Fourier trans-
formed, effectively become +oco. In such
a case, the Fourier transform is well de-
fined.

14 Note that if we choose eg = 1/m when
m is large, the Fourier variable k£ corre-
sponds to that of §12.2.
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a solution for £ > 0. Following Mikhailovskii (1998), we introduce the
variable £ = (QV,)Y/2k? and write £* = ¢7¢/2Y () so that equation (13.35)
transforms into

dQ_Y+ 1_ +; d_Y_ Mt+1+ 1 Y—()
di? 2 ¢ 1+¢/M,) d¢ 4 2QM+/M)| - 7
(13-37)
having defined
M, =(Q/V,)2 (13.38)

The particular solution to this equation which decays for { (and
hence k) going to infinity is

(13-39)

Y(g’):U(Mt+5§§) QU(Mt+11§),

2 2 +_ b b
4 2 M, 4 2

where U denotes the confluent hypergeometric function. The box at
the end of the chapter shows by direct substitution that this expression
solves (13.37). The explicit solution procedure for a more general case
is outlined in Correa-Restrepo (1982), and it will be briefly discussed at
the end of section 16.3.3.

To extend the solution of (13.35) to the £ < 0 plane, from (13.39) we
generate even and odd solutions valid in the whole domain —co < £ < oo
by defining £*(—k) = €*(k) and &¢*(—=k) = —&£7(k).

In order to obtain the dispersion relation, the solution in the resis-
tive layer has to be matched with the one computed in the ideal re-
gion. Hence we need to obtain from £ the corresponding asymptotic
behaviour in real space far from 7, i.e. for large y. Let us write the
Fourier inverse of £*(k):

1 00 * i
&0 =5 [ € meatar (13.40)
T oJ—c0
By expanding the even and odd solutions £*(k) in a power series in £
we obtain
1+A—R+iag|k|g, even,
. k|
§ o Ay (13-41)
1+ 24 Z aslk|’ | sgn(k), odd,
k|

where a, are some numerical coefficients and the resistive layer param-
eter Ap is defined as (I' is the Gamma function)

'—Mt/Ve r (Mt4+3)

_Q(Mt—l)r(%)'

Ag = (13.42)

Applying definition (13.40), we inverse Fourier transform each of the
terms appearing in the expansion series (13.41). In doing this, we use
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the following formulae (Lighthill (1958))'?

1—-6(0),

1 i
7 — 3 sgn(y),

1 1 (13-43)
7 - (In|y| + C),
1
sgn(k) — "y

where C is an arbitrary constant.

Noticing that the inverse Fourier transform of the terms appearing
under the sign of sum in (13.41) yields contributions which decay faster
than 1/y, hence negligible for y > 1, we finally find that the even and
odd solutions in the resistive layer behave asymptotically in real space
for large y as

A
f?rn,even & 60)) - 71{ (ln |)’| + C) ’

1 i
é:?rn,odd [od —E + §AR Sgn(y).

An example of the shape of the odd solution both in £ and real (y) space
is shown in figure 13.1.

It is worth mentioning that the most general solution of the equation
kf(k) = 01is f o« 6(k). Hence, since k2dé*/dk = kd(k€*)/dk — ké*, the
function ¢* « §(k) is also a solution of (13.35). When this is transformed
back to real space, a constant will be generated which for convenience
is absorbed in the C factor of the expression above. We point out that
for y # 0 (and hence x # 0) the Dirac-delta function appearing in the
even solution can be ignored.

Thus, with a trivial rearrangement, the expressions above are con-
veniently written in terms of the variable x as follows:

1
f?rn,even ocl+ E In |x|’ (1344-)
; 1 mrA
é:m,odd & ; (1 + TRS1/3|x| > (1345)

having replaced the constant C with another arbitrary constant C. The
eigenfunction in the resistive layer is then written as a linear combina-
tion of even and odd solutions whose asymptotic behaviour conforms
to (13.44) and (13.45) respectively.

The growth rate and the structure of the eigenfunction are both de-
termined by matching the resistive layer solution with the one obtained
in the ideal region. This will be studied in detail in the next chapters,
where we will analyse the resistive stability properties of both global and
localised perturbations, namely

* tearing modes,

15 In the notation of Lighthill (1958) one
defines the Fourier transform, here de-
noted by an asterisk, of the function f
as

rrb= [ feetias,

The following relations hold:

0w 1
[E] = —insgn(k), [sgn(%)] _ﬁ’

11" R . i
[m] :—2(ln|k|+C), 1" = 6(k),

200 ey - OB

~f S\TF —
[x Sgn(x)] - (27{ié)£+1, (—27Tl')[,

where £ is a positive integer and C an
arbitrary constant. For our purposes, by
comparing with (13.40), we identify £ —
k/(2r) and £ — —y.

0
k

s

=0
0
Y

Figure 13.1: Example of the shape of
odd £*(k) and corresponding &;,(r) for
M; < 1.



186 REsisSTIVE MHD IN TOKAMAKS: THE BASICS

6 nfernal modes may be analysed
within the resistive framework by allow-
ing for resistive effects at the resonance
of the upper sideband. On the contrary,
hybrid kink-infernal perturbations have
a dominant harmonic which exhibits an
exact resonance. In such a case one can
include effects associated with resistivity
in a similar fashion to the m = 1 resistive

kink.

e m = 1 resistive kink,
* resistive interchange modes,

¢ resistive ballooning modes,

External kink and infernal modes do not require a resonance in the
plasma to become unstable, so they do not need a resistive treatmen
A slight refinement of the resistive layer equations is needed for resistive
interchange and ballooning modes; this will be thoroughly detailed in
chapter 16.

On the resistive layer solution

Here we show by direct substitution that (13.39) solves (13.37).
Let us start by calling 4 = (M; + 1)/4 and define
3 1
UlZU(/l+1,§,§), UQZU(h,§,§).

By writing ¥ = Uj + M%Ug and exploiting the fact that U; and Uy
solve respectively

d? 3 dU;
fd—{QU1+(§—§)d—§—(/l+1)U1=0, (13.46)
d? 1 dU:
§d—§2UQ+(§—§)d—;—/IUQ=Q (13-47)

equation (13.37) is then cast as

2
1 d 9 dUl U] + EUQ
- 2 y) - — - " —
1+¢/M, d¢ (U1 o UQ) dc U 21 + /M)

After multiplying this by 1 + /M, we obtain

il -2=o.
M, d M, d¢ * U

24Uy (AU (1 ¢ Us
2" M, M,

Since U; = —%dUg/d{, this reduces to (13.47), thus proving that
(13.39) is a solution of (13.37).
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Tearing modes

As mentioned in the previous chapter, one of the must striking effects
of letting the plasma to be resistive is that the magnetic topology can
be rearranged. This permits the breaking and reconnection of the mag-
netic field lines which then produces regions of isolated flux tubes known
as magnetic islands. In tokamaks (and other toroidal confinement de-
vices), the structure of magnetic islands consists of nested flux surfaces
centred about a secondary magnetic axis (see fig. 14.1). These revolve
helically around the plasma column following this secondary magnetic
axis, and eventually close on themselves after an integer number of
poloidal and toroidal turns. Typically, in experiments, magnetic islands
rotate dragged by flow of the bulk plasma.

In presence of such perturbations, transport of energy and parti-
cles across the plasma is enhanced, and the temperature is equilibrated
within the island. Further worsening of confinement may arise from
the overlap of neighbouring island chains causing the magnetic field to
become stochastic. A schematic depiction of the deterioration of the
plasma performance due to the presence of one or more magnetic is-
lands is shown in figure 14.2.

Although the reduction in performance is highly undesirable, some
actuators can be put in place to mitigate it. However, it is not uncom-
mon to observe a reduction (in the lab frame) of the rotation frequency
of magnetic islands, eventually locking onto the surrounding structures
(this is usually referred to as mode locking): in such a case, the island
amplitude grows to such an extent that a catastrophic loss of confine-
ment, i.e. a disruption, is often triggered (typically for islands with he-
licity 2/1). Therefore, for safe device operation and to preserve machine
integrity, once should reduce as much as possible the likelihood of such

Figure 14.1: Example of the poloidal
structure of a m = 3 island chain.

Ty
Ty
B e 2
w
0
0 a

Figure 14.2: Core temperature decrease
due to the presence of one or more mag-
netic islands creating a "belt” of width w
where temperature is flattened. The sub-
script I stands for initial and f for final.
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1 The seed might be generated by, e.g.,
linear coupling between poloidal har-
monics of fluid or magnetic perturba-
tions, or through a non-linear interaction
of disparate plasma fluctuations. The
non-linear growth of the island width is
usually algebraic, i.e. it grows with some
power of time. Experimentally, once de-
tected, there is margin to apply actua-
tors to control or suppress the growth of
NTMs.

m/n
d0
(a)
0 T
1
S
>
~
=l
0 (b)
0 Ts

Figure 14.3: Example of monotonic
safety factor with resonance m/n at posi-
tion 7; (a) and corresponding helical flux
defined by (14.1).

events. To this purpose, we need to i) understand the physical mecha-
nisms which drive the formation of magnetic islands, and ii) identify the
associated regions of stability.

In its simplest form, the instability which is responsible for the forma-
tion of magnetic islands is the so called tearing mode. Tearing modes
are single helicity perturbations driven unstable by the gradient of the
toroidal current density, i.e. these are current driven instabilities with
evolution timescales of the order of several tens of milliseconds (longer
than those of ideal modes which usually grow within few milliseconds
or less). Linearly unstable tearing modes are referred to as classical or
spontaneous, and this chapter is devoted to a thorough exposition of
their linear stability properties.

Magnetic islands may also form in a linearly tearing stable configu-
ration when a “seed” appears, whose growth in amplitude is sustained
non-linearly by local pressure gradients. These are known in the litera-
ture as neoclassical tearing modes (NTMs).' Although of high exper-
imental relevance, we will not address neither the physics of the seeding
nor the non-linear evolution of NTM:s.

Thus, this chapter is structured as follows: we first briefly discuss
how the magnetic flux is modified by the presence of local small per-
turbations and how this rearrangement yields magnetic islands. Subse-
quently, the tearing equation, namely the equation that determines the
global structure of the eigenfunction, is derived and solved analytically
for a very idealised, though insightful, safety factor profile. Then, the
growth rate is obtained by means of the asymptotic matching techniques
discussed in the previous chapter. Finally, the stability of few more gen-
eral ¢ profiles, including non-monotonic ones, is examined mainly from
a numerical point of view. The effects of the plasma pressure on the
growth rate of unstable tearing modes are briefly discussed.

14.1 The reconnected flux

To gain more insight on the consequences of the violation of the flux
conservation, and thus on the structure of the flux surfaces subject to
small perturbations, we shall analyse a simple case of a large aspect
ratio tokamak equilibrium with a monotonic safety factor (the details of
whether or not a vacuum gap surrounds the plasma are not important).

We start by noting that in straight field line coordinates, the equilib-
rium magnetic field can be conveniently written as (cf. (4.4))

B =VO(r)x VY - Vy(r) x Vo,
where the toroidal flux ® is given by (4.6). After selecting two integers

m and n such that ¢(r;) = m/n at some position 7;, we introduce the
helical flux ¥* defined as (see Fig. 14.3)

¥ = /r (w’ - ﬁ(I)’) dr, (14.1)

m



and the helical coordinate y
n
x=19-—¢.
m
Using these two quantities, the equilibrium field is recast as
B=VOXxVy-V¥" xVp=VOxVy +B".

This expression implicitly defines the auxiliary field B*. One sees that
¥* ~ (r — 7,) in a neighbourhood of the resonance, so that the poloidal
component of B* changes sign moving from the left to the right of r,. It
will be clear that it is this auxiliary field that undergoes reconnection.
We now allow for a small flux perturbation of the form ¢, = ¥/(r) cos m
which is obviously associated with the appearance of a radial magnetic
field. Following the results of the previous chapters, we expect the per-
turbation of the toroidal flux to be & times smaller than i,,, thence
® is assumed to retain its equilibrium value. It then follows that the
perturbed magnetic field is B =-Vi,xV¢. Itis easy to see that

(B+B) V(¥ +,) =0,

indicating that the total flux ¥}, = ¥* + iJ,, labels the perturbed mag-
netic surfaces.

By expanding W* about r; and assuming that ¢ is almost constant
around this narrow region, the flux surfaces for which ¥, = const are

Y cosm
r—rs:\/Q tot — ¥ X

parametrised by

d>¥*/dr?|,,
An example of the structure of the reconnected flux is shown in fig-
ure 14.4. Similar to the dynamics of particles in a magnetic field (cf. ap-
pendix A), the expression above provides a functional relation between
r and the helical angle y which gives the trajectory (or orbit) of the mag-
netic field lines. One sees that in the r — y plane field lines have open
and closed orbits, and the two domains are divided by a so called mag-
netic separatrix. Assuming that d*%*/dr?|, and / are both negative,
the value of the helical flux at the separatrix is ¥;,, = ¢ and this can be
used to estimate the maximum width w of the magnetic island yielding

w_o|__
rsep(/\/ =n/m)—rs = 5 =2 dZ\P*/dTQM .

Notice that these results hold if the magnetic perturbation is sufficiently
small, while more complex behaviours are observed in realistic geome-
tries.

In ideal MHD such a rearrangement of the structure of the helical
flux in the plasma® does not occur because of the requirement of the
finiteness of the radial fluid displacement at the resonance, which forces
the radial magnetic perturbation to be vanishing at this point (cf. (7.7)).
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2y

Figure 14.4: Contours of ¥}, about a
resonance 7; where ¢(r;) = m/n after
adding a helical perturbation with mode
numbers m = 2 and # = 1 (here both
dZ‘P*/drzhx and § are negative). The o
and x-points, denoting respectively the
local extrema of the total flux and the
locii of intersection of the magnetic sep-
aratrix, are indicated.

2 When we discussed external kink
modes in chapter 10, we allowed for
a non-vanishing magnetic fluctuation in
the vacuum (cf. (10.5)). This means
that external kinks effectively produce
magnetic islands in vacuum. Notice that
the vacuum is sometimes modelled as a
plasma with infinite resistivity.
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3 This is often referred to this as the log-
arithmic jump of the magnetic fluctua-
tion across the resonance.

Either analytic or numerical.

14.2 The tearing equation

As discussed in §13.4, the resistive stability analysis is based on the
asymptotic matching of the solution obtained in the region far from
r; where plasma inertia and resistivity are negligible, with the one com-
puted in proximity of the resonance, that is within the resistive layer. The
asymptotic behaviour of the latter when moving away from 7, has been
solved in the preceding chapter, so it remains to compute the solution
in the ideal region.

Far from the resonance we can use the set of ideal MHD equations
of chapter 7 specifically (7.7), which links the magnetic and fluid per-
turbations, and (7.65). The latter, after dropping contributions from
mode coupling and inertia, and retaining only the higher order terms
can be reduced to (7.69), i.e. the cylindrical approximation proves to
be sufficient for the required accuracy. It follows that, to leading order,
the equations governing the dynamics in the ideal region of the mag-
netic and fluid perturbation charaterised by a single Fourier harmonic
of helicity (m, n) are

Um = (VB )m = irBok) £}, (14.2)
d (. ,dET )
= (ﬁkﬁ j;") - rkﬁ(mQ —1)ér =0, (14.3)

where k|| = mu — n as usual. Finiteness of &), has to be imposed at the
magnetic axis, and appropriate boundary conditions must be applied at
r = a, depending whether or not a vacuum region surrounds the plasma.
As already noted earlier, the equation of &}, is singular where k|| = 0. For
the sake of simplicity, we assume for the moment that there is only one
position 7 for which £(r;) = 0 (a generalisation to cases with multiple
resonances will be discussed in §14.5).

Hence, equation (14.3) is solved separately for r < r; and r > r;, and
matching it with (13.44) and (13.45) eventually yields the growth rate. It
will be shown that the linear stability of a tearing mode of helicity (m, n)
is determined by the sign of the quantity?3

o [ )
Ym(r) dr

where € is an infinitesimally small positive quantity with the dimensions

(14-4)

rs—€

of a length. The quantity A’, not to be confused with the derivative
of the Shafranov shift, is called the tearing stability index. It is
important to stress again that in the tearing analysis the radial magnetic
perturbation is allowed to be different from zero at the resonance.

Rather than solving (14.3), tearing stability is more often analysed
in terms of its equivalent form written in terms of ¢, which is

d( dp,\ m2. mRo(d,Jy)\. _
Z(T dr ) - T m k_”(Z B_g>)l[/m - 05 (14"5)
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where the last term is computed from (7.67) in the cylindrical limit.
This is commonly called the tearing equation, and it can be derived
directly from (7.13) by just considering its dominant terms:

76 _ é
BO-V‘]—¢+B-V]—(;=O.
BO BO

Equation (14.5) allows for a slightly more transparent identification
of the behaviour of the perturbation near the resonant point. In a neigh-
bourhood of r; where k|| ~ —nsx with x = (r—r,)/7,, we may approximate
this equation as

A2y A - _mrsRoi

Jy
— S =0, 2= 20
dx? xw

<B(‘f : (14.6)

ns dr

Few integrations show that close to the resonance the behaviour of i,
is 5

M=1+C+x+ﬂxlnx, r > T,

Um(7s) (14.7)

=1+4+c¢x+ AxIn|x|, r <t

where ¢, are some constants. We then find that (14.4) can be expressed
as

rA =y —c_.

Notice that the logarithmic term in ¥'m, and thus the singular behaviour
of i}, disappears when there are no current gradients at ;.

The solution of (14.3), or equivalently (14.5), is generally computed
numerically. However, exact analytic solutions can be found for some
model safety factors. In the next section we present a detailed analysis
of (14.3) for the simple case of a step current profile, which is similar to
the one employed in the analysis of external kink modes of chapter 10.
Although very crude, the analysis performed with this model safety fac-
tor is able to capture many important features of the tearing dynamics
in tokamaks.

14.3 Eigenfunction and growth rate for the step
current model

Let us consider a toroidal plasma separated by a vacuum region from
an ideally conducting wall located at 4 > a. We say that the wall is at
infinity when a/b < 1. Assume now a safety factor profile of the form

q0, r <71,

q= ( 7 )2 (14.8)
qgl\—] ., r>r
10

with g9 < m/n. Note that ¢ extends parabolically into the vacuum re-
gion (see §4.4). This corresponds to a stepped current of the form given

193



194 'TEARING MODES

4 A method for analysing the stability
of tearing modes based on the WKB
approximation has been presented in
Hegna and Callen (1993).

5 Recall that if the metallic wall is di-
rectly interfaced with the plasma, the
boundary condition at the edge becomes

Em(a) = 0.

6 The trick to simplify the calculation is
to write the eigenfunction in the outer re-
gion in the form

, 1 r m—1 r —m—1
a7

where + stands for r 2 7;.

by (10.15); we recall that 7y < a measures the radial extension of the
current, i.e the current channel. The reason for using such an idealised
profile is that, although other exact analytic solutions can be found with
smooth profiles, this choice of ¢ allows for straightforward algebraic ma-
nipulations yet yielding meaningful results.

With this safety factor profile, the two independent solutions of (14.3)
are readily found so that

1 r m—1 r -m—1
& (r) = k_|| (c1 (T_O) + ¢y (%) ), (14.9)

where ¢1 and ¢y are some numbers. Notice that £ is constant for r < 7.
A double integration of (14.3) across 7y shows that &7 (r) is continuous
and smooth at this position. We require £ (7) to be finite at the magnetic
axis, whereas the interface conditions at the plasma-vacuum boundary
are those given by (10.12).> The position of the resonant surface asso-
ciated with the mode (m, n) is

['m
Ts =19 n_qo’ (14.10)

and is always assumed to occur within the plasma. Therefore, by means
of (14.9), we readily obtain the following system

m—1
r
(TO) ’

1 r m—1 1 r —-m—1
e () e 2] e

70 m—1-mngo\r

- CE

The constants which multiply the first and second expressions must be

0<r<m,

1, <r<a.

chosen in order to ensure that £] is continuous at r7p. We shall call
(14.11) the outer region solution or outer solution.
In a neighbourhood of the resonance, it is rather immediate to show

that the eigenfunction behaves as®

é1 m+1f2—(m—1k)A_
§,rn:—;(1+ T A x|, r<r,, ( |
14.12
& (. m+—(m—1p)A, 4
=—=(1+ x|, r > 7,
X 1+4,
where ¢ and é are some other constants, and
2m

A= Ty, (1413)

m—1-mngqo

The solution we just obtained has now to be matched smoothly with

the one computed in the resistive layer. We start by noting that because
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of our choice of the safety factor the quantity A introduced in equation
(14.6) in the previous section is vanishing, so that the outer region so-
lution does not exhibit any logarithmic behaviour near r;. Therefore, in
(13.44) we take € — 0.7

Let us call

m+1f—(m—1/2)A.
1+ A4, '

Equation (14.4) written in terms of these quantities becomes

Ay = (14.14)

TSA, = A+ - A_.

Since A_ diverges when m = 1 (for any n), here we restrict the analysis
to modes with m > 1 (the m = 1 tearing mode will be studied in detail
in the next chapter). Hence, on the left and right of the resonance we
write

. bo (1 +

mnA . 13
o _Rsl/3|x|)=—1(1—A_|x|), r<r,  (1415)

2 |%|

G+ 2 (1 + wsl/w) = 2 A+ Ax), r>1,  (14.16)
|%| 2 x|

where ¢, and ¢, are two constants which multiply (13.44) and (13.45) re-

spectively. The relations above guarantee smooth matching on the left

and on the right of the resonance between the outer solution and the

resistive layer one, the latter written asymptotically as a linear combina-

tion (13.44) and (13.45). Summing and subtracting (14.15) and (14.16)

produces:
&+ G
%, = 1|x| 2 4 Ay — A,
c mrAg 1/3 -4 . .
Qﬁ 1+ ——=S Blx|| = T GoAs + GA_.

It follows that balancing the powers of |x| requires

51+€2=O, 260252—51,

) (14.17)
2, = &Ny — EA_,  comrARSYE = A, + GA_. 17

By means of equation (13.42), the dispersion relation is written as

Mt+3
(VMMVMF(_TJ__QRA’/ ms/qs (14.18)
1-M, M5\ 783/ 211/2 :
i r(_fJ n (1 +2¢5)

where M, is given by (13.38) and explicitly reads

3/2 1/2
(TS 9
M, = (wA) pom 1+ 2¢;. (14.19)

We anticipate that the dispersion relation for other resistive instabil-
ities retains the same structure, with the ideal limit obtained by setting

7 For more generic ¢ profiles, logarithmic
terms of the form of the ones discussed
in §14.2 appear. These are automatically
matched with the inner layer solution by
a suitable choice of C.

Recall that ¢; = m/n.
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Figure 14.5: Contour levels of
| (#) /T (MIT+5)| as a function of
the real and imaginary parts of M;. Note

we restricted the plot to the Re(M;) > 0
half-plane.

8 The solution of x5/ = 1 is x = 1,
whereas x°/* = -1 is solved by x ~
—0.81 £ 0.59i. These results can be ob-
tained via a graphical analysis through
Nyquist techniques (see chapter 17).

9 Note that ngy = m(ry/7s)%.

M; — oo. For tearing modes, (14.18) can be simplified further; let’s see
how. We saw in §14.1 that magnetic islands can be induced by allow-
ing for a small and slowly varying (spatially) magnetic perturbation in
proximity of the resonance r,. Upon comparing (14.2) with (14.12), we
choose to focus on cases for which A, are not too large, which in turn
implies that 7;A’ is not big either. Then, the right-hand-side of (14.18)
is small since, typically, S > 1.

We further notice that the absolute value of " Mfl /T M‘4+5 does
not exhibit strong variations when A4;, as a complex quantity, varies
within quite a broad range (see Fig. 14.5). Hence, by balancing the left
and right-hand-side of (14.18) we expect M, and thus y/w,4 to be small.
Therefore, by taking the #; < 1 limit, the dispersion relation (14.18)
can be reduced to

5
l 5/4 _ gr(z) TJA, ms/Qs
w4 Tr(3)sTvas 2¢7)1%

For such a case instability occurs when®

(14.20)

A > 0. (14.21)

This is known as the tearing instability criterion. For r,A" ~ 1,
the growth rate of tearing perturbations scales as $~%°, hence, with
Lundquist numbers of the order of 10% — 10, we see that these instabil-
ities are associated with timescales of the order of several tens of mil-
liseconds, thus they exhibit a much slower growth compared to ideal
modes.

Having established the conditions for the appearence of a tearing in-
stability through Eq. (14.21), we shall now investigate more in detail the
structure of A" associated with the model ¢ given by (14.8). Although the
analysis is based on a highly idealised profile, several important physical
conclusions can be drawn from this simple model.

By means of (14.13) and (14.14), one has

A, - A
"Ar A+ 4D
m —1 — ngo + (ro/6)*"
"= /87 Im = 1= ngo + (107"
1 (ro/15)*"
=-9m — — -
1= (rg/b)*™  m—1—ngo+(ro/rs)*"

From this expression we observe that:9

A = -2

(14.22)

i) For m sufficiently large at fixed g9, one finds A" = —2m/r, with
—-A; = A_ = m. Hence, in a typical tokamak plasma with ¢y ~ 1
and ¢(a) around 3 or 4, high-m tearing modes are expected to
be stable. One arrives to the same result for m finite by letting

b — oo (no wall) and ry/r; — 0 (large gap between resonance and
current channel).
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ii) The denominators on the second line of (14.22) is always positive,
so that the sign of A’ is determined by m — 1 — ngq + (r9/5)*™, more
specifically A’ > 0 if (r0/a2)*™ = [go/q(a)]™ < (1 — m + ngo)(b/a)*™.

iii) In the limit 4/a — oo, a mode with poloidal mode number m is
unstable when +/(m — 1)/m < ry/7r;. Since m — 1 — ngo + (r9/7)*™ =
m[1—(r0/75)*]=1+(r0/7,)*™, we find that A’ diverges when r, — 7,
that is the closer the resonance to the current gradient the
more unstable the system.

iv) If b = a, another singularity in A’ is found when r; — a but in
this case A” — —oo showing the strong stabilising effect of an ideal
wall when the resonance approaches a.

An example of the regions of positive A" in the ¢y — [¢o/¢(a)] plane are
shown in figure 14.6.

Point iii) highlights the fact that for m ~ 1 the stability of tearing
modes is dictated by the global gradient of the current density, not
necessarily by the gradient at the resonance position. Large m modes
instead are well localised about r,, hence their stability properties are
determined by the local current gradient near the resonance.

We finally point out that the values of A, dictate the structure of
the eigenfunction in the resistive layer. This, indeed, can be inferred
by evaluating the relative strength of the even and odd solutions from
(14.17) yielding

¢ AL+ A

P =T (14.23)
It is clear that the odd part of the radial fluid displacement dominates
when A, = —A_. Typically, the tearing mode eigenfunction in the re-
sistive layer (i.e. in real space) has a shape similar to that shown in
figure 13.1. When this happens, we say that the eigenfunction has a
tearing character.

14.4 The numerical solution of the tearing equa-
tion for generic profiles

Since tearing stability is entirely determined by A’, the analysis boils
down to the computation of the shape of £/, or ¥, in the ideal region
(cf. (14.3) and (14.5)).

So far we dealt with a highly idealised current density profile which
allowed analytically tractable algebraic manipulations. Although many
important physical effects can be deduced from such a simplified analy-
sis, this is not suited for describing realistic situations characterised by
safety factor profiles with more generic shapes. Unfortunately, even in
the simplest case of a low-f large aspect ratio tokamak of circular cross
section'® for which the fluid/magnetic perturbation is described by (14.3)

Figure 14.6: The shaded areas show the
regions of positive tearing stability index
for several poloidal harmonics with z = 1
and b = a. We indicate which poloidal
harmonic is unstable in the correspond-
ing region. The m/n resonance of the
corresponding modes lies in the vacuum
for values of ¢o/¢(a) above the dashed
lines.

19 One can still employ the cylindrical
limit at low 8 with weak shaping, mean-
ing that mode coupling effects can be
dropped altogether.
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11 1 defined in (14.6) is finite at the axis.
In particular

mRy ](;ﬁ , m 1(r2\ ’
T g T A7)
I B mu—n|r\q

This quantity only depends on mode
numbers and the safety factor profile.

50
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40 \ || ----- rounded
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Figure 14.7: Values of A’ for the m =
2,n = 1 mode for the peaked, rounded
and flattened model computed with x; =
2 assuming an ideal wall directly inter
faced with the plasma. Note that aA” —
—oo as the ideal wall is approached.

and (14.5), it is not typically possible to write an exact analytic solution
with a generic ¢, so that a numerical procedure is usually sought.
Numerical schemes typically focus on the solution of (14.5) since
U, contrarily to &], does not diverge at the resonance, although its
derivative may present a logarithmic singularity as discussed in §14.2.
Given the shape of the current density, i.e. the safety factor, this equa-
tion is solved separately on the left and on the right of the resonance
constraining ¢, to be continuous at r,. The behaviour in proximity of
the magnetic axis is of the form ¢, < r™ as easily seen from (14.5),"*
whereas at the plasma edge the boundary conditions depend on the pres-
ence (or absence) of a vacuum region separating the plasma from the
surrounding metallic structures: if an ideally conducting metallic wall is
directly interfaced with the plasma we require ¢,,(a) = 0, while with the
wall at distance b > a from the plasma one imposes (cf. (10.12))
rdin)dr )
Um

s

_ id(?’/ﬂ)] 9m m+1+(m—1)(%
a k|| dr a—€ 1_(%)2171

m—ng(a)
(14.24)

where we used the fact that ¢ o 7% in the vacuum region (see §4.4).

When the boundary conditions allow to have an explicit expression
for ¥, and di},,/dr at one of the two endpoints of the interval where
(14.5) is solved, one can set a Cauchy initial value problem, other-
wise a scheme based on the shooting method is employed. Once i/,
is obtained for r < r; and r > 7, the computation of A’ is typically ac-
complished by fitting di/,,/dr in a neighbourhood of r; with a function
of the form ¢; + ¢gInx with ¢; and ¢y two parameters.

We shall now report few numerical results on tokamak tearing sta-
bility based on two widely used safety factor parametrisations. One has
been discussed by Furth et al. (1973) and reads

g=4q0 [1 + (xbz)ap ]bF- (14.25)

With this shape of ¢ at fixed x;, the flattening or peaking of the associated
current density profile is controlled by the parameters ar and br. In the
work by Furth et al. (1973), three different cases labelled peaked, rounded
and flattened models have been analysed corresponding, respectively, to
the following values of ar and bf:

ar br

peaked 2 1
rounded 4 1/2
flattened 8 1/4

The values of the tearing stability index of the m = 2, » = 1 mode for
the three models listed in the table above are shown in figure 14.7, where
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Figure 14.8: Shape of the m = 2, n = 1 tearing mode eigenfunction for the peaked model
for different radial locations of the resonant surfaces with (a) a wall directly interfaced
with the plasma, and (b) in the no wall limit. Here x; = 2. Notice the divergence of the
derivative of i, as the resonance is approached.

the position of the resonance has been modified by varying the value
of go. The associated eigenfunction computed for the peaked model
with and without (a/b — 0) a wall directly interfaced with the plasma
is shown in Fig. 14.8 for different locations of the resonance. In the
notation of Furth et al. (1973) one has the following identifications

(rOA/)Furth - %(dA,), (xs)Furth - xbrs/a-

In line with the result obtained for the stepped model of §14.3, the nu-
merical computation also finds that large m instabilities have a negative

tearing stability index:
2
A~ (14.26)
TS
We shall now analyse tearing stability with another parametrisation

of the safety factor (Yu (1996)):

7,2

7= /Or 2r[1 = (r/a)?]81[1 + G’D(r/d)Q]deT'

(14.27)

Notice that this parametrisation is also capable of dealing with non-
monotonic shapes of the current profile, and it will be employed in the
next section when discussing the stability of tearing modes with multiple
resonant surfaces associated with same ¢ value. The simple case with
g1 =1and g = ap = 0 yields a parabolic current density profile /¢ =
Jo(1 = r?/a?), and the resulting stability has been analysed by Wesson
(2011) (see figure 14.9).

Summarising, the study of tearing stability in tokamaks can be re-
duced, in its simplest form, to the analysis of the solution of a single
differential equation, namely Eq. (14.5). The inclusion of additional
effects such as plasma shaping, finite 5 and mode coupling is a much
more complicated task which requires more advanced/refined techniques
which we do not discuss.

20

15F /

10f

-10

Figure 14.9: Tearing stability index for
the m = 2,n = 1 mode with and with-
out an ideal wall surrounding directly
the plasma computed using the ¢ pro-
file given in (14.27) with g7 = 1 and
g9 = ap = 0. Note that differently from
Fig. 14.7, here the quantity r;A’ is plot-
ted.
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12 This may happen, e.g., during the cur-
rent ramp-up in the early stage of the
plasma discharge. Particle impurities ac-
cumulating in the core can also produce
hollow current profiles.

On the § dependence of the inertia enhancement

Let us consider a mode of helicity (m, n) for which A” > 0. We further as-
sume that 3 effects are weak enough not to affect ¢, so that we regard A’
to be § independent. By means of Eq. (13.25), the inertia enhancement
factor reads

9 9 942 9
RANEND AN =2,
wt W 1 9 ¥ w} jy

+qsrP0/B2

where the equilibrium quantities are evaluated at the resonant surface of
the (m, n) mode. For r;,A’ not too large, plugging this result into (14.20)
shows that the growth rate of the tearing mode scales as

Y (r A5 115

Since A’ > 0 by hypothesis, the growth rate at zero f is finite with 7, — 1.
When finite pressure effects are taken into account, in the limit 5 >
)/Q/w?ﬁl one gets I, — 1+ 2¢2.

Thus, upon defining 3 = ['py/B2, it is straightforward to obtain the lim-
iting cases

y (rsA’)4/5( 2 psos ) B,
— & B b 9
w4 $3/5 5 CHr NP1 Y2 [0,

(rANM5 2\-1/5 B
——1+2 , > 1,

where in writing the first line we exploited the fact that y/wy ~
(YXA,)4/5/S3/5.

14.5 Double tearing modes

It is not unusual in tokamaks to have non-monotonic current profiles as-
sociated with hollow safety factors. ** In these situations, multiple radii
with identical ¢ values may appear so that a magnetic perturbation with
helicity (m, n) can resonate at different radial positions inducing magnetic
islands to form at these points. Cases with three or more radii associated
with the same value of ¢ are much more unlikely, therefore we focus our
attention on hollow safety factors with a shape similar to that shown in
Fig. 4.7. Resistive perturbations with a tearing character featuring two
resonant locations are called double tearing modes.

For fixed m and =, let us denote with r; and ry the radial locations
of the two resonances where ¢ = m/n with 11 < 7ry. For the sake of
simplicity, we assume the plasma to be directly interfaced with an
ideal wall. Although an analytical treatment can be deployed, we shall



approach the problem of double tearing stability in a manner which is
more easily implemented in numerical schemes. We start by writing the
solution of equation (14.5) as a combination of two basis functions ¢4
and 9, the former defined in the interval 0 < r < 79 and the latter in
7 < r < a, such that ¥1(r2) = ¥o(r1) = 0. The shape of these two basis
functions is shown in figure 14.10. The ideal wall boundary condition
at the plasma edge dictates ¢,,(a) = 0. Normalising ,,(r1) = 1, the
eigenfunction of equation (14.5) is then expressed as

~m=z//w(1)’ 0<r<m,
11
Y1+ 0y
:W, rn<r<ry,
11
=O'%, r<r<a,
1n

where o is a numerical coeflicient and continuity of the magnetic fluc-
tuation at both resonances has been imposed.

Now, analogously to (14.4), we define the logarithmic jumps of i/,
at r1 and 7y, that is

oo virev
U i) Inve ga(r)in-¢
ooy
2 I,DQ(TQ) ro+e O'lﬁQ(TQ) rz—e'

Matching with the solutions in the two resistive layers around r; and ry,
as we did for equation (14.18) in §14.3," formally gives

Ap1(y) = MNARJSEL/E; = nAl,

. (14.28)
A;E,Q(’Y) = mﬂ'AR’QSQI/3 = TQA/,

where Ap; is computed according to (13.42) with the subscript 1(2) in-
dicating that the associated quantity must be evaluated at r(rp). The
radial dependence of the Lundquist number is because S ~ 1/n ~ T%/2,

It now remains to determine o and thus the growth rate y. Upon

defining
vV
B yn(r)lnve  ya(n)In-¢
L T B
227 yo(rg)lmve  Ya(ra)lr— (14.29)
- |
127 yo(ry) lne
, 41
Ay = I e

where € has the same meaning as in (14.4), the matching conditions
(14.28) can be written as

, Y1)
2y1(r)
RAGY
Liro(re)”

A;{,l(y) - nAj =onA

’

. , 1
AR’Q()/) = 1lgy = ;rgA
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Figure 14.10: Example of the basis func-
tions 1 and ¥9, and the associated hol-
low safety factor.

13 The same matching procedure out-
lined earlier, i.e. (14.17), remains valid.
It is important to keep in mind that we
will have different expressions for the co-
efficients A, depending on whether these
are evaluated at r; or rg.
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Figure 14.11: Graphical representation
of the dispersion relation (14.32) for a <
Oand b < 0. All the other cases are found
by either translating horizontally the hy-
perbola, or moving vertically the x — a

line.
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Figure 14.12: Numerical values of aA] .
for the m = 2, » = 1 mode as a func-
tion of the relative distance of the two
resonances 71 and r9, with a safety factor
of the form (14.27) with g9 = 2.3, and
g1 = g = 3. The parameter ap has
been varied within the range 1.75-2.5 (Yu
(1996)). An ideally conducting wall is at
position r = a. Relation (14.31) has been
verified to hold.

Multiplying these two together yields the following dispersion relation
(87200 = 1AL ) (Ao — mAG,) = nmALAL. (1430)

We now notice that both 1 and ¥y satisfy equation (14.5), from
which we immediately obtain

d dyn dy1dys  [m* mRo(d ]0

(“”2 dr ) i S 2 (dr B )]W” -
d d(ﬂg dlﬂl d(ﬁz m2 mRo d jO

( 1 dr ) "dr dr [7 TR k| (dr )]ll/ll//2 B

By equating these expressions and integrating from r; to 7y one then
finds that

U+ o) )

Ya(r) Y1(n)
This relation implies that Aj,Aj; > 0 so that the right-hand-side of
(14.30) is positive or zero. By means of this result, several conclusions
can be now drawn from (14.30) by visualising it graphically. For simplic-
ity we only consider the limit of small growth rate for which, similarly
to (14.20), one can approximate Ay, = Ki(y]wy)®'* with K; a positive
coefficient.
Let us write equation (14.30) in the following form:

[
X —a=

(14.32)

x—b

where x = (y/w4)*/*, a « 1Al b o< r9A, and ¢ > 0 a constant. The left-

hand-side of this equation describes a straight line with positive slope,

while the right-hand-side traces a hyperbola. A real solution for y exists

any time the straight line crosses the hyperbola in the x > 0 half-plane.
One then finds that the system in unstable whenever

Al; >0, and Aj, >0,

or
’ ’
Al1Aqy < 0.

Conversely, when A}, and A/, are both negative, instability only oc-
curs when Al;A), < A}, A}, This is intuitively depicted in Fig. 14.11.
Therefore, the stability analysis of double tearing modes reduces to the
computation of the A}, coefficients, and thence checking their sign and
relative amplitude. Figure 14.12 gives an example of the values of aA] ;
obtained numerically from the solution of (14.5) with a safety factor of
the form (14.27). An alternative graphical approach which can be em-
ployed for determining the stability of the double tearing mode is based
on Nyquist techniques (these will be used in chapter 17).

One notices from Fig. 14.12 that A;; increases as the distance be-

tween the resonances is reduced. When A;; becomes sufficiently large,
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Figure 14.13: Safety factor profiles (a) used for the computation of M;; (b) and growth
rate (c) from equation (14.33). For the calculation we employed the same parameters
of Fig. 14.12 having set §; = Sy = 10® with the plasma directly interfaced with an ideal
wall. The distance between the two resonances is controlled by varying ap from 1.645
to 2.14 (this is indicated in (a)). In (c) only the largest growth rate (largest positive
root) is shown.

we cannot approximate A}, o (y]wa)®'* anymore, and the full resistive
response at the two layers expressed by (14.18) should be used. This
leads to the following dispersion relation (cf. (14.30))

iy D0 +3/1) g
(1‘Mﬂr((Mﬂ+5)/4)_ G )

(14.33)

My D[+ 3)/4) RN

12721
1 - M r((Mﬂ + 5)/4) Gy

where by means of (13.36) and (13.38) we defined (assume for the sake
of simplicity a constant mass density profile)

1/3 ‘
_r n|s1|S1 = Gy (|32|S2)1/3
2\V1+2(m/n2] lsil$1)

My = (l)s/2 —1 + Am/n)” S11/2’ My = Mu@\/g.

w4 n|sil |s2| \ $1
Equation (14.33) can be solved for A;; from which the value of y is
extracted.

As shown in figure 14.13-(b), M;; becomes of order of unity when
the separation between the two resonances is very small. In such a
case one finds that y ~ |s1|2/3S11/3. Since |s1| approaches zero as the
resonant points get closer, it follows that the growth rate is negligibly
small when 1 — 1y (see Fig. 14.13-(c)). We shall nevertheless stress
that the manipulations outlined above are valid as long as the distance
between the two resonances is larger than the resistive layer width.
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The m = 1 resistive mode

We mentioned in chapter 8 that the cyclic events known as sawtooth
oscillations are linked to the appearance of a global instability with
poloidal mode number m = 1 when the safety factor on the magnetic
axis is less than unity. During these periodic cycles, a slow ramp in tem-
perature is followed by a rapid drop (crash) usually after the onset of a
m = n = 1 mode which may exhibit a structure similar to that of an inter-
nal kink. The time occurring between the onset of the m = n =1 mode
and the temperature crash is called precursor phase (see figure 15.1).
After the crash, due to enhanced transport across flux surfaces, the
temperature and mass density profiles become flat (cf. Fig. 8.1) approxi-
mately up to the radial position of the ¢ = 1 radius of the pre-crash safety
factor (we denote this radius with r,-1). The current density changes as
well, leading to either a complete or a partial flattening of the safety
factor profile within the region extending from the magnetic axis to r,-1."
An example of the shape of ¢ is shown in Fig. 15.2.

precursor phase
>

Time

! In tokamak jargon, complete (or full)
reconnection refers to cases when g¢ is
completely flattened across the core, oth-
erwise we talk about incomplete (or
partial) reconnection. The onset of a
tearing-like fluctuation is often observed
right after the temperature crash.

Figure 15.1: Time evolution of the elec-
tron temperature on the magnetic axis in
presence of a MHD precursor right be-
fore the crash during a sawtooh cycle.



206 THE m = 1 RESISTIVE MODE
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Figure 15.2: Example of safety factor
profile before (pre) the crash and after
a full and partial reconnection.

In ideal MHD flux surfaces may be displaced but not torn, so that
transport across them is expected to be weak. It follows that ideal in-
stabilities should not yield a temperature and current redistribution as
is observed during sawteeth cycles. The simplest effect that may be
invoked to account for such dynamics is the breaking and reconnec-
tion of the magnetic flux surfaces, which thus requires some amount of
plasma resistivity to occur.

Hence, in this short chapter we address the problem of the stability
of the m = 1 resistive mode, i.e. the resistive counterpart of the internal
kink perturbation studied in chapter 8. It is important to stress that
although the m = 1 resistive instability is sought to be a key player in the
dynamics of the sawtooth oscillation, here we do not attempt to provide
an exhaustive picture of the sawtooth phenomenon whose explanation
requires a far more advanced treatment which is not captured by our

basic analysis.

This chapter is structured as follows: after obtaining the correct
asymptotic behaviour of the m = 1 eigenfunction near the ¢ = 1 res-
onance, we derive a simple dispersion relation which is expressed in a
form similar to Eq. (14.18). Various limiting cases are then analysed,
thoroughly detailing for each of those the associates growth rate and
mode structure. We then detail more accurately the smooth transition
of the character of the m = 1 perturbation, from tearing to kinklike,
when the marginal stability boundary of the m = 1 ideal internal kink
is approached. Finally, we present a brief discussion on the coupling of
the 1/1 and the 2/1 modes.

15.1 The dispersion relation

Let us take a perturbation with poloidal and toroidal mode numbers
m = n = 1. As usual, we consider a monotonically increasing safety
factor with the ¢ = 1 resonance located at some position r, within the
plasma (cf. Fig. 7.1). The magnetic shear is of the order of unity. Most
of the calculations which are required to obtain the dispersion relation
have already been presented in chapters 8 and 14, so that it is sufficient
to give a brief summary of those results.

In the outer region far from 7, the m = 1 eigenfunction is written as

2. When the resonance is ap-

where £, is a constant and X;/é ~ €
proached, the derivative of the eigenfunction behaves as in (8.10). This

expression can be integrated, and, without loss of generality, we may



write
TI C
rUdr 7‘25W
0 _ B T
foo 1+T—oo _R22 5 T<Ts,
ro_ reseXx S$°X
& = s 0 (15.1)
cnst
2 r> rs>
X

where the quantity W7 is defined by equation (8.36) and cnst is some
constant which does not need to be specified. The eigenfunction given
by Eq. (15.1) can be cast in a form similar to (14.12) as

g=LA-Alx), r<n,

X
|52| (15.2)
:—(1+A+|x|), r>rs’
|%|
having defined
2.2
_ BT AL =0 (15-3)
r2sWy

where ¢1 and ¢y are some multiplicative constants.
The dispersion relation is immediately obtained from the matching
conditions (14.15), (14.16) and (14.17), and reads (cf. (14.18))
M+3
5 (o T (M52
Vs M -1 F(MT”) T omelswr  Am

(15.4)

We recall that M, is given by (13.38) in which we have to set m = n =
¢s = 1. Here we introduced the quantity Ay, commonly found in the
literature, which is a measure of the stability of the ideal m = 1 mode:
the m =1 ideal internal kink mode is unstable when Ay is positive, and
marginally stable for 1z = 0. The stability of the resistive mode depends
on the value of Az, and various limiting case will be investigated in detail
in the next subsections.

15.1.1 The ideal limit

Let us first define the normalised quantity

< sS\M?
Ag =g (@) - (15.5)
By means of (14.19) we rearrange equation (15.4) as
F Mt+5 N
M, -1
‘ ( - ) =3 (15.6)

Mz5/6 r (M1+3)

For positive and sufficiently large Az such that 1z > 1 one must have
M; — oo. Expanding the expression above for M, large yields Mf/ $=1 H
which can be written as

Y _ sy

a)A_\/g'
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This is equivalent to (8.11), that is the growth rate of the m = 1 ideal
internal kink mode. One sees that in the unstable region of the m = 1
ideal internal kink mode resistivity does not play any significant role.

15.1.2 The m =1 resistive internal kink

Let us now look at the Az = 0 case. It follows that the right-hand-side
of (15.6) is very small, thus implying that the left-hand-side is small too.
This can only be accomplished if M, ~ 1 which yields the growth rate

2/3
Yy s
U)_A - (3S)1/3 . (15‘7)

For typical values of the Lundquist number in tokamaks, this gives
y/wg ~ 107 = 1073, indicating that the time-scale of the growth of the
instability is of the order of few milliseconds.

We can be slightly more precise, and from (15.4) we write
31/4s3/4
\sm

If Ay is sufficiently small, we can solve this expression perturbatively for

M, =1+ (y/wa)* Ay

¥, eventually giving
y §2/3

Y 2y (sS)l/3
wg (3513

1+222 122
3Vr \VB

This shows that stability is improved as Az becomes more negative.

Note that this equation can also be written as
9/3 2y
M7 =1+ -—.
t 3 \/7—1_
The shape of the associated eigenfunction is now easily obtained.
Setting M; =1 in (13.39), one finds that

(15.8)

9
Y() = —,
) V<

so that the even and odd solutions in £-space read

¢~ Vek?/2
v (15.9)
= (odd),

where ¥V, = m?(1 + 2q3)1/3/(ns)2/3 = (3/5%)!/3 has been computed by
plugging (15.7) into (13.36).

Let us first focus on the behaviour in real (y) space, as defined
in §13.4, of the even solution. By expanding in £ the first of (15.9)
we obtain a power series of the form (cf. (13.41))

f*x%(l—nk2/2+...),



where only the first term in brackets is needed. Asymptotic matching
with (15.1) requires € — oo in the expression for the Fourier transform
of 1/|k| given in (13.43), so that the even solution in real space is simply
a constant. The Fourier transform of the odd solution yields the error
function,® that is

1 0 €_Vek2/2 ik i Yy
— —'Vdk = - erf . .
om ) & e 3 er (\/Q_Ve) (15.10)
Therefore, we can write the even and odd functions in real space as
& =1 (even),

)
erf(m) (odd),

It follows that the solution in the resistive layer which matches asymp-
totically the one computed in the outer region is

When this expression is plugged into (13.28), the radial perturbation of

the magnetic field reads

y ¥y y g_}’g/(QVe)
erf( ) - + ’
V2V, V2V, ) N2V, Vr

where, as boundary condition, we imposed that (1/gB"); vanishes for

(VEB N « (15.12)

y — +oo: this is because in the ideal region (\/EE’)l o k€7, and since
£ is vanishing, the magnetic perturbation must be zero as well. No-
tice that this determines both of the constants of integration originating
from the solution of (13.28). One notices that, contrary to ideal MHD
results, the magnetic perturbation at the ¢ = 1 resonance is not van-
ishing i.e. (ygB")1(rs) # 0. A rearrangement of the magnetic topology
of the magnetic flux is therefore allowed, so that magnetic islands may
form as discussed in the previous chapter (see Fig. 15.3).

15.1.3 The m =1 reconnecting mode

We now investigate the 1z < 0 case with |1x| ~ 1, i.e. we assume to
carry out the analysis in the region of stability of the ideal internal kink
mode. It is obvious that for large values of the Lundquist number, the
left-hand-side of (15.6) is large. Let us first note that if we take M, > 1
the right-hand-side of (15.6) becomes proportional to y which must then
be equal to a negative quantity thus indicating stability. Hence, the only
possibility for having an unstable mode is to take M; < 1. We therefore
obtain the m = 1 equivalent of the dispersion relation for tearing modes
(14.20), that is
y\o e T (%) Vs

(w_A) " 4l F(3) 31/488/4"

P
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2 The error function is defined as
erf(x) = \% /Ox edt.  To obtain
(15.10), one uses the convolution the-
orem which states that the Fourier trans-
form of the product of two functions f
and g is the convolution of the product
of their transform. Denoting

hin\ — 1 ® iky
h(y) = o /_m h(k)e'™ dk,
the convolution theorem is written as
Ton = [ fwao-nir
We set f(k) = e~V**/2 and g(k) = 1/k,

and the resulting integrals are evaluated
following the caption of Fig. 12.6.

y/V 2V,

Figure 15.3: Radial shape of ¢] and
¥1 = (ygB")1 in the resistive layer. Here
we borrow the notation from (14.2).
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3 This holds also for tearing perturba-
tions with m > 1 computed with the step-
current profile employed in the analysis
of §14.3 (compare with (13.44)).

The growth rate of this instability scales as S™%/°, showing that it grows
on tearing timescales which are much slower than those of the modes
analysed in the previous sections.

Since we have been able to find a positive growth rate for any value
of Ay, we then infer that the m = 1 resistive mode is always unstable
when there is a ¢ = 1 surface in the plasma (see Fig. 15.4-(a)). One
should note, however, that in a realistic situation additional effects, not
captured by our analysis, can contribute to the stability of the mode:
further stabilisation may indeed arise from two-fluid (FLR) or kinetic
corrections, and also from other effects associated with toroidicity (a
brief account of the latter will be given in chapter 17).

We shall finally discuss the spatial structure of the m = 1 resistive
perturbation. The character of this instability is dictated by M;, namely
its growth rate (this is computed at fixed plasma parameters such has
Lundquist number and magnetic shear). In order to see the change in
shape of the layer eigenfunction as M, is varied, we express y/w,4 and
V, in terms of M; as (cf. (13.36) and (13.38))

2/3
A _ msM;
w4 SY2g.\/1 + 22
m-qs+/1 + 2¢ o o
Ve _ s Mt—z/d = AQMt—Z/d,

A

where the constant 4 > 0, implicitly defined in the latter of the two
equations above, is a quantity of the order of unity. Note that we must
take m = ¢, = 1 in the expressions above.

By making use of (13.40), we now want to transform to real space
in the variable y/4 the even and odd solutions generated by (13.39) for
arbitrary M, (cf. §13.4). The even solution is expanded according to
(13.41), and, in analogy with the discussion of section 15.1.2, we find
that in real space this is a constant.3 Focussing on the odd solutions, by
means of two expressions above, we have

U (#, §’ Mt1/3A2k2)

£ = e—M,1/3A2k2 /2
odd 9

+ MtU( , ,Q,Mt A%k | sgn(k).  (15.14)

Its inverse Fourier transform is performed numerically, and figure 15.4-
(b) summarises the results of this computation: the change in character
of the eigenfunction when A/, becomes smaller than unity becomes ev-
ident. We say that the odd fuction acquires a tearing character when
M, < 1. The global structure (in real space) of the eigenfuntion is finally
obtained by combining together the even and odd solutions in order to
fulfil the correct boundary conditions at y/4 = +oco. This is detailed in
the next section.
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15.1.4 On the relative amplitude of the even and odd solu-
tions

For the m = 1 mode we found that A, = 0 and A_ ~ €2 > 1 for §Wy of
the order of unity or less (cf. (15.3)). If one then uses (14.23), it seems
that the even solution in the resistive layer always dominates over the
odd one. Using the constants ¢, and ¢,, however, may be misleading in
that they only measure the relative amplitude of the large-y expansions
of the layer solutions, i.e. Eqs. (13.44) and (13.45).

To resolve this ambiguity, let us take & = c;even + i¢s&0da Where
Eeven = 1 and

1 ® * i

with £° .. given by (15.14). For 0 < k£ < 1, from (15.14) we have to
leading order

2vr(1 - My) Ag
= —— |1+ — k),
é:odd Mtr (%) |k| sgn( )
so that taking the large y limit of the inverse Fourier transform of &
yields (cf. (13.45))

odd
2i(1 - M, 1 A

godd — l(—;l)ef X = (1+ %Slml‘ﬂ)’

\/EM,}F( ,4+ ) X

where we recall that ez = 1/(mS1/3). A comparison with (14.15) and

(14.16) shows that
. 2(M; — 1)eg
0

=—
\/EM;F (Mt4+3)

Thus, plugging this result into (14.23) gives

Ce _ \/;(Mt - 1)2—1
A (55

The singularity at Az = 0 is removed thanks to (15.8).

THE DISPERSION RELATION 211

Figure 15.4: (a): Dependence of Mt2/3 o
¥ upon Ay obtained from the numeri-
cal solution of (15.6). The oblique black
dashed line denotes the growth rate of
the m = 1 ideal mode. (b): Resistive
layer odd solution in real space for dif-
ferent values of the parameter A4;.

According to the discussion in the previ-
ous section one has 4 = (\/§/J)l/3.
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Figure 15.5: Ratio of the multiplying constants of the even (c,) and odd (£7¢,/4)
solutions as function of the variable y/4. The insets show the structure of the normalised
eigenfunction E{ in the resistive layer. For large and negative Ay the eigenfunction is
mainly odd.

Now, when £7 is written in terms of the variable y/4, it reads

&= ¢ — (%fM) X 27T1§M [: &2 4q00) sin (x (%)))dx,

where x = Ak and &y is the maximum value in the y-domain taken by
function - f_ O:o £ 1400 sin (x(y/4)))dx. We therefore take the function
(bounded between —1 and 1)

S sl o

to be the odd solution in the resistive layer. The quantity ¢,ém/4 now

measures the odd contribution to the full linear eigenfunction. Since we
constructed an odd solution which is comparable in magnitude with the
even one, the quantity Ac,/(¢,ém) represents a good estimate of their
mutual strength. Its behaviour as a function of Az is shown in Fig. 15.5.

15.2 Interacting resistive layers

The linear dynamics of the 1/1 mode, either ideal or resistive, depends
crucially on the coupling with its first neighbouring sidebands. A mu-
tual interaction between the ¢ = 1 and the ¢ = 2 layers, if the latter is
within the plasma, will then occur. We now make the following consid-
erations: the dynamics at the ¢ = 2 surface is expected to have an effect
on the global stability of the n = 1 perturbation, namely growth rate
and marginal boundaries, while the amplitude of the 1/1 harmonic will
dictate the structure of the 2/1 magnetic perturbation. In this section we
shall analyse more in detail such behaviours.
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Our starting point is the expression for 6 W7 as given in (8.37) where
the coefficients 4, ¢ and § are defined by Eq. (8.20). We decompose the
factor ¢ as ¢ = ¢y +¢g where ¢; is independent of y and 1. A more precise
definition of these quantities will be given later. Plugging this into (8.37)
gives

cr/(L+b—cp)
Wr =W\ ga+s—an) "™

having defined 6 W; and 6Wg as

§ 96(1—cr) — 24ber(By + 5) — 16¢,(1 + b)(By + §)*
oWr =+ ,
2 16(1 + b — ¢7)
SW [Zb+(1+b)(ﬂ1, + §)]
R 1+b-c)

Upon conveniently introducing the quantities

’

i (sS )1/3 nrlswy P (sS )1/3 nrlsWe
I1=—|—F= . R=|—
V3 s?R2 V3 s?RZ

where s and § are the magnetic shear and the Lundquist number com-
puted at the ¢ = 1 surface labelled by 7, the dispersion relation (15.6)
becomes

F(M’+5) . N
M-l N4 ) A er/A+b—c) Ar (15.16)
Mt5/6 F(Mt4+3) 2 1-c¢g/A+b-¢cp) 2° '

Notice that equilibrium quantities appearing in M; have to be evaluated
at r;.
We now consider a safety factor profile of the form (see (14.8))

q = qo, r <70,

= (7/75)2’ r> TO-

We take ¢p < 1 and also 7y < a/\/§ so that the ¢ = 2 surface located
at r = ry is within the plasma. It is easily shown that ry/r, = V2 and
10/7s = +/go while s = 2 for r > r9. Thus, employing (4.37) and (14.11),
we find that the expressions for the coefficients § and 4 are

__1-q
1-go(1-go)

both of which are greater than zero. The tearing stability index of the

~f:—%lngo, b

2/1 mode computed in the cylindrical limit according to the analysis of
the preceding chapter, is (see Eq. (14.22))
60-q) 4
1+(B-g)1-g0) 1-(buw/r)*

where 4, is the radial position of an ideally conducting wall. For ¢p < 1

1A, =

the quantity above is always negative thus indicating that the classical
2/1 tearing mode is stable.

Since ¢g(a) > 2 and thus ¢(a)/qp > 2, a
quick comparison with figure 10.5 shows
that external kink modes are stable.
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4 This is equivalent to letting the re-
sponse at the ¢ = 2 resonance to be ideal
in the limit of very small growth rates.

Now, following the calculations of §14.3 (see in particular sidenote
6) we may write X; as

-3
Xy o L+A_(L) ]/(Q,u—l), rs < 1 <79,
) )
T r\7?
o | —+ A+ (_) ]/(2# - 1)’ r > 719, (1517)
L) )
where 4, = —(by/79)* and A_, still undetermined, contains the contri-

butions from inertia and resistivity at the ¢ = 2 surface. Thus, by means
of the equation above, the quantity ¢ is readily obtained

_2+4A_
‘T iraa

(15.18)
Letting x = (r — r9)/79, as 79 is approached one has (cf. (14.12))
¢ 1 . 1
X(ron-ge—+A, X(r—omntee—+A,

where, in analogy with (14.14), we defined

1+

[NellSa
[Nel[e4}

As
Ai -

(15.19)

'

+

Matching with the inner layer solution of the ¢ = 2 resonance yields a
dispersion similar to (14.18) that is

13 205/6 T((Myq + 3)/4
n(z ) M, ( © ):A+—A_, (15.20)

1= Mo v (s + 5)/4)
where the subscript 2 means that the corresponding quantity has to be

evaluated at r9. Equation (15.20) is now combined with (15.19) to obtain
an expression for 4_ which reads

[ 44, 4
A= (1+A+ +A*) / (1+A+ —A*). (15.21)

Thus, if we let 6W; to denote the growth rate of the ideal internal kink

as given in §8.5, we consistently set ¢; = limy__,_1 ¢.* It then follows that

¢ = 2/3, whereas the correction containing the ¢ = 2 layer response
reads

4(1+4 16/3
Cp = — = .
B3\ 1+44_] ~ 3A. +4(1 + 444)/(1 + 44)

A quick computation finally yields

CR/(1+b—61) _ 16/3
1-cr/A+b—-c;) (1A+3b)A,—1A))

Therefore, combining this result with equation (15.16) eventually gives

1 A 84/ (3¢o)
o(M;) 2 (1+3b)(9p(M2) + 1287/ o)’

(15.22)
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where ¢y = 5(282/ 3)1/3 and the function ¢ is defined as

sl r( +3)/4)
L T r((M 4 5)/4)'

Let us study (15.22) more carefully. If we keep Sy finite and let
§ — oo, i.e. the response at the ¢ = 1 surface is ideal, the left-hand-side
of (15.22) is computed in the limit M, — oco. Thus, by letting y — 0,
one can identify the marginal boundary

80Wr/3
Wit A+ 3

Since 6Wg > 0 and oA/ < 0 with our choice of the safety factor, resistiv-
ity at the ¢ = 2 surface yields a critical 3, lower than the one obtained
from the fully ideal computation.

Now assume § < oo and, for the sake of simplicity, take M;9 = M,.5
It is easy to see that if 1; ~ 0 then M, ~ 1 which is the growth rate of
the m = 1 resistive kink mode studied earlier. The important difference
compared to what has been discussed in the previous sections is that
a non-vanishing radial magnetic perturbation is allowed at the ¢ = 2
surface. This occurs even if the tearing stability index associated
with the 2/1 mode is negative meaning that a 2/1 magnetic island,
dragged by the 1/1 mode, may develop.

To quantify the amplitude of the magnetic perturbation at ry, fol-
lowing the procedure of section 15.1.4, we first write the 2/1 radial fluid
displacement in its corresponding resonant resistive layer as

M;+3
fr(y):c —c \/7_TMtr( 4’+ )i/wg* (k)eikyd
2 ¢ T T0i M, —1)eg 2x ), "odd 4

r—7y 1
b 6R = Q2
€RT 25,

(15-23)

where ¢, and ¢, are the constants of Egs. (14.15) and (14.16) while &, is
defined by (15.14). The quantity 4 is computed according to (15.13) with
m = ¢; = s = 2 and n = 1. Furthermore, we let £* = % f_o; f;(y)e_ik)’dy
and find that the odd contribution to £* is

“79i(M; — 1)ex
The magnetic perturbation associated with £* in £-space is referred to
as Y.

Far from the ¢ = 2 resonance, we use (8.21) and (15.17) to obtain at

(§")oda = — Eoaa(k). (15.24)

leading order

g&romn-e

_Cury (4 Bp(re) + b+ 5§+ By(rs)] 9
“9R, 1+b-c

1+A_ 1
X ((rs/rg) +A—(7‘2/rs)3) m 1-A_|x|),

With a generic ¢ profile, Eq. (15.22) can
be formally cast as (Connor (1988))

. B
p(M;) o(My2) + 19A [y’

It is worth to point out that the disper-
sion relation of two generic interacting
inertial/resistive layers retains essentially
the same structure although different ex-
pressions for 4, B, ¢y and rpA] must be

employed.

5 In analogy to what was

discussed in  §14.5, one  has
3 2

My /My = Il [$:0420) g the

ls21\ $1(1+2¢7)
subscripts 1 and 2 referring to the
resonances at r1 and ry respectively.

The Fourier transform of an even/odd
real valued function is an even purely
real/odd purely imaginary function in -
space.



216 THE m = 1 RESISTIVE MODE

where C1 is the amplitude of the 1/1 harmonic and € — 0. Thus, by
following the matching rules (14.17) we can identify

Gy (§4 By + B+ § 4 ()
1= 7% 7 9R, 1+b—c¢
1+ A4_

X —. (15.25)

(/) + A_(a/ ) o
The quantity 4_ is obtained from (15.21) which, in the limit b, /a — o
with M, ~ 1, yields

led =X 24(M, — 1)

A, 13 °

V7S]
We recall that the constant 4 is defined in (15.13) with the aforemen-
tioned substitutions.

We now exploit the fact that in k-space £* vanishes at infinity and
use the first of (13.31) to write

roBoV, [ k& (k)
nSQI/?’ —eo (1 + V,E2)?

(VBB RO =5 [ bk -

One notices that in the expression above only the odd contribution to

&* is needed. Hence, after setting M; ~ 1 and using (15.24), we finally
Remember that when M; = 1 the func- obtain
tion f;dd as defined in (15.14) becomes

% 4272
g =20 0F 2 (4k).

(VEB)2(0)  Ciary (§+Bp(r) + b[s+ 5+ B,(r)]\  AN2
irgBy B Ry 1+b—¢ 3\/7_TS21/3.
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Localised resistive instabilities

In this chapter we investigate the effect of plasma resistivity on the dy-
namics of two types of localised perturbations, namely resistive bal-
looning and resistive interchange modes.

Resistive ballooning modes are likely to appear in regions of steep
pressure gradients and large plasma collisionality. These condition are
usually met in proximity of the plasma edge when the pressure gradient
starts to build up at the H-mode entry (see Figs. 12.3 and 16.1). It is
common in this regime to observe high frequency, small amplitude Edge
Localised Modes (ELMs) which appear well below the ideal ballooning
limit (this is the maximum achievable pressure beyond which ideal bal-
looning modes become unstable). These event are commonly labelled
as type-III ELMs. The frequency of type-IIl ELMs decreases with in-
creased injected power, and in some cases they seem to occur below
a threshold in the electron temperature suggesting the possible role of
plasma resistivity. Resistive ballooning modes are supposed to play an
important role in explaining the appearance of type-III ELMs.

Other localised perturbations discussed in this chapter are resistive
interchange modes, namely the resistive counterpart of Mercier modes.
These instabilities may be associated with a soft g limit not so catas-
trophic to terminate the plasma discharge but serious enough to de-
grade plasma performance. Although the stability criteria associated
with resistive interchange modes are less stringent than those of Mercier
perturbations, we will see that tokamaks operating with monotonically
increasing safety factors are quite resilient against such types of instabil-
ities."

Similar to their corresponding ideal perturbations, both resistive in-
terchange and ballooning modes are pressure driven instabilities where

Pped

ideal MHD

unstable

Tped

(b) L-mode

Nped

Figure 16.1: (a): H-mode edge pres-
sure profile. (b) Example of the stabil-
ity diagram of the edge region expressed
in terms of density and temperature at
Tped (hyperbolae denote isobars) at fixed
positive magnetic shear. The H-mode
is accessed above the black dashed line.
Type-III ELMs may appear in the region
highlighted in light grey.

1 Resistive interchange modes could
pose a concern to stability in plasma dis-
charges of long duration with a reversed
magnetic shear. A more precise charac-
terisation of the relevance of such insta-
bilities will be given in the next chapter.
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2 Although we adopt the same slow-
growing ordering of ideal modes, resis-
tive perturbations are expected to grow
on much longer timescales.

Note that the magnitude of (@E’)m is
proportional to sr;Byéy,.

the poloidal spectrum of the former is composed of one dominant har-
monic, while the latter features multiple equivalent modes.

The aim of this chapter is therefore to provide an approximate yet
meaningful discussion of the linear dynamics of these perturbations de-
tailing the mathematical techniques employed in their modelling. Firstly,
we derive a set of eigenmode equations which properly account for re-
sistive effects when dealing with localised instabilities. Subsequently, we
will focus separately on the two aforementioned perturbations discussing
in detail their stability properties.

16.1 Governing equations

Let us fix the poloidal and toroidal mode numbers m and 7, both much
larger than unity and such that m/n ~ 1. The associated resonance for
which ¢ = m/n is at position 7;, and we define x = (r — r,)/r;,. We now
identify two regions: one far from the resonance such that

mx ~ 1, (16.1)
and a narrow layer about r;, whose radial extension is such that
mx ~ & < 1. (16.2)

These orderings conform to (12.2) and (13.16) respectively. In analogy
with the notation employed earlier, we call the former the outer region
(also known as ideal region) and the latter the resistive layer (or sim-
ply layer) region. Furthermore, we assume to deal with slow-growing
instabilities such that y/wy ~ £.* Resistive effects are only allowed in
the layer region.

Since we are dealing with highly localised perturbations, following
(11.2) the expression of the parallel wave vector defined in (7.51) can be
approximated as

kj=mu—mn=~—-nsx,

where s is the magnetic shear at r; and p = 1/¢ with ¢ ~ 1; this expres-
sion is assumed to hold in the outer and layer regions.

Thus, according to (13.18), in the resistive layer close to the reso-
nance the magnetic perturbation with mode number m obeys (19 is the
equilibrium resistivity)

( no dQ) = ) r
1- ——|(gB")m = —irsBynsxé&,,. (16.3)

rly dx?

Close to r;, we allow the second term in brackets on the left-hand-side
to be of the order of unity. Far from the resonance, instead, the radial
gradients of the perturbation are weaker so that resistive corrections
become negligible. Therefore, the equation for the radial field in the
outer region is obtained from (16.3) by simply setting no — 0. Sideband



harmonics are supposed to obey equation (13.18) with the replacement
m— m=x1.

Having established a link between the magnetic perturbation and
the fluid displacement, we now need an equation for the latter. For this
purpose we formally start from the vorticity equation, i.e. Eq. (13.4),
and apply the orderings for small scale modes far from resonance pre-
sented in §7.4.3 The dynamics in the resistive layer is obtained by simply
allowing radial derivatives of the perturbed quantities to be the domi-
nant ones. Since the perturbation is supposed to be highly localised,
throughout this chapter, equilibrium quantities are evaluated at the res-
onance 7;. With the definition of the ballooning parameter given in
(4.41) which is (¢s = m/n)

2Rop}q?
B}

2

for the sake of simplicity and similar to §12.1, we consider a configura-
tion with < 1 and s < 1 such that (12.5), (12.7) and (12.9) hold. We
further assume p(’) constant.

Let us start by taking the mth component of (13.22). We recall that
the contribution coming from Ap,,, that is the compressible part of the
perturbed pressure associated with the harmonic m, is small both close
to and far from r; (cf. (7.48) and (13.24)), hence it can be neglected.
Therefore, recalling that p is given by (7.59), we can approximate

2 72 ) . ~ p(l) DT
30_2 Em = —i(mu —n)py — _,(‘/EB m
wy 0
Py no d* -
=———— B"),. 6.
F 12y 42 (VgB") (16.4)

Notice that contrary to the ideal case, there is no exact cancellation be-
tween the magnetic fluctuation and the radial fluid displacement. Then,
from the first of (7.27) we have

’ n r
R —%%‘;2 L NEB )  Gbs)
where we approximated f; ~ r;By (cf. (7.14)). We retain the second
term on the right-hand-side even though it is smaller compared to the
first one (this will help with some calculations in the next chapter).
Because of the smallness of the growth rate, the inertial contribution
on the left-hand-side of (13.4) is easily computed by applying the layer
ordering (13.17) and using (16.5). In doing that, corrections due to
mode coupling with satellite harmonics are ignored and we get

V2 42T
P55 - 5G], = e

At 0 L. 66
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3 This procedure loosely follows the
one employed in the derivation of the
Mercier and ideal ballooning modes
equation in sections 11.1 and 12.1.1.

Remember that we normalised gy = 1.
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4 Notice that (] /B ' ~ se/r?, and, ac-
cording to the results of §11.1 and §12.1,

the factors Dz/ are also small.

We now look at the right-hand-side of (13.4).

In the limit of large m and under the assumption of small shear, we
approximate (7.55) as P = I;—g[)(’) so that by means of (7.56), which is
valid within both the ideal and resistive MHD framework, we write

nsx

B¢ &
Vag| = el

¢
(@Bo VLS -NER:
0

- ’ d
- (VB ] - %%%@ VEB ) - zm—(po) £, (16.7)

Notice that in the expression above we retained terms proportlonal to
the plasma pressure, whereas contributions of the form &|C have been
neglected as they only yield small corrections to the term in square brack-
ets on the right-hand-side; these are in fact proportional to the magnetic
shear, and they become small when s is small. A similar argument is in-
voked to drop the term proportional to the equilibrium current gradient,
that is the second one on the right-hand-side of (13.4).*

From equations (7.61), (7.63) and (12.11), we exploit once more
the fact that Ap,, is negligible, so that the term involving the perturbed
pressure is written as

1 R [76 2r 1 ()[)0 .
(\/EV¢'VB—(?XVI’),”~ mB_o[R_() (1—E)+a 2 ]gm
in’Bya , & 4 o
+ 2m2RO Zi: (mgmil * ) ZﬂE (Aﬁ) (16.8)

where, again, contributions scaling with s have been dropped thanks
to the smallness of the magnetic shear. In analogy to the ideal case
(see §12.3), we keep the contribution in the square brackets of (16.8),
which, although smaller than other terms, plays an important role in
determining ballooning stability at small shear.

It remains to compute Y,_.; E™ (Ap), and for this knowledge of
Apma+1 is required. By means of (13.22) and using (13.18) we approximate

§m+1 = %Z%%(@Br)m+l F iﬂsApmil, (169)
where yu; = 1/ gs = n/m. Note that this expression guarantees that the
ideal results are recovered in the limit 79 — 0. The left-hand-side of this
expression is expected to become important only in the narrow resistive
layer around the resonance where the perturbation develops strong ra-
dial gradients Hence, assuming that (16.2) holds, from (16.4) we order

ff,i e (\/_Br)m ~ gé7, so that we may drop fm in (7.41) to obtain

APMil _ 1 dé:m
I'po mRy dx

'fm-*—l igs |+

Thus, plugging this expression of {-‘Zil into (16.9) gives (cf. (13.25))

By gytde, | fomo &
mRo (,)12‘1 dx SB() rf’y de

APyt = (VEB)ms1,  (16.10)
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having neglected terms proportional to (y/w4)?/B8 under the assump-
tion that the growth rate is sufficiently small. Finally, from (7.63), we
approximate

i ;[ dA
E;,%Ap):éo + + mApme | - (16.11)

Thus, upon defining the variable z = mx and introducing the quan-
tity A = s 7, By, we combine equations (16.6)-(16.8), (16.10) and (16.11)

to yield® 5 Recall that all equilibrium quantities
appearing in this expression need to be

dQ.f iz d2 o evaluated at 7.
2 __ ==z DT _ DT g el
my gt == (5 (VEB I ~ (VEB ) + (U + Q)gm

- gz 2 = 22

3%

2s dz

@ m’no

A 17y o [dst B = B )]
(16.12)

+

where yg and U are defined respectively by (cf. (11.12) and (12.24))

) 16.1
nls 2w2 QRO ( 3)

. YA+2) . or (1_1)
A

Y = U= :
g;

As in chapter 12, we refer to U as the Mercier contribution. Equations
(16.3) and (16.12) form the basis of the stability analysis for resistive
ballooning and resistive interchange modes whose linear dynamics will
be thoroughly investigated in the next two sections. It is worth to point
out that these two equations have been written in such a way that they
are valid both in the ideal and resistive layer regions.

16.2 Resistive ballooning modes

16.2.1 The eigenmode equation

The logic lying behind the analysis of resistive ballooning modes closely
follows the one employed in chapter 12. This means that i) we deploy the
assumption of translational invariance of the radial fluid displacement
and magnetic perturbation expressed mathematically in a way similar to
(12.25), and ii) we exploit this to write a single eigenmode equation in a
convenient Fourier space. The growth rate is finally obtained through
an asymptotic analysis of the resulting eigensolution.
Since m is large,5 the variable z appearing in (16.12) is allowed to % We actually take the m — oo limit.

vary from —co to +co. Therefore, defining the Fourier transform of &),
and (@B’)m as in (13.30), from equations (16.3) and (16.12) we readily
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7 Recall that the translational invariance
of a generic quantity X in the form of
(12.25) implies that

/ Xpe1(2)e *2dz = 7RIS X5 ().

Compare this with (12.33)

8 This corresponds to considering the
ideal region far from 7 in real space.

obtain’
yrdg”
1 2
(+Vk) 5
d PN . 2.2,2 @ k P
ﬁ((l_"k) )— U+§+mka —Z(cos—+ks1ns)§
25 (k3 cos F _ k2 ‘/’_:
S (k cos k* sin — )A 0,

having introduced the quantity

2
m=10

V= i
ey

These two equations are combined together to finally give the eigen-
mode equation for resistive ballooning modes:

d ( 1+ k2 df*)

2
- [7+a—+m2y§k2—%(cos£+ksin£)]§*
s s

dk \1+Vk2 dk 952 P
a Vk? k . k) d¢e
SR (’“ cos g —sin ‘) a =0 00

Notice that this equation is valid over the whole domain —co < £ < co.
Treating the magnetic shear as a small quantity, the dispersion relation,
i.e. the growth rate, is obtained by performing a double two scale anal-
ysis for £ < 1and £ > 1.

16.2.2 The growth rate

For the sake of simplicity and facilitate the algebra, we drop the Mercier
contribution, that is we set I/ = 0. Let us deploy the following ordering:

s~62, a ~ 0, I7~m2y§1~6,27~64,

where €, is some small parameter. Typically, resistive instabilities grow
on much slower timescales compared to those of ideal modes, and this
is reflected by our choice of the ordering of the growth rate.

When £ ~ 1, exploiting the smallness of V, we may drop the resis-
tive terms and inertial contributions so that Eq. (16.14) is reduced to
(12.30).8 Letting é* = X /[1 + k2112 and expanding X as in (12.34), we
follow the exact same techniques discussed in §12.3 to derive an equa-
tion for the non-oscillating (averaged) part of the eigenfunction &; =
Xo/[1 + k?]V/2. This yields (cf. (12.37))

dé, 12 c a?
2 0 *_ 2_ 2 _
((1 LRl ) Trpe=0 =7

at
$2

%I\l

The associated even and odd solutions are (Strauss (1981))

Euven = cos[d arctan(k)], £ ,4 = sin[A arctan(k)].
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One then finds that for large £ these behave as

g:ven & 1 + £’
|&|
A (16.15)

« A,
'fodd o (1 + m) sgn(k),

with the coefficients A, and A, defined by

A, =2 tan(§4),
Ay = =1 cot(51).

We now consider the large £ limit where resistive corrections become
important.9 After setting k = k/e, with £ ~ 1, we define the “periodic”
variable y = k/s appearing in the arguments of the sine and cosine
functions in equation (16.14) and write

d [ F+e ae @’ oo k ko } .
— |\ ~ |- | == m — — —= | COS + — sin
dEi\1+ PR/ ak | |22 T T T | T A ¢
Vi2/ e . der
a—n(kcosx—e,]sin)()‘—{zo.
S1+Vk? e dk

(16.16)
We treat £ and y as independent variables, thus allowing us to transform
the differential operator d/dk into
d 0 1 0
—_— = —+ ———.
dk 0k €ysdx
In analogy with (12.34) we expand £ as

£ = &5(k) + (METk x) + (s x) + ..,

where the order of & (i = 0,1,...) is given by the J-coefficients in
brackets. As in the analysis of ideal ballooning modes, we require that

. &7dy = 0 for i > 1. Hence, to the first two leading orders, (16.16)
yields

1 K anI = gif* sin
6?,s21+17122/e% Ay? s2¢ °0 X
- g2 (16.17)
1 k &

@
— = - COS Y.
2521+Vk2/672] aXQ sgé‘:() X

The integration of these two equations is trivial showing that £ ~ sin y
and &5 ~ cos y. Now, taking into account the non-vanishing contribu-
tions, we find that at leading order the average in y of (16.16) yields

B0 e Bt E i
ok \1+VEk2/e: ok 252 H e2 |0 1 X
a Vk3/e,7 O&:

1
(cos y=—=) =0,

_8_21+I7122/6% dx

9 That is we are analysing the resistive
layer region in real space.
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10
5.
o’
-5+
— A,
-10¢ N - A,

a?/s

Figure 16.2: Parameters A, and A, ver-
sus @?/s. The ideal ballooning marginal
boundaries are denoted by the vertical
lines (cf. (12.43)).

having introduced the notation (-), = % 0277(-)0,’)(. By means of (16.17)

we finally obtain the large-k averaged resistive ballooning equation

Lﬁ) o
1+ VE2/e2 ok

0

=0. 16.18
PY; o ( )

52
2
n

If one chooses €, = S71/3 this equation is formally equivalent to (13.35).
Correspondingly, the asymptotic small k behaviour of the (regular) solu-
tion which is not diverging at infinity is determined by equation (13.41)
where the replacement & — £ has to be performed.

Therefore, matching the regular solution of (16.18) with (16.15) yields
the dispersion relation

Ao+2hA, a, A - %A,

=== (16.19)

1+ i—: €n 1-2

where Ay is given by (13.42) with V,, Q and M, defined in (13.36) and

(13.38). Here ¢, and ¢, are constants multiplying £¢,., and &, respec-
tively, given by (16.15).

The expression above has the same structure of (11.31), and is solved
by setting either ¢,/é, = 0 or ¢,/¢, = co. Therefore, in analogy to earlier
calculations for ideal localised instabilities, we immediately find that
resistive ballooning modes have definite parity: even perturbations
have ¢,/¢, = 0, whereas odd ones are obtained by setting ¢,/¢, = co. It
follows that the growth rate for odd and even resistive ballooning modes

is given by
M+3
Mt5/6 F( 4+) 2m A (odd) (16.20)
= = Ay, odd), 16.20
(1_Mt)]—'(Mt4+5) coS1/3
- A 6
= COS—l/3 ¢s (even), (1 .21)

where ¢ = (ns/{/1 + 2q52)1/3. The behaviour of A, and A, as a function

of a?/s for positive shear is shown in figure 16.2. The ideal limit is
obtained by letting M; — oo (care has to be taken when dealing with
the odd solution and when A becomes imaginary for the even one, see
Strauss (1981)).

Now, analysing the linear stability of resistive odd modes, we see that
the right-hand-side of (16.20) is small if § is large, so that the dispersion
relation is analogous to the one which we obtained earlier for tearing
perturbations. Hence odd parity resistive ballooning modes are unstable
when A, > 0, that is within the instability region of even ideal perturba-
tions. We conclude that these modes are of minor relevance due to the
fact that their instability window coincides with that of ideal balloon-
ings, and because they grow on tearing-like timescales (y/wy ~ S73/%)
which are much slower than those of ideal perturbations.
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Resistive balloonings of even parity, instead, become unstable for

O<a2/s<§(l—%),

and

?(l+g) <a/2/s<3—72
meaning that they are unstable throughout the whole first stability re-
gion as well as in a small portion of the second stability region of ideal
balloonings. The quantity A, becomes very large when 1 ~ 1, i.e. in
proximity of the marginal boundary of ideal ballooning modes (these
are identified by the relation 4 = 1). It follows that the growth rate of
the associated resistive instability is given by A/, ~ 1: this is basically
equivalent to the dispersion relation of the m = 1 resistive internal kink
analysed earlier, yielding the fast scaling y/wy4 ~ S7V/3. Sufficiently far
from the ideal marginal boundaries, i.e. in the regions of stability of ideal
ballooning modes, A, is of the order of unity and the structure of (16.21)
becomes essentially equivalent to (14.20), yielding slow-growing pertur-
bations with growth rates exhibiting a dependence upon the Lundquist
number of the type S/, that is tearing-like.

The instability regions of resistive ballooning modes in the —s plane
are shown in Figure 16.3. We briefly point out that if Mercier correc-
tions are taken into account, resistive stability can be greatly improved
(Strauss (1981) and Correa-Restrepo (1982)), and the corresponding
marginal boundaries are schematically depicted in Fig. 16.4. This sta-
bilisation mechanism is associated with curvature effects in the resistive
layer region, and is analogous to the one yielding the modified tearing
stability criterion discussed in the next chapter.

16.3 Resistive interchange modes

As for ballooning instabilities, the analysis of resistive interchange modes
is based on equation (16.12). Let r; be the resonant point of the har-
monic with poloidal and toroidal mode numbers m and =, respectively,
such that ¢(r;) = m/n and assume that the magnetic shear is small. Dif-
ferently from resistive balloonings, the analysis of interchange modes
does not encompass more resonances other than r,. We assume the mth
harmonic is well localised about this point and its amplitude is taken
to be much larger than the one of the sidebands with poloidal mode
number m + 1.

This argument is corroborated by the fact that, if the radial extension
of the mode m is proportional to 1/m (cf. (11.1)) and the separation
between 7, and the resonances of the first neighbouring sidebands is %
(cf. (12.4)), the smallness of the magnetic shear prevents the resonances

Figure 16.3: The area shaded in dark
grey is unstable against ideal and odd
resistive balloonings, while even resistive
ballooning modes are found to be unsta-
ble in the region coloured in light grey.

(07

Figure 16.4: Instability regions for
ideal (region A) and resistive ballooning
modes (region B) of even parity when
Mercier corrections are taken into ac-
count. The resistive marginal bound-
aries eventually coincide with the ideal
ones if the resistivity is small enough.
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1% This is analogous to the derivation
presented in section 7.5.2.

of the satellite harmonics to occur in the vicinity of the region where the
mode m > 1 is localised.

Hence, evaluating the m + 1 Fourier component of (13.18) in prox-
imity of r, yields

, _ i m? 770 d? .
= 1- VEB a1
Ems1 +MsrsBO ( sz)( gB" )ms1
When this expression is plugged into (16.12) we obtain

o o 4%,

. d2 B B
"V T %(a’z2 (VeBm - (@B’)m) (U * )fm
d _ -
+ i—Q?A ; [E(@Br)mil + (@Br)mil} . (16.22)

We now assume that ordering (7.37) holds. Thus exploiting the small-
ness of the toroidal component of the perturbed magnetic field and using
(7.25), we find that the m +1 projections of (13.10) can be approximated
to leading orders as (cf. (11.13))

0«’2(\/_ m

10

o3 (GEgr). s

~(VEB ) —

having dropped, as usual, contributions due to Ap,,.

In analogy to what we did for ideal Mercier modes, we integrate the
expression above once and set to zero the constants of integration to
guarantee localisation of ¢,. Upon combining (16.22) and the solution
of (16.23), we transform to £-space (cf. (13.30)) the resulting expression
to obtain the following eigenmode equation for resistive interchange
modes

2 s
di;c (11++I7kk2 ‘flé;c ) - (U + mzyi,/cQ)f* =0. (16.24)
Equation (16.24) is studied by performing a two scale analysis in a
similar fashion to what has been discussed in the preceding section,
where here retaining the Mercier contribution proves to be essential.
We point out that for V' — 0, Eq. (16.24) is equivalent to the Fourier
transform of (11.14) where the small inertial contributions which are
not multiplied by &% are dropped (these have been indeed proved to be
unimportant for determining ideal stability).

16.3.1 £ <1 eigenfunction

Let us first consider the £ < 1 region, for which inertial and resistive
effects can be ignored. In such a case, equation (16.24) reduces to

d

Noticing that this has exactly the same structure of (11.24), we introduce

‘f* ek
17 ) -U¢ =0. (16.25)

the quantity v as defined in (11.20) which is

+0.

<
I
o~ =
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The system is supposed to be stable against Mercier modes so that we
take 0 < v < 1. We refer to the solution of (16.25) as the ideal solu-
tion and its asymptotic behaviour for large £ is immediately found from

(11.30) giving

CAy + CoA |k|2"

C, + €y

1
£ o k72 (1+ ) k>0,

CA — oA (16.26)
eRe 0 olklzy

e — Co

oc|k|_%_v (1+ ) k<0,
where A, and A, are defined in (11.29) and ¢, and ¢, are some constants
multiplying the even and odd solutions respectively. We point out that
when v > 1, the asymptotic behaviour of the solution of (16.25) is not
given by Eq. (16.26) anymore leading to important consequences which
will be discussed later.™*

To obtain the dispersion relation it remains to analyse the solution in
the large £ region: this requires few mathematical manipulations which
are detailed in the next subsection.

16.3.2 £ > 1 eigenfunction

We first write U = 7(7 + 1) choosing
1
T= -5 +v. (16.27)

Since 0 < v < 1, 7 varies between —1/2 and 1/2. We assume that £ is
large and introduce the variable k = k/8/3 such that £ is taken to be of
the order of unity. Contrary to the £ ~ 1 case, we retain resistive and
inertial effects, so that (16.24) can be approximated as

d

~

dk

B e
1+ V,k2 dk

) - (T(T +1)+ QIEQ)f* =0, (16.28)

where V, and Q are defined in (13.36). Repeating the procedure outlined
in §13.4, we define the variable { = M,V,k? with M, given by (13.38) and
write &* = (7/2¢7¢/2Y (7). After some algebra, equation (16.28) becomes
(cf. (13.37))

1+T/Mt

T oA+ /M)

a2y (1 1 )dY(
é’_

et \2 T )

)Y =0, (16.29)
having defined
(M +) (M +T+1)

h
M,

Following Correa-Restrepo (1982), we write

dw 2h
y =52 :
d{ Mt+T

11 Let p; (i = 0,1,...) some constants.
By means of (11.28), for v > 1 not an
integer such that v # 3/2 the behaviour
of £* in the large £ limit for both the even
and odd solution is

g o [ (14 po/kY). ()

while if v = 3/2 we have

h

§Zven o k+ ﬁ’ f;dd o« k.

Let now v be a positive integer and in-
stead of (11.28) use the transformation
formula

F(a,b;¢;2) = (1~ 2)""F(a, ¢~ b;¢; 757)

with |arg(l — 2)] < n. Also in this
case even and odd solutions behave sim-
ilarly: when v = 2,3,. .. we find the same
asymptotics as in (*), whereas for v = 1
one has

£ o |FV2 (1 + %(1 + pslnlED).
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12 The dispersion relation for ideal
Mercier modes is easily recovered by tak-
ing M; — oo.

and find that the function % obeys Kummer’s equation (see the box
at the end of the chapter)

2u (1 A%
;E;+(§+T_4-———mw=o, (16.30)

¢ i

whose solutions are written in terms of the confluent hypergeometric
functions M and U (we follow the notation of Abramowitz and Stegun
(1964)). Thus, the solution of (16.28) for £ > 0 which does not diverge
at infinity is

(16.31)

3 2 1
w_ pT[2,-C/2 2 -
E =" [U(h+1,r+2,§)+ t+TU(h,T+2,§).

Even and odd solutions are constructed in the domain —co < £ < oo by
setting £*(—k) = £*(k) and £*(=k) = —=£*(k) (see §13.42.

Eventually, the asymptotic behaviour of £* when £ approaches zero
is readily obtained:

£ e |RI[1+ (M)

F(%"’T) M+t
F(—%—‘r) (Mt—l—‘r)
U (30, +3 - 27 + o(r + 1)/ M)

x |/€|—1—2T].
U (30, + 5+ 27 + o(r + 1)/ M)

The dispersion relation is finally obtained by matching this expression
with (16.26). Similar to ideal Mercier and resistive ballooning modes,
resistive interchange instabilities exhibit definite parity, either even or
odd, and the growth rate conforms to

M4 ) F (3, +3 =27+ 7(x + 1)/My)|

1
MV,) T
R

T (30, + 5+ 27 + 7(x + 1)/ M)

_ 21 -yt + §)S_zv/3
21+ v)2(E -3 ’

(16.32)

where ¢ =1 for even modes and ¢ = 3 for the odd ones.*®

Before embarking on the analysis of the dispersion relation, we re-
mark that when 7 > 1/2, that is v > 1 the small £ expansion of (16.31)
yields

£ oc k|7 (1 +ao(1+aln |k|)lc2), (r =1/2),
o |K| 12 (1 + a2k2), (r > 1/2),

with a; (i = 0,1,2) some constants. By comparing with the asymp-
totic behaviour of the ideal solution described in the sidenote 11 in this
chapter, one comes to the conclusion that, generally, it is not possible to
match the solutions of (16.25) and (16.28). This means that no unstable
modes can be constructed for 7 > 1/2 (Correa-Restrepo (1982)).
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16.3.3 Growth rate and stability boundary

Assume that 7 is sufficiently far away from either —1/2 or 1/2. In the
limit of § large and v not too small, the right-hand-side of (16.32) is a
very small number. Therefore, this relation is satisfied when M, fulfils
the following condition'3

M, +1+2t+71(r+1)/M;, =-4¢, ¢=0,1,2,.... (16.33)

The most unstable case is associated with the £ = 0 level and gives
M, = —7 which, by means of (14.19), yields the growth rate

92/3
’y _ —SntT _1/3
— = — S§ (16.34)
wa 1+ 2¢2

where we recall that ¢; = m/zn. One sees that a growing instability

requires 7 < 0. We can be slightly more precise on the estimation of
the growth rate. Assume —1/2 < 7 < 0 with 7 neither too small nor too
close to —1/2, and formally write (16.32) as f(M;) = S™2/3/Ag;(t) < 1
where

21+ vt - 3)
21 -t +3)

Api(t) = (16.35)

By performing a series expansion of f(A;) around M; = —7 we obtain

2v/3
2Vﬂl2v (_T)v/3 ,[1 +2952

M,=-1-
T TA ) Arr) | nsS

Since Arr(1) > Ags(3) as shown in figure 16.5, we find that even
modes grow faster than the odd ones, although their growth rates differ
by a rather small amount.

If T = 0, the right-hand-side of (16.32) is still a small number, being
actually zero for even modes due to the divergence of the Gamma func-
tion at v = 1/2. Therefore, Eq. (16.32) can be reduced to a form which
is equivalent to the dispersion relation of tearing perturbations, that is

(cf. (14.20))
5
(l)s/4 ! (3 [T (16.36)
w4 Arr (%) (1 +2¢2)1/2

Because Agy > 0 for odd modes, we conclude that no instability develops

when 7 = 0. We thus infer that resistive interchange modes, either even
or odd, only occur when 7 < 0.

A more general case in which the magnetic shear is allowed to be of
the order of unity will be briefly discussed in the next chapter.

13 There are actually two solubility con-
ditions, that is

M;+7=0,
M +1+2t+7(t+1)/M; = —4¢,

with £ =1,2,.... For the second one we
used the fact that 5+ 4¢ = 4(£ + 1) + 1.
These can be combined to yield (16.33).

1.5

1/ARi(3)

0 0.25 05
14

Figure 16.5: Values of the inverse of
Agy(¢) for t =1 (even modes) and ¢ = 3
(odd modes) as function of the param-
eter 0 < v < 1/2 which corresponds to
-1/2 <71 <0.
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On the solution of equation (16.29)

We first note that if Z is a differential operator in the variable
¢ and the function % is such that % = 0, then the following
relation holds

Sl s robr o (16.37)
with f({) a generic function. Upon writing L as
2
L= § +(4- ()— - B, (16.38)

with 4 and B some constants, equation (16.37) becomes

3
+[4+1- §+§f(4)] d@

C[B+1+ Q- )2 d—g ~Bf(O% =0.  (16.39)

Now, letting ¥ = e”-(j{ (e7“%) = dZ{ a?% where a is some

number, equation (16.29) then reads

B 1 1 d*U
ol e e |
1 1 1+T/114tl dw
_[“(5”_“1 g/Mt)”‘ 2(1+§/Mt)] il
1+T/Mt _
+ d[ll m]% =0. (164.0)

A quick comparison between (16.39) and (16.40) shows that

1 2h
A=— B: =
2+T’ ko a M, +7
1 (M;+7v+1 1
f@)_—_( 2 T 1+7/M,

Equation (16.30) then follows from (16.38).
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Curvature effects in the resistive layer

So far, toroidicity effects, apart from those yielding inertia enhancement,
have been taken into account, in a rather approximate manner and for
the very specific case of small magnetic shear, only for the analysis of
resistive ballooning and resistive interchange modes. In contrast, the
non-ideal stability of tearing and m = 1 kink modes has been basically
carried out in the cylindrical limit. However, toroidal corrections, also
known as curvature effects, play an important role in the determination
of resistive stability, thence we need to devise an alternative procedure
to properly include them independently of the strength of the magnetic
shear.

In deriving the resistive layer equations presented in chapter 13 the
magnitude of the radial gradients of the perturbations was assumed to
be of the order of the inverse aspect ratio. Within this approximation,
by retaining the leading order contributions only, most of the effects
induced by toroidicity have been missed.

The alternative strategy, which guarantees that curvature effects are
properly included, is to introduce an additional smallness parameter ¢
much smaller than ¢, the inverse aspect ratio, and let the radial deriva-
tives of perturbed quantities to be as large as 1/6. Assuming this to hold,
then i) the resistive MHD equations are expanded in ¢, and ii) a further
expansion in & to second order is performed (when needed) yielding,

formally, expressions of the form

(f+82g+...)+o(6)=0.

If 6 is small enough, all the relevant physics is contained in the dominant
term in &, and toroidal corrections enter the equations to order &2.
Having outlined the skeleton of the procedure we want to adopt, this
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A more general derivation of the resistive
layer equations is given in appendix F

w;ll =Ty = RO\/ﬁ/B().

The estimation of the thickness of the
inertial-resistive layer given by (13.29)
suggests that, for s,m,n ~ 1 and typi-
cal tokamak values of the Ludquist num-
ber, the smallness parameter ¢ has to be
much smaller than &.

chapter is organised as follows: we first introduce the resistive layer or-
dering for the perturbed pressure, fluid displacement and magnetic field.
Subsequently, a set of simplified expressions for some relevant physical
quantities are obtained. We then proceed to write the induction and vor-
ticity equations in a form similar to (13.27) and (13.28) but augmented
by toroidal effects. These equations are equivalent to the ones known in
the literature as the Glasser-Greene-Johnson (or GGJ in short) equa-
tions, but computed in the limit of large aspect ratio for a circular toka-
mak. Following the same procedure presented in §13.4, we merge these
equations into a single one by transforming them in Fourier space. Mod-
ifications to stability due to curvature effects will be finally discussed for
some of the resistive perturbations analysed in earlier chapters.

17.1 Toroidal layer orderings

We consider a low-8 plasma such that 8 ~ &2, The equilibrium is as-
sumed, for the sake of simplicity, to be up-down symmetric as described
in chapter 5. Perturbations depend on time and on the toroidal angle as
exp(yt — ing) with n denoting, as usual, the toroidal mode number. Let
7y be radial position where ¢(7;) = m/n = ¢; with m and n both positive.

As discussed in chapter 13, we allow resistive effects to become im-
portant only in a narrow region close to the resonance r, where perturba-
tions are expected to develop large radial gradients. Upon introducing
the parameter ¢, and letting resistive perturbations to grow on much
slower timescales than those of ideal modes, we deploy the following
ordering (cf. (13.17))

0
r
25 (17.1)
d m mnod 9
r—~— ———~1 Jxe&’
dr ¢ vy dr?

where the ordering of the radial derivatives is assumed to hold when
these are acting on perturbed quantities. As usual, 779 denotes the equi-
librium resistivity. From this, in a neighbourhood of r, the parallel wave
vector can be approximated as k|| = mu — n = —nsx ~ 6 where s is the
magnetic shear at the position of the resonance. Besides, we take the
numbers m and 7 to be as large as 1/& at most. Finally, in the remain-
der of this chapter equilibrium quantities are implicitly supposed to be
evaluated at the resonance 7,.

We now assume that in the thin layer around the resonance the radial
component of the fluid disturbance is dominated by the harmonic with
poloidal mode number m so that we take

Er ™ 6s€§,’n. (17.2)

The reason for the multiplicative factor proportional to & can be intu-
itively motivated by the fact that the poloidal spectrum is expected to
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be centred about the mth harmonic, with the magnitude of higher or-
der modes coupled through toroidicity gradually decreasing with some
powers of the inverse aspect ratio.

Since the divergence of the magnetic field is zero, we conveniently
order

~ ~ 1 ~
(VEB ) ~ (VEB Y ~ —=(VEB I ~ Bot s
~ _ 1 ~
(VEB )mst ~ (VEB Ynst ~ —(VEB Imst ~ ' Bo,

whereas the magnitudes of the poloidal and toroidal projections of the

(17.3)

fluid perturbation are

1
N
rd
o (17.4)
fzif ~ fziz ~ Effn'

The consistency of these orderings will later be evident.

The left-hand-side of the parallel projection of the perturbed momen-
tum equation, that is Eq. (13.22), is of order 6B§§,’n at most, hence by
taking the m and m + ¢ Fourier components of this equation we have

b~ Bor Pt ~ OByEy /1. (17.5)
In particular, by balancing each of the terms appearing in the mth pro-
jection of (13.22) such that they have comparable magnitude, we can
further refine the ordering of the compressible part of the pressure and
the toroidal projection of the fluid displacement as
2
Apn ~ S BEnIr. &~ &0 (17.6)

The latter will be proven to hold a posteriori.
Now, for many calculations, it is more convenient to express a generic

perturbed quantity f as a sum of a resonant and non-resonant part,
that is Note that for a generic quantity 4 one

f =m0 ([ur) + fin(r)). "

with the subscript NR standing for non-resonant. Explicitly, one has

ARE0) = fuse(r)e'”?. (17.7)

0

Ay = <efim19+in¢A>

ANR — e—imﬂ+iﬂ¢A _ Am

This sum is assumed to be convergent, and because of this we may order

/NR ~ the largest of f,., with £ # 0. (17.8)

It is evident that, by definition, { fAr) = 0 where angular brackets denote
the poloidal average as defined by (5.18). With this decomposition of
the perturbation, the action of the parallel gradient reads

. i £ ~ A ’ :
e_,mﬂﬂntb}/_fBo -Vf =i(mu—n) (f’" + fNR) TH ({ER

(17.9)
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Thanks to the up-down symmetry, we
have (l/Bg)g = (1/Bg)_g. Analogous ar-
guments apply to other quantities.

! Contributions coming from other har
monics are & times smaller and so they
are dropped.

The programme of the next sections is to apply the orderings above
to work out the expressions of some physical quantities to be employed
in the derivation of the resistive layer dynamical equations, specifically
for the radial component of the fluid displacement and the magnetic
perturbation of the resonant Fourier harmonic.

17.2 Fields, displacements and pressure

To achieve the aforementioned objective, knowledge is needed about
some auxiliary quantities, such as the form of the fluctuation of the
toroidal field or the non-resonant contribution to the perturbed pressure.
This section is therefore devoted to work out these expressions. To keep
the algebra sufficiently clear, we carry out the analysis for the toroidal
field, fluid displacements and perturbed pressure separately.

17.2.1 Perturbed magnetic field

Exploiting (17.5), we see that the leading contribution (in ¢) to the m+¢
Fourier projection of equation (13.10) reads

HVE T mse + A/BY)e py = O, (17.10)

with the perturbed toroidal current written as (cf. (13.11))

(VESmze = (NYEB”) ., + Z Nuw(VEB”Y p s (17.11)

m’#0

having employed the notation of §5.3 to denote the metric coefficients.
Only the m +1 components are needed,’ so that combining (17.10) and
(17.11) and keeping the dominant terms in & produces

(NYEB"), 11 = ~[Ni(\EB")w + ¢1/BO)1 fm]'. (17.12)

By integrating this equation, a constant would appear which, to conform
to (17.3), is ordered as £Byé],. We set this constant to zero for the mo-
ment (we will elaborate later on the consequences of having this quantity
not vanishing) and write

1/B)1

EE (N P ~ €Boéy,.  (17.13)

(N)

Y = (\/ggﬁ)mil == (@Bﬁ)m -9
After selecting the mth Fourier component of (13.9) and using (17.5)
to drop contributions from the satellite harmonics to the perturbed pres-

sure, we obtain

0= —im%mﬂ — imG (NGB - in(NYEE )
0

—in Z Nm’(\/ggﬂ)m—m’,

m’'#0
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which is exact at leading order in 6. Thus, using (17.13) and retaining
the dominant corrections in ¢ yields
hn 1 (VEB),

B o~ LT -
(\/E Im By +'uRg im

(17.14)
which easily shows that (@Bfﬁ)m ~ e2Byer .

Now, by means of the orderings discussed in §17.1, the m + ¢ Fourier
projection of (13.9) is written as

0 =m(Big)f f+ (% OYGEE e

+ n(NYVEB st + 1 Y N (NGB Vst (17.15)

m’#0

where use of (17.5) has been made again. Plugging (17.10) and (17.11)
into this expression dictates that the perturbation of the toroidal field
associated with the non-resonating harmonics scales as £3By¢7, at most,
therefore we can set

(VEB")mse = 0. (17.16)

Thus, under the assumption that (17.8) holds, we conveniently write
(\/§1§¢)NR = 0. We point out that if the constant of integration in (17.13)
is allowed we end up with the following modified expressions of the
perturbed toroidal field

(VEB® )t
(VZB?)xr = D),

where D is a function of the poloidal angle.

const,

(17.17)

17.2.2 Poloidal and toroidal displacements

Let us assume that (17.8) holds, i.e. the magnitude of the non-resonant
part of the perturbation is the same as the one of the non-resonant
Fourier harmonic of lowest order (in ). Thus, we employ the order-
ings (17.2)-(17.5) and (17.8) to write

PN ~ OBEn 1, Exg ~ 0D,

9 ¢ €
g{\IR ~ é:NR ~ E‘ffn

(17.18)

Owing to the smallness of the toroidal perturbation of the magnetic field
(see (17.14) and (17.16)), we take the m and m+¢ projections of equation
(13.19), which for our purposes proves to be accurate enough, yielding
to leading order (in 6)
1 d(fyén :
T A

[ m% dr (1719)
Epae ~ HEp = 08, /7).

b= -

When m+¢ = 0 with m > 0 we need to be
more careful. One first notices that, by
means of (17.5), equation (17.15) gives

0= m(%)_ P+ 2 (NES o ()
B m

0

We now take the covariant radial projec-
tion of (7.1) which, upon linearisation,
yields to leading order in &

p 0GygB?
B_g T o

A

By averaging in ¢ and using ()
in conjunction with (17.5), we obtain
(‘/qu))(/) = 0 which conforms to (17.17).
This result is rather general and applies
to any geometry, i.e. not necessarily up-
down symmetric.
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2 Recall that my — m ~ 6.

Exploiting (17.7), we readily find

Edn = uEdy + o(e€h 1), (17.20)

where the small terms in this equation are supposed to have zero poloidal
average.

Now, the non-resonant contribution to the divergence of the fluid
displacement reads

T

T 19 10vg\\ .,
(V- nr = — 5 + iméy — inéyg + (W f 7 gﬂ)g
1 0vg , 1 0vg fNR
\/— or é:NR <\/— or é:NR>

ovE(E i) ovaél
a9 Vg a9 Vg

From (17.18) and the definition of the compressible part of the perturbed

). (17.21)

pressure, we immediately see that (V - £€)Ng ~ ¢ so that (17.20) and
(17.21) yield at leading order in ¢:*

ry_ 9 9 IVE .o ‘/_fNR

o(r£3) = 55 (VEER) + 5560 = (G N

Averaging in ¢} shows that the last term in angular brackets on the right-

hand-side is of higher order (in ) compared with the other contribu-
tions, and a further integration in ¢ finally yields

1/vVg
i = € = (<1/£> 1)

We now turn our attention to the expression of the toroidal displace-

(17.22)

ment of the dominant mode. Let us first note that to the leading orders
in the parameter 6 we have

\/_O%BO £ = gimiing [gtﬁrb (ffz + fﬁm) + 899 (fz + glﬁR)]

gén|. (17.23)

= pimd-ing [gw (én - gn) + (il o

where we used (17.22) for expressing the non-resonant part of the poloidal
and toroidal perturbed fluid displacement. The mth Fourier projection
of (13.22) can be written as

B2 2 ;o
v (\/E 0 §),, =—z‘(my—n)[;m_/’_0,(\/§3r)%
Ry f) w -

Thus, by plugglng (17.23) into this expression and using the first of
(17.19) we obtain
én=-"|1-

tm

G + u*(N)

(/D RYB]
G+ 1EN) Y2 [

<R2><1/vz>) dér,

[i (mp = n) pm + l’_o,(@Br)m : (17.24)
0
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A fairly easy computation performed employing the metric coefficients
of chapter 5 shows that the order of this quantity conforms to (17.6).
17.2.3 Perturbed pressure

The non-resonant part of (13.22) upon derivation along the radial vari-
able reads

,007’2 B ;L l’NR B
f_o,(\/g 0 'f)NR - 019 f() (\/_ )NR (17-25)

Since the magnetic field is divergencefree and thanks to (17.16), it is
immediate to verify that to leading orders in & we have

(@Br)l’\IR = [(\/EBSr)m+le“9 + (\/Egr)m_le—iﬂ]/
= ~i[(m + D(YEB ) mere" + (m — 1(yEB"Yre ]
= —2i[m cos ¥ + i sin?]Y.

Note that harmonics of mode number m + ¢ with £ > 1 have been dis-
carded since they are expected to become progressively smaller as ¢
increases.3 Notice also that an additional function of ¢ (only) would
appear if we allowed for the constants of integration in (17.13). For the
moment we set this constant to zero.

To the accuracy required in the following calculations, it is sufficient
to approximate £9 ~ —%dg{n/dr so that by means of (17.23) a straight-
forward computation shows that the inertial contribution can be written

—<N>} ¢,
Iy (1/vg) '

Thus, collating these results together finally yields an expression for the

as

By Enn = L [(R2—<R2>)

non-resonant part of the perturbed pressure

apNR p/ ..
50 qufo [mcos? + isind]Y
Bj N - (N)\ &*¢;,
“o 7 9 2 yp2y _ 2 m
RZ 2 = (R (R*) — TND ) R (17.26)

We shall now investigate the order of magnitude of Ap,,. For this,
we explicitly compute the resonant part of the divergence of £ which is
(Vf)m = dT <Ta_\/_>§m+lm§m_ln§m

OVE Sy | (9VE ixr 2 éxw
or g a9 \g'

Exploiting the fact that the perturbation of the toroidal magnetic

+(—— (17.27)

field is small, we may write the non-resonant contribution to equation
(13.19) as

82{:1& +im (fﬁ}R - ﬂfﬁR) + % (gg‘R _ “ffm) —0

_ SRR

2_
1+ 12(NY/G Rg(“ 2

3 This can be inferred from (17.10)-
(17.13), from which the expected depen-
dence on the inverse aspect ratio is of the
form given in (17.3).
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4 Recall that to leading order

2
Vg = rR()(l + R_:) cos ¥+ 0(82)),

fo =18y (1 + 0(82)).

The right-hand-side is actually a function of order £3¢7 /r which, for the
accuracy required in our analysis, can be safely set to zero. When this
expression in plugged in (17.21), to leading order in § we get

65§R+(1 ONE ,10vE

:i(mﬂ_n)§§R+ﬂ 09 \g or _<T or

En+é 4
+ a\/g( NR) - <6\/§§£ . (17.28)

09 Vg 09 /g
If we multiply by /g and average in ¢ the following expression is ob-

)

tained

aﬂ o (e — )

\/_ é:NR
a9 g '

Upon using (17.20) and (17.22), we find that <aa\1/9>ilﬁ> is a quantity of

= i(mp — n)(VEES) +

e 1\F

) TR )fm—<\/_>< (17.29

order £2¢7 /r. Thus, by combining the first of (17.19) with (17.27) and
using (17.22) we easily obtain*

VE, I’
(V- §)u = (<TW> -

\/_é:NR r
50 g I ~ e

implying that Ap,, ~ 84B3§;1 /r at most. Because of this, we conveniently

)fm +i(mu - n)é;,

+(—o

set
Apm =0, (17.30)

meaning that, to the required accuracy, corrections due to Ap,, do not
enter into play.

We now have all the elements to write the induction and vorticity
equations in a form equivalent to that of Eqgs. (13.27) and (13.28) but
augmented by curvature effects. Since the algebra is slightly involute,
the derivation of each of the two equations is carried out separately.

17.3 The resistive layer equations

17.3.1 Induction equation

Instead of (13.18), the leading contributions in the small parameter ¢
to the induction equation obtained from (13.6) are easily worked out to
give

VgB’ fo( ——z‘n)fr n(;G . [819( VgB”) - inNgB?|.
(17.31)
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The mth Fourier component of this equation reads

(VEB ) = ify (mp — n)é,

) ’g (V) m(VEB")n = n(\gB)nl +2mMY'] . (17.32)

By means of (17.30) and exploiting the smallness of the toroidal
field, we immediately find that the perturbation of the poloidal magnetic
field associated with the neighbouring sidebands can be approximated
to leading orders in & as®

M (EBD, | Rof

Y =
(N)  im 178,

En (17-33)

Since Y appears under the sign of radial derivation, the constants that
would appear from the integration of (17.12) are annihilated. There-
fore, using this result in conjunction with Eqs. (17.14)-(17.16), equation
(17.32) can be recast as

2N?\ 42 i,
_ <N>12) ﬁ](\/EB n
dr ’

[1_ 0G(N)
Y

= ify(mpu —n)é;, -

where the quantity .77 is defined as

J =2myq 1/B ¢)1 2mgq (r/By). (17.34)

<N>2 <N>2

Notice that contributions of order £ or smaller have been ignored.

Without loss of generality, thanks to the smallness of the term pro-
portional to the perturbed pressure, we can rescale the resistivity to write
the resistive-layer induction equation as

, dé;,
"R%”— (17.35)

d2
[ 3 dr

1= 8 | BB = 1fy s = i -

Finally, using this equation along with (17.30) into Eq. (17.24) allows us
to find a simplified expression for the toroidal displacement of the main
mode, which, to leading order in &, reads

2 r ’ 2
1) q <R ><1/\/§> déjm pO A nRr DT\’
m=—|1- - — B"),. .36
= 1n (o |y | (R G730
To close the system, we need to derive an equation for &;,: this is the
aim of the next subsection.

5 Remember that (1/33)1 ~r/Ry, (N) =
r/Ry and N ~ rA’/Ry.

IN?
ng =1n0G{(N) (1 - ﬁ) .
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0 This is because ]¢/B¢ is symmetric in
9, so that (JJ'/ 3‘7’)1 = (JJ/BY)-1. No-
tice that these two quantities are of order
&/r.

Motivating the ordering of ¢, ,

To leading order in 9, the m+1 Fourier projection of (17.31) yields

dl
(1 TIOG<N> )(\/_B Ymal = +1,uﬁ) il

- 17— [N1((m + 1)(\/_Bﬁ)m - ”(‘/_B¢)m)]

We now exploit the fact that the toroidal field is £? times smaller
than the poloidal one, and take the radial derivative of this equa-
tion to obtain

(1_770G<N>d_2)y _ Hfy & noGM d

— 19
Yy dr? TTmel dr Y drz(\/_ o

Thanks to (17.1), (17.3) and (17.33), ordering (17.2) then follows.
The m+¢ harmonics are expected to become progressively smaller
as ¢ increases.

17.3.2 Vorticity equation

We first isolate the leading orders in ¢ in (13.10), so that the vorticity
equation may be written as

B 4 B
R V€ = = OE T = (VB Y ),

b Gy b o1 3, [ ()|
0 0

¢
m’#0 B

b
2
Wy

(17.37)

When performing the expansion in the inverse aspect ratio, we only need
to compute corrections which appear up to order 3. Each of the terms
in the equation above is analysed separately.

It is immediate to see that thanks to (17.33) (see also (17.13)), the
term with the equilibrium current yields®

Z (éo) (vzB ZOUN [(J_O) _ (J_Oqj) ]Y’ =0. (17.38)

¢ )
m’#0 0 BO BO 1

Exploiting the smallness of the sidebands’ toroidal field, one has (cf.
(7.54) and (7.55))

B¢ R _
(Ven-v25), ~ im 2 (VEB
B /m r

having approximated f; ~ rBy. The toroidal current density, which is
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computed to the leading order in & from (17.11) by taking £ = 0, reads

(VETm > [ (V) EB I+ 20 Y |

d (V&B), 780 v
dr [<N>(zm(1 + u?r?/RY) ~HBy

& ) 2N1Y]

where we used the expression of the toroidal field perturbation given by
(17.14) and exploited the smallness of the mth projection of the com-
pressible contribution to the perturbed pressure (cf. (17.30)). Thus,
by putting these results together, equation (17.37) can be cast in the
following form

2 B2 <N>(VgBr)N r[)' dfr
Y 0 AV . rr m 0 m
L __—(oN = — mu — —(NYy——==
6()21 R(Q) (g é‘: )m lﬁ) ( z'm(l + [[QTQ/RZ) < > B dr

Rop! -
-2N Y| - iml(;_ol)()(‘/EB¢)m + imrBop0< ) & - <\/_ pNR
(17~39)

Now, upon defining P = Rop)/Bo (cf. (7.55)) and using (17.14) in
conjunction with (17.30) and (17.35), we obtain the following relation

od
~ Ji(mps ~ n)<N>u%’ i Op :

(\/_ By ~
7'2 7'2
pup' — Poém — Do RoBe (x/_ B

+ mrR =
o RZ Ry By

Again, only the leading order contributions in & have been retained.
From equations (17.19), (17.22) and (17.36) a quick calculation shows
that to the required accuracy one has

Y Bg 9 Y’ Bo !
L0 gNePY, = L0 (gNYED + (gN
RN w333[<g )+ (eNEL)|
ey TR g B0 [GENIRY)) i,
- pORB imR20% \ G+ p2(N) | dr*’

By means of (17.26), another easy manipulation shows that the term
proportional to the non-resonant part of the perturbed pressure reads

<\/_ pNR

[szqﬁY
By

d
v
B ZN—<N>)>d2f;]
R? NG ) ar

(17.40)

y—zf—wg(RZ— (R?) — p
Wy

Thus, when all these quantities that we have just computed are in-
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serted into (17.39) we obtain the following equation

92 P .
B v? r*Ry

2.2
Rywy m

&,
dr?

(1+292+...)

(N)(EgB ),
im(1 + uQrg/Rg)
r? P

+ mrBop, [&(uu'— + —) - (i>']§r + 2m9%Y +0, (17.41)
'L By R RoBy B(‘f " By

- 2N1Y’)

= fi/tmp = )

where the dots on the left-hand-side indicate small corrections of order
£? and @ is a constant which accounts for those originating from (17.38)
and (17.40). By using equations (17.33) and (17.34), we find that

(N)(EB'), ;o sy o, %
im(1 + p2r2/R2) Bk _”0((\@3 I = 17y dr )’
o (N)( 1 ~ 2N12)
= Tm 1+ ,uQrQ/R(Q) (N)2)

Dividing (17.41) by ¢y and explicitly writing the factor (1 /Bg )’ through
(7.15) with F" and (R?)’ given by (4.31) and (5.21) respectively (cf. (11.4)),
the resistive-layer vorticity equation is finally given by

2 B2 2pr _ dér
7__() ) é:m . _ ™I ’ m
wi RQAZ R ify (mu n)l(\/EB Y — 7€ P, I

0
r

) ( 1
+ Py (\EB"),, — 2m* Rop), [R_o (1 - P) +sA

& +0, (17.42)

where A; = rQR(%(l +2¢% +...) with an obvious rescaling of ©.

In summary, the linear dynamics in the resistive layer which takes
into account curvature effects, for both m ~ 1 and m > 1 instabili-
ties, is fully determined by equations (17.35) and (17.42) where use of
(17.30) and (17.34) has been made. These are equivalent to the Glasser-
Greene-Johnson (GGJ) equations (Glasser et al. (1975)) evaluated for
of large aspect ratio circular tokamak. Obtaining the eigensolution of
these equations is the aim of the next section.

17.4 The eigensolution

The following analysis closely follows that of §13.4. We start by ap-
proximating mu — n ~ —nsx where the variable x is defined in (17.1).
Written in terms of x, equations (17.35) and (17.42) become respectively
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(g5 = m/n)

2 r
[1 - n—R—](\/_ N = —ifynsx&,, — zr%”p’ R djx

[P NEBm dér
:—iﬁ)nsx[ ™ %pod }

2 32 27
r A,»d fm
a)A Rl dx?
d(\EB )m

2.2 A RE 1 ’
T —2m TXRQPO [R—O (1—E) + sA

+ir AP, &, +0.

In both of the two equations above it is implicitly assumed that equilib-
rium quantities which do not depend on x must be evaluated at 7.

We now introduce the variable

where 0 < eg < 1 is a smallness parameter which will be conveniently
defined later. If € is sufficiently small, moving away from the resistive
layer we allow y to vary from —oo to +co. Thus, we define the Fourier
transform of the magnetic perturbation and the fluid displacement as

v = [ e, = [ geta,

so that the induction and vorticity equations transformed to £-space then
read (we use the same conventions of sidenote 15 of §13.4)

2 *
(1+Vk—2)lﬁ*=AERd§ eV
€R dk €ER
2 B2 2 2
—7—2 —A ,kzg = Aep— d ( k—,z;b*+E£§*) (17.43)
wy R €p dk \ g €R

- E—w* + UE" +2n06(k),
€R

having defined the following quantities

V—nR, A= fins, E=rJCp

Ty

1
U = -2m*r’Rop) [ (1 - —) +sA|.
Ro g

Let us outline the solution approach: as in §13.4, equations (17.43) are
combined into a single one for £*, which is found to be singular at £ = 0
regardless of the value of ®. Subsequently even and odd solutions are
obtained by extending appropriately to negative values of k£ the eigen-
function defined for £ > 0.

Therefore, let ® — 0 for the moment (the ® # 0 case is briefly
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Do not confuse the symbol H with the
Heaviside step function. Although the
magnitude of H? is &2 times smaller
compared to other contributions, we re-
tained it for ease of comparison with the
results found in the literature.

7 Tt is expected that no instability can be
constructed for 7 > 1/2.

discussed at the end of this section) and define

E O[)()

__— 9,2 ’
H=-—~ -9, BQA
Dr=H*-H - % (l—l)

2Ry q?
QZV_QB_SENV_z 1+2¢7
wiRgAQ w2\ n2s? )

where « is the ballooning parameter given by (4.41) and the dots denote
corrections of order &2 compared to the leading contribution. Combin-
ing Egs. (17.43) thus yields

d(__k 4 +[Hi _k
dk \1+Vk?/es dk dk \1+Vk?/es

H? ~k
S L
1+TVk /e €5

By taking the smallness parameter €z to be defined as in (13.33) with
the Lundquist number S given by (13.34) with the substitution g — ng,
the equation above then becomes

d k2 de d k H? \

_ H_ _ D _ IC *=0’

dk(1+m2dk)+[ dk(1+nk2) Trve TP ]f
(17.44)

having specified (cf. (13.36) and (13.38))

m2 2
V,=——818 0= 142082 M, = |2,
4 ')’/U)A Q 2 5 295 ( s ) t Ve
The solution of (17.44) is sought by basically following the same proce-
dure outlined in section 16.3.2.
We start by introducing the quantity (see (16.27))

1 1 1
=—— - +H?-H-Dp=—~
T 9 + \/4 + R 9 + v,
where v = VU +1/4 (cf. (11.20)) with the definition of U given in
(16.13). As in the previous chapter, we assume that —-1/2 <7 <1/2.7 If
we write &* = (7/2¢7¢/2Y (¢) with ¢ = M,V,k?, some algebra shows that
(17.44) transforms into

d’y

i

+(%+T_é’+ 1 )d_Y_(hA_FM)

1+¢/M, 21+ ¢/M,)

where the quantity h is given by



Employing the tricks discussed at the end of chapter 16, after some
straightforward manipulations, one then finds that (cf. (16.31))

20 (b7 +4.¢)

£ _ pt)2,-0)2 ; o o\ 2y
& =0"" U(lz+1,r+2,§)+ b
where U is the confluent hypergeometric function which decays for

{ — oo. Thus, for small £, the behaviour of the eigensolution is of the
form

£ oc [EI"[1+ Atk ], (17.45)

r (% + T)
Ny = (MY V27— x
r (—% - T)
r (%(Mt +3-9r- DR/M,)) (M, + 7+ H)

X . (17.46)
r (%(Mt + 5497 —DR/Mt)) (M, -1-7+H)

Transforming to real y space is an easy task,® so that the layer solu-

tion written in terms of the variable x reads (recall that ey is defined by

(13.33))

* * 1+27
£ o 1 CAy + G| X , s
|x|1t7 ¢ +c¢, ler ( )
1 ¢, NF — c,AF x |1H2T 1747
o 1+ —¢ 0 ‘— , r <7y,
|x|1+7 Ce — Co €R

where ¢, and ¢, are some constants multiplying the even and odd solu-
tions respectively, and we defined the coefficients

r(-t) ., mese®(§7)
rl+7) B or2a+r) ®
r(-r) ., _msec®(§7)

rA+7) 2 or2a+r) %

A¥ = —cot (%T)

4

(17.48)
A; = —tan (57)

Equations (17.46) and (17.47) give the resistive layer response includ-
ing effects arising from toroidal curvature. It should be emphasised that
these results apply to the case of an almost circular up-down symmetric
tokamak, while the generalisation to a more complex, yet axisymmetric,
geometry is discussed in appendix F.

To get the dispersion relation, the resistive-layer eigenfunction has to
be matched with the outer solution. The latter is obtained from (17.35)
and (17.42) in which inertial and resistive effects are dropped. If ® = 0
this eventually leads to (f ~ r;By)

d | ,dé), Tsa 1 .
JR— | = 1 _— = 1/ r .
dx (x dx ) SZR() ( q2)§m fm’ (17 4'9)
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8 Employing Lighthill’s notation of side-
note 15 of §13.4, we have
2 cos[ G (a + 1)] N
2|kt
_21’ sin[ (@ +1)]
(2| k[)o+1

[1#17]" =

121 sgn(;@)]* = a! sgn(k),
with @ any real number where o! = T'(@ +
1). In the notation used this report we
identify £ = k/(27) and k= —y. Note
that the higher order terms that would
appear in (17.45) lead to small correc-
tions in the y — co limit.
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When dealing with tearing modes one
defines r;A” = Ag + A1 which reduces to
(14.4) in the zero g limit. Indeed, for
x > 0 one has x = ¢€™* ~ 1+ ¢lnx
when € — 0.

where, as usual, equilibrium quantities must be evaluated at r,. The
asymptotic behaviour of the ideal solution when the resonance is ap-
proached then reads
1 1
En o X727+ a2, <y,

| | (17.50)
-3-v —3+v

oc %72 + Agx| 2T, v >y,
with 4; and A4y two constants. This shows that (17.47) and (17.50) can
be matched asymptotically.

If ® is allowed to be different from zero, it is easy to see that £*(k) o
206(k)/ A*
H-H?+Dg “
represents the exact solution &, « const. and (y/gB;,) « x which is

is a solution of (17.44). According to Glasser (1975), this

independent of the resistivity and Q, and thus it would correspond to a
non-local ideal instability. We do not consider this case, hence hereafter
we set © = 0.

17.5 Stability criteria modified by curvature

The aim of this final section is to analyse how the stability of some of
the resistive perturbations studied in the previous chapters is affected by
curvature effects. Let us assume, for the sake of simplicity, that 7 <« 1
meaning that the magnetic shear does not get as small as &2.
According to (17.50), the behaviour of the solution in the ideal region

when the resonance is approached is of the form
£ o 67T (T4 ala¥), r s,
o x| 71T (1 + A2|x|1+27), r <.

Matching this expression with (17.47) requires
A + ¢, A

1+27
= €p A1,
Ce + Co
A, — ¢, A 1497
fele " Q%0 _ ity
Ce — G

From the second relation we obtain an expression for the ratio ¢,/c,
which this is then plugged into the first one to finally yield the dispersion
relation (Glasser (1984))

Z9edr axan 1 o qgr i as
€ TAINL + A1 4y - EeRl (AL + AD)(AL + Ag) = 0. (17.51)

Bearing in mind (17.48), given 4; and A4y, the equation above can be
viewed as a quadratic expression for A}, which, after some straightfor-
ward rearrangements, can eventually be cast as

; 2 ]
—1-27 A% —1-27 A %
( mER AR A4y e, AR

(41 + AQ)m =0

(17.52)

21 +r7) csc(nt)

Thence in the following we shall show how this dispersion relation can
be used to extract the growth rate of the m = 1 resistive kink, interchange
and tearing modes.
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17.5.1 m = 1 resistive kink

When m = n =1 we set 41 = 0 and 4y = —n/Ay with 7 = 0.9 Equation
(17.51) then leads to (cf. (15.6))

1 ~
a1/ M —1+HF(Z(M‘ +5_DR/Mt)) _An
2 b

¢

M+ Hr (1M, + 3 - Dr/My)

where Ay is given by (15.5). For a monotonically decreasing pressure
profile and s > 0, in a neighbourhood of the marginal boundary of the
ideal kink mode (1z = 0) the growth rate takes the form*®
A
M =1-H+ —.
t G
Toroidal curvature has a stabilising role by reducing the growth rate
through the factor H. Cases with large and negative Az are addressed
in the discussion of tearing modes.

17.5.2 Resistive interchange modes

High-m modes generally have definite parity, so that we take 41 = 49 = 4
where the exact expression of 4 is not required. It follows that (17.51)

can be written as
(€572TA; — A)eg AL - 4) = 0.

The growth rate for even and odd modes is obtained by setting to zero
one of the two terms on the left-hand-side at a time."*
Using the identity

Dp=H*-H-71(t+1),

the dispersion relation for interchange perturbations can be recast in a
form similar to (16.32), that is

sy T (%(Mt +3-97 - DR/Mt))

o« S (17.53)
M} =L+ =H)P 1 (1, +1+ 27 - Dy /M)

where information about mode parity is contained in the terms we omit-
ted to write on the right-hand-side.

Similar to the calculations of section 16.3.3, we assume to be sta-
ble against Mercier modes (-1/2 < 7) and thanks to the fact that
the Lundquist number is large we postulate that the right-hand-side of
(17.53) is small (this requires v being not too small). Hence, the roots
of this equation are expected to be close to the poles of the Gamma
function in the denominator so that the growth rate is given by'*

1/2
, £=0,1,....

9
Mt:—(%+r+2£)+ (%+T+2[) + Dp

9 Notice than (17.45) reduces to (13.41)
with the replacement Agp — A,

10 Note that in this case H > 0 with
H? < H, meaning that D < 0.

11 The dispersion relation (16.32) is re-
covered from (17.51) by letting 4; =
Ay = (m/2)*T(=v)[(v) and matching
(16.26) with (17.45), where in the former
we must replace £ — kS1/3. Notice in-
deed, that the Fourier transform defined
in §16.2 with the substitution k£ — £§1/3
becomes the same as the one defined

in §17.4

12 The large M; solution is discarded
since it corresponds to ideal instability.



250 CURVATURE EFFECTS IN THE RESISTIVE LAYER

This typically holds in configurations
with positive shear and monotonically
decreasing pressure profile.

Note that (14.20) is recovered for v =
H=Dp=0.

13 Here one has D ~ —H — 7. Terms
of the form In(44;V,) are neglected com-
pared to those which have a dependence
of the type Mt’l.

From this relation and exploiting the smallness of /, we infer that inter-
change modes are unstable when

alN  ar (1_ 1),

0<DRz—s _JQRO P
with the largest growth rate attained for £ = 0. According to the expres-
sion above, configurations with a monotonically decreasing pressure
profile and a reversed magnetic shear, i.e. exhibiting regions where
s < 0, may be prone to developing resistive interchange instabilities (Fu-
rukawa (1999)). Notice that in the derivation above we did not impose

any ordering on the magnetic shear.

17.5.3 Tearing modes

Let us assume 0 < |r| < 1 and Dg < 0. The second term on the
left-hand-side of (17.51) is of order 72 so that it can be dropped if 7 is
sufficiently small. Hence, by means of (17.46), the dispersion relation
becomes

r (%(Mt +3-97— DR/Mt)) (M, + 7+ H)

(M, V,)
F(%(Mt + 5497 —DR/Mt)) (M, =1 -1 + H)

or r-3-7
= e T A+ 1) —2——rA = —Ap, (17.54)
nl'(5 + 1)
where we defined 7;,A’ = A; + Ay which is assumed to be a quantity of
the order of unity.

Further simplification can be achieved by assuming
e~7T~H~Dp < M <1,

where € is some smallness parameter. Expanding the left-hand-side of
(17.54) to first order in € and then taking the 4, < 1 limit eventually

yields'3
M, T(3/4) nDg\
‘/Ver(5/4) 1 i, = Aext- (17.55)

Although we took Dp < M;, later we let these two quantities to have
comparable magnitude. The equation above can be conveniently rear-
ranged in the form

f = a7£/4 + b7*_1/4 —Axt =0, (1756)

where y, = y/wy4 with a and b given by

_ T(3/4) $5112_| g1+ 247

“TTG/4) m sm
_T'(3/4) S§-1/12 sm 7| Dp|

CI(5/4 [
(5/4) m s 1+qu
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We want to determine if equation (17.56) has some complex solutions
with Re(y/wy4) > 0. This problem is best tackled by employing Nyquist
techniques.

Let’s consider in the complex y.-plane the contour C obtained by
joining together the paths C; (i = 1,...,4) as shown in figure 17.1. No
poles of f are within the interior of C. Furthermore, allowing R — oo
and d — 0 permits the whole half-plane with y, > 0 to be encircled by
C. We now define the function g as

g=ay + by,

and denote with f(C) and g(C) the image of C through the mappings f
and g respectively. Adding a constant factor to g moves g(C) horizon-
tally in the Re(g) — Im(g) plane: therefore the shape of f(C) is obtained
from g(C) translating it by the amount A,,; (forwards if A,y; < O or
inwards A,,; > 0).

In the limit of R — oo, the image of (; is obtained by setting y, =
Re' with -5 < t < Z so that

g(Cl) — dR5/4€i5t/4.

Conversely, letting y. = de™"* with d — 0 we obtain

g(Cs) = bd eI,

The paths Cy and Cy are parametrised by vy, = z¢*™/2 (plus sign for
Cy and minus sign for C4) with z varying between d and R following the

orientation shown in Fig. 17.1. This yields

g(Cy) = (—az5/4 sin g + bzV* cos %) +1 (az5/4 cos g — bz V*sin g) ,

g(Cy) = (—6125/4 sin g + bz"* cos %) - (a25/4 cos g — bz sin %) .

It is immediate to see that g(Cy) = g(C2). We find that g(Cy) crosses the
real axis in the Re(g) — I'm(g) plane at

cosZ

4 5 n 1/6
Re(g) = — (ab cot §) =2z >0,
co

8

and intersects the imaginary axis in

s

cos 7 5 . 1/6
Im(g) = Sl—ﬂ ((lb tan g) =29 > 0.

8

A qualitative behaviour of g(C) is shown in figure 17.2.

With the contour C given above, the Cauchy’s argument principle
states that if f(C) encircles (counterclockwise) the origin in the Re(f) -
Im(f) plane N times, with N a positive integer, then there exist N roots
of the equation f = 0 with positive y.. In order for this to happen, one

Im(y-.)

[ C,
C
a il
(0,0)
1 C,

-R

Figure 17.1: Contour C in the complex
v+ plane. We let R — o and d — 0
so that all points with Re(y.) > 0 are
enclosed by C. Note that this contour
avoids the origin which is the pole of the
functions f and g.

Recall that the overbar denotes complex
conjugation.
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14 In the notation of Glasser (1976) one

has
Vs _ (nsS)l/3

Xo  (1+2g2)V6
and A’ in this report corresponds to A in
Glasser (1975). Notice also that

2208% (cot %)1/6 = ﬁﬂ (tan§)5/6.

Vs
OS§ S ]

Re(g)

Figure 17.2: Qualitative example of the mapping of the contour C in the Re(g)—Im(g)
plane. In drawing this figure we took d > (b/a)*R~°, which ensures that the radius of
the arc associated with the path C3 is smaller than the one associated with Co. If we
shift the plot by a finite amount such that the origin is encircled by g(C), one sees that
Ind,()(0) = 2 when R — oo.

must have A,,; > 2z1. Letting 7 — 0 in the expression of A,,,, it follows
that instability can occur only if (Glasser (1975))'4

r A" > 2

1/3 5/6 b
UCTCRNCE LR Kt ST

"T(1/4) (1 + 242)1/6 5. (757

z
8
having used the fact that m/g;, = n. This is the modified instabil-
ity criterion for tearing modes. Numerical analyses (Hender (1987))
confirmed the validity of this result. Larger values of r;A” are needed for
the instability to happen as § is increased. At very large §' the resistive
marginal boundary is very close to the ideal one.

It is worth mentioning that a dispersion relation similar to (17.57)
can also be obtained for resistive ballooning modes (Strauss (1981),
Correa-Restrepo (1982)).
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Cauchy’s argument principle

Nyquist graphical analysis is based on the following theorem of A plane closed curve with no seli

. . intersections (simple) is said to be coun-
complex analysis. Let C be a closed contour (oriented counter-

terclockwise oriented if the curve interior
clockwise) in the complex plane without intersections and take a is always on the left when travelling along
function f which is holomorphic on C and its interior except for the curve itself.

a set of isolated points (the poles of the function). If f does not

have zeroes or poles on C then the following holds

1 [f'®)

Indr(0) = omi Jo f(2)

where N and P are the number of zeros and poles of f in the

dz=N-P,

interior of C respectively counted according to their multiplicity.
The winding number Indr(0) is an integer which gives the total
number of times the curve I' = f o C, which is the image of
C through the function f, winds counterclockwise around the
origin in the Re(f) — Im(f) plane. The curve I' is also called
f(C). Hence, letting C to be a contour which encloses points on
the right half-plane, if P = 0 and Indz(0) # O the theorem above
guarantees that f = 0 for some points inside C. i.e. with positive
real part (these roots may have a non-vanishing imaginary part).
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Part V

APPENDICES







Particle motion in a tokamak-like

magnetic field

In this appendix we discuss the importance of a helical field for particle
confinement, thus showing why a toroidal current is needed. This is ac-
complished by analysing particle trajectories in a tokamak-like magnetic

field.

Let us assume that a helical field winds around toroidally concentric
nested surfaces (magnetic surfaces) of circular cross section. We em-
ploy the right-handed orthogonal coordinate system (7, 6, ¢) introduced
in section 3.1.2. In this coordinates the velocity vector has components
v=(dr/dt,rd6/dt, Rdp/dt) where R = Ry + r cos 8. We assume that the
radial magnetic field is vanishing (B,q = B, = 0), while the toroidal and
poloidal components are (By > 0)

Ry B, rB
0 0’ Bpol =By = _0
R Rq(r)

Bior = By =

The latter expression, with ¢ a generic function of r,* follows from the
divergence-free condition of the magnetic field. The function ¢ is as-
sumed to be positive definite. To leading order one has B = B, with
the magnetic field stronger for 6 = 7 and weaker at 6 = 0.

Neglecting the electric field, the particle kinetic energy and magnetic
moment are conserved (cf. (1.1)), and the trajectory of the guiding
centre is described by the projections of (1.4) along the radial, poloidal
and toroidal directions. This yields for a particle with charge ¢, and

1 This corresponds to the safety factor
parameter discussed in §4.1.



The particle Larmor radius is assumed
to be small compared to the characteris-
tic length of the system.

2 A passing particle is still “caged” by the
magnetic field.

3 Since /JiBohnin ~ 1 — €, it follows that

0<x

2
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< 09,

mass m;
ﬂ~ ms(vi+211|2|) e -
" _—2€s30R0 sin @ = —u; sin 6,
2 2
rﬁ ~ o moloy + 20”) cosf = o v cos 6 (A.2)
di R()q 2e,ByR h Roq b ’
dé
R =0

having ordered ¢ ~ 1, € = r/Ry < 1 and v;/(€v))) ~ € < 1. Because
Byol/Bior ~ € < 1, it follows at once that corrections of the order of
the Larmor radius entering the expression for d¢/dt can be neglected
(they are e times smaller than those appearing in dr/d¢ and rdf/dt).
For obtaining the particle trajectory projected onto the poloidal plane
we just need the first two of (A.1). From the equation for dr/dt, we infer
that the departure of the orbit from the surface of radius r is expected
to be small, so that the analysis may be carried out on a single magnetic
surface at a time.

Let us ignore, for the moment, Larmor radius corrections to d6/d¢.
A particle experiences the poloidal non-uniformities of the magnetic
field during its motion, and it may undergo mirror ¢ffects moving into
regions of stronger field, similar to what discussed in section 1.2.1 for
the case of open configurations. This means that an angle 6, for which
v); = 0, and the particle is reflected, can exist. Reflection occurs if (see
(1.3) with Bpax = Bo(1 + €))

&
— <1+e
HBoy
Particles fulfilling this condition which bounce poloidally back and forth
between —6, and 6, are called trapped, otherwise they are said to be
passing.” From (1.1), we may now express the parallel velocity as

2uB, & — uBy(1 -
z;”:i\/'u Oe(2x2—1+cos9), with xQ:M- (A.2)

m 2uBye

Passing particles have x? > 1, whereas if 0 < »® < 1 the particle will be
reflected when the angle 6, (or —6,) is approached.3 Since 1 — cosf =
2 sin® g, it is easy to see that sin6,/2 = x.

Hence, taking the ratio of dr/d¢ over df/dt in (A.1) gives

dr g vi +27)|2| sin @
do 20, \/Me Vo2 —1 +cosb
mg

H

(A.3)

having defined the cyclotron frequency Q; = ¢,By/m,. Noticing that

ms(vi + 202)

5 1 :u30[1+2€(2x2—1+§cos9)] (A.q)
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Figure A .1: Trapped (a) and passing (b) ion orbits for a deuteron of energy & = 10keV
with € = 0.1, By = 37T and ¢ = 2. In this case . = 1y = 0.3a where a = 1m is the minor
radius of the device with Ry = 3.3m. The associated transit time AT as a function of
the parameter x is shown in (c). Note that the transit time diverges when » approaches
unity.

is approximately constant if € is sufficiently small, and assuming that ¢
and € do not change significantly to the relevant order, equation (A.3)
can be readily integrated giving

v? + Qvﬁ
2%x% — 1 + cos 6 + const. (A.5)

This provides a functional relation between r and 6.

For passing particles we expand (A.5) for x > 1, and obtain in the
€ < 1 limit
2

Il
_ 6-1
ST (cos )

E [ 1+4ex?
:ii —(i) (cosf—-1),
2Q; \ mse \y\/1 + 2ex2

with 79 denoting the radial position of the particle at # = 0. Here we

g 0% + 20

r—1) R

exploited (A.2) to express uBy as a function of & and x.

Assuming that 6 = 0 at ¢ = 0, the time At required for the particle
to complete a poloidal turn, which we call transit time, is calculated
by integrating the second expression in (A.1), that is d6/dt ~ v||/(Rog),
with the parallel velocity given by (A.2). This yields

Ve
. /@At:/ L:M(l),
Rog N ms 0 w/1—){‘2sian %

where K is the complete elliptic integral of the first kind (for the defini-
tion of the elliptic integrals see sidenote 24 in section 4.4.1).

For a trapped particle (x> < 1) let r. be the radius of the circular
surface on which the reflection point with angle 6, lies. After setting
€ < 1in (A.4), equation (A.5) becomes

1, o~ (2% =1+ cos ). (A.6)
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Figure A .2: Example of the trajectory of
a trapped particle showing toroidal pre-
cession.

Exploiting the properties of the complete
and incomplete elliptic integrals of the
first kind we have

/9*/2 d}’
0 wll—x‘z sinQy
[

/mn?dﬂﬂ—u%u—xﬂu%r“2=
0

1
x'/o dz[(1 - 221 =22 71/2 =

/2 d
=2
0 \J1-%2sin?y

= xK(x).

Notice that the integral over a closed par-
ticle orbit is

0. —0.
j{Ad@ =/ Ad0+/ Ado,
-0, 0.

where the second integral on the right-
hand-side is performed after the reflec-
tion. If 4 =1 or 4 = cos 6 the total inte-
gral is zero. while if 4 = £f(cos 6), i.e. it
changes sign after the reflection point 6,
along the orbit, one has

j{ AdO = 4 /O " f(cos 6)d6

having exploited the fact that f is an
even function of 6.

Trapped particle orbits are called banana orbits. The largest radial
excursion is attained by marginally trapped particles with »? = 1-¢ and
0 < 1; since 2uBy/m; ~ vi it follows that r — r. ~ gry /e where 77
is the particle Larmor radius defined in section 1.2.1. Note the radial
departure of deeply passing particles with x — oo is \/e times smaller
(in order of magnitude) than the one of trapped ones. Finally, as we did
for passing particles, we assume that 6 = 0 at ¢ = 0 and integrate d6/dt
to get the oscillation period At along the closed trajectory:

e

,)UBOEAL( _ /*9*/2 dy
4Rog s 0 AJ1—x2 sin2y

= xK(%). (A.7)

Typical poloidal plane orbit projections and transit time of trapped and
passing particles are shown in figure A.1.

We shall now focus on the motion in the toroidal direction. Taking
the ratio of the third over the second equation in (A.1) gives

d9 _ Rog

- R \|\1T

g

—L cos @
€

g
c cos 8 )

o~

For well passing particles the parallel velocity is large compared with
v and never vanishes, so that the toroidal angular position steadily in-
creases in time and the associated trajectory is a helix that wraps around
the magnetic surface.

For trapped particles the situation requires a more careful analysis.

uBy
ms Qs Ro ~

const. Thus, expanding both ¢ and R around r. we have to leading order

Letting x < 1 with € < 1, from (A.4) we may approximate v, ~

d - Iy *I)
—¢zq* 1—e*cost9+s*r ik +q b
do T« e*v”

cosfd], (A.8)

where ¢. = ¢(7.), s« = [(rdg/dr)/q],, and €, = r./Ry. In the equation
above v|| has to be evaluated at r, as well. By means of (A.2) and (A.6),
this equation can be easily integrated and the result expressed in terms of
the elliptic integrals of the first and second kind. Let A¢ = f(dgb/d@)d@
denote the increase of the toroidal angle after a trapped particle closed
orbit period. From (A.6) we have r — r, ~ [Ro/(Qse)]l/Z\/v_, hence if
v — 0 in (A.8) then A¢ = 0, i.e. the particle bounces back and forth in
the toroidal direction with a zero average toroidal drift.



However, with v, # 0 one finds

A¢ — % u—&)x
7.0 V 2€.myg

) 0,

* H *

[/ cos dé + 2s. / V2x2 — 1 + cos 00,’9]
0 V22 —-1+cosé 0

8 1By [E) 1 . (EG)
T*Qs E*msK(X)[K(}()_Q-'_Qs* (K(X)—1+x2)]’

where E(x) is the complete elliptic integral of the second kind. This

X

shows that there is an average precession in the toroidal direction
(see figure A.2). The associated mean velocity is obtained by evaluating
A¢ /At with At from (A.7).

Notice that particle trajectories will be modified by the inclusion of
electric fields and collisions.
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& %A1 %242
/2 VxZ—sinﬁedezx/ Ak
0 0 V1-¢2

x2/1 1- 22 dZ:}{Q/”/Q cos® 6do
0 V1-—2z2 0 1 — %2 sin 62
= E(x) + (> = DK (x).

In the last equality one uses cos?6=1-
sin? 6.






Tokamak GCP equilibrium

Here we discuss tokamak equilibrium within the anisotropic GCP model
presented in chapter 2 (see §2.4). Although the problem of plasma
anisotropy is not addressed in this report, we nevertheless think that it is
useful to summarise clearly and simply some of the techniques involved
in its analysis.

We start with (2.15) which can be cast as

af; of. dv of,
f+d_x._f+ﬂ_f:()

d -
Eﬁ(x’vn"u’ t) B E dt Ox dt 87)”

having defined 4 = B/B and

dx
— =u, + ?)||b,

dt

do, €s u?
— = -(b-Vb)—b-V|uB+ —0p — —|.
2 e ( ) (,U +ms E 2)
Here p = v2 /2B. We change coordinates from v|| to €s(x, v}, 4, t), to be

defined later, yielding

of; of; ; . dv) de, | Of;
_f+d_x._f+(af dx ai ﬂai)_f—()

or " di ox \a T @t ox T dv 9uy) B,
(B.1)

having exploited the conservation of the magnetic moment Eq. (2.16).

%f;(xa ED /l’ t) =

We choose 1
€5 = §v|2| + uBy, (B.2)

where By is the equilibrium magnetic field. As a matter of notation,
equilibrium quantities are indicated by the subscript o.

We stress the fact that the choice of €, is not unique. With this
definition of €, it immediately follows that (recall that x, »|| and u are
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L If equilibrium flows are allowed, then
®po # 0. This is because the parallel and
perpendicular components of the electric
field decouple as they appear at different

orders in m;/e;.

independent variables)

Oe; O¢€;
=0, Ve =uVB;,, —
ot &= H 0 5?)”

= I)| | .
Using the expressions above into (B.1) gives

of; -
a—]: +(uL +o)b)- V[ + [(uJ_ +v)b) - VuBy+

of
e,

(2. (5 VB) - b- VE) 0, (B.3)
where E; = uB + ;Z—JX(DE — % For an equilibrium with no flows we take
0/0t =0, u; =0 and ®gy = 0" so that equation (B.3) dictates

by -Vfo=0, (B.4)

that is ;o = fo(¥, €, ) where ¢ is the equilibrium poloidal flux. Let
us introduce the parallel gradient operator V|| = by - V. Hereafter we
consider a globally neutral static plasma consisting of electrons with
charge —e and ions with charge +e.

To determine the expressions for p||o and p,¢ it is more convenient
to transform the integrals in Egs. (2.18) into integrals in du and de;. In
doing so, we invert (B.2) to obtain

o)) = £V2 (€ — uBy), (B.5)

where u is allowed to vary from 0O to co. Hence, at fixed u, one has

v||dv|| = de; and since v|2| ranges from o to co then €, varies from its

minimum value €; y;, = By to co. This yields

. [ee] [ee] [ee] (o] BO
ddv:27r/ do v / doyv|| = 27r/ d,u/ de,—,
./ 0 o Z,: 0 esmin 111

where o = +1 for 9 > 0 and o = -1 for v < 0. It follows that the
parallel and perpendicular pressure can be written as

o = ZQﬂms/ a’ﬂ/ de Byl fro,
a,s 0 €Es,min

oo o] ’uBg _
pm:z%rms‘/o du‘/é | des—lvmﬁo.

a5

Because V||f;0 = 0, it is easy to see that

Vi1Bo
Viitio = (pij0 = pro) B (B.6)
having used (cf. (B.5))
B
Vi Boloyl) = o)V Bo - —0V||(,uBo)-

log)|



In order to make the action of the parallel gradient operator on 1/|v|||
analytically manageable, we first note that

I "“|f|| el [ el 22

If fo decreases faster than 1/|vy)| for €, — 0,% the first term on the

right-hand-side of the equation above vanishes since |v)||(€5min) = 0.
Therefore we may recast the perpendicular pressure as

pio=-— Zzﬂms/ d,u/ desl”lll/JB2 f;O

Following a procedure similar to the one used above for p|o, we get

Viipro = (2p10 + C) —— B

(B.7)

where C is defined by

0o 0o 233 6 r
C = ZQﬂ'ms/ d,u/ desﬂ 0 fv()'
o,s 0 €s,min |U||| 865

Given the expressions for p|p and p,¢, the macroscopic MHD equi-

librium is then determined by (2.17). A quick computation shows that
(cf. section 2.4.2)

0=-Vpoo+ (1 - A) Jox By—AVB2/2 - B, (Bo : VA) . (B8

with A = (P10 —plo)/Bg. Let use introduce a toroidal coordinate system
(1,0, ¢) as the one used in §4.3 with r a flux variable with the dimen-
sions of a length, 6 a generic poloidal angle and ¢ the toroidal angle.
The system is axisymmetric so that /d¢ = 0 for any equilibrium scalar
quantity. With a magnetic field of the form (cf. (4.4))3

B = By(r,0)Vo — Vy(r) x Vo

with ¢ denoting the equilibrium poloidal flux, the covariant projection
of (B.8) along ¢ gives

AA
(- AWVE] = By

from which we infer J # 0. This equation yields

1 9By 1 AA
B¢0 00 T 1- A(’)G

which can be easily integrated showing that (1—A)By is a flux function.
The projection of (B.8) along e, can be regarded as a generalisation of
the Grad-Shafranov equation (4.14) to anisotropic systems.
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2 This has to be the case for an inte-
grable distribution function in the do-
main —oco < 0| < oo.

We use the fact that €; is an indepen-
dent variable, so that the parallel gradi-
ent commutes with the symbol of deriva-
tion with respect to €.

3 Notice that we require Bj =0.
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As an explicit example, we choose f; to be a bi-Maxwellian distri-

bution function,* that is
4 Other forms for f;o can be used, de-

pending on the nature of the problem un- B m3/2 50 m Uﬁ yJQ_
der consideration. fio = 3 exp (—
(2rkg)*? Ty \Tjjs 2kp \Tiis T

where m; is the particle mass, £z the Boltzmann constant, ng the equi-

librium number density with 7|, and 7', ; the parallel and perpendicular

temperatures of the species s (both taking their respective equilibrium

values with the subscript zero omitted for simplicity). It is usually as-

sumed that 7j, is a flux function due to the strong parallel heat conduc-

tion. We further assume 7j; = 7}, = I}y and T\, = T, = T,. It is easy
We can use either ¢ or 7 as a flux label. to see that the equation above can be recast in the form

M €s
fo=FW) XP[ (uxw> exw)ﬂ’

thus fulfilling (B.4) where €; is given by (B.2) with the following identi-

fications:

1 1 1 m>*

& =1y, Ba T To 3/2
0Ms L I Qrkp)” " T\ T)s

=F;. (B.9g)

It is evident that both 7,9 and 7, must depend upon the poloidal angle,
with n50/7, a flux function. Using this form of the distribution function,
a little algebra shows that
1L
un

—QIMO

Quasineutrality >, e;n; = 0 implies that n; = n, = ng. Moreover, p| =
2noT} and p.o = 2moT,. Thus, multiplying (B.6) by 7', and plugging
the result into (B.7) shows that ng o 7', so that

nO_TJ_

= (B.10)
ao(y) Ty (%)
5 Here we exploit the fact that as expected from (B.g). Using this result into (B.7) gives®
Vi1pro = 40—~V T10. BT
T (@0) 7T, = — (B.11)
: LT B -ew)

where O(y) is an arbitrary function which measures the degree of anisotropy.
Thus, a GCP tokamak equilibrium with a bi-Maxwellian distribution
function is fully determined by equations (B.6)-(B.8) and (B.10)-(B.11).
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General proof of the self-adjointness of
the ideal MHD force operator

An explicit proof of the self-adjointness of the force operator for an ideal
isotropic plasma, also including a vacuum region separating the plasma
from an ideal metallic wall is presented. Instead of exploiting the energy
conservation in ideal MHD, as it has been done in chapter 6, we proceed
with a direct, although rather tedious, algebraic method.

We start by dotting (6.5) with 5 (a generic fluid perturbation), and
integrate it over the plasma volume V. After a little algebra we obtain

[0 F@av = [ (tpuv- X9+ ——06)- @)
14 14 Ho
(6 VPV 1) =+ Jo x Q())dV
- Bo- Q)
- /E(TI . "0)(1’ + T)dZ (C.1)

where Q(¢) = V X (£ X B) and ny is the unit vector normal to the unper-
turbed plasma-vacuum surface X. In obtaining the surface integral we
used the fact that

ngy - By = 0. (CQ)

Here p = p(§) as given by Egs. (6.3) in section 6.1. We recast (C.1) as

—/ n F(f)dV = 6Wp +(5WV,
vV

We try to keep all the relevant mathemat-
ical steps in order to make the derivation
more transparent.
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Here we list some useful relations:
2

0
V| mopo + 35

2

_ By x (. xBy)
==
0

B
V~j0:BO-Va'—QB—g-(V[J0Xx).

0

B
= Bx+ b(b- V),

where
We = [ (o960 -+ --06)- Q)

+E VIV -m -0 JoxQE))aV,  (Cy)

5WV_/(;; n)p+ Bo. Q(f)) (C.4)

We now show that both 6Wp and 6Wy are symmetric by swapping &
and n. This will prove that F is self-adjoint.

Symmetric form for 6 Wp

The parallel component of the vector 7 does not appear in the last two
term of 6Wp. In fact, by writing = 5, + 17 By we immediately have

&-Vpo(V -0 Bo) —nBo - Jox Q(€)
=(§-Vpo)By - V) +1n)Q(&) - JoX By =By - V(1€ - Vo)

which vanishes when integrated over the plasma volume thanks to (C.2).
Using the equilibrium force balance equation (4.1) we write
By x Vpo

s (C'5)
By

]o = O'B() +
where o = Jj 'Bo/Bg so that

B, - Q(f)_ (C.6)
B?

0

N1 JoxQ(§) =-0Q(&) 1L xBo— (.- Vo)

Let us introduce the curvature vector x defined as
x=b-Vb=-bxVXxb,

with b = By/|By|. The last equality holds due to the fact that -5 = 1.
We notice that

Vo= _Big [Bo- Q)+ m. 9 (oo + B3 |

1
- [Bo- Q(m) —nL - Vuopo] — 2. - x. (C.7)

Thus, plugging (C.6) and (C.7) into (C.3) yields
1
W = [ (T 607 1) +--0€) - Q)
- — (€ VB Q) + (1 Vpo)Bo - Q&)
0

+ 20 & - Vo) - Vo)
BO

— Q) 1 x By— A& - Vo) %)V, (C8)



where we dropped the subscript L in 7 since the projections automati-
cally pick out its perpendicular component. Now we introduce the quan-
tity

A=-0Q(€) nxBy—2&-Vpo)n %)
+00m) - & XBy+2(n-Vpo)é - x).

If we show that the integral of A over the volume V is vanishing, it neces-
sarily follows the last two terms in (C.8) are symmetric by interchanging
¢ and 5. A short computation shows that

A =V - [o(n x By) X (€ X By)] - Vo - (17 X By) x (£ X By)

—2(&x1m) - (Vpo X x) =
V- [on- (£ X By)Byl+&xn - [By(By- Vo) — 2V po x %)) .

We now split the last term of the equation above into its parallel and
perpendicular components, yielding

R B,

A=V -[on- (€ xBo)Bo] +€xn- By BO'VO'—QB—S'(VPOX%)
0

(V[)()XX)XBO

—2(€é Xn)X By -
(€ xn) x By B2

(C.9)
When integrated over the plasma volume, the first term of (C.g) vanishes
due to (C.2). The second term is proportional to V - J; and thence is
zero. The last term vanishes too since Vp, and x are both perpendicular
to By. Therefore, 6Wp is symmetric in exchanging & with 7.

Symmetric form for 6 Wy

As in section 6.1.1, we assume that the displaced surface moves with
a normal velocity =z - u, and we set the analysis in a reference frame
moving with the plasma surface. Let the subscript 4/ denote quantities
in the moving frame. By applying the appropriate Galilean transforma-
tions one transforms these quantities back in the original fixed reference
frame.

Let the subscript v indicate a vacuum quantity. In the vacuum there
are no sources so that we use the Coulomb gauge in which E, = -04/0t
with Ev = V x A. Since in the plasma EM =E+ux By = 0, we must
have E,3 = 0 as well, so that Eq. (6.9) gives

OznOXEsznox(Ev+uxBy0),

where this condition can be supposed to be fulfilled at the unperturbed
boundary because E,y is a first-order perturbed quantity. Therefore,
we obtain

ng X A= —(n() . f)Bv(). (C.10)
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This has not to be confused with the
same symbol used in App. B.
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1 This is because ,uop0+Bg/2—B;fO/2 =0
everywhere on X, so that zy X V(ugpo +
B2/2-B%/2) = 0.

We now use the jump condition of the total pressure at the plasma-
vacuum boundary. Hence, we perturb (6.10) and evaluate it at position
Ty = 1,y + €. This yields

BvO : Bv
+ —_—
Mo

B},
20

pré-v =¢-V ,

0
0+ 5
? 2p0 Ho

BQ)+BO-§

and the following expression is produced:

82
ol -w
0

V'
2u

B, - B,
/ (- no) 2B g5
by Mo

Thanks to (6.10), the tangential jump of the total pressure is continuous,
i.e. mo X [V(po + B3/2p10)] = 0.* This allows us to write

5WV=/Z<n-no>f-[v

By
+ — ]d2+
bo 2#0)

2 2
BvO

-Vip +i ]d2+
"7 2u

Wy = /2(7] - mo)(§ - mo)m - [V
Jor =B g,
T Mo

The final step consists in considering B, as a function of i and

¢ thanks to the boundary condition at the displaced plasma surface.
Hence, we write Ez,(f) =V X A(€) with V X [V X A(£)] = 0. The same
applies to B, () with the obvious substitutions. Using the interface con-
ditions (C.10) yields

Be BV = [ V140 x ¥ x A@)]dV -

Vac Vac

—'/Zno- |4 x By dz:/z(no-n)Byo-Ey(f)dZ

where the subscript Vac means that the integration is carried out over the
vacuum region, and the minus sign appearing after the second equality
is because the volume of the vacuum region is outside the plasma surface
2. This shows that also 6 Wy is symmetric in exchanging & and 7.
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The screw-pinch eigenmode equation

Let us first present the derivation of the eigenmode equation for the
radial fluid displacement in a straight screw-pinch at marginal stability
(y — 0) following the procedure outlined in §7.5. This is known as
the Newcomb equation (see section 7.5.1). Each symbol associated with
physical quantities appearing here has the same meaning as in chapter 7.

We start by recalling that in a cylinder the metric coefficients read
(cf section 3.1.1) g, = 1, gpo = r? >, 8o = 8¢ = 0, \/g§ = rRy, where
Ry, the major radius, is a constant. The equilibrium relation may be
written as

rRopy/fy = —F' = uvg J)-
where f = rF /Ry (cf. (7.14)) and F is given by (4.4) with u =1/¢. The
toroidal current takes the form
o _ R
B! mfy

T

(/C|| + nf—)]

with IEII = ék” and k|| = mu — n. We assume that the plasma is an
ideal conductor so that (cf. 7.7)

0
By V& = ’ D.
VEB' «/_offo(ae a¢)§ (D.1)
With a perturbation depending on 6 and ¢ as ¢!™%="%) ! in analogy
with the derivation of (7.35), we find that
~ R() TR() J() (\/_B )m n r (\/_Br),
B¢ m = T/ ’
(VeB%) 1+hl f) boém + 0 im m? m2Ry i ]
with £ = 75 2 Contrary to (7.35), the expression above is exact. Since

equilibrium quantltles in cylindrical geometry do not depend upon the

The procedure we follow here is not
necessarily the simplest for deriving the
eigenmode equation, but it is useful for
comparison with the calculations em-
ployed in the previous chapters.

1 Recall that in cylindrical geometry
poloidal and toroidal Fourier modes
behave independently. Moreover, at
marginal stability p = —[)6§r (cf. (7.9)
and (7.10)).
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angular variable 6, we drop the symbol of poloidal average (the compar-
ison with the expressions derived in chapter 7 is straightforward).
Following the same steps presented in §7.5, the eigenmode equation

is obtained from the vorticity equation (7.13). First, we get

r (V_BT)/
B

iy — __—
(\/EJ )m - RO 1+/l
n 72/R2 Ry 7 (\/_Br)m
m|1+h |\ f) hEnt g ’
Bo im

and, in analogy with (7.54), we have

(rR’opO ||\/_]0)(‘/_B¢)m_

VB¢
- V—
Ve Voe| <
where P, is the cylindrical analogue of (7.55) and is defined as

\/_ o+ (= n/mg ]y

0

m

L'

Combining these two expressions and exploiting the independence

upon 6 of the equilibrium gives

STASR il || G0 B
r2/R2 ! 2

n /R B /R TP mP;

(VEB' ) — i~ |n En-
m ﬁ) 1+ /z) +h Ro I

Finally, we easily obtain
VAR A
(\/_B VB¢ =1 qu T/C||§m,
0

o RE
=imp, 72 I3

\/gws-vﬂxvl;

0 m

We stress the fact that these expressions are exact.
By means of (7.58) with N = r/R( and using (D.1), at marginal
stability the eigenmode equation for a mode of helicity (m, #) in a screw-

This equation is easily compared with pinch reads

(7.65).

1d k] ag, rrky)\” 2 | fgr

dr \1+%h dr Ty Il R

B O LTI NN i/ P
r (\B?) " m\(Pa+n] " m? \1+k B 15m
m [, J%

+ [1+h(n,u 72[)0+mP2 +m[)0 §m— (D.2)




It is easily shown that the following relations hold

’ ’

hjl|BS
1+4

Jy
¢
B,

m

hrRop} ’+@
()2 + k) n
BB\ m( h FY moph Sy
1+h n \1+hf n1+th”

n

’

_ mRo

JLIBS ’
1+4

f(‘)/

r

F Jy By

(kky)y  (hF/Ro)
+ - .
R() 1+4

nr(1+h) r(1+h)

n

When these are plugged into (D.2) some simple grouping yields

rdr

7.9
14 (ThE dg,
1+4 dr

) +GET =0, (D.3)

where & = Y}_| 4; having defined

2 Y .
41 = i - rrky) - m2k||
mQR(Z)

1+4

n|( hFY \ e\ | .
Ay = —— —F|———| |rk
2T "R (r(1+h)) (r(1+/z)F) il
n’F’ (rRy , kyEJS |  n’F’ ky hVETy
A=\t ren )T e \ T e )
R: \ /o m 1+ R} m 1+
’ 2 PZ
4, wWh nm n p

= — +_ .
1+lzR3 ¢ R21+h

A simplified expression for ¢ can be found. Let us first write the
toroidal field as B, = /R and introduce the poloidal field B, such that
u = RyBy/(rB,) and /€|| = B,(mp — n).”? It is possible to prove that

n3/R§

A= —0"0 0
YT mB.(1+h)

RoB,+ 2 (rByY | |(2B. + B.) B, + “RoB.B),
m n

and using this result, after some little algebra, one gets

QnBBp/R(% nh
As+ Ay = — RoB, + n(rB,)'] +
stdi=—73 17 MBoB; +n(rBy) ]+

Proceeding further, we have

(B))*(mp = n).

in® r* B,
m* RE‘; 1+ h)?

n® | m?

rB, 1 (B))?
1+4

A2 =
2 2
R R B.

B,(mu — n),

which eventually leads to
2 2 ’

2n n
Ao+ A3+ Ay = 22 B,(rB,) - =
2t A3+ Ay =3 (7 By) .

2p2 _ 2p2,2/p2
me—nBZr/RO

m2(1 + )

2nt th - B/% 2n?

- B; + hB?
TR @eae e T

4n®hB2(mu — n)
[s 2 C
m?R5(1 + h)?

(D.4)
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fi{Ir = RoBY = F/Ry.

2 By means of the equilibrium relation,
the following relations prove to be ex-
tremely useful in the manipulation of the
coefficients A4;:

m2R2
VESy = 5 (hBy/7),

By, By BB, )

rBZ 7232 TBZZ

K =Ry

n
P = - [ROB; + Z(er)’] .
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3 This is the result given in Newcomb
(1960).

Finally, a quick calculation shows that

n’® 1+ 3h n?
m?R2 (1+h)? R2

A = k. (D.5)

Hence, grouping together the terms proportional to 1/(1 + £)? in (D.4)
and (D.5) and expressing u in terms of B, and B, a bit tedious calcula-
tion finally gives3

’

- RZ I 2 TP r m2(1 + k)

2 2
n“(mRyBy, + nrB,
_rmoy i (D.6)
m?r2R3(1 + h)

We can write ¢ in a more convenient form by using the equilibrium
B2
relation ByB, = —p) — —£ — B.B]. Distributing the derivative on the

.
numerator and denominator of the third term in (D.6) yields

n’ o2n? hpy  2n? B;% + hB}

@ =___ (2 _ 2% o =2t P F
Ry T4k 2 14k
N n’ mQB}f - nQB;ZrZ/R?) nQ(mRon +nrB,)?
r m2(1 + h)? m?r?R2(1 + h)

If we now combine the first, third and fifth terms of the expression above,

the function ¢ in equation (D.3) can be finally written as

m*B, — n”B;r* | R}
m2(1 + k)2

m? -1+ m2h 9 9n? /zp() 2

n
i e 7o e e Tt

h'. (D.7)

One notes that 2% /B? is expressed as a sum of &? and &* terms.

For the case of the m = 1 mode, the dominant contribution of order

&2 cancels out, so that to leading order ¥ is given by

n*B2 | 27} B;Q;
G ~——F|— - = (1-nq) (1+3ng)|, (D.8)
R: | B B?

with ¢ = 7B, /(RoB,). This result is used in the discussion of the stability
properties of the m = 1 internal kink mode in toroidal geometry (cf.
chapter 8).

The Hain-Liist equation

We shalll now obtain the Hain-Liist equation, which is the screw-pinch
eigenmode equation extended to the case of non-vanishing inertia. This
is more easily accomplished by following a different procedure compared
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to the one used in the section above. Let us start by writing the following
equilibrium relations for a straight screw-pinch

VEJ§ = -Ri(By), NEJy = ("B’
6= R3By(BYY — BY(r*BY’, (D.9)
B? = r*(BY)* + RA(BY)*.
Furthermore, it is convenient to define (do not misinterpret this 7 with
the covariant ¢ component of the magnetic field)

F|=mBf - nB), D=mR3B}+nr’B), H =m’R3+n’r".

As before, the fluid displacement is expanded as £(7, 6, ¢) = £(r)e’ ™0~

and the same applies to other perturbed quantities. Our starting point For the sake of simplicity, we omit to

are the linearised radial and toroidal covariant components of the mo- write the subscript m when referring to

. . .. the harmonic of helicity (m, n).
mentum equation, and its projection along the total B field. They read

(cf. (7.1) and (7.10))

poy?é" = —p’ - RyB{(B?Y — By (r*B”Y

+iFB" — RX(BY) B’ - (r*BY) B’ (D.10)
ponRgf‘/’ =inp + z'Bg(ngB¢’ +nr’B%) + R(z)(Bg)'Br, (D.11)
poy (r*By¢? + RABIE?) = iF (TpoV - €), (D.12)

where p = —p/é" —TpgV - £. We now introduce the variables X = &7,
Y = Bgfe - Bg§¢ and Z = I'ppV - §&. The perturbed pressure and the
components of the magnetic field are thus written as

p=-pX-2 B =iFX
_ 1 - 1
B’ = -=(BjrX) —inY, B’=-—(BjrX) -im¥,
r r
whereas the divergence of ¢ explicitly reads
, V&= (gY + ime® - ing?,
Z _Loxys = (my + R (D.13) '
— =—(r —(m . .
Tpy 1 Bg’ I 3
When equations (D.11) and (D.12) are written in terms of X, ¥ and
Z they become

(rX)’

r

poY*R3E? = 2inr(BY)*X — iB{D +B{HY - inZ,

2
B (12ByY + B%*) = iFy Z.
B?
0
An easy calculation shows that by employing (D.13) to eliminate £?, the
two equations above take the following form
(rX)

DZ = ~B*D-—= +2nr BBy X - i(BQH + rQR(Q)pOyQ)Y, (D.14)

2 2 ’
pry LY B pon(BQ(rX) + z‘DY). (D.15)
I Fpo T
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If one multiplies equation (D.15) by D and uses (D.14), it is possible to
obtain an expression for Y just involving X that is

X ’
iAY = 2mrBlox - palY (D.16)
having conveniently defined
BZ QBZ
Q:F2+p0y2(1+—), o=p2 P2
[l FPO [ FPO
24,2 p2 B2
_P¥ T +H[F‘| + poy (1 + —)]
Fpo Fp
We finally recast (D.10) in terms of the variables X, Y and Z to get

Xy

Py X = (Z+ g o DY) (B2 +2rBY(BY)Y )X + 2inrBJY.

I
Hence, using (D.15) and (D.16), after little algebra we eventually obtain

In cylindrical geometry the physical the Hain-Liist eigenmode equation
poloidal field By is related to BY through
9, (rX)’

the relation d 2 o Q
B- VY dr( R —( v —=

? = vl

)= |2+ pov® + 20 BY(BYY

Q ’ ()
- Qnr(—DBg) - 4n272(Bg)2— X =0.
Similar relations can be obtained for By A A

d the toroidal projections. . . e 1. .
ane Hhe Torolcal projections With some efforts, it can be shown that in the y — 0 limit this expression

reduces to the Newcomb equation (see (D.0)).
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External kinks in a cylinder
with a resistive wall

From the analysis of external kink modes presented in chapter 10, we
saw that stability can be improved by surrounding the plasma with an
ideally conducting wall. Better stability properties are indeed achieved
because magnetic diffusion in the vacuum is avoided, and flux compres-
sion prevents the development of the instability. If the wall has a finite
amount of resistivity, however, the magnetic field can diffuse through the
wall, and an external instability can develop.

We shall now discuss briefly the dynamics of external kink modes
allowing for wall resistivity. Let us consider a cylindrical plasma col-
umn of radius ¢ surrounded by a resistive wall at distance b > a. We
employ cylindrical coordinates (7, ¢, ¢) with associated metric tensor co-
efficients g,, = 1, ggg9 = r2, 8op = Rg, &9 = 8¢ = 0and /g = LRO' As
in chapter 10, the vacuum magnetic perturbation is written as B = V y,
with y obeying (10.3). Similar to Eq. (10.1), we expand yx in a Fourier
series to give for the mth harmonic

2 2,2

’ m n-r
(r)(;n) _T(1+ m2R2
0

Xm=0,

where m ~ 1 and the prime denotes, as usual, the radial derivative.
Imposing the radial component of the magnetic field to vanish at infinity,
the solution of the equation above is written as

nr nr
aKy (R_o) + ¢coly (R—O), a<r<hb,

Xm = nr (E.1)
CgKm (R_()) . r > b,

We use the relations

1
140) = 5 (a1 + T s (7).
K1) = =5 K1 (1) + Ky 1(0),

noticing that for large r one has I, (r) ~

e” /\r and K, (r) ~ e~ " //r.
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1 That is B4 — 0. In fact, the toroidal
projection of the vacuum field B=vV X
is £2 smaller compared to the radial and
poloidal ones. This ordering is assumed

to hold within the wall as well.

It is easy to see that @B,’n must be con-
tinuous across the wall (cf. 8.2.3).

10 ¢
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q(a)y/wa
S

10°F -

4 )
10 1 1.5
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Figure E.1: Growth rate of the m =2 =
n = 1 mode vs ideal (solid line) and re-
sistive (dashed line) wall position for a
current profile of the form R(Q) J?/By
#1~ (r/@)*) with ¢(a) = 1.8 (¢(0)
¢(a)/2). We used the parameters 17, =
5% 1077Qm (of the order of the elec-
trical resistivity of stainless steel) with
wy =10%5s71, a =1m and d/a = 0.01.

where I, and K, are the modified Bessel functions of the first and second
kind, and ¢; (i = 1,2, 3) some constants.

Inside the wall one has E = n,_J where n,, the characteristic wall
resistivity, is constant. Using Faraday’s law one obtains 0B/dt = -1,V x
J . It is customary to neglect the toroidal component of the perturbed
magnetic field," so that from the divergence-free condition of B one has

BY = —-L(rB],)’. Hence, we obtain
IVEB aR3J® or’J? 1d [ dNEB)\ m* o,
_— - =p|l-—|r——| - — .
a1 Tw | a9 3¢ r dr dr ;2 VeBy
(E.2)

We now deploy the thin wall approximation: the wall is assumed
to have thickness d < b such that 7(B")" ~ B! b/d > B. Now, taking
the time dependence of the perturbation of the form exp(yt?), equation
(E.2) can be simplified as follows:

ytwB), = b*(B},)",
2
with 7, = bnﬂ

this equation across the wall, one gets

denoting a characteristic diffusion time. By integrating

Y7wd B, (b) = B*[(B},) 11,

where [(1)]s = ()p+e — (-)s— with € — 0. Using this result and the fact
that B! = y7,, from (E.1) we have

K, (%) + e/al; (%)
, a<r<hb,
_ K, (ﬁ—ﬁ) + o/ 1y, ("—z)
B =Cx (E.3)
—Kr:l (%) r>b
w8

where C is a generic constant and

o K ()P yTiud /8
a - In(@K(2) - Kn()Ii(2) = Kn(@) L)y ud [

with z = nb/R( (recall that the radial derivative is with respect to the
variable r not 2).

For z < 1 and m integer, one has K, (z) ~ @(2/2)"" and I,(z) =
%(2’/2)’", so that

LK) - KL () ~ w8, Kj()(z) ~ -m/(26%).
Therefore, it follows that

o [2m Y (m — 1)z ™ Py1,d /b
a 1+ yTpd/(2mb)




Plugging this into (E.3) gives

_ d/(2mb) [r\2m
BT ~ m 1 1 _ yTw _
m ™7 1+ yrod/(2mb) (b) ]

which reduces to (10.5) for 7, — oo (ideal wall). Let us call

_ YTwd/(2mb)
T 1+ y1ed/(2mb)’

(E.4)

Note that D < 1 for v > 0. We consider cases with y real. Hence,
introducing the fictitious vacuum displacement &, as in §10.1 (the same
notation is used), it easily follows that (cf. (10.12))

ré, 2m m+1+ (m—1)D(a/b)*™

&y late Tm- ng(a) - 1 - D(a/b)2m : (E.5)

The last term on the right-hand-side of (E.5) is always negative for D < 1,
so that by comparing it with (10.11) we infer that also in the case of a
resistive wall surrounding the plasma the equilibrium can be unstable to
an external kink perturbation of helicity (m, z) only if ¢(a) < m/n, that
is if (10.13) is fulfilled.

Solving (10.9) yields the stability boundary and the growth rates,
the former obtained by setting D = 0 (i.e. ¥ — 0). From (E.5), it is
immediate to verify that the marginal boundary is independent of
b. In fact, this stability boundary coincides with the one obtained for
a cylinder surrounded by an ideally conducting wall in the limit a/b —
0, i.e. wall far from the plasma (no-wall limit). This means that if
the plasma is no-wall external-kink unstable, a resistive wall does not
suppress the instability, though it can reduce considerably the growth
rate (see Fig. E.1).

The growth rate can be computed analytically for flat current and

mass density profiles both vanishing for a < r < 4. Following the proce-
dé¢y [dr
&

= m—1, by means of (10.9)

a—e

dure outlined in §10.1, and using a

we obtain a cubic equation for y

)/2 _o[m 2 1 3 1
w_§‘2(q(a> ") [m—nq(a) b Y

where D depends upon the growth rate according to (E.4). The numer-
ical solution of the dispersion relation Eq. (10.9) with (10.12) replaced
by (E.5) is show in figure E.2, and confirms the necessity of condition
(10.13) to be fulfilled for stability.
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One can introduce a typical wall diffu-
sion time defined as 7y = ugdb/ny.

10%¢
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107} ]
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)

107}
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Figure E.2: Growth rate of the m = 2 =
n = 1 mode for an ideal (thick solid line)
and resistive (thin dashed line) wall at
position 4/a = 1.2. The current profile
and other parameters are as in Fig. E.1.
The mode is stable in the limit of a/b —
0 (no wall) for ¢(a) ~ 1.482.
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A more general derivation of
the resistive layer equations

In chapter 17 we carried out the resistive layer analysis for a circular toka-
mak through a double expansion in two smallness parameters retaining
toroidicity effects to second order in the inverse aspect ratio. Here, the
derivation of the resistive layer equations is generalised for the case of a
generic axisymmetric configuration fully retaining curvature effects.
Our starting point is the set of equations (13.1)-(13.5) and (13.8).
Next, we deploy the following orderings (cf. (17.1), (17.3) and (17.4))

_ . . ~
ﬂN‘f_, l~5, 7%~AO’ r%Né’ T _ ~6,
o r wy or or o Ts (Fa)
- 1
10 &’ 5 5o VEB
-~ 0% & ~E 2 \gBY ~ \gB’ ~ ~ By,
réy 70 70

where the subscript 0 and a tilde denote equilibrium and perturbed quan-
tities respectively, and ¢ is a small parameter. As usual, r; denotes the
radius at which ¢(r;) = m/n.

As in §17.1, perturbations are decomposed into a resonant and non-
resonant part so that the action of the parallel gradient is given by (17.9).
Recalling that p = —pé” + Ap, equation (13.8) yields

< DT 4/ ar 7 im—in a~
poY*NgBo - € = —VgB'py — [ [i(mp — m)f + ™ "’u%]-

Since (mu — n) ~ —nsx ~ §, we immediately have pNr ~ 6. From this,
similar to (17.10), the leading order contribution to (13.4) is

0 - _, 0 (1)
#%(\/E.] INR +Pm%(3—g) =0

Contrary to the analysis of chapter 17,
here just a single expansion in the layer
parameter ¢ will be performed. We also
recall that this is a local analysis, hence
equilibrium quantities are assumed to be
evaluated at the resonance position, i.e.
at 7.
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Recall that (ANR) = 0.

The divergence-free condition of B im-
plies (cf. (7.25))

59, = L (yaB'y + “(vaB?
(VEB")n = == (VBB iy + = (VBB m

8 9 _
E(\/EBT)NR + (l'm + %)(@Bﬂ)NR
— in(ygB’)Nr = 0. (%)

The equation above can be easily integrated to give

VET = =15 = (=) (F2)
0

0

Let us now write the perturbed toroidal current as

N (Ne“"ﬂ OL(VEB ) + (VEB In), (F.3)

from which (note that to dominant orders radial derivatives actually act
on the perturbation)

(VEJ)m = (N)(NEB");, + (N(VEB" )\ )-
Therefore, by means of (F.2), one can write
NI(VEB"),, + (VgB" )]
P VAY LAY 1 1 o’
= (N)(VEB");, + (N(VEB ) - q(B—g G I8

If we divide by N and average in ¢, an equation for (N (\/EB’?)I'\IR) is
obtained. Eventually, this leads to

lmﬁ ing

VEJ® = Sy (VB + (<Ni%ﬁ>—<%>3ig)ﬁ;n]- (F.)

A comparison with (F.3) easily yields

B 1/N 50
(VgB")NR = (—(I/N) - )(\/— )m
1/N 1
Ta/ny (<_> ‘< > )pm + C(9), (F.5)

0

where C (1) is a periodic function of ¢ with vanishing poloidal average.
Furthermore, because of the smallness of pNgr, from (13.3) we find
that

(\/_B¢) "’ ”“”( —5 b + inN[(VgB")n + (VEB )xr]

Plugging (F.5) into the expression above produces

u(ygB), Q/(NBY)

. i
)(@B = N Ty P N C@), (F6)

i
G+
( (1/N)
where the last term on the right-hand-side has to be considered as a

constant. One then has

B0 0 _ __ G/N I Iy
(VEB")u + (VB >NR-<G/N>+#([ —(VEB),
K\ G i (V@)
(<NB¢>—< >—— GB¢)pm G- - G|

(F.7)



Hence, allowing for (F.3) the relation above yields
1

AT

GV + 2

G (vgB");, .

oy — _
(V& n = (G/N)+u2 im

)|bn- (E8)

By
Finally, if we use (17.10) and (17.11) into (17.15) we see that (\/§1§¢)1’nﬂ =
0, thus suggesting
(VEB)nw = D(9), (F.9)
having used (17.7) with D some function of the poloidal angle.
Now, we want to express (\/géf)m as a function of £, and p,. To
achieve our purpose, we shall take the contravariant radial projection of
the induction equation which is (17.31)." If one considers the dominant

contributions, it is easy to see that {{; ~ 0¢;,. Therefore, we employ
(F.8) to work out the resonant component of (17.31) giving

[1_7700(1\’) (CLW iy &

Y <G/N> + /12 ﬁ (\/EBr)m = lf(‘)/(mﬂ — n)é::n

nGNY [, 1 GINY+pu? 1 14,
) B 6 . F.
Ty <NBg (G/N) + pu? <N><Bg>>)l’m (F.10)

To close the system, it is now necessary to determine the equations for
the resonant radial fluid displacement and perturbed pressure.

Staring with the expressions for the poloidal and toroidal fluid dis-
placements, these are obtained from the contravariant poloidal and
toroidal projections of the induction equation (13.5) which, to the ac-
curacy we need, read (i = ¢, ¢)

1 n0GN &
vy Or?

) (VgB') = VgBy - V& — \JgV - (€B)). (F.11)

Because of the ordering of the perturbed pressure (see (F.1)) it follows
that V - & ~ 1, therefore to leading order equations (F.11) give

109, = Dol = NE (€0 + £ )0 (1IN,
whose solution is given by Eq. (17.22) that is

1
INE_ _ 1) &,
A/Vg)

One also finds that Eq. (F.11) with i = ¢, can be written as (13.19)

pedy = Ebn = ( (F.a2)

showing that to leading order in 6 we have (cf. (17.19))

1 ey

£ = g — - : (F.13)
im dr

Repeating the calculations of section 17.2.2 shows that £D s given by
equation (17.24), thus determining completely &2 which is
o _ANE | ((RY g, RY/B

. o
”‘__G+'u2<N> X im dr +#72/wi(l(m#_n)pm+f_(‘),(\/§B )m)]
(F.14)
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The result is exact to leading order in ¢.
For (@E"j)o we use the same arguments
discussed at the end of section 17.2.1.

! Notice that g /¢ = (NygB”)'.

2 Recall that Ap = -T'pyV - €.
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The following equilibrium relations
prove to be very useful

%m’) = (VEJ) - VBT
0

J P
25} (%),

gN
(N @D+ el) = GEg .

We now seek the equation for &;,. In analogy with section 17.3.2, the
resonant part of the vorticity equation reads

¢
PO (N D+ E4a) = imp = XS ) + (VBB s (25))
fo 9\ B!
NI 01
_|:f_0/( 0961? Jo a¢)(\/_B¢)] — im( ¢>ﬁm <pNR_l9 Bg)>'
(F.15)

Using (F.6) and (F.g), one can verify that the term proportional to the
toroidal magnetic field gives to leading order in ¢

LB (o 1y
¢ _ 0 0 B —

Ve 548 5 ) (VEE®) ]| = Lot (g ”"“Ngg”’"’) .

(F.16)

It is easily recognised that the second term on the right-hand-side of

(F.15) can be recast as

7 2 -
(( ‘/_Bﬂ)NRaﬁ(B(;» = fO’<B¢ 619(\/_ TINR)- (F.17)

Thanks to (17.25), the contribution due to the non-resonant perturbed
pressure becomes (use (¥%))

EEATERY po)f
59 \pe)! = —( )
<PNR519(B¢)> 5 VB VEBo - )\r)’
-4 f,< ¢(zm<f3ﬂ>NR+ S VEB ) (F.18)

where in the last averaged term it is only necessary to compute the first
contribution which, by means of (F.7), reads

B , G 1 B
<(@BK)NR> -Gy ><—>)W b
(<G/<NB§>> +u%(1/BY) 1 b >) _
(G/N) + p? NBJ" N(B))
Now, making use of (17.23) and (F.13) shows that
én — (V) .y
(1/\/_ )

which then allows us to simplify the inertial contributions appearing in
(F.15) as follows

(F.19)

L (EBy Enn =L (R - (r2)) %n .
0 mm

oy [(VEN) 19_<(\/§BO"§)NR>] ;po)’ [ (R?)? ~ <R4>]d2§,rn
f Lave " B “Uimpile 2Ny T 6 e
w(1/Bf)

iyt s BEE) ()



Thence, by collating (F.8) and (F.16)-(F.20), the vorticity equation (F.15)
can be eventually rearranged in the following form

onﬁ[ (RY? <R4>] &€, Glmp—n)/m
Cimfle 2Ny~ G 1ar G/(N) + 12

GIN)+p* 1\ G/(N)+

@Iy VBB el e e -7’ <_ )]

G 1 G/(N)+u* 1 &
+qfo'G/<N>+#2(<NB§>(G/N>+M (N) B"’ )(\/_ )

2
up <1/B¢> PV TR 10,
(F.21)

where O is some constant.
It only remains to provide an expression for the resonant perturbed
pressure. Let us write (F.11) as (cf. (13.19))

o_(;_mGN &\ VEB" (10U 9 (4 .

1 ‘(1 % aﬂ) 7 (% or qa¢(§ He ))
(F.22)

o _(- _mGN 8* VZB’ 10(/6") L0 (0 e

H‘(l y o) fy  \f or aﬂ(g ue) |
(F.23)

From (F.12), i.e. (17.22), it is obvious that (£” — u&?®)Nr ~ £ /7, hence if
we subtract the non-resonant parts of (F.22) and (F.23) it easily follows
that to the relevant orders

0
25 Exm — HER) = Mg — T (F.24)

When the non-resonant contribution of (F.23) is plugged into (17.21),3
by multiplying by /g and averaging in 1}, we immediately obtain (cf.
(17.28) and (17.29))

1
(VBT =t0m = 1YEER) + ()~ VD=0
9 5
- VE (e - 1)) - (VEHE i
It therefore follows that by making use of (F.24) one has
WNEHw, _ . (VEEw) (<vz>' . yvz) (VETR)
(Gp g = i = e | T (e e T

Thus, if we plug the quantity above into (17.27) and deploy the def-
inition of perturbed pressure, by means of the resonant contribution of
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3 Explicitly, (F.23) yields

g"‘ 0 D)

=_n?,
f é:m m

0&7
—NR im(‘fNR - /J‘fgp\)

9 .0 ¢ ¢
+ 59 Enr ~ HENR) = ~TIxg

Equation (F.22) can be arranged simi-
larly.
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Here we list some useful relations:

. =
NR ’
¥

B (vgB")nr oG 8

2
ng - (1 WOW) 4

Y

KR /By
K N® Bl

1, _ (RD
(Bff 20 (G
RY/By 1

Y2y poy?

(F.23) we eventually obtain

P+ Pk

DN (N ' D
= §>m—(<\/§> fo,)g,,,
_ (VEERR) (VEER)
é NR ¢ NR
+ l(m,u - n)(fm + <—\/g>) - (Hm + W)

Using (F.10) to express [(mu — n)é;,]’, by means of (F.2), (F.6), (F.13),
(F.14) and (F.19), after some manipulations it can be shown that the
equation above can be finally arranged as

_ﬁm+paf;_qG/<1/B§>[ 1 G/(NY+2 1 1 ](@BT);"

T GIN @2 N GIN +  g| imf

_ ( g )2 n0G [<R4> LR ., i (mp— n)(EB)w
) y®HL G G+ XN fpoy? (VE)G + u*(N))
(mu—n? _ R§/Bj [<1/B{f>’ N
VG + X (N) y* 2™ L(1/BY) G+ uX(N)
s (G<1/<NB;§’)>2 1
(V&) \ (G/N)+u*> "N(BJ)?
where X is another constant whose value is not important.
In conclusion, the resistive layer dynamics is determined by the closed
system of equations represented by (F.10), (F.21) and (F.25). These re-

duce to (17.30), (17.35) and (17.42) in the limit of a thin tokamak (see
next section).

|

))ﬁm +32, (F.25)

Recovering the GG]J equations

For completeness, we shall show that the layer equations that we have
just derived are equivalent to those of Glasser (1975). We first define the

quantities
L [RY (R } LGNy
A*_q |: G G+/.12<N> ’ g_ < ><G/N>+/.12’ 77R—770éw,

13
v g*r2QUG + kAN poA,
0= : ,
s2m*(f))*nr 4

and then we multiply the induction, vorticity and pressure equations by
the following factors:

SQmQ(f(‘)/)ZnR é
g*12(G + p*(N)) pols

Q=

. 7\2
? x (F.10), g’ G+ ”2<N>) x (F.21), RIS

e ms? f/ POA-

Therefore, upon introducing the variables

(F.25).

¥ = -
Q=v/Q E=&, ¥=—"(EgB)m Y=-fult

P G ¢
QG + (N2 poAs




after some tedious algebra the resistive equations can be presented in
the form chosen by Glasser (1975) which is

d*y dY
— -H—=0¥-X=
ax: gy =& =)

2= .
QQ%—QXQE+QX\P+HZ—;{;+(E+F)'Y‘+®:0,

2 2
ld—T—X—T G. Y+ (G. - KE)_+£‘I’ KHd—lP+F‘I' +¥=0,
Qdx? Q2 0?2 dX

where © and ¥ are some rescaled constants and the parameters E, F,
G., H and K are defined as#

g*ripg ) w/(1/BYy 1
= G R Y
B op e <N>)(G/<N>+,u2 (!
gt () ) 1 G(1/(NBY))>?
P (E) (G+u <N>)(<N(Bg’)2>_ <G/N>+#2)

_ RW*ENe) H:qusp{) L, (G/N) + 12
TpoA. sfy \'NBS" (N)'BY G/(N)+u?)
se(f2\’ A

= AL(G N

(W6 [AG +k*(V))]

Letting V(r) be the volume enclosed by the surface labelled by r, we
have V(r) — V(rs) = V'(rs)(r — 15) = 47T2<\/§>(T — 75), so that our radial
variable X can be written as

—_M _ 2 XQO 1/2 p()_/\*
Xz Xo= 4t (G ) J -

Thus, compared to Glasser (1975), we have flipped the sign of X and
Y. The large aspect ratio limiting expressions of some of the quantities
listed above, upon using the metric coefficients presented in §5.3, read

(snBo)*no )”3

A, = r3Ry(1 + 2¢2), ~ . .
R+ 20 Qo ((TsRo)lpo(1+292)

(RO Ts )4/3 1/

Xo =~ 4 —[po(l +2¢%)]"°,
(snBy)1/3
2g°rpg | _ 1, Ro,, Rippe’( 1
eg |2 nB: " 2g) |
0 s s80 q
r . 2\2 2
F:QM(1+L), :L’
2B 2 Tpo(1 +2¢%)
2¢%Rop! s*B;
e . YO O ——0 [+ 297,
sB; (¢R Po)
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4 The Mercier criterion for stability is
written as

Di=E+F+H-1<q

whereas resistive interchange modes are
stable if

Dr=E+F+H?<0.

These criteria assess stability of each flux
surface against such localised perturba-
tions.

Notice that (mu —n)=—-nsx and V(r) =

ox [ dr [ doyg.

To facilitate the comparison with Glasser
(1976), we recall that from (4.26) and
(4.34) one has

3 7,3 r2R2p’
ROA"_2=/ (’_2_2 gp())dr.
g Jo \¢ B
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Symbols

Here we provide a list of commonly used symbols. For some of these
quantities, the page where their definition can be found is also indicated.

Physical constants

kg Boltzmann constant
&0 vacuum permittivity
Ho vacuum permeability
e proton charge

Special functions

r Gamma function
b4 Digamma function
K complete elliptic integral of first kind
E complete elliptic integral of second kind
o hypergeometric function
U (Kummer’s) confluent hypergeometric function
M (Tricomi’s) confluent hypergeometric function
I, modified Bessel function of first kind
K, modified Bessel function of second kind
H Heaviside step function
Geometry
(R, Z, ¢) cylindrical coordinate system
(right handed, ¢ clockwise from above)
(1,6, ) toroidal coordinate system (right handed,
0 counterclockwise in the poloidal plane, ¢ clockwise from above)
(r,9,¢) straightened toroidal coordinate system (right handed,
¥ counterclockwise in the poloidal plane, ¢ clockwise from above)
7 radial variable, 32
0 generic poloidal angle, 32
) rectified poloidal angle, 55
¢ geometric toroidal angle, 32
N Jacobian, 24, 38
a minor radius, 38
Ry major radius, 27, 37
£ inverse aspect ratio, 39
A Shafranov shift, 38



Operations

) complex conjugation
I jump across a point, 106
"= % or % radial derivative, 40

) poloidal average, 61

similar order indicator, 39

Other quantities

P mass density

T temperature

¥4 pressure

n resistivity

Q toroidal rotation

B magnetic field

B modulus of the magnetic field

By modulus of the magnetic field on the magnetic axis, 34
F covariant toroidal magnetic field, 32

V4 poloidal flux, 33

) toroidal flux, 33

1y radial derivative of the toroidal flux, 82
q safety factor, 34, 560

7 rotational transform, g3

B ratio of kinetc over magnetic pressure, 34, 43
s magnetic shear, 42

a ballooning parameter 45

A Lundquist number, 179

M Mach number, 52

L Larmor radius, 6

Q; cyclotron frequency (species s), 18

w4 Alfvén frequency, 84

Yy growth rate, 73

75 (Or 715) resonance of the mode (m, n), 76

k| “wave vector” of the mode (m, n), 93









Summary table for internal ideal MHD
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VB drift, 7

adiabatic index, 13
Alfvén

eigenmodes, 79

frequency, 84

speed, 84

time, 179

wave, 179
Alfvénic timescales, 133, 139
anomalous resistivity, 17
asymptotic matching, 102
auxiliary field, 191
average binding energy, 3
averaging method, 165

ballooning
equation, 160
equation in Fourier space, 164
generalised equation, 162
limit, 217
modes, 155
parameter, 45
banana orbits, 260
basis function, 201
Bessel function, 150, 151, 282
Boltzmann
constant, 13, 175, 266
kinetic equation, 12
boundary conditions, 72, 81, 106
Bussac stability criterion, 113

Cartesian coordinate, 24
Cauchy

argument principle, 251

initial value problem, 198
Christoffel symbols, 26
classical tearing modes, 190
closure, 12

fluid, 13
cofactor, 24
collision time, 18
complex conjugation, 73
compressibility, 81
confinement

inertial, 5

magnetic, 5
confluent hypergeometric function,

184, 228, 247

contravariant, 24
basis, 25, 32
components of the metric tensor,
24
convective derivative, 13
convolution, 77
theorem, 209
coordinate lines, 24
coordinates
curvilinear, 23
orthogonal cylindrical, 26
orthogonal toroidal, 27
Coulomb
gauge, 271
logarithm, 175
covariant, 24
basis, 25, 32
components of the metric tensor,
24
crash, 205
current
channel, 137, 194
driven instability, 133
hole, 41
loop, 51
curvature, 36
effects, 233
radius, 27, 42
vector, 270
curvature drift, 8
cyclotron frequency, 258
ion, 18
cylindrical
approximation, 27
coordinates, 32, 36
geometry, 27

Debye length, 13
Deuterium, 4
diagonal unit tensor, 16
diffusion

equation, 178

time, 178, 282
Digamma function, 152
Dirac-delta, 106, 125, 138
dispersion relation, 120
disruption, 69, 133, 189
distribution function, 11

Index

bi-Maxwellian, 266

Maxwellian, 18
dominant mode, 83
double tearing mode, 200

E x B drift, 7
Edge Localised Mode, 217
Edge Localised Modes (ELMs), 69,
156, 172

eigenmode equations, 79
eigenvalue, 73, 80
electric permittivity, 175
elliptic integral, 51

first kind, 259

second kind, 261
energy confinement time, 4
energy conservation, 269
energy principle, 74, 176
equilibrium

B limit, 43, 51

stable, 69

static, 31, 70, 80

unstable, 69
error function, 209
Euler’s formula, 164
external kink, 133

fast-growing modes, 84
field line bending, 75, 76, 119
first stability region, 171, 225
FLR model, 19
fluid
displacement, 70, 80
flute instabilities, 143
flux
compression, 48, 281
conservation, 19o
freezing, 14, 175
label, 32
surface, 32
tube, 189
flux conserving tokamak, 43
force balance, 31, 39, 41
force operator, 176
Fourier
harmonics, 75
inverse, 183
inversion theorem, 164



projection, 77

series, 75

space, 163, 221

transform, 163
frozen-in theorem, 14, 76, 175
functional, 169
fusion ashes, 69

Galilean transformations, 71, 271
Gamma function, 152, 184, 229
Gaussian pillbox, 71
GGJ equations, 234, 244, 290
global modes, 82
Grad-Shafranov equation, 31, 36
growth rate, 73
guiding centre, 6, 257

GCP model, 20

GCP model, 18
gyro-phase angle, 20
gyro-radius, 6, 18

H-mode, 156, 217
Hain-Liist equation, 278, 280
heating
neutral beam injection (NBI), g
radiofrequency (RF), g
Heaviside step function, 138, 167
helical
coordinate, 191
field, 257
flux, 190
helicity, 75
high-field-side, 7, 155
high-pressure plasma, 114
high-shear region, 119
hollow safety factor, 115
hoop force, 43, 44
hybrid scenarios, 115
hypergeometric
differential equation, 150
function, 51, 151

ideal region, 179, 218
ignition, 4
induction equation, 17, 177
inertia, 95

enhancement, 102, 182
inertial

contribution, g5

layer, 88, 101
infernal modes, 119
instability

ideal, 69

resistive, 69
integral approach, 169
interchange

modes, 143

parity, 152

internal inductance, 43

internal kink, 96, 99, 119, 205, 278
internal mode, g9

inverse aspect ratio, 39

iron core, 7

isobars, 32

isothermal flux surface, 52, 70
isotropic plasma, 269

Jacobian, 24

kinetic

energy, 257

pressure, 13, 71
Kruskal-Shafranov criterion, 138
Kummer’s equation, 228

L-H transition, 156

Laplace transform, 72

large aspect ratio, 39

Larmor radius, 6, 258, 260
Lawson criterion, 4

layer ordering, 88, g2
Levi-Civita symbol, 26
linearisation, 70

linearised MHD equations, 8o
localised modes, 82
logarithmic jump, 192
Lorentz transformation, 71
low-field-side, 7, 155
low-shear region, 119

lower sideband, 104, 121
Lundquist number, 179, 183, 246

m =1 reconnecting mode, 209
m = 1 resistive mode, 206
Mach number, 52
magnetic
axis, 32, 189
bottle, 5
diffusion, 175, 281
flux, 8, 190, 209
islands, 17, 175, 189
mirror, 5
moment, 6, 20, 257, 263
pressure, 34, 71
reconnection, 17
separatrix, 191
shear, 76
surface, 31, 32
topology, 175, 189, 209
magnetic islands, 189
magneticshear, 42
main mode, 83
major radius, 27, 37, 275
marginal stability boundary, 18, 73
Mathieu functions, 169
Mercier

contribution, 221
correction, 162, 225
modes, 143
stability criterion, 149
metric coefficients, 61
metric tensor, 24
MHD
ideal equations, 13
ideal model, 13
conservation laws, 14
drift model, 18, 19
force operator, 71
model, 11
resistive equations, 17
resistive model, 17
minor radius, 38
mirror
criterion, 6
field, 6
mode coupling, 78, 85
mode locking, 189
modified tearing instability criterion,
225, 252
momentum equation, 14, 176
monochromatic, 78, 83
multifluid equations, 12

neoclassical tearing modes, 190
Newcomb equation, 95, 275
no-wall limit, 138, 283
non-linearity, 70
non-monotonic, 128

normal mode analysis, 72, 176
Nyquist, 196, 202, 251

Ohm’s law, 17
Ohmic heating, 8
orbit theory, 5
outer region, 218

parallel gradient, 75
parity, 156
particle
confinement, 257
loss cones, 6
passing, 258
trajectory, 257
trapped, 258
pitch
angle, 55
field line, 55
plasma, 4
current, 8
frequency, 13
rotation, 52
plasma 3, 34
plasma-vacuum boundary, 71
poloidal



plasma 3, 43

average, 01

field, 8

field coils, 7

flux, 33

mode number, 75

spectrum, 75, 83
Poynting vector, 15
pre-Maxwell equations, 13
precession, 261
precursor phase, 205

quantum number, 77, 83
quasi-interchange, 120

radius, 32
reconnection
complete, 205
incomplete, 205
rectified poloidal angle, 55
rectifying parameter, 60
residue theorem, 117
resistance, 8
resistive
instability, 175
mode, 175
resistive ballooning modes, 217
averaged equation, 224
resistive interchange modes, 143, 217
resistive internal kink, 208
resistive layer, 179, 233, 244
resistivity, 8, 17
resonance, 76
resonant surface, 76
reversed field pinch, 6
Reynolds number, 179
rotational transform, 93

s — @ equilibrium model, 46, 64, 160
safety factor, 31, 34, 56

satellite harmonics, 79, 83
sawtooth oscillation, g9, 205
Schrodinger equation, 166
Schwarz inequality, 149
screw-pinch, 41, 79, 275
second stability region, 171, 225
self-adjoint operator, 73, 169
separatrix, 43
Shafranov shift, 31, 38
shaping parameters, 38
shooting method, 198
sidebands, 79, 83
slow-growing modes, 84
small scale modes, 84
small-scale modes, 82
solenoid, 7
Solov’ev equilibrium, 31, 36
sound speed, 87
spectrum, 73
Spitzer model, 17, 175
stability equations, 79
stellarator, 6
stochastic, 189
straight field line coordinate system,
56,79

Sturm-Liouville, 94
surface current, 48, 71
Suydam

modes, 143

stability criterion, 149

tearing
equation, 190, 193
instability criterion, 196
mode, 190
parity, 152
stability index, 192, 199
tearing modes, 248
thermal velocity, 13

thin wall approximation, 282

tokamak, 3
toroidal
(ring) functions, 49
coupling, 78
flux, 33
magnetic field, 7
mode number, 75
toroidal
field coils, 7
transit time, 259

translational invariance, 163, 221

transport barrier, 155
edge (ETB), 156
internal (ITB), 155

trial function, 169

Tritium, 4

twisting parity, 152

type-III ELMs, 217

tyre tube force, 43, 44

upper sideband, 104, 121

vacuum permeability, 13
variational principle, 170
vertical field, 9, 43, 49, 51
Vlasov equation, 12, 20
volume average, 34
vorticity equation, 81, 176

wall
diffusion time, 283

ideal, 43, 71, 133, 193, 198

resistive, 71, 281
resistivity, 282

wave vector, 76
parallel, 93

WKB approximation, 194

X-point, 43, 51



	Preface
	I BASIC CONCEPTS
	Nuclear fusion and plasma confinement
	Fundamentals on nuclear fusion
	Magnetic cages
	Open and closed systems
	Tokamaks


	The MHD framework
	Ideal MHD
	Freezing of the magnetic field
	Energy conservation
	Momentum conservation
	The virial theorem

	Resistive MHD
	Domain of validity of the MHD model
	Advanced MHD models
	Drift-MHD
	Guiding centre plasma


	Curvilinear coordinate systems
	General properties
	Orthogonal cylindrical coordinates
	Orthogonal toroidal coordinates



	II EQUILIBRIUM
	Tokamak equilibrium
	Magnetic surfaces, safety factor and plasma 
	The safety factor q
	Plasma 

	The Grad-Shafranov equation
	The Solov'ev equilibrium

	Large aspect ratio expansion: The plasma solution
	-ordering
	Equilibrium at leading orders
	Tyre tube and hoop forces
	Equilibrium with local steep gradients
	An almost intuitive derivation of the Shafranov shift

	Large aspect ratio expansion: The vacuum solution
	External vertical field


	Straight field line coordinates
	Higher order tokamak equilibrium
	The rectifying parameter
	The metric tensor coefficients
	Metric of the s- equilibrium model


	III IDEAL STABILITY
	General remarks on ideal MHD stability
	Linearised MHD
	Boundary conditions in linearised MHD
	Eigenvalue properties
	Self-adjointness of the force operator F

	Parallel gradient and magnetic shear
	Mode coupling

	Distilled stability equations
	Convenient form of the linearised MHD equations
	Orderings
	Equilibrium
	Perturbations

	Auxiliary quantities: Global modes
	Behaviour far from resonance
	Layer ordering

	Auxiliary quantities: Localised modes
	Small scale modes far from resonances
	The inertial layer of small scale modes

	General form of the eigenmode equations
	Equation for the main mode
	Equations for the neighbouring sidebands


	The m=1 internal kink mode
	The general form of the growth rate
	Inertia enhancement

	Equations for the satellite harmonics
	Lower =0 sideband
	Upper =2 sideband
	Integrations across a point

	Evaluation of 0rsrUTCdr
	Integrals involving the function U0
	The stability criterion
	The m=1 internal kink with a hollow q

	Infernal modes
	High-shear region equations
	Low-shear region equations
	Sidebands
	Dominant harmonic

	The dispersion relation
	Infernal modes with a reversed q>1
	Hybrid kink—infernal perturbations

	External kinks
	Eigenmode equations
	Necessary condition for instability
	Marginal boundaries
	m=1 external kinks
	m2 external kinks

	Growth rates

	Mercier modes
	Eigenmode equation
	The Mercier stability criterion
	Dispersion relation and growth rate

	Ballooning modes
	The ballooning equation
	Extending to the s- equilibrium

	 Fourier space representation
	The small shear case
	The large shear case


	IV RESISTIVE STABILITY
	Resistive MHD in tokamaks: the basics
	Fundamental equations
	Where resistivity matters
	Resistive layer orderings
	Solution of the resistive layer equations

	Tearing modes
	The reconnected flux
	The tearing equation
	Eigenfunction and growth rate for the step current model
	The numerical solution of the tearing equation for generic profiles
	Double tearing modes

	The m=1 resistive mode
	The dispersion relation
	The ideal limit
	The m=1 resistive internal kink
	The m=1 reconnecting mode
	On the relative amplitude of the even and odd solutions

	Interacting resistive layers

	Localised resistive instabilities
	Governing equations
	Resistive ballooning modes
	The eigenmode equation
	The growth rate

	Resistive interchange modes
	k1 eigenfunction
	k1 eigenfunction
	Growth rate and stability boundary


	Curvature effects in the resistive layer
	Toroidal layer orderings
	Fields, displacements and pressure
	Perturbed magnetic field
	Poloidal and toroidal displacements
	Perturbed pressure

	The resistive layer equations
	Induction equation
	Vorticity equation

	The eigensolution
	Stability criteria modified by curvature
	m=1 resistive kink
	Resistive interchange modes
	Tearing modes



	V APPENDICES
	Particle motion in a tokamak-like magnetic field
	Tokamak GCP equilibrium
	General proof of the self-adjointness of the ideal MHD force operator
	The screw-pinch eigenmode equation
	External kinks in a cylinder with a resistive wall
	A more general derivation of the resistive layer equations
	Symbols
	Summary table for internal ideal MHD
	Index


