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Preface

The goal of this report is to provide the basic analytic tools necessary to
describe magnetohydrodynamic (MHD) instabilities in toroidally sym-
metric devices known as tokamaks.

Although an extensive literature is available on the subject, it is quite
di�cult to find a thorough explanation of the mathematical techniques
employed in MHD tokamak physics. Some of the fundamental results
are often only briefly mentioned, and their derivation is usually referred
either to the original works, or to very few highly technical references,
which, most of the times due to the compactness of the exposition, are
a very challenging reading. This, combined with the fact that at times
some topics are better developed in certain references than others, re-
sults in a rather fragmented literature typically scattered over several
books or research articles.

Hence, my hope with this report is to present in an unified and clear
manner such techniques, detailing the derivation of some of the rele-
vant results in tokamak MHD without omitting the salient mathemati-
cal steps involved. In some instances the mathematical manipulations do
not follow the standard textbook approaches but, in my personal opin-
ion, have the advantage to being more transparent in terms of logical
methodology and applicability. I also tried to emphasize the connection
between theory and experiment: a short mention to an experimentally
observed phenomenon, stressing the relevance/motivation behind the
development of the theory, is usually given.

The report is divided into four main parts. In the first part I give a
very brief account of the tokamak device, with a discussion on the phys-
ical model and the mathematical tools used to describe the macroscopic
plasma dynamics in curved geometries. In the second part, the theory
of tokamak equilibrium is developed. The third and fourth parts are
dedicated to the exposition of the linear stability properties within the
ideal and resistive MHD frameworks respectively. The list of the MHD
instabilities treated in this report is not exhaustive. These however have
been chosen in such a way that many of the MHD phenomena observed
in experiments can either be interpreted by combining appropriately the
results here discussed, or analysed by using the mathematical techniques
we present. The appendices include optional material (not strictly neces-
sary for the comprehension of the main text), and some technical deriva-
tions which resulted to be too heavy to be included in the main body of
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the report. Boxes in chapters contain some physical or mathematical
highlights.

Despite the fact that there has been a tremendous e�ort in the last
decades in the development of numerical tools for the analysis of MHD
equilibrium and stability in toroidal devices, this subject, although proven
to be of great importance for the understanding of tokamak behaviour,
is not discussed apart from very few instances. More advanced top-
ics such as multi-fluid e�ects, the interaction of global instabilities with
highly energetic particles, or non-linear behaviours are not addressed
either.

We employ the International System of Units (SI) as system of mea-
surement. In the stability calculation however, we will normalise the
vacuum permeability to unity. It is not uncommon to use the same sym-
bol with di�erent meanings. However, the meaning of the symbol, unless
made explicit, should be clear from the context.

This report is intended for a graduate and post-graduate audience.
Basic results in magnetohydrodynamics are assumed to be known as well
as some knowledge of Fourier transform, special functions, asymptotic
analysis and matching theory. Familiarity with MHD theory in cylindri-
cal confinement systems, namely pinches, is highly desirable.

Culham, 12th May 2025.



Part I

BASIC CONCEPTS





1
Nuclear fusion and plasma con�nement

This short chapter introduces the fundamental concepts of nuclear fu-
sion and plasma confinement. Particular emphasis is given to the de-
scription of the main components of the tokamak device (from the Rus-
sian acronym for toroidal chamber with magnetic coils) which is one of
the most promising configurations for achieving controlled thermonu-
clear fusion, and whose dynamics (from the macroscopic plasma point
of view) is the subject of this report.

1.1 Fundamentals on nuclear fusion

Contrarily to nuclear fission, in which a heavy nucleus breaks up into two
lighter ones, nuclear fusion is a reaction in which two or more atomic
nuclei combine to form heavier elements. Let us introduce the average
binding energy per nucleon (denoted by B/A), i.e. the energy required
to separate an atomic nucleus completely into its constituent protons
and neutrons. Energy is released, either from fission or fusion, when the
final products of the nuclear reaction have larger B/A than the reacting
nuclei (see figure 1.1).

Nuclear fusion releases million times more energy than a chemical
reaction (e.g. from burning coal, oil or gas) and four times as much as
nuclear fission reactions (at equal mass). Therefore it has the potential
to be a sustainable and abundant energy source, with no greenhouse gas
emissions and modest radioactive waste production. Although nuclear
fusion regularly occurs in the universe, as it powers most of the stars in
the sky, reproducing the process in a controlled way has been proven
to be extraordinarily di�cult.

Of all the many possible fusion reactions (cf. Fig. 1.2), the most
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Figure 1.1: Nuclear binding energy
curve. Generally, energy is released by
the nuclear fusion process when atomic
nuclei lighter than iron-56 or nickel-62
are produced.

promising to be used in a reactor, that is the one with the largest cross-
section and therefore probability to occur at lower temperatures, is the
reaction between Deuterium (D) and Tritium (T):

D + T→ 4He(3.5MeV) + 1n(14.1MeV).

The released energy is contained in the kinetic energy of the reaction
products, namely an alpha particle (4He) and a neutron (1n). Deuterium
is plentiful on Earth, and Tritium can be obtained from nuclear capture
of a neutron by an atom of either 6Li or 7Li (both of which are abundant
elements)

1n + 6Li→ T + 4He + 4.8MeV,
1n + 7Li→ T + 4He + 1n − 2.5MeV.

DT

D3He

DD(p,T)

DD(1n,3He)

Figure 1.2: Fusion cross sections, as a
function of the energy of the centre of
mass, for the reactions D-T, D-3He and
D-D (with the two D-D branches). The
letters in brackets indicate the reaction
products, p for proton and 1n for neu-
tron.

In order to overcome the mutual Coulomb repulsion, and therefore
to have an appreciable probability of undergoing fusion, the D and T
positively charged nuclei must be heated to a su�ciently large tempera-
ture. At such temperatures, D and T atoms are stripped of their electrons
and a plasma is formed. Furthermore, to reach the so called ignition
condition, in which the plasma temperature is maintained at a steady
level only by the internal heating generated by the helium particles, the
rate of energy production has to be higher than the rate of loss, and
enough of that energy must be captured by the system. This condition
is expressed by the Lawson criterion which, for plasma temperatures
in the range of 10-20 keV , takes the form11 This condition is achieved for e.g. n =

1020m−3, T = 10keV , τE = 3s .
nτET & 3 × 1021m−3skeV

where n and T are the plasma density and temperature, and τE is the
energy confinement time defined as the ratio of the plasma stored energy
W over the rate of energy loss PL (τE =W /PL). The quantity on the left-
hand-side of the Lawson criterion is know as fusion triple product. For
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temperatures in the range of some tens of keV , the ignition condition
expressed by the Lawson criterion states that the plasma, i.e. the nuclear
fuel, has to be confined either for long times at low density, or for short
times at high density. The latter approach is pursued by the so called
inertial con�nement schemes which mainly use lasers for fuel heating
and compression, whereas the former by magnetic con�nement ap-
proaches, in which the plasma is trapped by powerful magnetic fields.
The table below summarises the orders of magnitude for temperature,
density and confinement times for magnetic confinement fusion (MCF)
and inertial confinement fusion (ICF) approaches.

MCF ICF

T 10 keV 10 keV
n 1020 m−3 1031 m−3

τE 1 s 10−10 s

The di�cult part in nuclear fusion research is keeping the fuel in
the plasma state hot and dense enough for the required time (toka-
mak experiments reached a fusion triple product of the order of ∼ 1 ×
1021m−3skeV ). This report focusses on a specific MCF device, namely
the tokamak, and the following sections will provide a brief introduction
to the main ideas underlying the magnetic confinement approach.

1.2 Magnetic cages

1.2.1 Open and closed systems

Magnetic confinement relies on the application of strong fields in order
to enclose the hot plasma in a magnetic bottle. Since currents flowing
in the plasma cannot self-confine the plasma itself (this is a consequence
of the virial theorem which is discussed in the next chapter), these fields
must be applied externally.

Due to the Lorentz force, to lowest approximation, a charged particle
with velocity v undergoing the e�ect of external electric and magnetic
fields gyrates along the line of force, being essentially ”glued” to the
field lines. Several concepts have been developed during the past fifty
years based on this basic idea, with the two main families of magnetic
confinement devices grouped in the so called open configurations and
closed configurations.

0

Figure 1.3: Magnetic mirror geometry.

The basic design of open configurations, known as magnetic mirrors
(or simply mirrors), consists of two parallel coils which carry the same
current in the same direction separated by a small distance, producing a
magnetic bottle between them (see Fig. 1.3) with an increased density of
magnetic field lines near the coils region. From orbit theory, in absence
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of electric fields one has for the energy E and magnetic moment µ of a
particle of mass ms and charge es

E =
1
2
msv2| | + µB = const, µ =

msv2⊥
2B

= const, (1.1)

where v⊥ and v | | denote, respectively, the perpendicular and parallel
particle velocity to the magnetic field of strength B . The invariance of
the magnetic moment holds, with a good degree of accuracy, even if
electric fields are present. These relations are exact to leading order
in the particle gyro-radius rL,s = msv⊥/(esB) (also known as Larmor
radius),2 and v | | is in first approximation the parallel velocity of the2 That is the radius of the particle gyra-

tion around the magnetic field. guiding centre, that is the point at the centre of the circle about which
the particle gyrates.

Because of energy and magnetic moment conservation, particles
near the coils where the magnetic field is stronger drop their parallel
velocity and eventually bounce back towards the plasma centre. The
reflection of the sign of v | | arises from the force due to the parallel gra-
dient of the magnetic field which, in case of a vanishing electric field,
determines the parallel motion:

ms
dv | |
dt
= −µ

B · ∇B
B

. (1.2)

The force on the right-hand-side increases as ∇B increases and is in-
dependent of the particle charge, hence is the same for both ions and
electrons. Particles with appropriate speeds spiral repeatedly back and
forth from one end to the other.33 The Van Allen radiation belts are a nat-

ural mirror confinement system.

v||

v⟂,1

v⟂,2

θM

Figure 1.4: Geometry of the magnetic
mirror loss cones in the velocity space.
Particles with a pitch angle in velocity
space less than θM = arctan(v⊥/v | |) are
lost.

For a particle with energy E and moment µ, the mirror field, which
is required to be smaller than the maximum one (Bmax), is

Bmirror =
E

µ
< Bmax, or

E

Bmax
< µ. (1.3)

Referring to figure 1.3, at z = 0 we have µ = msv2⊥/(2Bmin) so that we
find that mirror configurations cannot confine particles which have���v | |

v⊥

��� > √
Bmax

Bmin
− 1.

This relation, known as mirror criterion, identifies the so called parti-
cle loss cones, i.e. regions in the velocity space for which particles that
are lying inside are not reflected within the ends of the magnetic bottle
(see Fig. 1.4).

These particle losses along the field lines can be eliminated by closing
the system. Closed configurations typically have a shape which resem-
bles the one of a doughnut and are characterised by a strong longitudinal
field. Examples of closed configurations include tokamaks and reversed
field pinches (RFPs), both of which are symmetric in the longitudinal di-
rection,4 and stellarators, which instead exhibit helical symmetry. The4 In real experiments perfect axisymme-

try is never fully achieved due to inhomo-
geneities induced by external structures
such as coils, vessel components, etc.

material discussed in this report will be focussing on tokamaks.
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Figure 1.5: Toroidal magnetic field and
toroidal field coil geometry. (a) side-
view, (b) top-view.

(a) (b)

Icoil

Btor

1.2.2 Tokamaks

A tokamak device, which confines a toroidally symmetric doughnut-
shaped plasma in a vacuum vessel, consists essentially of four major
elements:

• toroidal field coils,

• iron core (or solenoid in modern machines),

• external heating systems,

• poloidal field coils.

We shall now briefly describe the purpose of each of these components.

B

- - - -

+ + + +

E

∇ B
Btor

vExB

R

Z

Figure 1.6: ∇B drift induced electric
field, and corresponding outward E ×B -
drift.

The current flowing in the coils linking the plasma (see Fig. 1.5-(a))
produces the longitudinal (or toroidal) magnetic field denoted by Btor.
FromAmpére’s law, taking the line integral along a circuit inside the coils
as indicated by the dashed line in figure 1.5-(b) shows that such a field
decays proportionally to 1/R, where R is the radial distance from the
symmetry axis. The outer midplane where the field is weaker is usually
referred to as low-�eld-side, while the inner region where B is stronger
is called high-�eld-side. With stationary but spatially inhomogeneous
B and weak E , the equation of motion for the position vector r of the
guiding centre of a particle with charge es and mass ms is

dr
dt
= v | |

B
B
+
E × B
B2

+
msv2⊥
2esB3

B × ∇B +
msv2| |
esB4

B × (B · ∇B ) . (1.4)

Apart from the contribution parallel to the magnetic field, the right-
hand-side of (1.4) is composed of three drifts: the E × B -drift

vE×B =
E × B
B2

,

the ∇B -drift

v∇B =
msv2⊥
2esB3

B × ∇B,
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and the curvature drift

vcurv =
msv2| |
esB4

B × (B · ∇B ) .

With E = 0 and a purely toroidal magnetic field (∇×B = 0), the par-
ticle experiences a vertical motion due to the ∇B and curvature drifts.
These depend on the particle charge, and because ions will drift in the
opposite direction with respect to electrons, this motion produces charge
separation. As a consequence, an electric field is generated, and its in-
teraction with the toroidal field drives a further drift, the E × B one.
Contrarily to the ∇B or curvature drifts, this is independent of the elec-
tric charge so that is the same for both ions and electrons. Since it points
in the outward direction along R, this drift keeps expanding the plasma
eventually leading to its loss (see figure 1.6). Therefore, the toroidal field
alone is not su�cient to confine the particles, and an additional field in
the poloidal direction Bpol must be added.

A

Z

R

1

2
∇ B

C

B

DBtor

Bpol

3

Figure 1.7: Qualitative ion projected tra-
jectory in the presence of a helical field.
Starting o� from point A on surface 1,
the particle moving along the field line
undergoes a downward shift crossing the
surface 2 at B. As the particle keeps its
helical trajectory, it will meet surface 3
at point C (downward shift with respect
to surface 2). Continuing in its path, the
ion crosses surface 2 again in D (down-
ward shift with respect to 3), and finally
will return at point A.

With this supplementary poloidal field, usually much smaller than
the longitudinal one (Bpol � Btor), the magnetic field lines become heli-
cal, winding around the plasma and lying on nested surfaces. The par-
ticles which gyrate around the field lines, slowly drift vertically up and
down. An intuitive pictorial explanation of this behaviour is depicted
in Fig. 1.7, while a more detailed, although not exhaustive, analysis of
the particle motion in a complex magnetic field is given in appendix A.
Charge separation is therefore prevented and individual particles are
confined. The additional poloidal field is sustained by letting a current,
usually denoted by Ip , flowing in the plasma along the longitudinal direc-
tion. To generate this current old tokamaks used an iron core with the
plasma acting as the secondary winding of the transformer: by varying
a current in the primary winding, a plasma current is induced. Mod-
ern machines employ a central solenoid to generate the magnetic flux
change needed to initiate the plasma current (see Fig. 1.8). A diagram
of a tokamak configuration, showing the direction of the poloidal and
toroidal fields with the associated sustaining currents and the iron core,
is depicted in figure 1.9.

Σ
dl

B

Figure 1.8: Schematic representation of
the current induction in a tokamak due
to a varying field generated by a cen-
tral solenoid: from Faraday’s law, a time
varying magnetic field flux through the
surface Σ induces a linking electric field.
A plasma current then appears due to
Ohm’s law.

The plasma current, apart from generating the poloidal field required
for particle confinement, also serves as a heating source. Indeed, since
the plasma is not a perfect conductor, as it has a finite resistivity, it can
be heated-up by the flowing current thanks to the Joule e�ect. This is
known as Ohmic heating. The power of heating PH generated by the
current IP is

PH = RpI 2p ,

where Rp is the plasma resistance. However, as the plasma temperature
T increases, the plasma resistivity (and thus its resistance) decreases,
typically with a dependence of the form T −3/2 (more details on this
will be given in §2.2 and chapter 13). Therefore, the Ohmic heating
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Ip, Btor

Icoil, Bpol
Primary 
winding

Iron core

Helical field line
Figure 1.9: Diagram of a tokamak with an iron core. A varying current in the primary
winding creates a varying magnetic flux. This induces a current IP in the secondary
winding (the plasma itself), and in turn generates the poloidal magnetic field Bpol. The
toroidal field Btor is sustained by a poloidally flowing current in the toroidal coils (cf.
Fig. 1.5).

becomes gradually less e�ective, and eventually negligible at su�ciently
high plasma temperatures. This means that the heat transferred through
the plasma current is limited to a defined level. If the temperatures re-
quired to sustain thermonuclear fusion conditions are much larger than
those achieved by Ohmic heating alone, additional means of heating
are required to reach the threshold where fusion can occur: these in-
clude the injection of electromagnetic waves (RF, from radio-frequency)
or energetic neutral particles (NBI, from neutral beam injection).

plasma

poloidal
field coil

pr
im

ar
y 

co
il 

or
 

ce
nt

ra
l s

ol
en

oi
d

toroidal
field coil

vacuum
vessel

Figure 1.10: External coils positioning
in a tokamak.

The last element which is essential for tokamak operation is the set
of coils mounted around the exterior of the mechanical shell, i.e. the
vessel in which the plasma is contained. These coils, known as poloidal
�eld coils, are used to control the plasma position (both horizontal and
vertical) and shape (the latter has a strong impact on plasma stability).
They also provide the vertical field required to maintain the radial force
balance. A more detailed discussion on the plasma tendency to expand
radially is given in chapter 4. A sketch of the positioning of vacuum
vessel, toroidal and poloidal field coils (including the primary winding
or central solenoid) is shown in figure 1.10.

This concludes our brief description of the main elements and key
features which characterise the tokamak device. In the next chapter we
shall focus our attention on the physical models employed for describing
the very core of the tokamak, i.e. the superheated gas contained in the
magnetic cage.
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2
The MHD framework

The main goal of this chapter is to provide the essential information on
the magnetohydrodynamic (MHD) model. This consists of a set of fluid
equations coupled to Maxwell equations. Despite its mathematical sim-
plicity, it is capable of describing a large variety of phenomena observed
in experiments, and therefore is widely used in modelling the dynamics
of tokamak plasmas. We do not attempt to present a complete and de-
tailed derivation of the MHD equations, for which the reader is referred
to other excellent sources listed at the end of this chapter. Rather, we
outline which are the main steps and ideas involved in the derivation of
the magnetohydrodynamic equations, and provide an intuitive discus-
sion about the physical consequences and limitations associated with
this framework. Some more advanced beyond-MHD models, which are
of interest in tokamak physics, are also briefly presented.

2.1 Ideal MHD

The MHD model gives a description of the long-wavelength and low-
frequency dynamics of a macroscopic single fluid plasma. Faster phe-
nomena associated with smaller length-scales1 are not captured by the 1 These are typically associated with

micro-instabilities, whose non-linear evo-
lution determines energy and particle
transport.

MHD equations. For these dynamics di�erent approaches are needed,
which however are not discussed in this report.

The starting point of the derivation of the MHD model are the mi-
croscopic kinetic equations. The plasma kinetic description is based
upon the concept of distribution function. We associate to each parti-
cle species labelled by s , e.g. electrons and ions, a di�erent distribution
function fs . This function, which is defined in a 7-dimensional space (3
spatial coordinates, 3 velocity coordinates plus time),

Unless otherwise specified, the time de-
pendence will always be denoted by the
variable t .gives the number
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of particles of the species s per m3 at position x and time t with velocity
components between vx and vx+dvx , vy and vy+dvy , vz and vz +dvz (here
the triplet (x, y, z ) indicates the familiar Cartesian coordinates) through
the relation

fs (x, y, z,vx,vy,vz, t )dvxdvydvz .

Its time evolution obeys the Boltzmann kinetic equation

∂fs
∂t
+ v · ∇fs +

F
m
·
∂fs
∂v
=

(
∂fs
∂t

)
c
,

where F is the force acting on particles and (∂fs/∂t )c is the time rate of
change of fs due to collisions. When collisions are ignored and forces be-
tween particles are electromagnetic, the equation above takes the name
ofVlasov equation. Thus, in order to solve the evolution of the electric
and magnetic fields, we must couple the Boltzmann/Vlasov equation to
Maxwell’s equations. For the sake of simplicity, we assume a fully ionised
globally neutral plasma consisting of electrons and positive hydrogen or
isotopes ions with charge number Zi = 1. As a matter of notation the
subscript e(i) refers to electron(ion) related quantities.

The fluid variables of each species s such as e.g. particle density
ns (x, t ) and fluid velocity us (x, t ) are defined as the integral over the
velocity space of the product of fs with a function φ(v ) of the microscopic
velocity v , that is

ns (x, t ) =
∫
fs (x,v, t )d 3v,

ns (x, t )us (x, t ) =
∫
fs (x,v, t )vd 3v .

These are called moments of the distribution function fs . The tem-
poral evolution of these moments is obtained by multiplying the Boltz-
mann equation by the function φ(v ) and then integrating it over the
microscopic velocity variables v . This yields a set of equations for each
species s which are usually referred to as the multi-�uid equations.22 In a plasma consisting of electrons and

a single ion species this set of equations
forms the so called two-�uid model.

Unfortunately, the system of equations obtained from this procedure is
not closed, in that the time evolution of any moment of the distribution
function will depend upon the next higher order moments (e.g., the den-
sity evolution depends on the flow velocity, the flow velocity evolution
depends on the viscosity tensor, etc.). The process in which additional
information is used to express the latter quantities in terms of the for-
mer yielding a complete set of equations is known as closure. There
are several types of closures, and one of the simplest involves a trunca-
tion in which higher order moments are assumed to vanish, or simply
prescribed in terms of lower moments.

In the closure scheme employed for deriving standard MHD, the
plasma is assumed to be collisional (fluid limit), so that the pressure
tensor becomes isotropic with a negligible heat flux. Furthermore, dis-
placement currents and net charges (ε0∇ ·E) are set to zero in Maxwell’s
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equations. Neglecting displacement currents implies that the electro-
magnetic wave phase velocity is much smaller than the speed of light,
and the characteristic thermal velocities of ions and electrons are non-
relativistic. Neglecting the net charge implies that i) the characteristic
frequency of plasma behaviour is much smaller than the plasma fre-
quency ωpe , ii) the plasma characteristic length is much longer than the
Debye length λD ,3

3 The plasma frequency and Debye

length are ωp =
√
n0e2/me ε0 and λD =

VTe /ωpe respectively, with the thermal
velocity defined as VTs =

√
2kBTs /ms .

n0 is the plasma density, e the ion charge,
kB the Boltzmann constant, Ts and ms
the temperature and mass associated
with the s species.

and iii) the ion and electron number densities are
equal i.e. ne = ni = n. The latter condition is known as quasineutrality
approximation. As a final assumption electron inertia is neglected, that
is me → 0 (me is the electron mass), and dissipation e�ects as well.

Thus, after defining macroscopic one-fluid variables as linear com-
binations of the two-fluid variables,4 one obtains the following system 4 The one-fluid evolution equations are

obtained by adding pairs of the two- fluid
equations multiplied by mass and charge
factors.

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p + J × B, (2.2)

E + u × B = 0, (2.3)

∇ × E = −∂B
∂t
, (2.4)

∇ × B = µ0 J , (2.5)

∇ · B = 0, (2.6)

where the energy equation, which provides the closure, is5 5 This is the equation of state.

d
dt

(
p

ρΓ

)
= 0, (2.7)

which, by means of (2.1), can also be expressed as

∂p
∂t
+ u · ∇p + Γp∇ · u = 0. (2.8)

These are referred to as ideal MHD equations which form the ideal
MHD model. In the equations above, ρ = min is the plasma mass
density, E and B the electric and magnetic field, J = en(ui − ue ) the
current density with e the ion charge, p = pi + pe the plasma kinetic
pressure,6

6 Here p = nkB (Ti +Te ) with Ts the tem-
perature of the species s .

Γ = 5/3 the adiabatic index, and d/dt = ∂/∂t + u · ∇ is
the convective derivative.7 In (2.5), µ0 denotes the vacuum magnetic 7 The convective derivative, also known

as total derivative, gives the time rate of
change of a physical quantity in an ele-
ment of fluid moving with the local flow.

permeability. The momentum of the fluid is carried by the ions, i.e.
u ≈ ui with

u =
E × B
B2

+ u | |
B
|B |
= u⊥ + u | |

B
|B |

. (2.9)

It is instructive to discuss briefly the physical interpretation and con-
sequences for some of the equations of the system above. Equations
(2.4)-(2.6) are pre-Maxwell equations, indicating low frequency electro-
magnetic behaviour. The mass density equation (2.1) implies that the
number of particles is conserved (no ionisation or recombination phe-
nomena, etc.). Equation (2.2) which is referred to as the momentum
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equation describes the momentum balance. Equation (2.3) tells that the
plasma is a perfect conductor, i.e. the electric field in the moving plasma
frame is zero. This equation has an important consequence: it implies
that the motion of the fluid element is glued to the one of the magnetic
field lines. This is known as frozen-in theorem, or flux freezing, mean-
ing that if a fluid element is displaced, the magnetic field will follow it
accordingly and vice versa. Total energy and momentum are also con-
served.Magnetic helicity is conserved too. These are the so called ideal MHD conservations laws, whose
proofs are outlined in the next subsections.

2.1.1 Freezing of the magnetic �eld

Consider a surface S1 = S (t ) of contour C1 at time t crossed by a mag-
netic field B . As S moves in time, each line element comprising it moves
by a distance u∆t , so that at time t + ∆t we have S (t ) → S (t + ∆t ) = S2
with contour C2, as shown in figure 2.1.

dl

uΔt
S1

S2

dS = dl x (uΔt) 

B

C1

C2

Figure 2.1: Volume element swept out
by a surface S moving with the fluid in
a magnetic field with velocity u viewed
at time t and t + ∆t . The shaded area
is the side surface spanned by the length
element dl of the contour C1.

The flux ΦM across the surface S is defined as

ΦM =

∫
S
B · ndS,

where n is the unit vector normal to the surface S . The rate of change
of the magnetic flux through the open surface S can be written as

dΦM
dt
= lim
∆t→0

1
∆t

[∫
S2
B (t + ∆t ) · ndS −

∫
S1
B (t ) · ndS

]
.

We Taylor expand B (t + ∆t ) = B (t ) + ∂B
∂t ∆t + . . ., and obtain

dΦM
dt
= lim
∆t→0

[∫
S2

∂B
∂t
· ndS +

1
∆t

(∫
S2
B (t ) · ndS −

∫
S1
B (t ) · ndS

)]
.

(2.10)
Let us consider the closed surface delimited by the surfaces S1, S2

and the lateral side spanned by the surface dS of length u∆t as in Fig. 2.1.
Because of (2.6), from the Gauss divergence theorem, the flux through
this surface is zero, i.e.

0 =
∫
S2
B (t ) · ndS −

∫
S1
B (t ) · ndS +

∮
C1

B · dl × u∆t,

where the minus sign in the term with S1 is because the unit vector nor-
mal to that surface is not pointing outwards, and dl is the infinitesimal
element of the contour C1 (see Fig. 2.1). Using the result above into
(2.10) gives

dΦM
dt
= lim
∆t→0

[∫
S2

∂B
∂t
· ndS −

∮
C1

B · dl × u
]
.

The first term on the right hand side can be evaluated using (2.4) and
Stoke’s theorem. Thus, taking the limit ∆t → 0 one has S1 = S2 = S
with C1 = C2 = C , so that

dΦM
dt
= −

∮
C
dl · (E + u × B ). (2.11)
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Therefore, using (2.3) and assuming that the velocity u coincides with
the plasma velocity, one has that dΦM /dt = 0. This demonstrates that in
ideal MHD the total magnetic flux is conserved, i.e. the magnetic field
lines move following the plasma motion, being frozen into the fluid.

2.1.2 Energy conservation

Another quantity that is conserved in ideal MHD is the total energy.8 8 This conservation law will be ex-
ploited when certain properties of equa-
tions (2.1)-(2.8) will be discussed in the
context of the stability of an equilibrium
subject to small perturbations.

Dotting (2.2) with u and using (2.1) yields

∂

∂t

(
ρu2

2

)
+ ∇ ·

(
ρ
u2

2
u
)
= −u · ∇p + u · J × B = −u · ∇p + J · E,

where use of (2.3) has been made in the last passage. By means of
Faraday’s law we easily have

J · E =
1
µ0
E · ∇ × B = − 1

µ0
∇ · (E × B ) − 1

2µ0

∂B2

∂t
.

Finally, equation (2.8) gives

u · ∇p = ∂

∂t

(
p

Γ − 1

)
+ ∇ ·

(
Γ

Γ − 1
pu

)
.

Therefore, by collating these results together we get

∂

∂t

(
ρu2

2
+

p
Γ − 1

+
B2

2µ0

)
= −∇ ·

(
ρ
u2

2
u +

p
Γ − 1

u + pu +
1
µ0
E × B

)
.

(2.12)
The left-hand-side is the rate of change in time of the sum of kinetic,
internal and magnetic energies, whereas the divergence term on the
right-hand-side represents the flux of kinetic and internal energy, the me-
chanical work due to pressure forces and flux of electromagnetic energy
through the Poynting vector.9 9 The quantity p

Γ−1u + pu =
Γ
Γ−1 pu can

be interpreted as the enthalpy flux.We now integrate the expression above over a volumeV (which may
include a vacuum region) such that the normal and tangential compo-
nents of u and E are vanishing on the surface enclosing this volume.
This shows that the total energy (dV is the infinitesimal volume ele-
ment)

U =
∫ (

ρu2

2
+

p
Γ − 1

+
B2

2µ0

)
dV

is conserved in time.

2.1.3 Momentum conservation

Proving that the global momentum is conserved is a rather simple task.
We first observe that by means of (2.1)

ρ
∂u
∂t
=
∂(ρu)
∂t
− u

∂ρ

∂t
=
∂(ρu)
∂t
+ u∇ · (ρu)

=
∂(ρu)
∂t
+ ∇ · (ρuu) − ρu · ∇u .



16 The MHD framework

The current term is rearranged as follows

(∇ × B ) × B = −∇
(
B2

2

)
+ B · ∇B = −∇ ·

(
B2

2
I
)
+ ∇ · (BB ),

with Ii j ≡ (I )i j = δi j is the diagonal unit tensor.This tensor has diagonal elements equal
to unity, while the o�-diagonal ones are
zero.

Finally, ∇p = ∇ · (pI ).
Plugging the results above into (2.2) gives

∂(ρu)
∂t

= −∇ ·
(
pI +

B2

2µ0
I + ρuu −

1
µ0
BB

)
, (2.13)

which has the same structure of (2.12) where the left-side describes the
acceleration. We thus conclude that the total momentum is conserved if
the same boundary conditions as those used in the derivation of the en-
ergy conservation are fulfilled. Relation (2.13) is used for the derivation
of pressure jump conditions at the plasma-vacuum interface.

V
Σ

Plasma

Figure 2.2: Plasma volume V enclosed
by the surface Σ used in the proof of the
virial theorem.

2.1.4 The virial theorem

This theorem states that it is not possible to confine a plasma only with
currents flowing within the plasma itself. We prove it by contradiction.
Assume a plasma at equilibrium to occupy a bounded area enclosed by
a surface Σ associated with a volume V as shown in figure 2.2. There
are no rigid current-carrying conductors inside or outside the plasma.
From (2.13), the equilibrium condition is ∇ ·T = 0, i.e. no forces, with
the tensor T given by

T =
(
p +

B2

2µ0

)
I −

1
µ0
BB + ρuu .

It is immediate to see that Ti j = T j i and

Tii = p +
B2

2µ0
−
B2
i

µ0
+ ρu2i .

The following relation holds

∇ ·
(
x ·T

)
=

∂

∂x j

(
xiTi j

)
= Ti j

∂xi
∂x j
+ xi

∂T j i
∂x j
= Tii + x · ∇ ·T = Tr(T ),

where the symbol Tr denotes the trace of the associated tensor. It follows
that Tr(T ) = 3p + B2

2µ0
+ ρu2. Therefore, one has

0 <
∫
V

(
3p +

B2

2µ0
+ ρu2

)
dV =

∫
Σ

x ·
[(
p +

B2

2µ0

)
I −

1
µ0
BB + ρuu

]
·ndΣ,

where n is the unit vector normal to the surface Σ. Let the volume be
a sphere of radius r with r → ∞. Since Σ encloses the plasma, we have
p |Σ = u |Σ = 0. The magnetic field decays at large radii at least as a
dipole field, i.e. B ∼ 1/r 3 whereas in spherical coordinates (r, θ, φ) we
have dΣ ∼ r 2 and x ∼ r . Thus, in the equation above the integral on
the left takes some positive value while the one on the right is vanishing,
hence the contradiction.
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2.2 Resistive MHD

The condition of magnetic field freezing can be violated, i.e. the mag-
netic field can di�use through the fluid element, if the ideal constraint is
relaxed and the plasma is allowed to be resistive. In such a case equation
(2.3) is modified by including resistive dissipation e�ects: in its simplest
form it becomes

E + u × B = η J , (2.14)

where η is the plasma resistivity which, generally, can depend upon x
and t . Equation (2.14) is called theOhm’s law. The system of equations
(2.1), (2.2), (2.4)-(2.6), (2.8) and (2.14) forms the so called resistive
MHD model. Using Faraday’s law, equation (2.14) can be cast as

∂B
∂t
= ∇ × (u × B ) − ∇ ×

(
η J

)
,

which is called the induction equation.

Figure 2.3: Typical reconnection event
for oppositely directed field lines.

By comparing with (2.11), the inclusion of resistivity allows the mag-
netic flux to di�use, i.e. is not glued anymore to the fluid element. As
a consequence, in a resistive plasma oppositely directed magnetic field
lines can break and reconnect (see Fig. 2.3). During this process, called
magnetic reconnection, the magnetic field energy is converted into
kinetic and thermal energy. Magnetic reconnection in tokamaks is in-
voked to explain certain phenomena associated with severe confinement
degradation (e.g. the formation of the so-calledmagnetic islandswhose
analysis will be addressed in chapter 14).

We point out that there are many ways to model plasma resistivity,
and one of the most widely used is the so called Spitzer model. In
this model plasma resistivity arises from electron-ion collisions, and is a
decreasing function of the electron temperature10 10 Under certain conditions, the resistiv-

ity of a plasma tends to be much higher
than the Spitzer resistivity. In such a case
we talk about anomalous resistivity.

η ∼ T −3/2e .

In summary, accounting for the plasma response through the induc-
tion equation, the MHD model system describing ideal and resistive
plasmas can be written in a compact way as

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p + J × B,

∂B
∂t
= ∇ × (u × B ) − ∇ ×

(
η J

)
,

∂p
∂t
+ u · ∇p + Γp∇ · u = 0,

∇ × B = µ0 J , ∇ · B = 0,

where the ideal limit is obtained by setting η → 0. This is the set of
equations that will be used throughout the following chapters.
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2.3 Domain of validity of the MHD model

The MHD model assumes a collision-dominated plasma, for which1111 Recalling the discussion in §2.1, this
means that collisions are so frequent that
the plasma is assumed to behave as a per-
fect gas such that (2.7) or (2.8) hold.

VTi τii/a ∼VTe τee/a � 1,

where τs s is the s − s particle collision time, and a is the characteristic
length of the system, much longer than the Debye length (thermal ve-
locities VTs have been defined in sidenote 3). This implies that the dis-
tribution function for both ions and electrons is nearly Maxwellian and
the macroscopic length scale is much longer than the mean-free-path.
The validity of the MHD model can be summarised by the following
conditions (Freidberg (2014)):

1 −High collisionality,
(
mi
me

)1/2 VTi τii
a
� 1

2 − Small gyro-radius,
rLi
a
� 1

3 − Small resistivity,
r 2Li
a

(
me
mi

)1/2 1
VTi τii

� 1

where rLi = VTi /Ωi is the ion gyro-radius (cf. section 1.2.1) and Ωi =
eiB/mi is the ion cyclotron frequency (ei and mi are the charge and
mass of the ion). The small gyro-radius condition is normally fulfilled in
tokamaks as long as the magnetic field is su�ciently strong. The third
condition implies that, despite the high collisionality, resistive di�usion
is still small or negligible. In tokamak plasmas resistivity is usually a
small quantity so that this condition is safely fulfilled as well. The main
issue is caused by the first requirement: in fusion relevant plasmas the
assumption of high collisionality is never fulfilled. Nevertheless empir-
ical evidence during many years of fusion plasma research has shown
that the ideal MHD model provides an excellent theoretical framework
for the description of several phenomena observed in experiments.

To resolve this issue modified kinetic MHD models are introduced
(see e.g. Freidberg (2014)).12 A brief account of a hybrid framework12 The fluid-kinetic model studied in

Bondeson (1989) recovers the standard
(ideal) MHD marginal stability bound-
aries (i.e. loci in some appropriate pa-
rameter space for which the growth rate
of a perturbation is vanishing) in the
limit of a cylindrical static plasma with a
Maxwellian distribution function for
both ions and electrons

in which the plasma response parallel or perpendicular to the magnetic
field is treated kinetically or fluid-like respectively, is given in the next
section where two beyond-MHDmodels are discussed. We also highlight
the discussion on closure in magnetised plasmas by Fitzpatrick (2014).

2.4 Advanced MHD models

In the next two subsections we sketch the basic equations which charac-
terise two extensions to the MHD framework, namely the drift-MHD
and guiding centre plasma models. The former attempts to capture
the e�ects arising from the two plasma populations, namely ion and elec-
tron drifts13

13 Diamagnetic drifts represent fluid
flows for which there is no corresponding
motion of the particle guiding centres.

, whereas the latter aims to describe kinetically the dynamics
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along the magnetic field while retaining the fluid description across it.
These two models are widely employed in describing tokamak physics,
however they are not always presented in a transparent way. Thus, al-
though these are not used in the following chapters, we think it is helpful
to provide a concise summary of their corresponding fundamental equa-
tions.

2.4.1 Drift-MHD

The drift-MHD (or FLR from finite Larmor radius) model is suitable
for describing phenomena which are slower compared with the ones
predicted by the fast ordering employed for deriving standard MHD.
Many of the approximations used to derive the drift-MHD model are ex-
tremely crude, but the resulting set of equations has the great advantage
to be simple enough to be manageable analytically, and yet contains sev-
eral important physical e�ects such as diamagnetic drifts, temperature
gradients and field curvature. Many FLR models are available in the lit-
erature: these are scattered across many references, and sometimes they
are presented in some obscure fashion. Below we report a ready to be used
model set of drift-MHD equations adapted from several references (see
Hazeltine (1992), Ara (1978), Kadomtsev (1970), Mikhailovskii (1998))
which, in the authors’ opinion, is fairly physically transparent and simple
enough to be handled analytically. This is

∂ρ

∂t
+ ∇ · [ρ(u + u∗)] = 0,

ρ

(
∂u
∂t
+ u · ∇u + u∗ · ∇u⊥

)
= −∇p + J × B,

E + u × B +
∇ | |p
2en

= η J ,

∂p
∂t
+ u · ∇p + Γp∇ · u = 0,

having defined ∇ | | = b(b · ∇) with b = B/|B | and

u∗ =
B × ∇p
2enB2

,

with u and u⊥ given by (2.9). To close the system, the equations above
are augmented, as usual, by Maxwell’s equations (2.4)-(2.6). Note that
in the drift model just presented, FLR corrections enter the density, mo-
mentum and Ohm’s law equations. An approximation that is commonly
used is the so called hydrodynamic ions limit (Hazeltine (1978)), in which
temporal changes of the ion pressure are balanced by convection yield-
ing

∇ · ui ≡ ∇ · (u + u∗) ≈ 0.

This turns out to be quite handy for evaluating inertia arising from
plasma compressibility.
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Other drift-MHD models which appear in the literature retain the
same structure of equations above but have di�erent expressions for e.g.
the Ohm’s law equation or the pressure evolution.

2.4.2 Guiding centre plasma

As previously mentioned, the high collisionality condition is normally
violated in tokamaks. Moreover, the presence of a strong toroidal mag-
netic field decouples the parallel dynamics from the perpendicular one.
Indeed, a particle may do several turns along the field line before under-
going a collision so that, although the fluid motion across the magnetic
field can be regarded as fluid-like, the fluid description is not appropriate
to describe the parallel dynamics.

One of the models that have been proposed to solve this problem is
the guiding centre plasma (GCP) model developed by Grad (1967). In
this model the dynamics along the magnetic field is described by a colli-
sionless kinetic equation which serves as an equation of state providing
the required closure.

Figure 2.4: Schematic view of the parti-
cle motion in a magnetic field identified
by its parallel and perpendicular veloci-
ties, v | | and v⊥, and by the gyro-phase an-
gle ϕg . ϕg is the angle lying in the plane
perpendicular to the magnetic field be-
tween a reference direction and the gyro-
radius vector.

Neglecting collisions, the Vlasov equation is expanded to first order
in the gyro-phase angle ϕg (see Fig. 2.4) and then averaged over it. This
eventually yields the drift-kinetic equation for the averaged distribution
function f̄s

∂ f̄s
∂t
+

(
u⊥ + v | |b

)
· ∇ f̄s +

[
v | |u⊥ · (b · ∇b) − b · ∇Es

] ∂ f̄s
∂v | |
= 0, (2.15)

with Es = µB + es
ms
ΦE −

u2⊥
2 where µ = v2⊥/2B is the particle magnetic

moment (note that compared to the definition in Eq. (1.1) here we drop
the particle mass), es the charge and the parallel electric field is given
by E | | = −b · ∇ΦE . As before, we defined b = B/|B | and denote the
parallel and perpendicular projections of the velocities with respect to
the magnetic field by v | | and v⊥ respectively. Note that u⊥ in the drift-
kinetic equation is the perpendicular fluid velocity as given in (2.9), i.e.
the fluid drift due to the electric field. In the derivation above use has
been made of the conservation of the magnetic moment, i.e.

dµ
dt
= 0. (2.16)

Because of the gyro-averaging, f̄s depends on 6 variables: the three spa-
tial coordinates x along with v | |, µ and time.

Thus, assuming the plasma to be a perfect conductor, the resulting
GCP equations are

∂t ρ + ∇ · (ρu) = 0,

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇ · P + J × B,

E + u × B = 0,

(2.17)



Advanced MHD models 21

where P = p⊥I +(p | |−p⊥)bb with I the diagonal unit tensor. The parallel
and perpendicular pressure are defined as moment averages according
to

p | | =
∑
s

ms

∫
d 3v f̄s (v | | − b · u)2,

p⊥ =
∑
s

ms

∫
d 3v f̄sv2⊥/2,

(2.18)

where the sum is carried over all species s of mass ms and the integration
extends over the whole microscopic velocity space.14 The number and 14 ∫

d3v = 2π
∫ ∞
0 dv⊥v⊥

∫ ∞
−∞

dv | | .

mass densities are given by

ns =
∫
d 3v f̄s , ρ =

∑
s

msns .

As before, the system is closed by Maxwell’s equations (2.4)-(2.6). We
will briefly mention the guiding centre model in Appendix B when dis-
cussing some properties of anisotropic tokamak equilibria.

Thus, having completed the presentation of tokamak-relevant MHD
models, the next chapter will be devoted to the exposition of some useful
mathematical tools which are needed to embed these models in complex
geometries.
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3
Curvilinear coordinate systems

In this short chapter we introduce some basic concepts about the mathe-
matical properties of curvilinear coordinate systems which will be exten-
sively used in the following analyses when the problem of the equilibrium
and stability of a tokamak will be addressed. The discussion broadly fol-
lows the excellent exposition by Balescu (1988) and is kept at a very basic
level. All the results are presented without a proof, and the reader in-
terested in a deeper exposition on this subject is referred to the book by
D’haeseleer (1991), or any other book on tensor calculus. Although not
particularly engaging, the properties listed here provide a fundamental
and powerful tool widely used in modelling tokamak physics. Hence,
unless already familiar with the topic, the reader is strongly encouraged
not to skip the reading of this chapter.

3.1 General properties

A coordinate system is an arrangement of reference lines or curves
(axes) used to identify the location of points in space. When the axes
are pairwise perpendicular, the coordinates are said to be orthogonal.
Otherwise, we generically refer to curvilinear coordinate systems when
the orthogonality condition is not fulfilled. Depending on the intrinsic
symmetries of the physical problem under consideration, certain coor-
dinate systems can be preferred to others, It is simpler to describe a spherically

symmetric problem in spherical rather
than Cartesian coordinates.

and in some cases it is more
convenient to work with non-orthogonal ones. This indeed proves to
be particularly true for tokamak physics, as it will be clear in the next
chapters. We shall thus provide a brief account of the properties of non-
orthogonal coordinates.

Let us take a point P in space, characterised by its three Cartesian
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coordinates x , y and z . The three unit vectors along the three axes,
orthogonal to each other, are denoted by i , j and k . Assume that P lies
on a surface. It is convenient to introduce two vectors e2 and e3 tangent
to the surface and a third one denoted by e1 pointing, say, outwards
from the surface in P . It is possible to introduce three curves (q 1, q 2,
q 3) passing through P , tangent to e1, e2, e3 respectively. These lines are
called coordinate lines and are shown in Fig. 3.1.

P

x

y

z

i

j
k

q1

q3

q2
e1e2

e3

Figure 3.1: Curvilinear coordinate sys-
tem (q 1, q 2, q 3) adapted on a constant q 1

surface.

Therefore, we have a coordinate system in which any point in space
is described by the following relation

x = x
(
q 1, q 2, q 3

)
,

where x = (x, y, z ). We define the length dℓ between two adjacent points
by (i = 1, 2, 3 not to be confused with the Cartesian unit vector along
the x axis)

dℓ 2 = dx2 + dy2 + dz 2 = gi jdq idq j , (3.1)

having used the Einstein summation convention for repeated indices
with i and j running from 1 to 3. The quantities gi j are called the
covariant elements of the metric tensor and are defined by

gi j =
∂x
∂q i

∂x
∂q j
+
∂y
∂q i

∂y
∂q j
+
∂z
∂q i

∂z
∂q j
= g j i .

The determinant of this matrix, denoted by the letter g , has a simple
physical interpretation: the infinitesimal volume element dV = dxdydz
transforms according to

dV =
√
gdq 1dq 2dq 3 (3.2)

in the frame identified by the coordinates q i . We call the quantity
√
g

the Jacobian associated with the system (q 1, q 2, q 3).
Conversely, one can think of the coordinate lines q i as function of x ,

namely the Cartesian coordinates, through the relation q i = q i
(
x, y, z

)
,

and thus introduce the contravariant components of the metric tensor
which are defined in an analogous manner:

g i j =
∂q i

∂x
∂q j

∂x
+
∂q i

∂y
∂q j

∂y
+
∂q i

∂z
∂q j

∂z
= g j i .

It is easy to check that
3∑
n=1

ging n j = δ
j
i (3.3)

where δ ji is the Kronecker delta, and det(g i j ) = 1/g . The covariant and
contravariant components of the metric tensor are linked by the relations
g i j = G i j /g and gi j = gGi j where Gi j (or G i j ) represents the cofactor
of the matrix element g i j (or gi j ).

Let us now define the two sets of three vectors (i = 1, 2, 3):

ei =
∂x
∂q i

i +
∂y
∂q i

j +
∂z
∂q i

k, e i =
∂q i

∂x
i +

∂q i

∂y
j +

∂q i

∂z
k .
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These are not necessarily unit vectors. The set of vectors ei is called
the covariant basis, while the set e i is the contravariant basis. The
latter is also denoted as e i = ∇q i . The contravariant basis vectors e i are
perpendicular to the constant coordinate surfaces whereas the covariant
basis vectors ei are tangent to the coordinate curves. This is sketched in
Fig. 3.2.

∇q1

q1

q2

q3

e1e2

e3 P

Figure 3.2: Example of the direction
of contravariant and covariant basis vec-
tors. ∇q 1 is perpendicular to the plane
tangent to the vectors e2 and e3 at the
point P.

It immediately follows that

ei · e j = gi j ,

∇q i · ∇q j = g i j .

It is important to note that the covariant or contravariant vectors are
not necessarily mutually orthogonal. If, however, e3 is orthogonal to
e1 and e2 we have gi3 = g3i = 0 for i , 3 and

gi j = g
©­­«
g 22g 33 −g 12g 33 0
−g 12g 33 g 11g 33 0

0 0 g 11g 22 − g 12g 12

ª®®¬ . (3.4)

Also note that in this case by exploiting (3.3) one obtains

1/g33 = g 33.

The following relations hold

∇q 1 = (e2 × e3)/
√
g , (3.5)

e1 =
√
g (∇q 2 × ∇q 3). (3.6)

and equivalent expressions for the other basis vectors are obtained by
circular permutations. The determinant of the metric tensor matrix g is
computed by means of

e1 · (e2 × e3) =
√
g , (3.7)

∇q 1 ·
(
∇q 2 × ∇q 3

)
= 1/
√
g , (3.8)

with the triad (e1, e2, e3) being right handed if
√
g > 0. Again, the remain-

ing expressions are obtained through cyclic permutations of the indeces.
Finally, we have ei · ∇q j = δ ji .

We can now define for a generic vector A its covariant (Ai ) and
contravariant (Ai ) components, that is

A = Ai∇q i = Aiei . (3.9)

This gives the rule for raising and lowering indices, that is

Ai = gi jA j , Ai = g i jA j ,

ei = gi j∇q j , ∇q i = g i j e j .
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The scalar and cross products between two vectors A and B are given
by

The cross products can be written in a
compact form as

(A × B )i =
1
√
g
εi j kA jBk ,

(A × B )i =
√
g εi j kA

jBk ,

where εi j k = εi j k is the Levi-Civita sym-
bol (a tensor) which is +(−)1 for any even
(odd) permutation of the indices (i j k )
and 0 otherwise. Other properties of the
Levi-Civita symbol can be found in any
tensor algebra textbook.

A · B = A jB j = A jB j = g j kA
kB j , (3.10)

(A × B )i =
1
√
g

(
A jBk − AkB j

)
, (3.11)

(A × B )i =
√
g

(
A jBk − AkB j

)
. (3.12)

Gradient, divergence and curl operators are written as follows:

(∇u)i =
∂u
∂q i

, (3.13)

∇ ·A = 1
√
g
∂

∂q i
(√
gAi

)
, (3.14)

(∇ ×A)i = 1
√
g

(
∂Ak
∂q j
−
∂A j
∂q k

)
=

1
√
g
εi j k

∂Ak
∂q j

. (3.15)

Note that ∇ × ∇q i = 0.
Finally, terms of the form ∇A are evaluated by using the Christo�el

symbols (of the second kind)(
∂A
∂q k

)
j

=
∂A j
∂q k
− Γij kAi,

(
∂A
∂q k

) j
=
∂A j

∂q k
+ Γ

j
ikA

i,

where

Γ
i
j k =

∂e j
∂q k
· e i =

g im

2

[
∂gm j
∂q k

+
∂gmk
∂q j

−
∂g j k
∂qm

]
.

Although the latter two identities will not be used in the calculations
presented in this report, they prove to be particularly useful when dealing
with flow convection problems in complex geometries.

As a minor remark we point out that in
Cartesian coordinates, vector operations
are sometimes more easily handled by
looking at vector components. As a sim-
ple example we consider the operation
A · ∇A where A = |A |a with a = A/|A |.
Let the index i denote one of the x , y
or z components, and ∂i the derivative
along one of the three coordinates. We
find that

(A · ∇A)i = |A |ai∂i (|A |a j )

= |A |2ai∂ia j + a j ai∂i |A |2/2,

which shows that A · ∇A = |A |2a · ∇a +
a(a · ∇|A |2/2).

In the next subsections we report a brief discussion on the particular
case of cylindrical and toroidal coordinates, which are extensively used
in the tokamak physics community.

3.1.1 Orthogonal cylindrical coordinates

x

y

z

θ
r

θ
z

r

Figure 3.3: Cylindrical coordinate sys-
tem (r, θ, z ) with unit vectors (r̂ , θ̂, ẑ ).

Let’s identify the triplet (q 1, q 2, q 3) with (r, θ, z ) where r is the radius,
θ the angular variable and z the azimuthal coordinate as sketched in
figure (3.3). The length element dℓ 2 is given explicitly by

dℓ 2 = gr rdr 2 + gθθdθ2 + gzzdz 2 + 2gr θdrdθ + 2gr zdrdz + 2gθzdθdz .

The Cartesian coordinates (x, y, z ), when written as a function of (r, θ, z )
become

x = r cos θ, y = r sin θ, z = z .

It follows that gr r = 1, gθθ = r 2, gzz = 1, and gr θ = gr z = gθz = 0.
These are the proper orthogonal cylindrical coordinates. Note that
the o�-diagonal components of the metric tensor associated with vari-
ables along which the system exhibits symmetry vanish.
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We now point out that tokamaks are often modelled as cylinders
of length L and periodic in the azimuthal (z) direction. Hence, let us
introduce the variable φ = z/R0 with R0 = L/2π. Then, the parametrisa-
tion of (x, y, z ) of a toroidally symmetric system with circular concentric
surfaces of radius r is given by1 1 The angle θ is oriented counterclock-

wise and φ increases clockwise starting
from the y axis.x = (R0 + r cos θ) sin φ,

y = (R0 + r cos θ) cos φ,

z = r sin θ.

(3.16)

The quantity R0 is called the major radius (or radius of curvature) and
the length element becomes

dℓ 2 = dr 2 + r 2dθ2 + (R0 + r cos θ)2dφ2.

Intuitively, if we now think of stretching the torus to such an extent that
the ratio R0/r becomes infinite, we obtain the following metric coe�-
cients

gr r = 1, gθθ = r 2, gφφ = R2
0, gr θ = gr φ = gθφ = 0,

with
√
g = rR0. It is immediate to convince ourselves that the result-

ing metric is equivalent to that obtained by working in proper cylindri-
cal geometry. Approximating tokamaks as cylinders characterised by
metric as the one given above is usually referred to as the cylindrical
approximation. If the radius of curvature R is large enough, we may
be tempted to employ the cylindrical limit. Unfortunately, this approx-
imation is not adequate to describe most of tokamak MHD problems,
either the equilibrium or stability ones, for which a fully toroidal analysis
is required.

3.1.2 Orthogonal toroidal coordinates

r

θ

φ

R0

Figure 3.4: Concentric toroidal coordi-
nates with a circular cross section.

Luckily, extending the coordinates just discussed to properly embody
toroidicity, and yet avoiding the complication of the non-orthogonality of
the basis vectors is immediate. Let the geometry of the system consist of
nested concentric circular surfaces labelled by the variable r where θ and
φ are the poloidal and toroidal angles respectively (cf. Fig. 3.4). The
angle θ always increases counterclockwise in the poloidal plane. The
relation to the Cartesian coordinates is given by (3.16) and the metric
tensor coe�cients are

gr r = 1, gθθ = r 2, gr θ = gr φ = gθφ = 0,

gφφ = (R0 + r cos θ)2,
√
g = r (R0 + r cos θ).

The power of the orthogonal toroidal coordinates manifests itself when
expressing the gradient, divergence and curl operators. Letting (r̂ , θ̂, φ̂)
be the mutually orthogonal unit vectors along the radial, poloidal and
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toroidal directions, we have the following (fairly simple) representation
for the above-mentioned di�erential operators

∇A = ∂A
∂r
r̂ +

1
r
∂A
∂θ

θ̂ +
1
R
∂A
∂φ

φ̂,

∇ ·A = 1
rR

(
∂(rRAr )
∂r

+
∂(RAθ)
∂θ

+
∂(rAφ)

∂φ

)
,

∇ ×A = 1
rR

(
∂(RAφ)

∂θ
−
∂(rAθ)
∂φ

)
r̂

+
1
R

(
∂Ar
∂φ
−
∂(RAφ)

∂r

)
θ̂ +

1
r

(
∂(rAθ)
∂r

−
∂Ar
∂θ

)
φ̂,

where R = R0 + r cos θ. Finally, one has

r̂ × θ̂ = φ̂,

with the remaining relations obtained by circular permutations. Al-
though these coordinates capture many important features of toroidal
systems, the majority of the problems arising in equilibrium and sta-
bility analyses are best tackled in non-orthogonal frames (we explicitly
employ orthogonal toroidal coordinates when discussing particle orbits
in complex magnetic fields in appendix A).

Summarising, we now have all the theoretical tools for understanding
the principles of tokamak dynamics:

i ) −A basic understanding of what a tokamak is and which key
components characterise it

ii ) −A physical model which can describe low-frequency,
long-wavelength plasma dynamics

iii ) − The mathematical tools needed to describe complex
geometries, such as those of tokamak devices

The three tools listed above will be used in the next chapters first for the
description of tokamak equilibrium, and then for assessing its stability
against various types of perturbations (to each of which a chapter will
be dedicated).
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4
Tokamak equilibrium

This chapter is dedicated to the description of the equilibrium in a toka-
mak. The fundamental concepts of magnetic surfaces and safety factor
are introduced and discussed. The derivation of the Grad-Shafranov
equation, i.e. the force balance equation for a toroidally symmetric de-
vice, is then presented. This does not follow the usual textbook proce-
dure, rather it exploits the power of the formalism of curvilinear coordi-
nates written in such a way that the connection with the actual geometry
of the physical system is more evident. A brief discussion on a particu-
lar analytically exact solution, namely the Solov’ev equilibrium, is given
before introducing the approximate solution methods based on the thin
torus ansazt. We discuss the ordering of the relevant physical quantities,
and the order-by-order solution of the Grad-Shafranov equation. Finally,
we address the equilibrium condition in the vacuum region separating
the plasma from the surrounding vessel. Two additional ”boxes” provide
a more ”intuitive” derivation of the Shafranov shift, and a brief discus-
sion on the equilibrium condition for toroidally rotating plasmas.

4.1 Magnetic surfaces, safety factor and plasma
β

A static equilibrium (∂/∂t = 0 and u = 0) is described by the force
balance equation (cf. (2.2))

∇p = J × B . (4.1)

It is trivial to show that

B · ∇p = 0, (4.2)

J · ∇p = 0, (4.3)
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indicating that both magnetic field and current lines lie on constant
pressure surfaces (isobars). A surface which is covered by a magnetic
field line is calledmagnetic or �ux surface (it will be described later the
motivation behind this nomenclature). More rigorously, a given smooth
surface S with normal vector n is a flux surface of a smooth vector field
B when B ·n = 0 everywhere on S , that is the field B does not cross the
surface S anywhere. The relations above show that pressure is constant
along the field (or current) lines.

Figure 4.1: Right handed cylindrical
(R,Z, φ) and toroidal (r, θ, φ) coordinate
systems. The dashed line lying on the
surface of radius r indicates a B or J
field line.

Let us assume that closed toroidally symmetric nested isobaric
surfaces exist. The innermost surface, which collapses to a single line,
is called the magnetic axis. Each of these surfaces is labelled by the
variable r (the so called �ux label, also the reason for this will be clear
later), which has the dimension of a length and is zero on the magnetic
axis, so that p = p(r ) and ∇p = dp

dr ∇r . We often refer to r as the ra-
dius (implicitly of the plasma column). We introduce the right handed
coordinate system (r, θ, φ) as shown in figure 4.1, where θ and φ are the
poloidal-like (short way around the torus) and geometric toroidal (long
way around the torus) angles respectively. In this report we take the
poloidal-like angle θ to be always counter-clockwise. It is impor-
tant to stress the fact that constant θ curves may not necessarily be
”straight”. This reflects the freedom in choosing the poloidal angular
variable: constant θ curves are indeed rays centred on the magnetic axis
if θ is the geometric poloidal angle, but this might not hold true anymore
if di�erent definitions of the angular variable, which turn out to be more
convenient for certain problems, are taken. Finally, toroidal symmetry
requires that ∂f

∂φ = 0 for any scalar function f .11 The toroidal derivative might not be
zero for vector quantities. The coordinates (r, θ, φ) are associated with the basis vectors

(er , eθ, eφ), covariant basis,

(∇r,∇θ,∇φ), contravariant basis.

The scalar product of these quantities yields the metric tensor coef-
ficients discussed in chapter 3, and because of axisymmetry we have
gr φ = gθφ = g r φ = g θφ = 0 while gφφ = 1/g φφ = R2 (the exact expressions
of the remaining terms is not required at this stage).2 Let

√
g be the2 At fixed R and Z , i.e. dr = dθ = 0,

the square of the length element is dℓ 2 =
gφφdφ2 (see (3.1)).

Jacobian associated with (r, θ, φ). In this coordinate system, equations
(4.2) and (4.3) read

B · ∇r = B r = 0,

J · ∇r = J r = 0.

We decompose the magnetic field into two components, one parallel and
the other perpendicular to the toroidal direction. This leads to

B = F∇φ − ∇ψ(r ) × ∇φ ≡ F∇φ + Bp . (4.4)

The divergence-free condition is fulfilled by the equation above, as well
as the requirement of vanishing radial magnetic field. i.e. Eq. (4.2).
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Now consider a ring-shaped ribbon Sp stretched between the mag-
netic axis and the surface labelled by r at constant θ as in Fig. 4.2. The
infinitesimal surface is

dΣp = 2πRdℓ ,

where the length element dℓ =
√
gr rdr is obtained from (3.1).3 The unit 3 Note that we work at θ fixed and the

integration along the toroidal coordinate
gives the factor 2πR.

vector normal to this surface is (see (3.4))

np =
eφ × er
|eφ × er |

=
∇θ
|∇θ | =

∇θ√
g θθ
=

√
g

R
√
gr r

∇θ.

Figure 4.2: Surfaces Sp and St used to
calculate the magnetic fluxes ψ and Φ.
The surface Sp covers the full range 0 ≤
φ ≤ 2π and it can be taken between the
magnetic axis and any circle R = const ,
Z = const lying on the magnetic surface.

We find that the quantity ψ measures the flux of the magnetic field
through this ribbon, indeed (∇r · ∇θ × ∇φ = 1/

√
g )∫

Sp
B · npdΣp = 2π

∫ r

0
B · ∇θ√gdr = 2π

(
ψ(r ) − ψ(0)

)
.

Hence, we refer to ψ as the poloidal �ux. From (4.4) one sees that B
is invariant apart from an arbitrary additional constant in ψ. Thus, we
set for convenience ψ(0) = 0. We may therefore define the poloidal flux
as

ψ(r ) =
1
2π

∫ r

0

∫ 2π

0
B · ∇θ√gdrdθ. (4.5)

It is then trivial to see that constant p surfaces correspond to constant ψ
surfaces. From this, isobaric surfaces are also called �ux surfaces and
the variable r is referred to as �ux label. As a matter of terminology,
any function which is constant on a magnetic surface is called surface
quantity.

Analogously, let now St be a surface in the (R,Z ) plane at φ constant
with normal unit vector nt = ∇φ/|∇φ| = R∇φ. Its associated infinitesi-
mal surface is dΣt =

√
g
R drdθ. One can then introduce the toroidal �ux

function Φ via

2πΦ(r ) =
∫
St
B · ntdΣt =

∫ r

0

∫ 2π

0
B · ∇φ√gdrdθ, (4.6)

having set Φ(0) = 0. Finally, from (4.3), we have

0 = µ0 J r =
1
√
g

(
∂Bφ
∂θ
−
∂Bθ
∂φ

)
=

1
√
g
∂F
∂θ

which shows that also F is a function of r , i.e. F = F (r ).
We shall now introduce two quantities of fundamental importance

in tokamak physics: the safety factor and the plasma β .

4.1.1 The safety factor q

The equation for a magnetic field line, that is a line which is tangent to
vector field B at each point, reads

B = cdℓ,
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where c is a proportionality constant and dℓ = dr er + dθeθ + dφeφ is a
di�erential vector tangent to the field line. This is equivalent to B ×dℓ =
0. This yields

B θ

dθ
=
Bφ

dφ
= c,

which can be rearranged giving

dφ
dθ
=
Bφ

B θ
. (4.7)

Integration of the equation above over a poloidal circuit along the flux
surface yields

q ≡
∆φ

2π
=

1
2π

∫ 2π

0

Bφ

B θ
dθ. (4.8)

Figure 4.3: Trajectory of a field line with
q = 3/2.

Viewing the field line from the top of the torus, we select a toroidal
angle φ0 from which the field line starts o�. After one poloidal turn, the
field line will be at a di�erent toroidal location, i.e. φ0 +∆φ. This means
that q measures the progression of the �eld line over the toroidal angle after one
full poloidal revolution. If q = m/n with both m and n integers, the field
line will return in its original position after m toroidal and n poloidal
transits around the torus (see figure 4.3). If the value of q is irrational,
the magnetic surface is covered ergodically by the field line. We call the
quantity q the safety factor.44 In cylindrical geometry the safety

factor takes the simple form

q =
rBT
R0Bp

,

with BT and Bp the physical toroidal and
poloidal magnetic field, and R0 the posi-
tion of the magnetic axis.

The safety factor can also be expressed in terms of magnetic fluxes.
Indeed, from (4.6) we readily have

dΦ
dr
=

1
2π

∫ 2π

0
Bφ√gdθ.

Thus, plugging
√
gB θ = dψ/dr into (4.8), and using the expression

above, gives

q =
dΦ
dψ

,

which is the rate of change of the toroidal flux with the poloidal flux.
Later we will see how the safety factor relates to the current density
profile.

4.1.2 Plasma β

The ratio of the kinetic pressure p over the magnetic pressure B2/2µ0
can be used as an indicator of the plasma performance. This ratio is
denoted by β . There are several definitions of β in the literature, and
the one that we adopt in this report is

β =
2µ0pV (a)

B2
0

(4.9)

where B0 is the magnetic field on the magnetic axis, a is the value of
the flux label r at the plasma boundary and pV is the volume averaged
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pressure, that is5 5 The denominator corresponds to the
volume enclosed by a flux surface of ra-
dius r .pV (r ) =

∫ 2π
0 dθ

∫ r
0
√
g pdr∫ 2π

0 dθ
∫ r
0
√
gdr

. (4.10)

As a matter of notation, in the remainder of this chapter B0 will always
denote the axis value of the magnetic �eld. In standard tokamaks
β is usually a small number, ranging between 1% and 10%, while higher
β values have been attained in more compact devices, although with a
smaller magnetic field.

With a smooth pressure profile, one finds that β is typically propor-
tional to the ratio of the pressure on the axis p(0) and B2

0 , i.e.

β ∼
2µ0p(0)

B2
0

.

Notice that, according to definition (4.9), β is a global quantity, i.e. it
does not capture the local features of the kinetic pressure. For cases in
which the local structure of the pressure profile is needed, in particular
information about its gradients, it is more convenient to use the local
beta value

βloc (r ) =
2µ0p(r )

B2
0

.

Both β and βloc play an important role in determining equilibrium and
global MHD stability properties against small perturbation.

4.2 The Grad-Shafranov equation

The aim of this section is to derive an equilibrium equation for the
plasma toroid, written in terms of p, ψ and F (or alternatively Φ). We
start by noting that (4.1) gives a trivial identity 0 = 0 when dotted with
either eθ or eφ. Thus, projecting (4.1) along the er direction and using
(3.12) yields

dp
dr
=
√
g

(
J θBφ − J φB θ

)
. (4.11)

As mentioned earlier, in an axisymmetric configuration we have gr φ =
gθφ = 0 and R2 = gφφ = 1/g φφ, so that Bφ = F (r )/R2 and

√
g J θ =

− 1
µ0
dF /dr . Using these results into (4.11) we obtain If J φ = 0, the left-hand-side of (4.12) is

function of r only while the right-hand-
side depends also on θ which indicates
that no equilibrium with toroidal nested
closed flux surfaces can exist.

dp
dr
= −

F
µ0R2

dF
dr
− J φ

dψ
dr

. (4.12)

Furthermore, by means of (4.4) one has

µ0 J φ = ∇φ · ∇ × B = ∇ · (B × ∇φ) = ∇ ·
(
1
R2

∇ψ
)
. (4.13)

Since both p and F are function of r only, we can safely divide (4.12) by
dψ/dr . Thus, using the equation above we get6

6 Notice that ∇r = g r r er + g r θeθ . Since
the eθ projection of (4.1) vanishes, then
dotting it with er is equivalent to project-
ing along ∇r . Hence the Grad-Shafranov
equation is an equation for the radial
force balance.∆∗ψ ≡ R2∇ ·

(
1
R2

∇ψ
)
= −F

dF
dψ
− µ0R2 dp

dψ
, (4.14)
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which is the celebrated Grad-Shafranov equation.77 This equation can be derived in a more
general way without assuming nested
flux surfaces by exploiting the diver-
genceless of the magnetic field and cur-
rent density.

This is a non-
linear, second order elliptic partial di�erential equation for the equi-
librium flux ψ. The geometry of the associated flux surfaces is com-
puted after prescribing the functions p(ψ) and F (ψ) (or more specifi-
cally FdF /dψ), namely the pressure and poloidal current distribution,
and the boundary conditions or external constraints on ψ itself (these
may be the shape of the last plasma surface).88 Analogous equations can be derived for

toroidal systems for which the axisym-
metry constraint is relaxed. Note that
in the numerical solution of the Grad-
Shafranov equation one can prescribe as
an input the shape of the toroidal cur-
rent density or the safety factor instead
of FdF /dψ.

The way it is written
is particularly powerful, in that the left-hand-side is independent of the
system of coordinates on a given flux surface.

The solution of (4.14) can be tackled either numerically, usually in-
volving an iterative procedure for the inversion of the operator ∆∗ un-
til convergence is reached, or analytically. Most of the analytical ap-
proaches are based on a series expansion in the small curvature ansatz.
Before moving to the discussion of these approximate methods, which
form the backbone of the tools employed in the stability analysis, it is
instructive to present an exact solution of (4.14), although limited in its
applicability.

4.2.1 The Solov’ev equilibrium

Let us write the operator ∆∗ in cylindrical coordinates (R,Z, φ) as (cf.
figure 4.1)

∆∗ψ = R
∂

∂R

(
1
R
∂ψ

∂R

)
+
∂2ψ

∂Z 2
.

The right-hand-side of (4.14) is simplified by choosing

µ0
dp
dψ
= −a, F

dF
dψ
= b,

where a and b are constants. This yields

R
∂

∂R

(
1
R
∂ψ

∂R

)
+
∂2ψ

∂Z 2
= −b +R2a . (4.15)

We seek an up-down symmetric solution based on the expansion

ψ =

∞∑
k=0

fk (R)Z
2k .

Imposing fk ≥2(R) = 0, a particular solution of (4.15) is given by

ψ =
1
2
(c0R2 − b)Z 2 +

(a − c0)
8
(R2 −R2

0)
2, (4.16)

where c0 is an arbitrary constant, and R0 the position of the magnetic
axis (i.e. the position for which ∂ψ/∂R |Z=0 = 0). This is the so called
Solov’ev equilibrium. An example of the various ψ = const surfaces
parametrised by (4.16) is shown in figure 4.4. Despite the rather restric-
tive profiles for pressure and poloidal current, there is a wide degree of
flexibility on the shape of the boundary surfaces that can be obtained.
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Figure 4.4: Constant flux surfaces com-
puted with the Solov’ev solution Eq.
(4.16) with parameters R0 =

√
5/2 and

(a) c0 = 0, a/b = −1/R2
0, (b) c0/b = 1,

a/b = 1.8533, (c) c0/b = 1/4, a/b =
0.0367.0 1 2

R

1

0

1

Z

(a)
0 1 2

R

1

0

1

(b)
0 1 2

R

1

0

1

(c)

The Solov’ev solution has also the pleasant property that R and Z
can be explicitly written as functions of ψ and an appropriate angle-like
variable Θ. Let us define

f 2 =
(a − c0)

8
(R2 −R2

0)
2, g 2 =

1
2
(c0R2 − b)Z 2,

and tanΘ = g /f so that ψ = f 2+ g 2. It easily follows that f 2 = ψ cos2Θ
and g 2 = ψ sin2Θ which gives

R(r,Θ) = R0

√
1 +

2r
R0

cosΘ,

Z (r,Θ) =
r
√
a − c0 sinΘ√

c0
(
1 + 2r

R0
cosΘ

)
− b/R2

0

where we introduced the ”radial” variable r =
√

2ψ
R2
0(a−c0)

. Letting rb the

value of r at the boundary surface, the quantities a, c0, rb and R0 can be
expressed in terms of Rin = R(rb, π), Rout = R(rb, 0), Rmid = R(rb,ΘM )
and Zmax = Z (rb,ΘM ) (see figure 4.5) where ΘM is determined by solving
∂Z/∂Θ|r=rb = 0.

Rin Rmid R0 Rout

0

Zmax

r b

Θ

Figure 4.5: Definition of the geometric
parameters for the Solov’ev equilibrium.

Although other exact solutions can be found, either by generalising
the procedure above or with di�erent p and F profiles, these usually lack
the required flexibility to describe the broad variety of plasma scenarios
encountered in the experiments. Therefore, an alternative method is
devised which, despite the fact of being highly approximated, has the
great advantage of providing algebraically simple results, yet complete
of all the relevant physical ingredients.

4.3 Large aspect ratio expansion: The plasma so-
lution

We consider a torus of nearly circular up-down symmetric cross section
with nested flux surfaces within. We further assume that the magnetic
axis lies on the equatorial Z = 0 plane. The R position of the magnetic
axis, namely themajor radius, is denoted by R0. As in the previous sec-
tions, we use the coordinate system (r, θ, φ)9

9 In this toroidal right-handed coordi-
nate system, the poloidal angle is always
counterclockwise (cf. Figs. 4.1 and 4.5).
In old papers, though, this angle is often
taken clockwise with the direction of φ
flipped.with the toroidal symmetry

constraint ∂/∂φ = 0.
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Figure 4.6: Sketch of a circular tokamak
geometry: (a) cross section and (b) toka-
mak top view.
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In early tokamak experiments it was found that the plasma under-
went a displacement during the discharge, leading to a contact with
the surrounding structures. This suggested to parametrise the R and Z
coordinates of the flux surfaces with a Fourier series of the type

R(r, θ) = R0 + r cos θ − ∆(r ) +
∞∑
m=1

Rc,m(r ) cosmθ, (4.17)

Z (r, θ) = r sin θ +
∞∑
m=1

Zs,m(r ) sinmθ. (4.18)

with ∆(r )/r,Rc,m(r )/r,Zs,m(r )/r � 1. We refer to Rc,m and Zs,m as the
shaping parameters. This parametrisation relates to the Cartesian co-
ordinates (x, y, z ) through (cf. chapter 3)

x = R sin φ, y = R cos φ, z = Z,

and the metric coe�cients and Jacobian associated with the coordinate
system (r, θ, φ) areThe metric tensor is (cf. (3.4))

gi j =
©­­«
gr r gr θ 0
gr θ gθθ 0
0 0 gφφ

ª®®¬
= g

©­­«
g θθ g φφ −g r θ g φφ 0
−g r θ g φφ g r r g φφ 0

0 0 g r r g θθ − (g r θ )2

ª®®¬ .

gr r =
(
∂R
∂r

)2
+

(
∂Z
∂r

)2
,

gθθ =
(
∂R
∂θ

)2
+

(
∂Z
∂θ

)2
,

gr θ =
∂R
∂r

∂R
∂θ
+
∂Z
∂r

∂Z
∂θ
,

gφφ = R2,

√
g =

√
gφφ

[
gr r gθθ −

(
gr θ

)2]
.

(4.19)

It is trivial to show that gr φ = gθφ = 0 due to axisymmetry.
The quantity ∆(r ), known as the Shafranov shift, measures the in-

ward displacement of the flux surfaces with respect to R0.10 Equations10 Here ∆ is zero on the axis and max-
imum at the plasma boundary, i.e. is a
shift relative to the magnetic axis. Of-
ten in the literature the Shafranov shift
refers to the displacement of the flux sur-
faces relative to the geometric centre of
the outermost one. In this case the shift
is zero at the plasma boundary and max-
imum on the magnetic axis.

(4.17) and (4.18) ensure the up-down symmetry with respect to the equa-
torial plane. If the up-down symmetry constraint is relaxed, we should
allow for sinmθ and cosmθ terms in (4.17) and (4.18) respectively. The
radial variable r extends up to r = a, and the radius a is called minor
radius: it corresponds roughly to the distance of the outermost plasma
flux surface from its geometric centre (cf. figure 4.6).



Large aspect ratio expansion: The plasma solution 39

We introduce the large aspect ratio approximation, which consists
in assuming that the torus is thin, that is

ε ≡
a
R0
� 1.

The parameter ε is called the inverse aspect ratio.
Now, the aim is to solve perturbatively the force balance equation

written as an appropriate power series in the small parameter ε. We
recast Eq. (4.12) in a more convenient form as

µ0
dp/B2

0

dr
= −

F

B2
0R

2

dF
dr
− µ0 J φ

dψ
dr

/
B2
0, (4.20)

where we recall that B0 is the value of the magnetic field on the axis. This
equation depends on the flux quantities p, F and ψ, and on the shape of
the magnetic surfaces through the metric coe�cients appearing in the
toroidal current

µ0 J φ =
1
√
g

[
∂

∂r

(
gθθ
√
g
dψ
dr

)
−
∂

∂θ

(
gr θ
√
g

)
dψ
dr

]
. (4.21)

Hence, assuming that the profiles for the pressure p and the toroidal
current J φ are prescribed functions, It will be clear that imposing the current

density corresponds to giving the safety
factor profile q .

from (4.20) we can derive the equa-
tions for F , ∆ and the shaping parameters, whose solutions will deter-
mine the equilibrium. Note that this is slightly di�erent compared to the
approach employed for the Solov’ev solution, in which the pressure and
toroidal field profiles were imposed.

Thus, the solution strategy consists in the following steps: i) deploy
an appropriate ε-ordering of the equilibrium quantities and determine
the approximate expressions of the metric coe�cients, and ii) plug the
resulting expressions into (4.20) and solve it order by order in ε. We
shall now go through each of these steps one by one.

4.3.1 ε-ordering

Let us assume that the pressure is a regular and smooth function of r
with no strong localised gradients. The first term on the left-hand-side
of (4.20) is proportional to the ratio of the kinetic pressure over the
magnetic pressure, i.e. β . As discussed before (cf. section 4.1.2), this
quantity is typically a small number,11 so that we order 11 High-β tokamaks, for which β ∼ ε,

and their associated pressure limits are
not discussed.µ0p/B2

0 ∼ ε
2,

with the symbol ∼ meaning ”of the order of” . The toroidal component of
the magnetic field is12 12 Recall that |eφ | =

√
gφφ = R.

Btor =
B · eφ
|eφ |

=
F
R
,

so that, letting F0 = F (r = 0), we obtain

F ∼ F0 = R0B0.
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The toroidal field is usually stronger than the poloidal one. Thus
under the assumption Bpol/Btor ∼ ε, and noting that Btor ∼ F |∇φ| and
Bpol ∼

dψ
dr |∇φ|, we obtain from (4.4)

dψ
dr
∼ εR0B0.

From this, the contravariant toroidal current density is ordered as

µ0 J φ ∼ ε
B0

aR0
.

The metric coe�cients appearing in J φ can be easily computed by
noting that, normally, the experimentally measured shift of the flux sur-
faces is much smaller than the minor radius. Therefore, we let

This corresponds to a weak plasma shap-
ing for which the flux surfaces are nearly
circular.

∆ ∼ εr,

Rc,m ∼ Zs,m ∼ ε2r,

yielding (hereafter we will use the notation f ′(r ) ≡ df (r )
dr or f ′(r ) ≡

∂f (r,θ,φ)
∂r for a generic function f )

gr r = 1 − 2∆′ cos θ + . . . ,

gθθ = r 2 + . . . ,

gr θ = r∆′ sin θ + . . . ,

gφφ = R2
0

(
1 + 2

r
R0

cos θ + . . .
)
,

√
g = rR0

[
1 +

(
r
R0
− ∆′

)
cos θ + . . .

]
,

(4.22)

where the terms omitted in the ε expansion are of order ε2.
We shall note that by employing this ε ordering and using the expres-

sions for the metric coe�cients above, we can write the flux ψ as a func-
tion of the safety factor q . Indeed, since B θ = ψ ′/

√
g and Bφ = F /R2,

by means of (4.8) we have

ψ ′ =
F
2πq

∫ 2π

0

√
g

R2
dθ. (4.23)

Expanding R and the Jacobian in ε, it is immediate to obtain1313 The meaning of the small oh notation
should be clear, i.e. o(ε) ∼ ε.

1
2π

∫ 2π

0

√
g

R2
dθ ≈

r
R0

(
1 + o(ε2)

)
.

Therefore, to order ε we have

ψ ′ =
rF
qR0

(
1 + o(ε2)

)
. (4.24)

Now we can proceed in solving (4.20) order by order in ε.
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4.3.2 Equilibrium at leading orders

We impose that the pressure p and the safety factor q are known func-
tions. By inspecting the pressure and toroidal current terms in (4.20),
both of order ε2/r , it is evident that

F = R0B0[1 + g (r ) + h(r ) + f (r ) + . . .],

g (r ) ∼ ε2, h(r ) ∼ ε3, f (r ) ∼ ε4.
(4.25)

Thus, plugging this into (4.24) yields

ψ ′ =
rB0

q

(
1 + o(ε2)

)
. (4.26)

The expression for the term involving the toroidal current density is

µ0 J φψ ′ ≈
ψ ′ (rψ ′)′

rR2
0

+
ψ ′

rR2
0

[ (
∆
′ −

r
R0

)
(rψ ′)′+

∂

∂r

((
∆
′ −

r
R0

)
rψ ′

)
− ∆′ψ ′

]
cos θ. (4.27)

Since this does not have non-oscillating (in θ) terms of order ε3 it follows
that in Eq. (4.25) we must set h = 0. Furthermore, at leading order one
has J φ ∼ (rψ ′)′ /r . In most experimentally relevant situations, J φ has a
finite value on the magnetic axis. Thus, in order to fulfil this condition,
we must have ψ ′ ∼ r α with α ≥ 1 near the axis. In this report we restrict
the analysis to the α = 1 case. Cases with α > 1, which will not be
discussed, describe the so called current-hole configurations in which the
toroidal current vanishes at r = 0. Note that for α = 1 Eq. (4.26) yields
a finite q at the magnetic axis, whereas q (0) → ∞ when α > 1. 0 0.5 1

0

1

2

3

4

q
(a)

(b)

(c)

0 0.5 1
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Figure 4.7: Typical safety factor and
associated toroidal current density pro-
files in tokamaks: (a) monotonic, (b) hol-
low, and (c) strongly reversed configura-
tion, the latter exhibiting a current-hole
if J φ → 0 on the axis.

Hence, by means of (4.26) the current density can be expressed to
order ε as a function of the safety factor q through the relation

µ0 J φ =
B0

rR2
0

(
r 2

q

) ′
. (4.28)

From this, the total plasma toroidal current Ip is easily computed and
reads

Ip =
∫ 2π

0
dθ

∫ a

0
dr
√
g J φ ∝

1
q (a)

, (4.29)

where the latter estimate has been obtained by setting
√
g ≈ rR0. Fig-

ure 4.7 shows some experimentally relevant shapes of the safety factor
and current density.

Thus, to leading order (4.20) gives

µ0p ′

B2
0

+ g ′ +
(r 2ψ ′2)′

2r 2R2
0B

2
0

= 0, (4.30)

which is the radial force balance for a straight screw-pinch, namely
a cylindrically symmetric configuration with a strong longitudinal field
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and a small poloidal field (equivalent to a tokamak with an infinite radius
of curvature). The equation above can be easily integrated, and using
(4.26) we obtain an ε expansion of the function F correct to second
order which readsWe flag an abuse of notation for the func-

tion under the sign of integration. How-
ever, its meaning is obvious, and the
same notation will be used in other in-
tegral expressions.

F = R0B0

[
1 −

µ0
(
p − p(0)

)
B2
0

−

∫ r

0

r

R2
0q

2

(
2 −

r q ′

q

)
dr + . . .

]
, (4.31)

where p(0) = p(r = 0) and the constant of integration has been chosen
such that F0 = R0B0. The quantity

s ≡
r q ′

q
(4.32)

is known as magnetic shear and plays a key role in determining the
tokamak stability properties (this will be discussed in the next chapters).

To next order in ε, equation (4.20) is oscillating in θ and yields

0 =
2r g ′

R0
cos θ −

(
ψ ′

R0B0

)2 [
∆
′′ + 2

(rψ ′)′

rψ ′

(
∆
′ −

r
R0

)
−

1
R0
−
∆′

r

]
cos θ.

Using (4.30) for expressing g ′, we obtain an equation for the radial dis-
placement of the magnetic surfaces

0 = ∆′′ +
(
1
r
+
2ψ ′′

ψ ′

)
∆
′ +

2µ0rR0p ′

(ψ ′)2
−

1
R0

= ∆′′ +

(
3
r
−
2q ′

q

)
∆
′ +

2µ0R0p ′q 2

rB2
0

−
1
R0
, (4.33)

where the second equality has been obtained by means of (4.26). This
expression is usually solved numerically, although exact analytical solu-
tions can be found with simple p and q profiles. The two constants of
integration appearing in the solution of (4.33) are determined by requir-
ing that ∆ vanishes on the magnetic axis. This implies that at the
plasma boundary ∆ has a finite value.

By means of the identity

1
r
+
2ψ ′′

ψ ′
=

[
r (ψ ′)2

] ′
r (ψ ′)2

,

we can integrate (4.33) once giving

∆
′ =

1

r (ψ ′)2

∫ r

0
r (ψ ′)2

(
1
R0
−
2µ0rR0p ′

(ψ ′)2

)
dr, (4.34)

where the limits of integration have been chosen in order to avoid sin-
gularities at r = 0. Interestingly, we note that the toroidal field does not
enter the expression above. Using (4.26), equation (4.34) can be recast
(to leading order in ε) in a more compact form as

∆
′ =

r
R0

(
βp (r ) +

ℓi (r )
2

)
, (4.35)
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having defined the poloidal plasma β

βp (r ) =
2µ0R2

0q
2

r 2B2
0

[
pV (r ) − p(r )

]
, (4.36)

with pV given by (4.10), and the internal inductance by

ℓi (r ) = 2
q 2

r 4

∫ r

0

r 3

q 2
dr . (4.37)

Note that the quantity βp is proportional to the ratio of the kinetic pres-
sure over the poloidal magnetic field.

Intuitively, the shift of the flux surfaces, i.e. their compression in the
low field side of the torus, balances the outward force in the ∇R direction
due to the so called tyre tube (due to pressure) and hoop forces (due
to the self-inductance of a current carrying circuit), represented by first
and second terms on the right-hand-side of (4.35) respectively (both are
briefly discussed in the next subsection).

By assuming ℓi to be small compared with the pressure term, one
has ∆′ ∼ r

R0
βp (r ). Thus, as the magnetic pressure is increased, the shift

compresses the surfaces on the outboard side so that the increasing of
the magnetic pressure balances the outward force.

Figure 4.8: Typical cross-section of a
tokamak plasma with divertor.

There is no limitation to the maximum β if the last closed surface
enclosing the plasma is directly surrounded by a ideally conducting wall.
However, in a realistic experimental situation a vacuum region separates
the plasma from the neighbouring structures. In such a case, a vertical
�eld is required to maintain the equilibrium (see section 4.4.1) which
increases with β . Adding this field produces a separatrix with an X-
point (a point of null poloidal field) on the inner side of the torus (cf.
figure 4.14). Working at fixed current, as β is increased, the external
vertical field must be increased. This moves the X-point closer to the
plasma. A limit in β is reached when the X-point ”touches” the outer-
most boundary plasma surface. Some estimates presented at the end
of section 4.4.1 indicate that the critical βp is of the order of 1/ε. Since
our analysis focusses on the low β case with βp ∼ 1 at most, we are not
concerned with this equilibrium β limit.

In principle, however, such a limit could be eluded if the plasma is
heated su�ciently rapidly (with respect to the magnetic skin-time scale)
so that the magnetic fluxes would be frozen into the plasma. Additional
net currents will be then induced, and the separatrix will be kept outside
the plasma. This is the basis of the �ux conserving tokamak concept.
The interested reader is referred to Freidberg (2014) for its thorough
discussion.

To summarise, the equilibrium of a circular tokamak whose flux sur-
faces are parametrised by (4.17) and (4.18) is completely defined to lead-
ing order by the relations (4.26), (4.30), (4.31) and (4.33). For shaped
cross-sections (e.g. as in Fig. 4.8), the expressions listed above are mod-
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ified by the inclusion of the shaping parameters (primarily elongation
and triangularity).1414 One of the most used flux sur-

face parametrisation with the inclusion
of shaping is

R = R0 + r cos(θ +
r
a
δ sin θ) − ∆,

Z = κr sin θ,

where κ and δ measure the plasma elon-
gation and triangularity respectively.

4.3.3 Tyre tube and hoop forces

Pressure is the amount of force applied perpendicular to the surface per
unit area. Mathematically, for a surface Σ with normal vector n such
that dΣ ≡ ndΣ one has

dF = pdΣ,

where dF is the force applied to the surface dΣ which is acting in the
same direction of n. Assume that constant pressure nested circular flux
surfaces centred in Rg can be parametrised as

R = Rg + ρ cosΘ, Z = ρ sinΘ. (4.38)

The metric tensor coe�cients and Jacobian in the coordinate system
(ρ,Θ, φ) associated with the parametrisation above read (see section 3.1.2)

gρρ = 1, gΘΘ = ρ2, gρΘ = gρφ = gΘφ = 0,
√
g = ρR . (4.39)

From (3.4) it follows that g ρρ = 1 and gΘΘ = 1/ρ2.
Rg

ρdΘ

R
ρ

Z

φ

dΘ

Figure 4.9: Toroidal ribbon surface for
the computation of the tyre tube and
hoop forces.

We take dΣ to be the infinitesimal toroidal ribbon with unit vector
normal to the surface n = ∇ρ such that dΣ = 2πρRdΘn (cf. (3.2) and
figure 4.9). Projecting dF along the ∇R and ∇Z directions gives

It is easy to see that |∇R | = |∇Z | = 1.

dFR = dF · ∇R = 2πp
∂R
∂ρ

ρRdΘ,

dFZ = dF · ∇Z = 2πp
∂Z
∂ρ

ρRdΘ.

By integrating in Θ the two expressions above and using (4.38), we ob-
tain the net forces FR and FZ . It is immediate to see that Fz = 0 whereas

FR = 2π2pρ2,

which gives an outward force in the ∇R direction. This is the tyre tube
force, which is analogous to the force experienced by a rubber tyre which
tends to expand due to the air pressure within.

The hoop force is similar to the tyre tube one, with the kinetic pres-
sure p replaced by the magnetic pressure B2. Using (4.4) and imposing
F = F (ρ) and ψ = ψ(ρ), it is immediate to see that B2 ∼ 1/R2. This
yields

dFR ∝
∂R/∂ρ
R

dΘ, dFZ ∝
∂Z/∂ρ
R

dΘ.

As before, integrating in Θ shows that there is a net force outwards in
the radial direction.
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4.3.4 Equilibrium with local steep gradients

We shall now briefly discuss the properties of equilibria characterised
by the presence of localised steep pressure gradients. Let us consider
a large aspect ratio tokamak with nearly circular cross section. We use
Eqs. (4.17) and (4.18) to parametrise the flux surfaces adopting the
same ordering employed earlier for the Shafranov shift, that is ∆/a ∼ ε.
Other shaping parameters are assumed to be of higher order, and thus
they will be dropped. We further assume that ∆′ ∼ ε with q a continuous
function of the minor radius. It follows that we can still use (4.22) for
the expressions of the metric tensor coe�cients.

Now, suppose that the pressure µ0p ∼ ε2B2
0 is locally a step function

with the step located at some point rp such that p ′ ∝ δ(r −rp ). Deploying
the same expansions for ψ and F , i.e. (4.24) and (4.25), the equilibrium
condition is determined on the left and on the right of rp by equations
(4.26) and (4.30) whose solutions are (4.31) and (4.33) respectively. We
must now compute the jumps across rp . From (4.30), we expect g to
be discontinuous at this point while ψ ′ is continuous at leading order.
Hence, from (4.24) we infer that a discontinuity in ψ ′ appears at order
ε2. Therefore, we may still approximate ψ ′ ≈ rB0/q , so that we are
allowed to write the Shafranov shift as (4.34). Plugging the stepped
pressure profile into this equation shows that ∆′ is discontinuous at rp
while ∆ itself remains continuous with both ∆/a and ∆′ still of order ε
as we assumed above. It follows that that ∆′′ ∝ δ(r − rp ), i.e. it has a
spike at rp .

r/a

p

εp ′

Figure 4.10: Example of localised steep
pressure profile and its associated gradi-
ent.

We shall now extend this highly idealised case to a more realistic
situation in which the pressure is not a step function but decreases su�-
ciently rapidly in a narrow region such that µ0ap ′/B2

0 ∼ ε (see Fig. 4.10).
This means that we are locally ”promoting” the order of the pressure gra-
dient. Hence, following the discussion above, from balancing the terms
in (4.33) we have at leading order

r∆′′ = −
2R0µ0p ′q 2

B2
0

∼ 1, (4.40)

whereas ∆/a ∼ ∆′ ∼ ε. Upon introducing the quantity

α = −
2R0µ0p ′q 2

B2
0

, (4.41)

which is known as the ballooning parameter,15

15 It was first introduced in the context
of ballooning mode analysis, that we will
address in the following chapters.

equation (4.40) can be
cast as r∆′′ = α.

Moreover, we may write (cf. (4.26))16 16 Note that this is a proportionality
equation between the poloidal flux and
the safety factor. Usually, when the equi-
librium is solved numerically one can ei-
ther impose q or the toroidal current. If
the input is a smooth J φ then q is ex-
pected to have a small jump, or vice versa
if a smooth q is imposed as an input.

ψ ′ =
rB0

q
(1 + v ) , (4.42)

with v ∼ εrv ′ ∼ ε2. Therefore, by means of (4.30) we see that g ∼ ε2

and r g ′ ∼ ε so that

F ′ = −
µ0R0p ′

B0
. (4.43)
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The equilibrium of a large aspect ratio tokamak with circular cross sec-
tion and localised steep pressure gradients is known in the literature as
s − α equilibrium model or s − α model in short. This equilibrium
model will be extensively employed in chapter 12.

R

Z

Δ
Θ

ρ

Figure 4.11: Forward shifted flux sur-
face (dashed line) with flux ψ = ψ0(r ) +
ψ1 cos θ with ψ0 > 0 an increasing func-
tion of r and |ψ1/ψ0 | � 1. On the equa-
torial plane for R > 0 we have ψ0(r ) +
ψ1 = ψ0(r − ∆) ≈ ψ0(r ) − ∆

∂ψ0
∂r , so that

∆ = −ψ1/(
∂ψ0
∂r ).

4.3.5 An almost intuitive derivation of the Shafranov shift

The parametrisation (4.17) and (4.18) has been chosen because we al-
ready knew, somehow, how the flux surfaces would look like. Here we
show how the displacement of the flux surfaces naturally appears. Con-
sider a coordinate system consisting of concentric nested toroidal sur-
faces centred in Rg with radius ρ as in (4.38). Here the variable ρ is not
a �ux label and Rg is not the magnetic axis. The associated metric
tensor coe�cients are given by (4.39). Hence, from (4.13) the toroidal
current density is written as

µ0 J φ =
1

ρ(Rg + ρ cosΘ)

[
∂

∂ρ

(
ρ∂ψ/∂ρ

Rg + ρ cosΘ

)
+

∂

∂Θ

(
∂ψ/∂Θ

ρ(Rg + ρ cosΘ)

)]
.

(4.44)
We plug this into (4.14) and expand for ρ/Rg � 1 giving

R2
g

(
1 +

2ρ
Rg

cosΘ
)
µ0
dp
dψ
+ F

dF
dψ
+
1 + ρ

Rg
cosΘ

ρ2

[
ρ
∂

∂r

(
ρ
∂ψ

∂ρ

)
+
∂2ψ

∂θ2

]
−

1
ρRg

[ ∂
∂ρ

(
ρ2
∂ψ

∂ρ

)
cosΘ +

∂

∂θ

(
cosΘ

∂ψ

∂θ

) ]
= 0. (4.45)

We seek a solution of the form ψ = ψ0(ρ) + ψ1(ρ,Θ) with ψ1/ψ0 ∼ ρ/Rg .
Let us expand a generic quantity f as

f (ψ) = f (ψ0) +

(
df
dψ

)
ψ0

ψ1 + . . . .

Thus, when the form of ψ given above is plugged into (4.45), it produces
to first order in ρ/Rg

R2
g µ0

(
dp
dψ

)
ψ0

+
1
2

(
dF 2

dψ

)
ψ0

+
1
ρ

∂

∂ρ

(
ρ
∂ψ0

∂ρ

)
+(

R2
g µ0

(
d 2p

dψ2

)
ψ0

+
1
2

(
d 2F 2

dψ2

)
ψ0

)
ψ1

+
cosΘ
Rg

(
2ρR2

g

(
dp
dψ

)
ψ0

−
∂ψ0

∂ρ

)
+
1
ρ

∂

∂ρ

(
ρ
∂ψ1

∂ρ

)
+

1
ρ̂2
∂2ψ1

∂Θ2
= 0.

By setting to zero the first line, we obtain (4.30), that is the radial pressure
balance for the general screw-pinch. It is evident that for having the
next order to vanish we must require ψ1 ∼ cosΘ, which shows that the
constant ψ surfaces are shifted along R (cf. Fig. 4.11), at least to first
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approximation. Therefore, writing ψ1 = −∆
∂ψ0
∂ρ cosΘ and using the radial

pressure balance, after some algebra we get

∂ψ0

∂ρ

[
∂2∆

∂ρ2
+

(
1
ρ
+ 2

∂2ψ0/∂ρ
2

∂ψ0/∂ρ

)
∂∆

∂ρ

]
−

1
Rg

(
2ρR2

g

(
dp
dψ

)
ψ0

−
∂ψ0

∂ρ

)
= 0,

which is equation (4.33). It is important to stress that, contrarily to the
derivation presented earlier, here is the magnetic axis which undergoes
the radial shift.

4.4 Large aspect ratio expansion: The vacuum
solution

In experiments, in order to prevent the plasma from touching the sur-
rounding structures, a vacuum region separates the plasma column from
the containing vessel.17 The absence of currents in the vacuum yields 17 Note that this is an approximation of

a much more complex situation.the equilibrium condition

∇ × B = 0. (4.46)

The aim now is to determine the shape of the flux surfaces in this region.
Let us employ the coordinate system (r, θ, φ) with r labelling the sur-

faces of constant poloidal flux as defined in (4.5) and let the magnetic
field to have the same form as in (4.4). The condition J r = J θ = 0
implies that F is constant in the vacuum (this reflects the ∼ 1/R decay
of the toroidal magnetic field). Thus, the magnetic equilibrium in the
vacuum is determined by the equation

J φ = 0. (4.47)

Because of the hoop force, the magnetic surfaces are expected to be
displaced in the vacuum as well.18 Hence, we parametrise them with 18 This is because the magnetic field is

stronger on the inner side than on the
outer side of the current carrying torus.

equations (4.17) and (4.18).
Assume for the moment that the metallic wall surrounding the plasma

at distance r = b > a with 1 − a/b � 1 is a perfect conductor. Since
b ∼ a, we deploy the ordering b/R0 ∼ ε. Therefore, the procedure for
obtaining the vacuum solution consists in first expanding J φ in ε and
then solving (4.47) order by order in the inverse aspect ratio. Using
(4.27), the leading order of (4.47) yields rψ ′ = const , so that by means
of (4.26) we obtain (compare with (4.28))

q ∼ r 2, (4.48)

which holds up to order ε2.
By combining (4.26) and (4.27) we get r J φ ∼ (r 2/q )′ which can be

integrated across the plasma boundary r = a giving

1
q (a + δ)

−
1

q (a − δ)
∼

∫ a+δ

a−δ
r J φdr,
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with δ → 0. The right-hand-side of the equation above can be made ar-
bitrarily small if the function under the sign of integration is not singular
at the boundary, i.e. there are no surface current densities (in short sur-
face current). This shows that the safety factor profile is continuous
at the plasma-vacuum interface.1919 This does not hold for diverted con-

figurations, such as the one shown in
Fig. 4.8 for which the plasma bound-
ary identified by the separatrix is not
smooth. In such a case, the q profile di-
verges logarithmically at the edge (see
Wesson (2011)). Diverted geometries,
however, are not analysed in this report,
which only focusses on limited plasmas
with a smooth boundary.

To the next order in ε, equation (4.47) yields

∆
′′ −

∆′

r
−

1
R0
= 0, (4.49)

which is equivalent to (4.33) computed with p = 0 and q ∼ r 2. This
shows that (4.33) can be used both in the plasma and vacuum region.
As discussed in the previous section, equation (4.33) can be cast as

d
dr

[
r (ψ ′)2 ∆′

]
+ r (ψ ′)2

(
2µ0rR0p ′

(ψ ′)2
−

1
R0

)
= 0.

In analogy with the calculation above, without surface currents we inte-
grate it across the plasma boundary giving

a3

q 2(a)
(∆′(a + δ) − ∆′(a − δ)) = −

∫ a+δ

a−δ

r 3

q 2

(
2µ0R0p ′q 2

rB2
0

−
1
R0

)
dr,

where we made use of (4.26). The right-hand-side of this equation van-
ishes if p ′ is not singular, so that ∆′ is continuous at a. This is equivalent
to requiring that the poloidal component of the magnetic field is con-
tinuos a the plasma-vacuum interface.20 Finally, we impose the obvious20 Given the normal vector n = ∇r /|∇r |

from plasma to vacuum, the plasma-
vacuum jump conditions are

n ·
(
Bvac − Bplasma

)
= 0,

n ×
(
Bvac − Bplasma

)
= 0,

where we assumed no surface currents at
the plasma boundary.

constraint ∆(a + δ) = ∆(a − δ). Thus, denoting with ∆v the displacement
of the magnetic surfaces in the vacuum region, the solution of (4.49)
supplied with the interface conditions at the plasma edge given above
reads

∆v = ∆a +
a2

4R0

(
1 −

2R0

a
∆
′
a

) [
1 −

( r
a

)2]
+
r 2

2R0
ln

( r
a

)
, (4.50)

having introduced the notation ∆a = ∆(a − δ) and ∆′a = ∆
′(a − δ).

With a perfectly conducting wall at distance b from the plasma, the
shift of the flux surfaces is written as2121 Note that often in the literature the

coordinate system of 4.3.5 is used. In
such a case ∆a = 0 and the substitution
∆′a → −∆

′
a must be performed.

∆v (b) − ∆a
b

=
b

2R0

[
ln

(
b
a

)
+

(
βp (a) +

ℓi (a)
2
−
1
2

) (
1 −

a2

b2

)]
.

Hence, letting the wall to be at distance b , expanding (4.50) for b/a ≈ 1
yields

∆v (b) ≈ ∆a + ∆′a(b − a) + . . . .

This indicates that the magnetic flux is compressed in the vacuum region
right up to the vessel wall. Flux compression therefore prevents further
plasma expansion (see Fig. 4.12). Here it is evident the importance of
the poloidal field for the plasma confinement, in that the longitudinal
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(toroidal) field does not enter the expression for the equilibrium position
of the plasma in the vacuum chamber.

Figure 4.12: Sketch of the poloidal flux
compression in the outer midplane for
a plasma surrounded by a perfectly con-
ducting wall.

Unfortunately, in reality the vessel wall is not a perfect conductor,
and the poloidal flux can only remain compressed for times typically
much shorter compared to the ones of experimental interest. It turns
out that an external vertical �eld B⊥ must be applied to maintain
the plasma in equilibrium, preventing the expansion in R due to the
radial force. Although not strictly necessary for the stability calculations
of the next chapters, the evaluation of B⊥ is of high importance for
experimental purposes, therefore we shall discuss it in the next section
for a large aspect ratio tokamak with a circular cross section.

4.4.1 External vertical �eld

Assume that there is no conducting wall surrounding the plasma. In the
vacuum, the condition of no currents implies that (4.46) holds. Let us
employ polar coordinates (ρ,Θ, φ) which relate to the flux ones (r, θ, φ)
through (cf. (4.38))

Rg + ρ cosΘ = R = R0 + r cos θ − ∆, ρ sinΘ = Z = r sin θ. (4.51)

We choose Rg to be the geometric centre of the last surface enclosing
the plasma labelled by ρb (see figure 4.13). This means that Rg = R0 −

∆(a). The associated metric tensor coe�cients are given by (4.39). By
inverting (4.51), the flux coordinates are then written in terms of the
polar ones via

r = ρ − (∆a − ∆) cosΘ + . . . , θ = Θ +
(∆a − ∆)

ρ
sinΘ . . . ,

where here ∆ has to be considered as a function of ρ such that ∆(ρb ) = ∆a
with ∆a following the notation introduced in (4.50).

R0-Δa R0

Θρ
θ

φ

R0-Δ

(R,Z)

r

Figure 4.13: Polar (ρ,Θ, φ) and flux
(r, θ, φ) coordinates.

With a magnetic field written as (4.4) where F is constant and ψ =
ψ(ρ,Θ) (cf. §4.4), we exploit axisymmetry (∇ρ · ∇φ = ∇Θ · ∇φ = 0) to
obtain J ρ = J Θ = 0, so that the equilibrium in the vacuum is determined
by equation (4.47). Denoting the vacuum flux by ψext , this becomes (cf.
(4.44))

∂

∂ρ

(
ρ

Rg + ρ cosΘ
∂ψext

∂ρ

)
+
1
ρ

∂

∂Θ

(
1

Rg + ρ cosΘ
∂ψext

∂Θ

)
= 0.

Although this equation admits an exact solution expressed in terms of
toroidal (ring) functions, we shall seek a simplified form for the flux
which is valid in a region near the outermost plasma surface.

Expanding for ρ/Rg ∼ ε � 1 and focussing on a solution of the form
ψext = ψ0(ρ) + ψ1(ρ) cosΘ with ψ1 ∼ εψ0, the equation above yields

∂

∂ρ

(
ρ
∂ψ0

∂ρ

)
= 0,

∂

∂ρ

(
ρ
∂ψ1

∂ρ

)
−
ψ1

ρ
−

ρ

Rg

∂ψ0

∂ρ
= 0.
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Thus, the vacuum flux can be written not too far from the plasma as

ψext = C0 +C1 ln
ρ

a
+

[
C2ρ +

C3

ρ
+
C1ρ

2Rg

(
ln ρ −

1
2

)]
cosΘ. (4.52)

The constants Ci (i = 1, 2, 3) are determined by requiring that in ab-
sence of surface currents the normal and tangential components of the
magnetic field are continuous at the plasma boundary. We denote with
ψin the poloidal flux inside the plasma. Exploiting again axisymmetry
and the fact that ∂ψin/∂θ = 0, it follows that at the plasma boundary
one has at leading orders

∂ψin

∂ρ

���
ρb
=
dψin

dr

���
a

∂r
∂ρ

���
ρb
≈
aB0

q (a)

[
1 +

a
R0

(
βp (a) +

li (a)
2

)
cosΘ

]
,

having used equation (4.26) and ∂∆(ρ)/∂ρ|ρb ≈ d∆(r )/dr |a with
R0
a ∆
′
a =

βp (a) + li (a)/2 (cf. (4.35)). Since

B ρ = −
1
√
g
∂ψ

∂Θ
, BΘ =

1
√
g
∂ψ

∂ρ
, Bφ =

F
R2
,

the continuity of the tangential magnetic field implies ∂ψin/∂ρ|ρb =
∂ψext/∂ρ|ρb whereas the vanishing of the radial component of B requires
B ρ(ρb ) = 0.

Therefore, the interface conditions become

C2+
C3

a2
+
C1

2Rg

(
ln a −

1
2

)
= 0, (4.53)

C1

a
+

[
C2 −

C3

a2
+
C1

2Rg

(
ln a +

1
2

)]
cosΘ

=
aB0

q (a)

[
1 +

a
R0

(
βp (a) +

li (a)
2

)
cosΘ

]
, (4.54)

having approximated ρb ≈ a. Defining Λ = βp (a) + li (a)/2 − 1 with
Rg ≈ R0, we easily obtain

C1 =
a2B0

q (a)
, C2 =

a2B0

2R0q (a)
(Λ − ln a + 1) ,

C3 = −
a4B0

2q (a)R0

(
Λ +

1
2

)
,

so that the vacuum flux is2222 We use the fact that

a2B0
q (a)

≈
µ0R0Ip
2π

,

where Ip is the plasma current.

ψext = C0 +
µ0R0Ip
2π

ln
ρ

a
+
µ0Ip
4π

[
ln
ρ

a
+

(
Λ +

1
2

) (
1 −

a2

ρ2

)]
ρ cosΘ.

(4.55)
The magnitude of the external field required to maintain the equi-

librium is obtained by subtracting from ψext the contribution due to the
toroidal current itself. Let us write ψext = ψcur + ψV F , where ψcur is
the flux due to the plasma current and ψV F is the additional external



Large aspect ratio expansion: The vacuum solution 51

one. For a current loop of radius Rg which carries a current Ip in the φ
direction one has ( Jackson (1999))23 23 If B = −∇ψ×∇φ the associated vector

potential is A = −ψ∇φ. From this

Ator =
A · ∇φ
|∇φ| = −ψ/R .

The quantity Ator is used in Jackson
(1999).

ψcur = −
µ0Rg Ip
2π

√
R
Rg

[
(2 − k2)K (k ) − 2E(k )

k

]
,

k2 =
4R/Rg(

1 +R/Rg
)2
+ Z 2/R2

g

,

where K (k ) and E(k ) are the complete elliptic integrals of the first and
second kind respectively.24 24 The elliptic integrals K (k ) and E(k )

are defined as

K (k ) =
∫ π/2

0

dt√
1 − k2 sin2 t

= π
2 2F1(

1
2,

1
2 ; 1; k

2),

E(k ) =
∫ π/2

0

√
1 − k2 sin2 tdt

= π
2 2F1(−

1
2,

1
2 ; 1; k

2),

where 2F1 denotes the hypergeometric
function.

By means of (4.51), expanding in powers of
ρ/Rg yields

k2 = 1 −
1
4

(
ρ

Rg

)2
+
1
4

(
ρ

Rg

)3
cosΘ + . . . ,

so that to the required accuracy we approximate

E(k ) ≈ 1, K (k ) ≈ ln
4

√
1 − k2

≈ ln
8Rg
ρ
+

ρ

2Rg
cosΘ.

Collating these results together and letting Rg ≈ R0 gives

ψcur ≈ −
µ0R0Ip
2π

[
ln

8R0

ρ
− 2 +

ρ

2R0

(
ln

8R0

ρ
− 1

)
cosΘ

]
. (4.56)

When this flux is subtracted from (4.55), we obtain for ρ � a

ψV F ≈ const +
µ0Ip
4π

[
ln

8R0

a
+ Λ −

1
2

]
(R −R0) .

Since BZ = 1
R ∂ψ

V F /∂R, We use a right handed cylindrical coor-
dinate system (R,Z, φ).

the magnitude of the external vertical field
needed to maintain the equilibrium is found to be

B⊥ ≈
µ0Ip
4πR0

(
ln

8R0

a
+ Λ −

1
2

)
.

Note that B⊥ ∼ ε2B0 (the logarithm is a slowly growing function of its
argument so that we let ln(R0/a) ∼ 1). The e�ect of such a field is
sketched in Fig. 4.14. One notes the appearance of a point of poloidal
field null (X-point) in the high-field-side.

Using this result, the equilibrium β limit discussed at the end of sec-
tion 4.3.2 can be estimated as follows: let Θ = π so that R = R0 − ρ

with ρ � R0 and assume Ip > 0. From (4.56), the magnitude of the
magnetic field at Z = 0 and close to R0 generated by the plasma current
scales approximately as

µ0Ip
2π |R−R0 |

.25 25 Note that

∂ψcur

∂R
=
∂ψcur

∂ρ

∂ρ

∂R
+
∂ψcur

∂Θ

∂Θ

∂R
,

and ∂ψcur

∂Θ = 0 for Θ = π. We also take
ln 8R0/ρ ∼ 1.

Let a = |R −R0 | be the radius of the
plasma. The X-point will intersect the outermost plasma surface when
B⊥ ∼

µ0Ip
2πa , so that for R0/a su�ciently large the critical βp setting the

equilibrium limit is
βp (a) ∼ R0/a .
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Figure 4.14: Total poloidal field due to the combination between the one generated by
the plasma current and the externally applied one. Note the presence of the magnetic
separatrix and the X-point.

Toroidally rotating plasmas

To increase the temperature, beams of neutral particles can be injected
into the plasma. This may induce a rotation in the direction of the injec-
tion due to momentum transfer and if this rotation is su�ciently fast, it
can impact the equilibrium. The equilibrium condition for a stationary
rotating plasma is (cf. (2.2))

ρv · ∇v = −∇p + J × B, (4.57)

where the magnetic field is given by (4.4) (we use the same coordinate
system employed in §4.3). Let the variable r label isoflux surfaces such
that B r = 0, i.e. ψ = ψ(r ) (isoflux surfaces may not correspond to isobars
as it is shown below). The rotation is typically in the toroidal direction,
so that v = vφeφ. Hence, writing E = −∇ΦE where ΦE is the electric
potential, the projection of (2.3) along B shows that ΦE depends only on
the flux variable r . Multiplying (2.3) by er shows that vφ is a flux function
as well. We call Ω(r ) ≡ vφ. Dotting (4.57) with eφ gives J r = 0 showing
that F = F (r ) is a flux quantity, whereas the eθ projection yields

ρΩ2R
2
∂R
∂θ
=
∂p
∂θ
. (4.58)

We assume strong parallel electron thermal conductivity which ensures
isothermal flux surface, i.e.

B · ∇T = 0 (4.59)

so that T = T (r ). For the sake of simplicity T = Ti = Te . Hence, writing
ρ = min and p = 2nT , equation (4.58) can be integrated giving

ρ =
p
2T
= ρ0e

miΩ
2

4T (R
2−R2

0) = ρ0e
M 2(R

2

R20
−1)
, (4.60)

where ρ0 is a function of r and M 2 = ρΩ2R2
0/2p is the Mach number.

Expanding in ε yields

ρ = ρ0

(
1 + 2M 2 r

R0
cos θ + . . .

)
, (4.61)
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which shows that the constant density (or pressure) surfaces are radially
shifted with respect to the flux surfaces (cf. Fig. 4.11). This is due to
the centrifugal e�ects which also enter the expression of the Shafranov
shift ∆ through a modification of the pressure term. We see that rotation
e�ects become significant when M ∼ 1.
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5
Straight �eld line coordinates

In the previous chapter we mentioned that for a toroidal coordinate sys-
tem (r, θ, φ) where the variable r labels the flux surfaces and φ is the
geometric toroidal angle, there is a degree of freedom in choosing the
definition of the poloidal angle θ, i.e. its definition is not unique.1 De- 1 It is possible to introduce alternative

definitions of the toroidal angle φ as well.
In this report, however, φ will always de-
note the geometric toroidal one.

pending on the problem under consideration, certain definitions turn
out to be more useful, or easier to handle mathematically, than others:
for example, for plasma diagnostics related problems the proper geomet-
rical angle is often the preferred choice. This, however, is not the most
convenient definition when dealing with analytic stability calculations.

(a)

(b)

2π

2π

2π

2π

Figure 5.1: Field lines on a cut open
magnetic surface for (a) arbitrary flux
coordinates, and (b) straight field line co-
ordinates.

We see from (4.7) that, given θ and φ the (generic) poloidal and
toroidal angles, the infinitesimal increment of the field line position in
the toroidal direction per increment in the poloidal one is

dφ =
Bφ

B θ
dθ.

If we select a particular flux surface, the pitch of the field line, that is
the ratio dφ/dθ, can depend upon the poloidal variable θ. For stability
analyses, however, it is much more convenient to have a constant
pitch angle on each �ux surface of radius r . Hence, to remove such
a dependence on the poloidal angle, we introduce a new angular variable
ϑ such that the magnetic field lines on a given flux surface are straight
(see figure 5.1), that is

dφ
dϑ
= q (r ).

This new angle, namely ϑ, is called the recti�ed poloidal angle.

Using the coordinates (r, ϑ, φ), from (4.4) the equilibrium magnetic
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�eld components are

B r = 0, (5.1)

Bϑ =
ψ ′
√
g
, (5.2)

Bφ =
F
R2
, (5.3)

with
√
g denoting the Jacobian associated with this straight �eld line

coordinate system.2 This means that the ratio2 Hereafter the symbol
√
g will always

denote the Jacobian of the system (r, ϑ, φ)

Bφ

Bϑ
=
F
√
g

ψ ′R2
= q (r ) (5.4)

is a flux function (i.e. constant on a flux surface), yielding to the equiv-
alent requirement that

∂

∂ϑ

(√
g

R2

)
= 0, (5.5)

which also corresponds having
√
gBφ to be a flux function. Relation

(5.4) gives a very simple representation of the safety factor.
Because the mapping θ → ϑ is one-to-one, we can think of the angle

θ as a function of r and ϑ (analogously ϑ can be viewed as a function
of r and θ). Figure 5.2 shows the curves of constant straight angle (note
that it can become highly distorted near the edge). Thus, the aim of
this chapter is to find i) how to represent the equilibrium geometry in
terms of this new straightened angular variable ϑ, and ii) derive the ap-
propriate expressions for the covariant elements of the metric tensor.
In doing so, we must first resolve some subtleties related to the higher
order solution of a tokamak equilibrium. This initial step is discussed
in the next section.

2 3
R [m]

1

0

1

Z 
[m

]

(a)

2 3
R [m]

1

0

1

Z 
[m

]

(b)

Figure 5.2: Cross section of a shaped
plasma showing the levels of constant
geometric (a), and straightened (b)
poloidal angles. Dashed lines indicate
isobaric surfaces.

5.1 Higher order tokamak equilibrium

In the previous chapter the equilibrium was solved only to first order
in ε. However, this is not su�cient for the correct computation of the
metric tensor coe�cients to the accuracy required for later analyses.
This means that the equilibrium must be solved to the next order in ε.
Let us use the (r, θ, φ) coordinate system introduced in chapter 4, and
parametrise the flux surfaces as

R = R0 + r cos θ − ∆ + E(r, θ), Z = r sin θ + S (r, θ), (5.6)

with E ∼ S ∼ ε2r . The symbol
√
g u identifies the Jacobian associated

with these coordinates. Using (4.25), we see that

FF ′

B2
0R

2
= g ′

(
1 − 2

r
R0

cos θ + g + 3
r 2

R2
0

cos2 θ +
2∆
R0

)
+ f ′ + . . . ,
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where the prime indicates di�erentiation with respect to the radial vari-
able. From an inspection of (4.20), it is thus clear that E and S must
generate terms proportional to cos2 θ when expanding the coe�cients
gθθ/
√
g u and gr θ/

√
g u appearing in (4.21) (cf. (4.27)) to higher order.

Let us introduce the quantities

C1 = R ′ = cos θ − ∆′ + E ′, C2 =
∂R
∂θ
= −r sin θ +

∂E
∂θ
,

D1 = Z ′ = sin θ + S ′, D2 =
∂Z
∂θ
= r cos θ +

∂S
∂θ
.

It follows that (cf. section 4.3.1)

gr r = C 2
1 +D

2
1, gr θ = C1C2 +D1D2, gθθ = C 2

2 +D
2
2,

√
g u = R

√
gr r gθθ − g 2r θ = R (C1D2 −D1C2) .

From this it is fairly easy to see that

gr θ ≈ r∆′ sin θ +
(
∂E
∂θ
+ rS ′

)
cos θ −

(
rE ′ −

∂S
∂θ

)
sin θ,

gθθ ≈ r 2 − 2r
∂E
∂θ

sin θ + 2r
∂S
∂θ

cos θ,

√
g u ≈ rR0

[
1 +

(
r
R0
− ∆′

)
cos θ +

(
∂S /∂θ
r
+ E ′

)
cos θ

+

(
S ′ −

∂E/∂θ
r

)
sin θ −

r
R0
∆
′ cos2 θ −

∆

R0

]
,

so that the metric tensor coe�cients that enter the equilibrium toroidal
current density can be written to the first two leading orders as

gθθ
√
g u
=
r
R0

[
1 +

(
∆
′ −

r
R0

)
cos θ +

(
∂S /∂θ
r
− E ′

)
cos θ

−

(
S ′ +

∂E/∂θ
r

)
sin θ −

r∆′

R0
cos2 θ +

∆

R0
+ ∆′2 cos2 θ +

r 2

R2
0

cos2 θ

]
,

gr θ
√
g u
=

1
R0

[
∆
′ sin θ +

(
∆
′ −

r
R0

)
∆
′ sin θ cos θ

+

(
∂S /∂θ
r
− E ′

)
sin θ +

(
S ′ +

∂E/∂θ
r

)
cos θ

]
.

(5.7)
When these expressions are plugged into (4.21), in order to have the
required cos2 θ dependent terms, we must impose

E(r, θ) = Ē(r ) cos θ, S (r, θ) = S̄ (r ) sin θ.

An expression for Ē(r ) and S̄ (r ) is now needed.
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Introducing Λ∗ = ∆′ − r /R0, from (5.7) we shall formally write33 For x � 1 one has

1

1 + ax + bx2
≈ 1 − ax + (a2 − b)x2. 1

√
g u
=

1
rR0
[1 + Λ∗ cos θ + t0(r, θ)] ,

gθθ
√
g u
=
r
R0
[1 + Λ∗ cos θ + t1(r, θ)] ,

gr θ
√
g u
=

1
R0
[∆′ sin θ + t2(r, θ)] ,

where t0, t1 and t2 are quantities of order ε2 which are defined as follows:

t0 = −
(
S̄
r
+ Ē ′

)
cos2 θ −

(
S̄ ′ +

Ē
r

)
sin2 θ +

(
∆
′2 +

r 2

R2
0

−
r∆′

R0

)
cos2 θ +

∆

R0
,

t1 =
(
S̄
r
− Ē ′

)
cos2 θ −

(
S̄ ′ −

Ē
r

)
sin2 θ +

(
∆
′2 +

r 2

R2
0

−
r∆′

R0

)
cos2 θ +

∆

R0
,

t2 =
[ (
∆
′ −

r
R0

)
∆
′ +

S̄ − Ē
r
+ S̄ ′ − Ē ′

]
sin θ cos θ.

With a simple manipulation it can be shown that the toroidal current
density at the two leading orders is written as

µ0 J φ =
1

rR2
0

[
(rψ ′)′ + {(rψ ′Λ∗)′ + Λ∗(rψ ′)′ − ψ ′∆′} cos θ

+ (rψ ′t1)′ + Λ∗{(rψ ′Λ∗)′ − ψ ′∆′} cos2 θ + t0(rψ ′)′ − ψ ′
∂t2
∂θ

]
. (5.8)

It is important to remind that for a given shape of the safety factor, the
expression for the poloidal flux is given by (4.23) and includes contribu-
tions up to order ε2 which enter the equation above.

By inspecting (5.7), we observe that no further corrections propor-
tional to cos θ appear in J φ beyond the one originating from terms of
order ε.4 Noting that cos2 θ = (1 + cos 2θ)/2, Eq. (4.20) generates two4 This indicates that there are no addi-

tional non-oscillating (in θ) terms of or-
der ε2 in (5.6).

equations to order ε3: one is obtained by averaging it in θ, whereas the
other is obtained by multiplying by cos 2θ and integrating in θ from 0
to 2π. The former provides an expression for f ′ while the latter, after
plugging (5.7) and (5.8) into (4.20), yields

C̄ ′′ +
(
1 + 2

rψ ′′

ψ ′

)
C̄ ′

r
− 3

C̄
r 2
=
3r 2B2

0 g
′

(ψ ′)2
+

6r

R2
0

−
3∆′

R0
+ 3∆′∆′′

−
2r
R0
∆
′′ +

ψ ′′

ψ ′

(
3r 2

R2
0

+ 3∆′2 −
4r
R0
∆
′

)
, (5.9)

having defined
C̄ = Ē − S̄ . (5.10)

The equations above determine, say, Ē while S̄ remains a free function
whose choice allows for several alternatives. Upon defining P̄ = Ē + S̄ ,
we cast (5.6) as

R = R0 + (r + 1
2 P̄ ) cos θ − ∆ +

1
2C̄ cos θ,

Z = (r + 1
2 P̄ ) sin θ −

1
2C̄ sin θ.
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It is clear that P̄ corresponds to a relabelling of the flux surfaces and C̄
determines their ellipticity.5 5 From (5.9) we infer that such an elon-

gation is small as long as β is small.A particularly clever choice is to take a linear combination of Ē and
S̄ such that in the straightened coordinate system gφφ/

√
g = R0/r at all

orders. This will be elaborated more in detail in the next sections.

5.2 The rectifying parameter

Let us assume that the pressure profile is smooth and does not present
narrow regions of sharp gradients. Taking into account the results of the
previous section, we take the parametrisation of the flux surfaces to be
the one given by Eqs. (4.17) and (4.18) , i.e.

R = R0 + r cos θ − ∆ + Ē cos θ,

Z = r sin θ + S̄ sin θ

where the expression of the Shafranov shift is given by (4.33) and Ē ∼
S̄ ∼ ε2a. As discussed earlier, we can view the poloidal angle θ as a
function of the rectified one ϑ and of the labelling variable r , that is

θ = θ(r, ϑ),

with 0 ≤ ϑ < 2π. The aim of this section is to find an explicit form,
though approximated, of θ expressed in terms of ϑ. Although most
of the problems encountered in the stability analysis do not require an
accuracy correct to order ε2, here we work out the full computation.6 6 Terms of the order of ε2 are needed for

the correct evaluation of the metric coef-
ficients in the s − α equilibrium model
with steep gradients. This will be dis-
cussed in Sec. 5.4.

In analogy to what we did in the previous section, after introducing
the coordinates (r, ϑ, φ) we define the quantities

C1 = R ′ =
(
1 + Ē ′

)
cos θ − r θ ′

(
1 +

Ē
r

)
sin θ − ∆′,

C2 = ÛR = −r Ûθ
(
1 +

Ē
r

)
sin θ,

D1 = Z ′ =
(
1 + S̄ ′

)
sin θ + r θ ′

(
1 +

S̄
r

)
cos θ,

D2 = ÛZ = r Ûθ
(
1 +

S̄
r

)
cos θ,

having used the notation f ′ = ∂f /∂r and Ûf = ∂f /∂ϑ. The covariant
components of the metric tensor are thus written as (cf. section 4.3.1)

gr r = C 2
1 +D

2
1,

grϑ = C1C2 +D1D2, (5.11)

gϑϑ = C 2
2 +D

2
2,

and the Jacobian associated with this coordinate system is

√
g = R

√
gr r gϑϑ − g 2rϑ = R (C1D2 −D1C2) .
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It is immediate to verify that to leading order

√
g

R2
=
r
R
Ûθ

[
1 − ∆′ cos θ +

(
Ē ′ +

S̄
r

)
cos2 θ +

(
S̄ ′ +

Ē
r

)
sin2 θ

]
. (5.12)

According to (5.5), this quantity only depends on the flux label r . We
then write

θ = ϑ + λ(r, ϑ), (5.13)

where λ ∼ ε � 1 known as the rectifying parameter is a periodic
function of ϑ such that λ(r, 0) = λ(r, 2π) = 0. The quantity λ is then
expanded in ε as

λ = λ1(r, ϑ) + λ2(r, ϑ) + . . . , (5.14)

where λ1 ∼ ε, λ2 ∼ ε2 and the dots indicate higher order corrections.
Plugging (5.13) and (5.14) into (5.12) yields

√
g

R2
=
r
R0

[
1 −

(
r
R0
+ ∆′

)
cos ϑ + Ûλ1 +

(
Ē ′ +

S̄
r

)
cos2 ϑ +

(
S̄ ′ +

Ē
r

)
sin2 ϑ

+

(
r∆′

R0
+
r 2

R2
0

)
cos2 ϑ +

∆

R0
+ Ûλ2 +

(
∆
′ +

r
R0

) (
λ1 sin ϑ − Ûλ1 cos ϑ

) ]
.

Imposing the condition (5.5) and solving order by order in ε, after some
algebra we obtainIf ϑ = θ + ν(r, θ), one has

Bϑ

Bφ
=
B θ

Bφ

(
1 +

∂ν

∂θ

)
Recalling (5.4), in line with the notation
employed in earlier sections this gives 1+
∂ν
∂θ =

√
g u/
√
g and averaging it in θ yields

√
g /R2 = 1

2π

∫ 2π
0
√
g u/R

2dθ, so that

∂ν

∂θ
=

2π
√
g u/R

2∫ 2π
0
√
g u/R

2dθ
− 1.

λ(r, ϑ) can be obtained perturbatively
from the equation above.

λ1 =

(
r
R0
+ ∆′

)
sin ϑ,

λ2 = −
sin 2ϑ
4

[
(Ē − S̄ )′ −

Ē − S̄
r
−

3r
R0
∆
′ −

r 2

R2
0

− 2∆′2
]
.

(5.15)

Note that to leading order we have

√
g

R2
≈
r
R0

.

Therefore, we can finally write the angle θ in terms of r and ϑ as

θ ≈ ϑ +

(
r
R0
+ ∆′

)
sin ϑ + . . . . (5.16)

We have now all the elements to compute the metric tensor coe�-
cients in these new straight field line coordinates. This is carried out
in the next section for a tokamak equilibrium without steep pressure
gradients. In such a case the accuracy of (5.16) proves to be su�cient
for the correct evaluation of the metric tensor coe�cients needed for
the stability calculations. The stability analysis of equilibria which ex-
hibit localised regions of sharp pressure variations requires a more care-
ful computation of the geometric coe�cients, and this will be detailed
in §5.4.
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5.3 The metric tensor coe�cients

Let us assume that µ0p/B2
0 ∼ µ0r p ′/B2

0 ∼ ε2. By means of (5.11), the
elements of the metric tensor in the straight field line coordinates intro-
duced in the previous section can be easily obtained (cf. (4.22)) and
their expressions at leading orders read

gr r = 1 − 2∆′ cos ϑ + . . . ,

grϑ =
(
r 2

R0
+ r∆′ + r 2∆′′

)
sin ϑ + . . . ,

gϑϑ = r 2 +
2r 3

R0
cos ϑ + 2r 2∆′ cos ϑ + . . . ,

gφφ = R2
0

[
1 +

2r
R0

cos ϑ + . . .
]
,

1
√
g
=

1
rR0

[
1 −

2r
R0

cos ϑ + . . .
]
.

(5.17)

We refer to the quantities gi j /
√
g (the indices i and j run over (r, ϑ, φ))

as the metric coe�cients. Unfortunately, the expressions of the metric
coe�cients computed from (5.17) are not, generally, accurate enough
for what is required in the stability analysis. In (5.17), we must thus
include higher order terms meaning, more specifically, that second order
corrections in the smallness parameter ε have to be evaluated. The best
strategy for tackling the problem, which is a rather long and boring
procedure, and to avoid an unnecessary amount of algebra is divide et
impera: we compute separately 1/

√
g and gi j , and then we evaluate their

product to the relevant orders in ε. Let us introduce the symbol of
poloidal average

〈f 〉 ≡
1
2π

∫ 2π

0
f dϑ. (5.18)

Exploiting the results of the previous section, a tedious calculation
shows that to second order in ε we have

1
√
g
≈

1
rR0

[
1 + Λ∗ cos ϑ − Ûλ − Λ∗λ sin ϑ +

(
∆
′2 −

rΛ∗
R0

)
cos2 ϑ

+ Ûλ2 − Λ∗ Ûλ cos ϑ +
∆

R0
−

(
Ē ′ +

S̄
r

)
cos2 ϑ −

(
S̄ ′ +

Ē
r

)
sin2 ϑ

]
,

(5.19)

where λ is given by (5.14) and we recall that Λ∗ = ∆′− r /R0. We remark
that one has to account appropriately for the correct orders of λ in the
expansion above.

Now one notices that

R2 = R2
0

(
1 + 2

r
R0

cos ϑ −
2∆
R0
+
r 2

R2
0

cos2 ϑ − 2
r
R0

(
∆
′ +

r
R0

)
sin2 ϑ

)
,

(5.20)
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from which it immediately follows that

〈R2〉′ = −rR0 (∆
′′ + 3∆′/r + 1/R0) . (5.21)

SinceR2/
√
g = 〈R2/

√
g 〉, by means of (5.19) and (5.20) we readily obtain

G ≡
R2

√
g
=
R0

r

(
1 −

∆

R0
−
r 2

2R2
0

−
r∆′

2R0
−
(Ē + S̄ )′

2
−
Ē + S̄
2r

)
.

We notice that one may think of r as a function of another labelling
parameter r̃ , i.e. r = r (r̃ ). Denoting with

√
g r̃ the Jacobian in this new

variable, we choose r̃ such that R2/
√
g r̃ = R0/r̃ . Since

√
g r̃ = dr /dr̃

√
g ,

from the equation above we have

R0

r̃
=
R0

r

(
1 −

1
2r

(r 2∆
R0
+
r 4

4R2
0

+ r (Ē + S̄ )
) ′) dr̃

dr
.

This can be easily solved yielding

r = r̃ −
( r̃∆
2R0
+
r̃ 3

8R2
0

+
1
2
(Ē + S̄ )

)
.

Therefore, in an equivalent manner, we conveniently choose Ē and S̄
such that77 It is often found in the literature Ē =

−S̄ . Ē + S̄ = −
r∆
R0
−
r 3

4R2
0

, (5.22)

so that
G =

R0

r
. (5.23)

Now it remains to compute the expressions for the coe�cients gr r /
√
g ,

gθθ/
√
g and gr θ/

√
g . We can write gi j /

√
g as a sum of an averaged and

a fluctuating (in ϑ) part as

gi j
√
g
= 〈

gi j
√
g
〉+

(
gi j
√
g

)
∼
,

where

f∼ = f − 〈f 〉.

The analysis of MHD instabilities for equilibria without sharp pres-
sure gradients8 requires knowledge of the expressions of 〈gr r /

√
g 〉 and8 Primarily for the computation of the

m = 1 internal kink. 〈gϑϑ/
√
g 〉 with an ε2 accuracy, while it is su�cient to evaluate their fluc-

tuating part to first order in ε. For this purpose only λ1 is needed (cf.
(5.15)). We anticipate, however, that cases with large p ′ will need the os-
cillating part of the metric coe�cients to be computed with an accuracy
of order ε2 (this will be discussed in detail in the next section). There-
fore, for the sake of clarity as we did for the computation of the rectifying
parameter, we present below the full calculation correct to second order
in ε.
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Let us start with gr r /
√
g . A quick algebraic manipulation gives

gr r ≈ 1−2∆′ cos ϑ + 2∆′λ sin ϑ + r 2λ ′2 + ∆′2

+ 2r∆′λ ′ sin ϑ + 2(Ē ′ cos2 ϑ + S̄ ′ sin2 ϑ).

Thus, by using the results above, we obtain

〈
gr r
√
g
〉 =

1
rR0

(
1 +

9
4
r 2

R2
0

+ 4
r∆′

R0
+
∆

R0
+ 2∆′2+

r 2

2
∆
′′2 +

r 2

R0
∆
′′ + r∆′∆′′

)
,

for the averaged part, and9 9 A periodic function f in the variable
ϑ can be written as a sine-cosine series

f = 〈f 〉 +
∞∑
m=1

Am cosmϑ + Bm sinmϑ,

where the coe�cients Am and Bm are
given by

Am =
1
π

∫ π

−π
f cosmϑdϑ,

Bm =
1
π

∫ π

−π
f sinmϑdϑ.

(
gr r
√
g

)
∼
= −

2
rR0

(
∆
′ +

r
R0

)
cos ϑ

+

(
C̄ ′ − ∆′2 −

r∆′

R0
−
r 2∆′′2

2
−
r 2∆′′

R0
− r∆′∆′′

)
cos 2ϑ
rR0

+ . . . ,

for the fluctuating one where C̄ is given by (5.10) and the dots indicate
as usual higher order corrections. Hence, we write

L ≡
gr r
√
g
=

1
rR0

[
1 − 2

(
∆
′ +

r
R0

)
cos ϑ +

9
4
r 2

R2
0

+ 4
r∆′

R0

+
∆

R0
+ 2∆′2 +

r 2

2
∆
′′2 +

r 2

R0
∆
′′ + r∆′∆′′

+

(
C̄ ′−∆′2 −

r∆′

R0
−
r 2∆′′2

2
−
r 2∆′′

R0
− r∆′∆′′

)
cos 2ϑ

]
. (5.24)

The derivation of gϑϑ/
√
g is somehow simpler. Let us write

gϑϑ ≈ r 2
(
1 + 2 Ûλ + Ûλ2

)
+ 2r (Ē sin2 ϑ + S̄ cos2 ϑ).

It easily follows that

〈
gϑϑ
√
g
〉 =

r
R0

(
1 +

∆′2

2
+

3r 2

4R2
0

+
∆

R0

)
,(

gϑϑ
√
g

)
∼
=

2r
R0
∆
′ cos ϑ +

r
R0

(
r∆′

R0
+
5
2
∆
′2 − C̄ ′

)
cos 2ϑ + . . . .

Thus, collating the two results together gives

N ≡
gϑϑ
√
g
=
r
R0

[
1 + 2∆′ cos ϑ +

∆′2

2
+

3r 2

4R2
0

+
∆

R0

+

(
r∆′

R0
+
5
2
∆
′2 − C̄ ′

)
cos 2ϑ

]
. (5.25)
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Computing grϑ/
√
g also does not require a lot of algebra. We start

from noting that

grϑ ≈ r 2λ ′+r∆′ sin ϑ + r 2λ ′ Ûλ + r∆′ Ûλ sin ϑ + r∆′λ cos ϑ

−
r
2

(
Ē ′ − S̄ ′ +

Ē − S̄
r

)
sin 2ϑ,

which shows that grϑ/
√
g is ε times smaller compared to gr r /

√
g and

gϑϑ/
√
g . By multiplying the equation above by (5.19), it is immediate to

see that 〈grϑ/
√
g 〉 = 0, so that we obtain

M ≡
grϑ
√
g
=
r
R0

[ (
∆
′′ +

∆′

r
+

1
R0

)
sin ϑ +

(
5
2
∆′

R0
+
r∆′′

2R0

+ 3∆′∆′′ + 2
∆′2

r
−
C̄ ′′

2
−
C̄ ′

2r
−
3C̄
2r 2

)
sin 2ϑ
2

]
. (5.26)

Thus, for straight field line coordinates, the geometry of equilibria
which satisfy the conditions µ0p/B2

0 ∼ µ0r p ′/B2
0 ∼ ε

2 is completely de-
termined by equations (5.21)-(5.26). To complete the framework which
is required for the stability calculations presented in the next chapters,
it only remains to account for modification of the metric coe�cients in
presence of localised steep pressure gradients. This is discussed in the
next section.

5.4 Metric of the s − α equilibrium model

Let us assume that, globally, the ratio of the kinetic over magnetic pres-
sure is of order ε2, but allow for localised strong pressure gradients. This
is what characterises the so called s − α equilibrium model introduced
in section 4.3.4 which is relevant for the discussion of ballooning modes
addressed in chapter 12. Hence, the aim of this section is to derive the
appropriate expressions of the metric coe�cients in the narrow region
where such gradients occur.

Figure 5.3: Example of the straight
field poloidal angle distortion due to a
steep pressure gradient radially localised
within the shaded region. In such a case,
ϑ becomes nearly discontinuous where
the pressure gradient is large due to the
discontinuity of the first derivative of the
Shafranov shift (cf. (5.15) which can be
inverted to write ϑ as a function of θ).

First notice that the enhancement of the pressure gradient can locally
”promote” the order of some quantities like, for example, the second
derivative of the Shafranov shift (see (4.40)-(4.43)). It follows, and this
is a crucial subtlety, that care has to be taken any time the derivative
operator acts on e.g. ∆′: if the di�erential operator acts on some
expressions involving ∆′, then terms proportional to ∆′′ may appear
whose order would be lower than the one of the original expression
prior to di�erentiation. Notice that this reflects the fact that ∆′ becomes
nearly discontinuous when large localised pressure gradients are allowed
(see the discussion in section 4.3.4 and figure 5.3).

Hence, the expressions for the coe�cients L, M and N , and their
derivatives, must be modified accounting for such enhancements. Notic-
ing that G = R0/r is guaranteed by the choice of the function S̄ (cf.
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(5.23)), we anticipate that the quantities that will enter the stability anal-
ysis of the s − α model are

〈N 〉 〈N 〉′ 〈N 〉′′ 〈M 〉 〈M 〉′ 〈L〉

N±1 N ′
±1 N ′′

±1 M±1 M ′
±1 L±1

N±2 N ′
±2 N ′′

±2 M±2 M ′
±2 L±2

(5.27)

with the notation A±ℓ = 1
2π

∫ 2π
0 Ae∓iℓ ϑdϑ.

The computation of the coe�cients above is easily accomplished
by means of equations (5.24)-(5.26). Following the discussion of sec-
tion 4.3.4, we allow r µ0p ′0/B

2
0 ∼ ε and let ∆′′→ α/r with the assumption

that α is constant and of the order of unity. By means of (4.40)-(4.43)
and (5.9), we immediately see that rC̄ ′′ ∼ ε while C̄ ′ ∼ C̄ /r ∼ ε2.10 We 10 Note that r 2C̄ ′′′ ∼ 1 at most, having

assumed that r 2ψ′′′ ∼ ψ′ (cf. (4.42)).are now ready to evaluate the expressions of the metric coe�cients for
an s − α equilibrium.

Anticipating that only the leading ε order is needed, all the entries
marked in light grey in the table above are at least of order ε2 and
thence they can be dropped (note that 〈M 〉 = 0). Quantities that will be
employed explicitly are

〈L〉 ≈
1
rR0

(
1 +

α2

2

)
, L±2 ≈ −

α2

4rR0
,

〈N 〉 ≈
r
R0
, 〈N 〉′ ≈

1
R0
,

M±1 ≈ ∓
iα
2R0

.

(5.28)

All the remaining terms in (5.27) are of order ε at most whose explicit
expression is not required.

We shall point out that the approximations above do not account for
terms of the form αk with k > 2 which may appear at higher orders in
the ε-expansion of (5.24)-(5.26). Such terms, however, can be expected
to be small under the assumption that, also in the case of locally steep
profiles, the metric tensor coe�cients can be written as a converging
series in ε.11 11 This a rather heuristic argument.

In conclusion, the expressions for the metric coe�cients represented
by (5.21), (5.23)-(5.26) and (5.28) will form the geometrical basis to
be used in the stability analysis of the various MHD perturbations ad-
dressed in the following chapters.
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Part III

IDEAL STABILITY





6
General remarks on ideal MHD stability

It is inevitable that a plasma which is in its equilibrium state will be
subject to some sort of perturbations: these can be, for example, a small
fluctuation of the magnetic field caused by external conductors, or a
modification of the temperature profile due to local power deposition,
and so on. Thus, the natural question to ask is whether such an equi-
librium is stable or unstable with respect to small deviations from its
initial state. We say that the equilibrium is unstable if the perturbation
grows in time pushing the system away from its original equilibrium
state. Otherwise is stable. We refer to growing perturbations as insta-
bilities (often we simply call them perturbations or unstable modes,
the reason of the latter will become clear later).

In some cases plasma instabilities can be dangerous, either leading
to a severe deterioration of the plasma performances or putting in dan-
ger the structural integrity of the device.1 In other cases instead, they 1 This happens when sudden and violent

transients occur. Disruptions (a rapid
collapse of the plasma column) and Edge
Localised Modes (ELMs) are such a kind
of phenomena. Both are associated with
extremely high heat loads. Disruptions
also induce severe structural mechanical
loads.

might have a beneficial e�ect, helping e.g. in controlling the plasma im-
purity content or enhancing the exhaust of the fusion ashes (namely
the Helium fusion by-product).

Thus, with the aim of maximising tokamak performance, many ef-
forts have been devoted to the understanding of the driving mechanisms
of such events, and to the identification of their stability boundaries.
MHD instabilities in tokamaks can be divided into two main families:
ideal instabilities and resistive instabilities. We talk about ideal in-
stabilities when the plasma is modelled as a perfect conductor, whereas
we refer to resistive instabilities if a small amount of plasma resistivity
is allowed. We shall focus on ideal instabilities first.

The ideal instabilities discussed in
this report are internal and external
kinks, infernal, Mercier and balloon-
ing modes. Their understanding pro-
vides the basic tools for the comprehen-
sion of many of MHD events observed in
experiments.

Before diving into the mathematical analysis of the various MHD
perturbations, it is instructive to provide a brief account of the basic
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concepts which the ideal MHD stability framework leans on. This is the
aim of this chapter.

6.1 Linearised MHD

The whole MHD stability framework is based on the concept of lineari-
sation. To explain it, let’s take a generic physical quantity f, either a
scalar or a vector, and assume that it can be written as the sum of an
equilibrium (indicated by the subscript zero) and a fluctuating (denoted
by a tilde) part, viz.

f = f0 + f̃. (6.1)

The linearisation approach basically expands the equations in which
f appears to first order in the fluctuating part. All the physics of the
interaction of the fluctuation with itself, the so called non-linearities, is
neglected.

We start with the system of equations (2.1)-(2.6), and (2.8).2 Let us2 This is the ideal MHD model. The ef-
fects of plasma resistivity on the stability
will be discussed in part four.

assume that the plasma is in a static equilibrium state (i.e. no equi-
librium fluid flows), and add a small �uid perturbation ξ (also called
�uid displacement). This quantity is related to the plasma velocity
through the relation

u =
∂ξ

∂t
. (6.2)

Plugging (6.2) into the MHD equations, and retaining only the first order
fluctuating terms yields

ρ̃ = −∇ · (ρ0ξ),

ρ0
∂2ξ

∂t2
= −∇p̃ + ˜J × B0 + J0 × ˜B,

˜B = ∇ × (ξ × B0) ,

p̃ = −ξ · ∇p0 − Γp0∇ · ξ,
∇ × ˜B = µ0 ˜J ,

∇ · ˜B = 0.

(6.3)

For the sake of simplicity, we assume isothermal flux surfaces (cf. (4.59)),
so that both p0 and ρ0 are flux functions.

It is immediate to recognise that the equation for the perturbed mass
density can be ignored.3 Thus, by combining equations (6.3) together,3 This is because the plasma is static.

With a stationary equilibrium flow, the
equation for ρ̃ is needed.

we easily obtain a single vector equation for ξ :

ρ0
∂2ξ

∂t2
=∇

(
ξ · ∇p0 + Γp0∇ · ξ

)
+

1
µ0

∇ ×
[
∇ × (ξ × B0)

]
× B0

+
1
µ0
(∇ × B0) × ∇ × (ξ × B0) . (6.4)

The equation above is often written in a compact form as

ρ0
∂2ξ

∂t2
= F (ξ), (6.5)
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where the linear operator F is known as MHD force operator. This
equation must be supplied with the appropriate boundary conditions.
These are discussed below.

6.1.1 Boundary conditions in linearised MHD

Let us assume that a vacuum region separates the plasma from an ideally
conducting rigid wall,4 with the vacuum magnetic perturbation obeying 4 The particular case of a plasma sur-

rounded by a resistive wall is discussed
in appendix E.

∇ × ˜Bv = 0. (6.6)

Hereafter the subscript v will indicate a vacuum quantity. We further
impose that there are no electric fields at the equilibrium.

The physical quantities appearing in equations (6.5) and (6.6) have
to fulfil the correct matching conditions at the plasma-vacuum interface
and at the wall. These are computed fromMaxwell’s equations assuming
that the displaced surface moves with a normal velocity n ·u , and choos-
ing a reference frame comoving with the plasma surface. The quantities
in the original fixed reference frame are obtained from those in the mov-
ing one by applying the Galilean transformations5 pM = p, BM = B and 5 This is not strictly correct as one

should use Lorentz transformations.
However, for nonrelativistic systems this
approximation proves to be very accu-
rate.

EM = E +u ×B , where we used the subscript M for denoting quantities
in the moving frame. Hence, at the plasma-vacuum boundary we get

n · (B − Bv ) = 0, (6.7)

n × (B − Bv ) = µ0K , (6.8)

n × (˜EM − ˜Ev,M ) = 0, (6.9)

with n being the unit vector perpendicular to the perturbed surface and
K the surface current density.

V n

Figure 6.1: Pillbox of volumeV extend-
ing across the plasma-vacuum surface S .
The jump conditions are computed by
letting ℓ → 0. Note that n = ∇r /|∇r |.

Let us now consider an infinitesimal Gaussian pillbox lying across the
plasma-vacuum surface as shown in figure fig. 6.1. For the case in which
there is no flow across the plasma surface, integrating (2.13) over the
pillbox and letting the width approaching zero but keeping the surface
area finite ( Jackson (1999), Boyd (2003)) gives

Jp + B2/2µ0K = 0, (6.10)

where J·K = (·)rp+ε − (·)rp−ε with ε → 0, and rp denoting the plasma-
vacuum surface. Here we used the fact that since the plasma is mod-
elled as an ideal conductor, the normal component of B on the plasma
surface is vanishing (i.e. it remains a magnetic surface). This relation
guarantees that in a region of a rapid variation of kinetic (p) and/or
magnetic (B2) pressure there is no infinite acceleration of the plasma
element. Hence, equation (6.10) gives the jump condition of the total
pressure (kinetic and magnetic) at the perturbed plasma-vacuum sur-
face. We now notice that a scalar quantity f evaluated at the perturbed
plasma-vacuum surface takes the form

f = f0(rpert) + f̃ (rpert) ≈ f0(r ) + ξ · ∇f0(r ) + f̃ (r ), (6.11)
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where rpert and r denote the position of the perturbed and unperturbed
surface respectively. It follows that (6.10) can be cast as[

p̃(r ) +
B0(r ) · B̃ (r )

µ0
+ ξ · ∇

(
p0(r ) +

B2
0 (r )

2µ0

)]
plasma

=
[B0(r ) · B̃ (r )

µ0
+ ξ · ∇

B2
0 (r )

2µ0

]
vacuum

,

having written explicitly the dependence upon the radial variable.
At the ideally conducting metallic wall surface we impose

nw × ˜Ev = 0, (6.12)

nw · ∂Bv/∂t = 0, (6.13)

with nw indicating the unit vector normal to the wall pointing towards
the plasma. Equation (6.13) follows from (6.7) having used the fact
that inside a perfect conductor the magnetic field can be non-zero but
independent of time. Therefore, we can write (6.13) as nw · ˜Bv = 0,
where ˜Bv is the fluctuating (perturbed) magnetic field.

If the ideal wall is facing directly the plasma, the appropriate bound-
ary conditions at the plasma-wall interface are

n · ˜B = 0, (6.14)

n × ˜E = 0, (6.15)

from which, by combining with (2.3), one has

n · u = 0, (6.16)

where here n and nw coincide apart from the direction along which they
are pointing.

6.1.2 Eigenvalue properties

In order to resolve the time dependence in (6.5), we attempt a solution
of the form

f̃(x, t ) = f̃ (x)e γt + c .c ., (6.17)

where γ is a complex number and c .c . stands for complex conjugate.
This is the so called normal mode analysis,6 which is the approach6 A more rigorous procedure for solving

linearised equations involves using the
Laplace transform.

that will be used throughout this report to investigate MHD stability.
The real part of γ is associated with the growth of the perturbation’s
amplitude, whereas the imaginary part to its rotation frequency. Hence,
the study of stability basically boils down to the analysis of the real part
of γ.

A remarkable property of the ideal MHDmodel is that for the case of
a plasma directly surrounded by a perfectly conducting wall the operator
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F is self-adjoint, meaning that for two arbitrary functions ξ and η

satisfying the boundary condition (6.14)-(6.16) one has∫
V
η̄ · F (ξ)dV =

∫
V
ξ · F (η̄)dV,

where V is the volume enclosing the plasma with a corresponding in-
finitesimal volume element dV and the overbar indicates the complex
conjugate.7 7 Loosely speaking, F is an operator act-

ing on fluid displacement functions fi of
a Hilbert space with inner product

(fi , f j ) =
∫
V
f̄i · f j dV.

For a mathematical description of oper-
ator theory in MHD, the reader is re-
ferred to Lifshitz (1987). Note that the
self-adjointness property of the force op-
erator holds only in ideal MHD.

This is proved in the next subsection. The self-adjointness
property of F also holds when a vacuum region separates the plasma
from the ideal wall (a proof of this is given in appendix C.).

The operator F being self-adjoint implies that γ2, its eigenvalue,
has to be real. Hence, if γ2 > 0, we have two real solutions, one with
γ > 0 (growing mode) and one with γ < 0 (damped mode). If the eigen-
value γ is positive, we call it the growth rate (for simplicity, we shall
always use this terminology also when γ is not positive or real). The con-
dition γ = 0 identifies the so called marginal stability boundary (or
marginal boundary in short). If γ2 < 0, then γ is purely imaginary in-
dicating a stationary oscillation which does not grow in time. It is worth
to point out that the spectrum of F contains both discrete eigenvalues
and continua, the latter however only appearing for γ2 < 0, i.e. in the
stable domain (Freidberg (2014)). Therefore, within the normal mode
approach, we may just focus on assessing the existence of exponentially
growing modes.

6.1.3 Self-adjointness of the force operator F

We follow the proof in Bernstein (1958) which leverages the energy con-
servation (2.12) in ideal MHD. Let us assume that the plasma is directly
surrounded by a perfectly conducting metallic wall. Using the results
of section 2.1.2, the total energy U = K +W , where K andW are the
kinetic and potential contributions, is conserved. This means that for
small deviations from the equilibrium, which is supposed to be static,
we have8 8 Take

K = K0 + δK,

W =W0 + δW.

with K0 = 0 andW0 constant.

∂

∂t
(δK + δW ) = 0,

where

δK =
1
2

∫
V
ρ0

(
∂ξ

∂t

)2
dV.

with V the plasma volume and dV the infinitesimal volume element.
Here the fluid displacement ξ is a real function.

By dotting (6.5) with ∂ξ
∂t and integrating over the plasma volume V

we obtain
∂δK
∂t
=

∫
V

∂ξ

∂t
· F (ξ)dV = −

∂δW
∂t

. (6.18)

We shall consider the integral in the expression above as a functional of
the two functions ξ and ∂ξ

∂t , that is∫
V

∂ξ

∂t
· F (ξ)dV = F

(
∂ξ

∂t
, ξ

)
.
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LetW0 be the potential energy at the equilibrium position req , i.e.
W0 =W (req ). Taylor expandingW in ξ gives

W (req + ξ) =W0 + ξ · ∇W |req +
1
2
ξ · [ξ · ∇ (∇W )] |req + . . . .

Since we are in a neighbourhood of the equilibrium, we have ∇W |req = 0.
It follows that the functional δW is a quadratic form in ξ :99 We use the definition δW = W (req +

ξ) −W0

δW = δW (ξ, ξ), and
∂δW
∂t
= δW

(
∂ξ

∂t
, ξ

)
+ δW

(
ξ,
∂ξ

∂t

)
.

Additionally, δW is symmetric in its arguments, i.e. for arbitrary ξ and
η

δW (η, ξ) = δW (ξ, η).

Hence
∂δW
∂t
= 2δW

(
∂ξ

∂t
, ξ

)
= 2δW

(
ξ,
∂ξ

∂t

)
.

Now, the crucial step is to recognise that ξ is algebraically indepen-
dent of ∂ξ

∂t . Thus, in (6.18) we replace ∂ξ
∂t by η, and readily obtain∫

V
η · F (ξ)dV = F (η, ξ) = −2δW (η, ξ) =

− 2δW (ξ, η) = F (ξ, η) =

∫
V
ξ · F (η)dV,

showing that F is self-adjoint. Note also that

δW = −
1
2

∫
V
ξ · F (ξ)dV

having omitted to write the arguments of the functional.
A ”brute force” proof of the self adjointness of the force operator F

including a vacuum region separating the plasma from an ideally con-
ducting wall is given in Appendix C. In the next sections we introduce
three ideas which prove to be fundamental for the understanding of
tokamak dynamics, namely the parallel gradient operator, the magnetic
shear and mode coupling.

The energy principle

The self-adjointness property of F allows to derive a minimising princi-
ple, known as energy principle, which determines whether or not an
equilibrium is stable without solving explicitly the di�erential equation
ρ0∂

2ξ/∂t2 = F (ξ). Focussing on the case of no vacuum region between
plasma and ideal wall, the energy principle states that the equilibrium is
stable if and only if

δW = −
1
2

∫
V
ξ · F (ξ)dV ≥ 0
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for all trial displacements ξ which satisfy the appropriate boundary con-
ditions, with the integration carried over the plasma volume (the energy
principle can be extended to the case of a vacuum region separating
plasma and ideal wall). A very readable proof of the energy principle
can be found in Biskamp (1993) and Goedbloed and Poedts (2004).
Although not used in the following calculations, the energy principle
becomes quite handy when one has a guess on the form of ξ for an
unstable perturbation. One can plug this trial function ξ , although not
being the exact solution of the linearised equation of motion, into the
integral above and check whether the result is negative proving that the
equilibrium is not stable.
Furthermore, we can gain an intuitive physical understanding of the var-
ious stabilising and destabilising contributions by inspecting the terms
appearing in δW . A little algebra shows that (ξ is taken to be a real
quantity)

δW =
1
2

∫
V

[
|B̃2 |

µ0
+ Γp0 |∇ · ξ |2 + (ξ · ∇p0)∇ · ξ

− ξ · J0 × ∇ × (ξ × B0)

]
dV. (6.19)

The first and second terms, both positive and thus stabilising, are asso-
ciated with magnetic field line bending and plasma compression respec-
tively, the former due to the |B̃⊥ |2 term. The remaining terms can be
negative, and hence acting as instability drives.

6.2 Parallel gradient and magnetic shear

In the previous chapter we introduced the straight field line coordinate
system (r, ϑ, φ), in which the ratio q = Bφ/Bϑ depends only on the flux
label r . Because ϑ and φ are cyclic variables, any physical quantity f
must be periodic in ϑ and φ so that it can be decomposed in a Fourier
series

f =
∑
m,n

fm,n(r )e i (mϑ−nϕ). (6.20)

The quantities fm,n are called Fourier harmonics (or simply harmon-
ics or modes), and m and n are the poloidal and toroidal mode num-
bers respectively. We refer to the pair (m, n) as the mode helicity, as
these two numbers measure the angular twisting of the perturbation. For
a fixed n, the various harmonics with di�erent m’s form the so called
poloidal spectrum.

Very often terms of the form

B · ∇

appear (for sake of simplicity we drop the subscript 0 in writing equi-
librium quantities). This is called the parallel gradient operator. We
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k

B

k

B

(a) (b)

Figure 6.2: Field line movement following a displaced plasma flux surface associated
with a wave vector k . (a): magnetic field parallel to the wave vector. (b): magnetic field
perpendicular to the wave vector.

already saw in chapter 4 that equilibrium magnetic field lines lie on iso-
baric surfaces, this being expressed by the relation B · ∇p = 0. In such
a case, p can be viewed as a series of the form (6.20) for which all but
the m = n = 0 terms are vanishing.

Let us now consider a perturbation of the form

Ã = Am,n(r )e i (mϑ−nϕ) = Am,n(r )e ik ·r ,

having introduced the wave vector k = m∇ϑ−n∇φ with r = r er+ϑeϑ+φeφ
(cf. Sec. 4.1.1). That is, we allow only a single harmonic in the expansion
(6.20).

When we apply the parallel gradient to Ã, we obtain1010 The power of the straight field line
coordinates manifests clearly in the ex-
pression of the parallel gradient, having
exploited the fact that the ratio Bφ/Bϑ is
a flux function.

B · ∇Ã = i (k · B )Ã = iBφ

(
m
q
− n

)
Ã.

Because of the frozen-in theorem the field lines are either bent if k ·B ,
0, or rigidly displaced if k · B = 0 while following the fluid motion.
This is schematically shown in figure 6.2. It turns out that the situation
depicted in Fig. 6.2-(a) is energetically unfavourable compared to the
case of Fig. 6.2-(b). This is because the magnetic energy term in (6.19)
associated with �eld line bending is

|B̃⊥ | ∝ k · B .

For a given a perturbation with mode numbers m and n, it can be
possible that its parallel gradient is zero for some values of q . The radii,
namely the flux surfaces, for which k ·B = 0 are called resonant surfaces
or resonances. We thus expect the perturbation to develop where the
stabilisation associated with the bending of the field lines is minimised,
i.e. where k · B ≈ 0.1111 There are some special cases for which

the field line bending stabilisation can
be strongly reduced over a broad region
even if k · B , 0. This is what happens,
e.g., with the m = 1 internal kink mode,
which will be studied in detail later.

The most dangerous case occurs when there is an extended region
for which q ≈ m/n. In such a situation the perturbation can develop
over a large plasma portion. Things however are mitigated by the fact
that q can be a varying function of the radius r . The magnetic shear is
defined as (cf. Sec. 4.3)

s =
r q ′

q
,

and measures the radial rate of variation of q (cf. Fig. 6.3). Configu-
rations with large values of magnetic shear generally exhibit improved
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stability because of the reduced radial extension of the region where k ·B
is small for the helically resonant mode. Intuitively speaking, the fluid
can ”slip through” the magnetic cage when the wave vector is orthogonal
to the field (cf. Fig 6.2-(b)). If one thinks of the magnetic field lines lying
on each flux surface as a sequence of cords, then for a su�ciently strong
twisting from one surface to another, the fluid element is less likely to
escape. This provides a very e�cient stabilising e�ect, although things
might be slightly di�erent when the ideal constraint is violated.

ψ3

ψ2

ψ1

Figure 6.3: Highly exaggerated example
of a sheared magnetic field across three
flux surfaces. k indicates the wave vector
of the perturbation.

6.3 Mode coupling

In the two preceding sections, we introduced the perturbed MHD equa-
tions (see (6.3)) with appropriate boundary conditions, and provided
an intuitive picture of the meaning of the parallel gradient operator and
the e�ect of a sheared magnetic field. This discussion was developed
by considering a fluid perturbation characterised by a single harmonic.
The most general solution of (6.5), however, is typically a superposition
of modes of the form given by equation (6.20).

Let us first notice that F depends on r and ϑ, In cylindrical geometry, in contrast, the
dependence upon ϑ disappears.

and because of the
equilibrium axisymmetry there is no dependence upon φ. This means
that Fourier harmonics with di�erent toroidal mode numbers behave, at
least linearly, independently of each other.12 The situation is radically 12 This makes n a good quantum num-

ber.di�erent when we consider the poloidal spectrum for a fixed n.
In order to make it more transparent, let us employ, instead of (6.5),

the following model equation

γ2ρ0ξ = F ξ, (6.21)

where F is a di�erential operator which depends on both r and ϑ, and
ξ is of the form (6.20). We take ρ0 to depend only on r .

As a matter of notation, for a generic quantity A(r, ϑ) one defines its
mth (poloidal) Fourier projection as

Am(r ) =
1
2π

∫ 2π

0
Ae−imϑdϑ.

The nth toroidal projection is computed similarly by replacing the poloidal
angle with the toroidal one.

Hence, the (m, n) Fourier projection of (6.21) is

γ2ρ0ξm,n =
1
(2π)2

∫
F ξe−i (mϑ−nφ)dϑdφ,

with the integration carried out from 0 to 2π for both of the two an-
gular variables. On the right hand side of this equation we have the
convolution of F and ξ . This leads to13

13 The convolution of two functions f
and g of the poloidal angle ϑ is denoted
by (f g )m and is given by

(f g )m = 〈f 〉gm +
∑
m′,0

fm′ gm−m′ .

where the angular brackets indicate the
poloidal average as defined in (5.18).

γ2ρ0ξm,n = F0,0ξm,n +
∑
m′,0

Fm′,0ξm−m′,n . (6.22)
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One then realises that the equation for the evolution of ξm,n is not ”monochro-
matic” , in that it may include contributions from other harmonics. This
is what we call mode coupling or toroidal coupling (because it is in-
duced by toroidicity). This feature plays a crucial role in explaining
the dynamics of several MHD instabilities and it will be thoroughly dis-
cussed in the next chapters.

We would like to stress that this e�ect is completely absent in cylin-
drical plasmas. Hence, care has to be taken when interpreting tokamak
dynamics using results borrowed from analyses carried out in cylindrical
geometry.
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7
Distilled stability equations

Although equation (6.5) encapsulates the whole physics of linearised
MHD, it is not easy to handle in its form. We are thus interested in
deriving a suitable set of coupled di�erential equations simple enough
to be analytically manageable, and yet su�ciently flexible to describe
a wide variety of phenomena. We show that, eventually, this set will
consist of three equations only which, remarkably, are able to capture
the fundamental physics of many phenomena observed in tokamaks.1 1 MHD instabilities that are not mod-

elled within the framework discussed in
this report are those requiring a more
advanced physics model (Alfvén eigen-
modes are such of a kind for which ki-
netic extensions prove to be essential), or
a more careful treatment of the plasma
geometry (this is needed to describe
shaping induced perturbations).

These are called eigenmode equations or stability equations; they
also form the basis for the development of the resistive theory. This
chapter is thence devoted to their derivation.

We first rearrange the ideal MHD equations in a form easier to han-
dle mathematically in a tokamak geometry. Then, specialising to the
case of a nearly circular plasma cross-sections, a set of coupled dif-
ferential equations is derived through a careful ordering of equilibrium
and perturbed quantities.2 The procedure for obtaining the stability 2 Recall that in §5.1 we found that a

small elongation is needed to satisfy the
equilibrium at higher orders.

equations is based on an inverse aspect ratio expansion. Particular
emphasis is given to the e�ects of mode coupling induced by toroidicity:
one finds that the dynamics of a specific poloidal harmonic is determined
by the coupling with the first neighbouring sidebands (or satellite har-
monics) while contributions arising from farther Fourier harmonics can,
generally, be ignored. We work out the derivation in such a way to have a
fairly easy comparison with the results obtained in cylindrical geometry
for a screw-pinch (see appendix D).

The analysis presented in this and the following chapters is
carried out in the straight �eld line coordinate system described
in chapter 5. Salient equations and quantities, which will be extensively
used in the rest of this report, are put in a box to facilitate their identi-
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fication. In the remainder of the report it is always assumed that q
takes positive values.

7.1 Convenient form of the linearisedMHD equa-
tions

We shall first rearrange the linearised MHD equations in a form which is
more convenient for simple analytic manipulations. As usual, the equi-
librium is supposed to be static. For this purpose, the set of equations
that we need are:

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p + J × B, (7.1)

∂B
∂t
= ∇ × (u × B ) , (7.2)

∂p
∂t
+ u · ∇p + Γp∇ · u = 0, (7.3)

∇ × B = µ0 J , (7.4)

∇ · B = 0. (7.5)

Allowing the perturbed quantities to have a exp(γt ) time dependence,33 This means that we are addressing sta-
bility via normal mode analysis. the aim is to rearrange the equations above to obtain a single eigenvalue

equation for the contravariant radial projection of the fluid displacement

ξr = ξ · ∇r,

with eigenvalue γ.
Let us write ∂/∂t → γ and denote equilibrium quantities with the

subscript 0. The dependence upon the perturbed current density can be
eliminated by means of (7.4), that is

µ0 J̃ r =
1
√
g

(
∂B̃φ
∂ϑ
−
∂B̃ϑ
∂φ

)
,

µ0 J̃ ϑ =
1
√
g

(
∂B̃r
∂φ
−
∂B̃φ
∂r

)
,

µ0 J̃ φ =
1
√
g

(
∂B̃ϑ
∂r
−
∂B̃r
∂ϑ

)
.

(7.6)

Linearising (7.2) and dotting it by ∇r and ∇φ yields respectivelyWe multiply by the Jacobian in order to
eliminate the ϑ dependence in the paral-
lel gradient. √

g B̃ r =
√
gB0 · ∇ξr , (7.7)

√
g B̃φ =

√
gB0 · ∇ξφ −

√
g∇ · (ξBφ

0 ). (7.8)

From Eq. (7.3) and exploiting the fact that p0 = p0(r ) we get

p̃ = −p ′0ξ
r + ∆p with ∆p = −Γp0∇ · ξ . (7.9)
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Here ∆p represents the compressible contribution to the perturbed
pressure, or simply compressibility. We get an equation for ∆p by
dotting (7.1) with B and then perturbing it. Using (7.7), this gives

ρ0γ
2B0 · ξ = − B̃ · ∇p = −B̃ r p ′0 + B0 · ∇

(
p ′0ξ

r − ∆p
)

= − B0 · ∇∆p . (7.10)

Equations for B̃ϑ and B̃φ are obtained by means of (7.5) and project-
ing (7.1) along eϑ, so that one has

∂
√
g B̃ϑ

∂ϑ
= −

∂
√
g B̃ r

∂r
−
∂
√
g B̃φ

∂φ
, (7.11)

ρ0γ
2ξϑ = −

∂p̃
∂ϑ
+
√
g J φ0 B̃

r −
√
g J̃ rBφ

0

= −
∂p̃
∂ϑ
+ J φ0

(√
g B̃ r

)
−
Bφ
0

µ0

(
gφφ
√
g

∂
√
g B̃φ

∂ϑ
−
∂B̃ϑ
∂φ

)
, (7.12)

where we recall that B r0 = 0 and gφφ/
√
g is independent of ϑ (cf. (5.5)).

Finally, to close the system we first apply the operator ∇φ ·∇× 1
Bφ0

to

(7.1), and then linearise to obtain4 4 Rising or lowering indeces follow the
rules given in chapter 3.

γ2
√
g

[ ∂
∂r

( ρ0
Bφ
0

ξϑ

)
−

∂

∂ϑ

( ρ0
Bφ
0

ξr

)]
= B0 · ∇

J̃ φ

Bφ
0

+ ˜B · ∇
J φ0
Bφ
0

− J0 · ∇
B̃φ

Bφ
0

− ∇φ · ∇ 1

Bφ
0

× ∇p̃, (7.13)

having used the fact that ∇ · J0 = 0. This is known as the vorticity
equation because of the analogy with its fluid-dynamical counterpart.

If a vacuum region is allowed, we must add Eq. (6.6) to the set
of equations above and supply appropriate boundary conditions at the
plasma-vacuum interface as discussed in the preceding chapter.

In summary, the equations that we need are formed by the system
(7.6)-(7.13)5 which can be employed to address MHD stability both in 5 This set of equations forms the basis

for the analysis of resistive instabilities as
well, although some small but profound
modifications will be required.

cylindrical and toroidal configurations. In the next sections we will show
how the desired equation for ξr with eigenvalue γ in toroidal geometry
will be generated by combining Eqs. (7.6)-(7.12) with (7.13) whereas a
brief account on the derivation of the eigenmode equation in a straight
cylindrical screw-pinch is carried out in appendix D.

7.2 Orderings

For achieving the goal of obtaining a set of simplified equations, the first
crucial step to take is to deploy an appropriate ordering of equilibrium
and perturbed quantities. The aim of the next two subsections is thus
to carefully detail such orderings.
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7.2.1 Equilibrium

The equilibrium analysis has already been discussed in chapter 4, hence
we just summarise the most important results.

From (5.3), the contravariant toroidal component of the equilibrium
magnetic field is written as66 Remember that the symbol ∼ means

”of the order of”.

Bφ
0 =

f ′0
√
g
, with f ′0 = rB0[1 + o(ε2)], (7.14)

having made use of (4.25), with B0 denoting the on axis equilibrium
magnetic field. Furthermore, the following relation holds

〈
1

Bφ
0

〉′ =
〈R2〉′

F
−
〈R2〉F ′

F 2
, (7.15)

where we recall that angular brackets denote poloidal average as de-
fined by (5.18).

The ε-ordering of the metric tensor coe�cients is

gr r ∼ 1, grϑ ∼ εa, gϑϑ ∼ a2,
√
g ∼

a2

ε
, gφφ ∼

a2

ε2
,

with gr φ = gϑφ = 0.7 Other equilibrium quantities, such as pressure,7 Recall that, for an axisymmetric sys-
tem, the transformation rules from co-
variant to contravariant vector compo-
nents are

Ar = gr rAr + grϑA
ϑ,

Aϑ = grϑA
r + gϑϑA

ϑ,

Aφ = gφφA
φ .

follow the usual ordering introduced in section 4.3.1, and are assumed
to fulfil the condition r f′0 ∼ f0 with f0 denoting a generic equilibrium
quantity.

The particular case for which µ0p0/B2
0 ∼ ε

2 and µ0r p ′0/B
2
0 ∼ ε will

be addressed separately in chapter 12 when the stability of ballooning
modes will be investigated.

7.2.2 Perturbations

As mentioned earlier, for the sake of convenience in this report it is
assumed that q > 0. Let us denote with rs the radius at which q =
m/n (cf. Fig. 7.1), that is the resonance, with both m and n positive
integers di�erent from zero. We take q ∼ 1, a condition which is
usually fulfilled in tokamaks, so that m ∼ n. Moreover, the plasma cross
section is assumed to be nearly circular in line with the analysis of
chapters 4 and 5.

Figure 7.1: Example of q profile with a
m/n resonance.

In a region su�ciently far from rs we assume that for any perturbed
quantity f̃ one has

r
∂ f̃
∂r
∼ mf̃ . (7.16)

Letting ∆r be the mode radial extension, the relation above states that
∆r ∼ r /m. Hence, if m ∼ 1 the perturbation does not have strong gradi-
ents and extends over a broad region. This is what characterises global
modes. On the contrary, localised modes (or small-scale modes) have
m � 1 with ∆r small enough so that r f̃ ′/ f̃ � 1.8

8 All MHD instabilities, including the re-
sistive ones, in tokamaks can be grouped
into two families: global modes and lo-
calised modes.
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Now, the crucial step for understanding tokamak instabilities is to
realise that, as discussed in the preceding chapter, the spectrum of the
perturbation is not necessarily monochromatic, but it may contain sev-
eral harmonics whose coupling is induced by toroidicity. We first point
out that since the equilibrium is toroidally symmetric, harmonics with
di�erent n numbers do not interact linearly, whereas coupling involves
poloidal harmonics with di�erent m’s. We say that n is a good quantum
number, and thus we focus on a single n at a time.

Let’s imagine for the moment that experimental evidence shows
some MHD activity in the form of a global helical fluid perturbation
with dominant poloidal and toroidal mode numbers m and n, both of
the order of unity (see e.g. figure 7.2). For a given n, we may Fourier
expand the perturbed fluid displacement ξ as

ξ j = ξ
j
me

i (mϑ−nφ) + ξ
j
m+1e

i [(m+1)ϑ−nφ] + ξ
j
m−1e

i [(m−1)ϑ−nφ] + . . . , (7.17)

with the index j running over (r, ϑ, φ). Since n is fixed, we omit to
write the subscript n in the Fourier components. We recall that the set
consisting of all the harmonics with di�erent poloidal mode numbers is
called the poloidal spectrum.

[a
.u
.]

Figure 7.2: Example of the spectral
structure vs normalised minor radius of a
perturbation dominated by the harmonic
with poloidal mode number m.

When the spectrum of the perturbation is dominated by the har-
monic of helicity (m, n), we order

ξ
j
m+1 ∼ ξ

j
m−1 ∼ εξ

j
m . (7.18)

We further assume that the contravariant projections of ξ for a given
poloidal number are comparable in magnitude, that is

1
a
ξrℓ ∼ ξ

ϑ
ℓ ∼ ξ

φ

ℓ , (7.19)

where ℓ = m − 1,m,m + 1. Harmonics with poloidal mode numbers
m ± 1,±2, . . . are called sidebands or satellite harmonics whereas we
refer to the one with mode numberm as themain (or dominant) mode.
We anticipate that mode coupling for global modes in a tokamak with cir-
cular cross section typically involves first neighbouring sidebands only.9

9 Plasma shaping induces couplings with
higher order harmonics. For example
elongation couples m and m ± 2 modes.

We now discuss the ordering of the magnetic field. As long as ℓ −nq
remains of the order of unity,10 10 This means far from the resonance q =

ℓ /n.
from (7.7) one has

rB0ξ
r
ℓ ∼ (
√
g B̃ r )ℓ . (7.20)

Therefore, the perturbed magnetic field can be expanded and ordered
in a way similar to that of Eqs. (7.17)-(7.19), which is In the following sections we show how

these orderings, which have been kept
fairly general for the moment, can be fur-
ther refined.

(
√
g B̃ j )m+1 ∼ (

√
g B̃ j )m−1 ∼ ε(

√
g B̃ j )m,

1
a
(
√
g B̃ r )ℓ ∼ (

√
g B̃ϑ)ℓ ∼ (

√
g B̃φ)ℓ .

(7.21)

Any other perturbed quantity appearing in equations (7.6)-(7.13) can be
written in terms of ξ or ˜B , so that similar arguments apply.
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Having examined the orderings of the fluid and magnetic perturba-
tions, we shall discuss the magnitude of the growth rates. Upon defining
the Alfvén frequency ωA and the Alfvén speed cA as11

11 In a tokamak, ωA is typically of the or-
der of MHz. The order of magnitude of
the growth of MHD modes ranges from
few milliseconds (. 10−2ωA) to few mi-
croseconds (∼ ωA).

ωA =
B0

R0
√
µ0ρ0

, cA = R0ωA, (7.22)

we distinguish between fast-growing modes that have characteristic
growth rates comparable with ωA and slow-growing modes which grow
on slower time-scales. For fast-growing modes we may let

γ

ωA
∼ 1, (7.23)

whereas the appropriate ordering for slow-growing instabilities is

γ

ωA
∼ ε. (7.24)

Typically, γ/ωA � ε which implies that we should take γ/ωA ∼ δ with
δ � ε some small parameter. Nevertheless, the ordering above works
quite well without complicating the algebra, and therefore we stick to it.

We point out that the preceding remarks apply to global modes, i.e.
instabilities with m and n of the order of unity, and far from resonances.
Few modifications of the orderings given above are required when deal-
ing with small scale modes, or when a resonant surface is approached.
These are thoroughly detailed in section 7.3.2 in and §7.4.

Hence, we have now all the logical elements to derive the required
stability equations for both global and localised perturbations in toka-
maks. For the sake of simplicity, hereafter and in the remainder of
the report we normalise µ0 = 1.

To transform back to SI units one has to
replace p → µ0p . The same applies with
ρ.

The structure of the eigenmode equations

The equilibrium of a large aspect ratio tokamak is determined by the
moments of (4.20). The leading order solution has the form of a cylinder
force balance equation (cf. (4.30)) and e�ects related to toroidicity, such
as the Shafranov shift, appear to the next order.
Similarly, one can imagine that the eigenvalue equation of the fluid dis-
placement is of the form (6.21) and its ”moments”, namely the Fourier
projections, yield the following system of equations (see (6.22))

γ2ρ0ξm = F0ξm +
∑
m′,0

Fm′ξm−m′,

γ2ρ0ξm±1 = F0ξm±1 +
∑
m′,0

Fm′ξm±1−m′,

...

where F is a di�erential operator which depends on r and ϑ. Here F0
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represents its cylindrical part, i.e. roughly speaking the one which does
not vanish when ε → 0, while the ”coe�cients” Fm′ with m ′ , 0 are
toroidal corrections. One sees that if Fm′ (m ′ , 0) are not vanishing,
the spectrum of the perturbation must be composed of several poloidal
harmonics, i.e. mode coupling occurs. In a low-β tokamak with nearly
circular cross section the following is expected to hold

F0 ∼
1
εFm±1 ∼

1
ε2

Fm±2 ∼ . . . .

Hence, given the decomposition of the fluid perturbation as in (7.17),
stability is typically determined at leading order by the first two equations
of the system above.

7.3 Auxiliary quantities: Global modes

To derive the eigenmode equations we require a more precise character-
isation of the expressions for the perturbed fluid displacement, pressure
and toroidal field. More specifically, here we want to determine ξθm , ξ

φ
m ,

√
g B̃φ

m , ∆pm and ∆pm±1. This is the aim of this section. We focus on
global modes first, assuming that the spectrum is dominated by a main
harmonic of helicity (m, n) accompanied by ε times smaller sidebands
with mode numbers (m ± 1, n), i.e. Eq. (7.18) holds. We point out
that in a nearly circular tokamak only the first neighbouring sidebands
contribute.

The analysis is carried out in two regions: one far from a resonant
point rs for which m − nq = 0, and one close to rs if such a resonance
occurs in the plasma. It will be shown that, with some appropriate ap-
proximations, the latter can be viewed as a limiting case of the former.
The generalisation to localised instabilities is addressed in §7.4

7.3.1 Behaviour far from resonance

m − nq γ/ωA

1 ε

ε ε

1 1

Table 7.1: Global modes orderings for
m − nq and γ/ωA .

We select the poloidal and toroidal mode numbers m and n respec-
tively, and assume to carry out the analysis su�ciently far from any
resonance q = m/n, if this occurs within the plasma. We shall focus on
cases with either m − nq ∼ 1 or m − nq ∼ ε. The latter is typical of
plasmas with a safety factor flat and close to the value m/n over a broad
region while the exact resonance is still avoided. The growth rate can
conform to the ordering of either fast-growing or slow-growing modes.
A summary of the orderings of m − nq and γ employed in this section
is shown in table 7.1.

Let us start by Fourier analysing (7.11) which gives

(
√
g B̃ϑ)ℓ = −

1
iℓ
(
√
g B̃ r )′ℓ +

n
ℓ
(
√
g B̃φ)ℓ , (7.25)
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where the prime indicates, as usual, di�erentiation with respect to the
radial variable and the subscript ℓ denotes a generic Fourier harmonic.
According to (7.17), if m is the mode number of the dominant harmonic,
from (7.9) it is immediate to recognise that p̃m±1 ∼ εp̃m , and by means
of (7.19) it can be shown that ∆p ∼ ε2B2

0ξ
r
m/a at most.12 Plugging this12 Hereafter we take r ∼ a.

result, in conjunction with equation (7.25), into (7.12) shows that

√
g B̃φ ∼ ε2B0ξ

r
m . (7.26)

Therefore, it follows from (7.8) and the fluid expansion (7.17) that
to leading order we have

1
r

(
r ξrm

) ′
+ imξϑm − i

m
q
ξ
φ
m = 0,

1
r

(
r ξrm±1

) ′
+ i (m ± 1)ξϑm±1 − i

m ± 1
q

ξ
φ
m±1 = 0,

(7.27)

where we implicitly used (7.16). Exploiting (7.27) we can write

(∇ · ξ)m ≈
1
r

(
r ξrm

) ′
+ imξϑm − inξ

φ
m = i

(
m
q
− n

)
ξ
φ
m,

(∇ · ξ)m±1 = i [ 1q (m ± 1) − n]ξ
φ
m±1

∓
1

mR0

[
r
dξrm
dr
+ (1 ∓m)ξrm − ir

m
q
ξ
φ
m

]
,

(7.28)

having dropped higher order coupling terms which are ε2 times smaller
compared to the leading ones.

Upon an inspection of (7.10), we see that the dominant contribution
to the compressible part of the perturbed pressure is

(m − nq )∆pm = i
B2
0

R2
0

γ2

ω2
A

(ξϑ + q ξφ)m . (7.29)

Thus, expressing ∆p in terms of the divergence of ξ through (7.9) and
(7.28) with q ∼ 1, we can write[

Γp0
B2
0

(m − nq )2 +
q 2γ2

ω2
A

]
ξ
φ
m ∼ ε

2 γ
2

ω2
A

ξrm
a
,

where we used the ordering (7.19) for estimating (ξϑ)m ∼ aξrm . Contribu-
tions due to couplings with sidebands have been dropped as they enter
at higher order.13 This shows that13 We anticipate that this argument re-

mains valid even for the case of harmon-
ics of equivalent magnitude as described
in §7.4.

ξ
φ
m ∼ ε

2ξrm/a (7.30)

at most, either for fast or slow-growing modes. Notice that the smallness
of ξφm holds true even when m − nq ∼ ε, and by comparing with (7.28)
this indicates that the flow associated with the dominant mode can be
regarded as nearly incompressible. Therefore, from the first expression
of (7.27), we can safely set (for many computations we can use ξφm = 0)



Auxiliary quantities: Global modes 87

ξϑm = −
1
imr

(
r ξrm

) ′
. (7.31)

To obtain ∆pm we plug (7.30) into (7.28) and then multiply by Γp0.
This shows at once that r∆pm/B2

0 ∼ ε
4ξrm at most. Thus, we infer that

∆pm is not an important quantity, so that we may set

∆pm = 0. (7.32)

Now, analysing the compressibility contribution due to the sidebands,
from (7.10) and using (7.30) we obtain

[ 1q (m ± 1) − n]∆pm±1 ≈ iB
2
0
γ2

ω2
A

ξ
φ
m±1,

having assumed that the orderings represented by Eq. (7.19) hold. Un-
der the assumption that 1

q (m ± 1) − n ∼ 1, we use (7.9) and (7.28) once
more, so that the equation above gives(
[ 1q (m ± 1) − n]

2 +R2
0
γ2

c2s

)
∆pm±1 = ±

B2
0

mR0

γ2

ω2
A

[
r
dξrm
dr
+ (1 ∓m)ξrm

]
(7.33)

where cs =
√
Γp0/ρ0 is the sound speed.14 It is straightforward to see 14 Generally cs /R0 < ωA . For a Deu-

terium plasma with T = 5keV , n =
1020m−3, B0 = 3T and R0 = 3m one has
ωA ≈ 1.6×106H z and cs /R0 ≈ 3×105H z .

that R2
0γ

2/c2s ∼ (γ/ωA)
2/β .

Although the ordering (7.24) would imply (γ/ωA)2 ∼ β , in tokamaks
slow growing perturbations usually have (γ/ωA)2/β � 1. Consequently,
the term proportional to the inverse of the sound speed in the equation
above is typically small, and it can be neglected. Notice that this holds
even more close to the marginal stability boundary for which γ → 0.
For fast growing modes, which are instead characterised by (7.23), we
find that the second term on the left-hand-side of (7.33) scales as 1/β ,
thence dominating over the first one. Therefore, two limiting expressions
of the sideband contributions to ∆p are found:

∆pm±1 ≈


±
B2
0

mR0

γ2

ω2
A

r dξ
r
m

dr + (1 ∓m)ξ
r
m

[(m ± 1)µ − n]2
, slow-growing modes,

± Γβ
B2
0

mR0

(
r
dξrm
dr
+ (1 ∓m)ξrm

)
, fast-growing modes.

(7.34)

This shows that ∆pm±1 ∼ ε3B2
0ξ
r
m/a for both fast-growing and slow-

growing modes.
We finally need to obtain an expression for (

√
g B̃φ)m . Let us analyse

slow-growing instabilities first. In such a case plugging (7.9) and (7.25)
into (7.12) produces to leading order in ε15

15 To speed up the algebraic manipula-
tions, a useful and intuitive trick consists
in taking r ∼ B0 ∼ 1 and 1/R0 ∼ ε.
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(
√
g B̃φ)m =

√
g

R2

[R0

B0
p ′0ξ

r
m + 〈

J φ0
Bφ
0

〉
(
√
g B̃ r )m
im

+
n
m
〈
gϑϑ
√
g
〉
(
√
g B̃ r )′m
im

]
, (7.35)

where (7.14) has been used and contributions due to compressibility
have been dropped owing to the results above. It is evident that (

√
g B̃φ)m/B0

is ε2 times smaller than ξrm . We also see that the equation above only
depends on ξrm and (

√
g B̃ r )m so that using it in (7.25) allows to express

(
√
g B̃ϑ)m as function of ξrm and (

√
g B̃ r )m .

For fast-growing instabilities, equation (7.26) will turn out to be ac-
curate enough for the estimation of the perturbation of the toroidal field,
whose exact expression is not explicitly required. Therefore, without any
harm, we shall formally use (7.35) for fast-growing instabilities as well.

7.3.2 Layer ordering

We are now concerned with the behaviour of a global instability in
a neighbourhood of the resonance rs for which m − nq = 0. For a
fixed toroidal mode number n of the order of unity, suppose that the
poloidal spectrum of the perturbation is composed of a dominant mode
m accompanied by its sideband harmonics with mode numbers m±1. In
the derivation presented earlier Eq. (7.16) was assumed to hold. When rs
is approached, however, the perturbation usually develops strong radial
gradients16. We only focus on slow-growing modes and deploy the16 This will be explicitly shown in the

following chapters. following estimates

r
d f̃
dr
∼
f̃
ε
, m/q − n ≈ −ns

(r − rs )
rs

∼ ε,
γ

ωA
∼ ε, (7.36)

where f̃ is a generic perturbed quantity and s ∼ 1 is the equilibrium
magnetic shear at rs . We refer to (7.36) as the layer ordering, and the
region near the resonance is called inertial layer. The derivation that
follows is in many ways similar to the one of the preceding section.

We assume that (7.18) still holds, so that p̃m±1 ∼ εp̃m . Now, equation
(7.25) is always valid, hence by means of (7.7) and thanks to the layer
ordering one has

(
√
g B̃ϑ)m ∼ (

√
g B̃φ)m ∼

1
r ε
(
√
g B̃ r )m ∼ B0ξ

r
m,

(
√
g B̃ϑ)m±1 ∼ (

√
g B̃φ)m±1 ∼

1
r ε
(
√
g B̃ r )m±1 ∼ B0ξ

r
m .

(7.37)

while instead of (7.19) we formally let

ξ im±1 ∼ εξ
i
m (i = r, ϑ, φ),

ξϑm ∼ ξ
φ
m ∼

1
r ε
ξrm, ξϑm±1 ∼ ξ

φ
m±1 ∼

1
r
ξrm .

(7.38)

Let us start by noticing that from the definition of ∆p given in (7.9)
we have ∆pm ∼ εB2

0ξ
r
m/a at most,17 and using it in (7.12) shows that17 This because we take (∇ · ξ)m ∼ ξrm/ε.
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√
g B̃φ ∼ εB0ξ

r
m at most.

We now rearrange equation (7.8) in a more convenient form to obtain

√
g B̃φ = −f ′0

[
1
f ′0

∂(f ′0 ξ
r )

∂r
+
∂ξϑ

∂ϑ
−
1
q
∂ξφ

∂ϑ

]
. (7.39)

This is employed for expressing the ℓ th Fourier projection of the diver-
gence of the fluid displacement as18 18 Remember that (7.14) holds.

(∇ · ξ)ℓ =
dξrℓ
dr
+ 〈

∂
√
g /∂r
√
g
〉ξrℓ + iℓ ξ

ϑ
ℓ − inξ

φ

ℓ

+
∑
ℓ ′,0

[(∂√g /∂r
√
g

)
ℓ ′
ξrℓ−ℓ ′ +

(∂√g /∂ϑ
√
g

)
ℓ ′
ξϑℓ−ℓ ′

]
= −
(
√
g B̃φ)ℓ

f ′0
+

(
〈
(
√
g )′
√
g
〉 −

f ′′0
f ′0

)
ξrℓ + i (ℓ µ − n)ξ

φ

ℓ

+
∑
ℓ ′,0

[(∂√g /∂r
√
g

)
ℓ ′
ξrℓ−ℓ ′ +

(∂√g /∂ϑ
√
g

)
ℓ ′
ξϑℓ−ℓ ′

]
, (7.40)

where we recall that angular brackets indicate the poloidal average.
Imposing that the perturbation of the toroidal magnetic field scales

according to the estimate given above, Eq. (7.40) implies that (∇ · ξ)m ∼
ξrm which then yields

√
g B̃φ ∼ ε2B0ξ

r
m (cf. (7.26)). By virtue of the

afore-mentioned orderings, using this result in conjunction with (7.39)
shows that (7.27) holds. It will be clear later, that the contributions due
to
√
g B̃φ can be dropped near rs , so that the exact expression of the

perturbation of the toroidal field is not required. Hence, without loss of
generality, we can use (7.35) both far-from and close-to the resonance.

Therefore, one can approximate (cf. (7.28))

(∇ · ξ)m = i
(
m
q
− n

)
ξ
φ
m + o(εξ

r
m/r ),

(∇ · ξ)m±1 ≈ i [ 1q (m ± 1) − n]ξ
φ
m±1 ∓

r
mR0

(
dξrm
dr
− i
m
q
ξ
φ
m

)
.

(7.41)

We may now write the full expression of (7.29), which remains valid
within these orderings as well, yielding[Γp0
B2
0

(mµ − n)2 +
〈R2〉

R2
0

γ2

ω2
A

]
ξ
φ
m = i

Γp0
B2
0

(mµ − n) × o(εξrm/r )

− µ
γ2

ω2
A

[ 〈gϑϑ〉
R2
0

ξϑm +
∑
m′,0

(
(grϑ)m′

R2
0

ξrm−m′ +
(gϑϑ)m′

R2
0

ξϑm−m′ +
(R2)m′

R2
0

ξ
φ
m−m′

) ]
.

(7.42)

It is implicit that equilibrium quantities must be computed at the res-
onance. It follows that ξφm is not larger than εξrm/a (for both fast and
slow-growing instabilities), so that equation (7.31) remains valid. By re-
peating the same operations which have been employed earlier, one then
finds that ∆pm ∼ ε3B2

0ξ
r
m/a at most so that we are allowed to use (7.32).
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Finally, for the compressibility arising from the neighbouring side-
bands we follow the analysis performed in the preceding section giving(

1
q 2
+R2

0
γ2

c2s

)
∆pm±1 = ±

B2
0rs
mR0

γ2

ω2
A

dξrm
dr

. (7.43)

This is equivalent to (7.33) where on the right-hand-side only terms con-
taining the radial derivative of ξrm have been kept.

Recall that cs is the sound speed which
is defined below (7.33).

In summary, within the layer ordering we can still use (7.30)-
(7.32), (7.34) and (7.35) with the replacement r ddr →

rs
ε
d
dr .

7.4 Auxiliary quantities: Localised modes

A slight modification of the derivation presented in §7.3 is required when
localised modes, i.e. small-scale perturbations with by m ∼ n � 1, are
considered. This is detailed below, where we appropriately carry out the
analysis far-from and close-to the resonant points.

7.4.1 Small scale modes far from resonances

As usual, let us fix n and assume that (7.16) holds. Small-scale modes
can be viewed as perturbations which are highly localised about their
associated resonance. Thus, we may approximate (cf. (7.36))

m/q − n ≈ −ns
(r − rm)
rm

,

where rm denotes the position of the resonance m − nq = 0 and s is the
magnetic shear at rm which is taken to be of the order of unity. Letting
m ∼ 1/ε (and also n ∼ 1/ε), in the region su�ciently far from the
resonance we suppose that m − nq ∼ 1. The growth rate is assumed to
conform to the one of slow-growing perturbations and thus is ordered
as (cf. (7.24))1919 Contrary to global modes, we do not

consider fast-growing localised instabili-
ties.

γ

ωA
∼ ε. (7.44)

It is now important to understand that the poloidal spectrum of
localised perturbations may exhibit a main harmonic, (like Mercier
modes discussed in chapter 11) or it can be a superposition of multi-
ple modes coupled one to another (as for Ballooning modes discussed
in chapter 12).

In the former case, (7.18) holds with the spectrum being dominated
by the harmonic with poloidal mode number, say, m ∼ n. From (7.7)
and using (7.11), we see that in this region (cf. (7.20))2020 This is similar to the ordering given

by the second equation of (7.21).

B0ξ
r
m ∼ (

√
g B̃ r )m/a ∼ (

√
g B̃ϑ)m ∼ (

√
g B̃φ)m (7.45)

at most. Owing to this scaling we balance each term appearing in Eq.
(7.39) by ordering ξϑm ∼ ξ

φ
m ∼ ξrm/a. In particular, by comparing with

(7.40) as we did in the previous section, to leading order we write (∇ ·



Auxiliary quantities: Localised modes 91

ξ)m ∼ ξ
r
m/a (cf. (7.41)) which then gives p̃m ∼ ε2B2

0ξ
r
m and p̃ℓ ∼ εp̃m for

ℓ , m.
Considering now the case when the poloidal spectrum is composed

of several modes, since m is large, we may expect that each of these
harmonics becomes essentially indistinguishable from one to another
(see figure 7.3). We shall therefore replace (7.18) and the first of (7.21)
with

ξ im+1 ∼ ξ
i
m−1 ∼ ξ

i
m,

(
√
g B̃ i )m+1 ∼ (

√
g B̃ i )m−1 ∼ (

√
g B̃ i )m,

(7.46)

having implicitly assumed that we are dealing with modes which have
resonances within the plasma. Thus, if (7.46) holds, far from the reso-
nances of the m,m ± 1,m ± 2, . . . modes, we expect to have p̃ℓ ∼ p̃m and

B0ξ
r
m ∼ (

√
g B̃ r )ℓ /a ∼ (

√
g B̃ϑ)ℓ ∼ (

√
g B̃φ)ℓ , (7.47)

where ℓ denotes a generic harmonic. By means of (7.39) and (7.40),
an argument similar to the one discussed earlier shows that in this case
(∇ · ξ)m ∼ ξrm/a.

One therefore infers that, for localised instabilities featuring either
a single main helicity or a multiple equivalent helicities spectrum, the
compressible part of the perturbed pressure scales as ∆p ∼ ε2B2

0ξ
r
m/a at

most.

Figure 7.3: Poloidal structure of a per-
turbation with m � 1 featuring multiple
harmonics. The near resonance region
associated with each harmonic is high-
lighted in grey.

Plugging these results into (7.12) easily shows that (7.26) and (7.27)
remain valid. Note that the two equations of (7.27) appear at the same
order if (7.46) applies. It follows that (7.28) holds. Hence, using (7.29)
we find ξφm ∼ ε2ξrm/a which is (7.30). As before, this shows that

∆pm ∼ ε4B2
0ξ
r
m/a, (7.48)

meaning that in this region the contribution due to compressibility is
negligible.

Finally, working out the coupling contributions in (7.12) gives

(
√
g B̃φ)m =

√
g

R2

[R0

B0
p ′0ξ

r
m +

n
m
〈
gϑϑ
√
g
〉
(
√
g B̃ r )′m
im

]
, (7.49)

which is (7.35) in the limit of large m. No other Fourier harmonics of ξφ

or
√
g B̃φ are needed.
In conclusion, the equations required for the analysis of instabilities

with large poloidal mode numbers far from their associated resonances
can be simply obtained by taking the m � 1 limit of those for global
modes derived in the previous sections.

7.4.2 The inertial layer of small scale modes

We now investigate the dynamics of localised modes in a neighbourhood
of the resonance rm wherem−nq (rm) = 0. From (7.16), themth harmonic
is expected to be localised about rm with a radial extension ∆r ∼ r /m. If
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m is su�ciently large the separation between neighbouring resonances
is of the order of 1/ms , that is (rm±1 − rm)/rm ∼ 1/m with s ∼ 1 (s is the
magnetic shear at rm). Therefore, around rm we conveniently take each
projection (radial, poloidal or toroidal) of the fluid displacement of the
sidebands to be ε times smaller compared to the respective one of the
dominant mode m as in (7.18).21

21 If the magnetic shear is small, this ar-
gument is expected to hold even more
due to the increased separation between
resonances.

We thus order the magnetic field and
the fluid displacement according to (7.37) and (7.38) respectively.

Now we introduce the variable z = m(r − rm)/rm . In the region close
to rm we let z ∼ ε and deploy a layer ordering analogous to (7.36)

d f̃
dz
∼
f̃
ε
, (7.50)

and let the magnitude of the growth rate to be given by (7.44). Note
that this implies mµ − n ∼ ε.Far from the resonance one has z ∼ 1. According to the orderings above, a quick
investigation of (7.40) gives (∇ · ξ)m ∼ ξrm/a so that ∆pm ∼ ε2B2

0ξ
r
m/a.

The mth Fourier component of equation (7.12) then gives

B2
0

R2
0

γ2

ω2
A

ξϑ = −
∂p̃
∂ϑ
+ J φ0 (

√
g B̃ r ) − Bφ

0

(
gφφ
√
g

∂
√
g B̃φ

∂ϑ
+ inB̃ϑ

)
,

from which it is immediate to see that
√
g B̃φ ∼ ε2B0ξ

r
m at most. As

in the discussion of the dynamics of global modes near a resonance,
this quantity will turn out to be unimportant in the region close to rm .
Using again (7.39), we recover both (7.27) and (7.41). We now basically
perform the same operations of section 7.3.2: i) by means (7.29) one
first finds (7.42) which implies ξφm ≈ 0 also in this case, then ii) we show
that ∆pm ≈ 0, and finally iii) we obtain equation (7.43) from which (7.34)
follows (terms with radial derivatives being the dominant ones).

Thus, in light of these results auxiliary quantities associated with
the perturbed �uid displacement, pressure and toroidal �eld can
be computed from equation (7.30)-(7.32), (7.34) and (7.35) apply-
ing the appropriate orderings to the radial derivative and mode
number for small and large scale modes far-from and close-to res-
onances.

7.5 General form of the eigenmode equations

By using the results obtained in the previous sections we can now de-
rive a set of eigenmode equations only involving the perturbed radial
fluid displacement. The following analysis will be carried out focussing
on global modes, i.e. perturbations with m ∼ n ∼ 1. As mentioned
in the previous section, the resulting equations can be straightforwardly
extended to deal with localised perturbations by letting m � 1 and em-
ploying suitably the orderings discussed earlier. Similarly, the behaviour
close to a resonant point is obtained by allowing enhanced radial gradi-
ents of the perturbation.



General form of the eigenmode equations 93

We leave the expression of the quantity ∆pm±1 unspecified: this will
be given by either one of (7.34) depending on the ordering of the growth
rate and poloidal mode number.

The boxed equations appearing in the following and preceding
sections will form the basis for the stability analysis discussed in
the next chapters.

7.5.1 Equation for the main mode

We shall analyse equation (7.13) by adopting the divide et impera ap-
proach. Let us introduce the quantity

k | | = mµ − n with µ = 1/q, (7.51)

where k | | is (loosely speaking) referred to as the parallel wave vector.
The quantity µ is usually called the rotational transform. We start
from noting that, by means of (7.25) and (7.35), to the leading orders
we have22 22 Here we used the trick
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having used (5.5) and the fact that 1 − h ≈ 1
1+h with

h =
n2

m2

r 2

R2
0

∼ ε2.

Notice that we retain ε2 corrections to the dominant terms. The quantity
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m accounts for coupling with the sidebands:
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. (7.53)

Proceeding further, from the equilibrium force balance equation23 23 That is p ′0/B
φ
0 =
√
g ( J ϑ0 − J

φ
0 /q ).

we immediately have to leading order(
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]
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Thus, by combining (7.52) and (7.54), a simple algebraic manipula-
tion shows that(
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(7.56)

Note that we did not express (
√
g B̃ r )m in terms of ξrm : this will turn

out to be more convenient when analysing resistive MHD stability in
chapters 16 and 17.

Let us define the quantity

k̂ | | =
f ′0
r
k | |, (7.57)

where k | | is given by (7.51) and f ′0 by (7.14). The relation between
(
√
g B̃ r )m and ξrm obtained from (7.7) then reads

(
√
g B̃ r )m = ir f ′0 k | |ξ

r
m = ir k̂ | |ξ

r
m .

This is employed to recast the first term on the right and side of (7.56)
in the more convenient formThis is known as Sturm-Liouville form.
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(7.58)
having adopted the notation used in §5.3 to denote the metric coe�cients
(see Eqs. (5.24)-(5.26)).

The remaining terms in (7.13) are much easier to evaluate. We write
the perturbed pressure as p̃ = p̂ + ∆p with

p̂ = −p ′0ξ
r , (7.59)

which is the convective contribution. Exploiting (7.32), the terms pro-
portional to the equilibrium current density and perturbed pressure read

Recall that (7.15) holds. (
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(7.61)
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with the functions Dm
′

m and Em
′

m , which describe the coupling with other
poloidal harmonics, being defined as
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Finally, the left hand side of (7.13) is computed by means of (7.27)
and (7.30) yielding at leading order
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where we retained mass density radial non uniformities.
Thus, making use of (7.7), (7.14) and (7.15), we collate (7.53), (7.56),

(7.58), (7.60)-(7.64) to obtain the eigenmode equation, for the domi-
nant harmonic
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. (7.65)

Plasma inertia, that is the growth rate γ, appears on the right hand side
of (7.65) and in the Em

′

m (∆p) terms. These are referred to as inertial
contributions.

With the particular choice of coordinate system given in chapter 5

for which
f ′0
r =

F
R0
, the cylindrical limit is obtained by simply setting

(notice that the factor h is actually a cylindrical contribution)

Cm
′

m → 0, Dm
′

m → 0, Em
′

m → 0, 〈R2〉′→ 0,

〈L〉 →
1
rR0

, 〈N 〉 →
r
R0

.
(7.66)

In this case, letting γ → 0 and taking into account ε2 corrections which
do not arise from toroidicity, equation (7.65) reduces to the so called
Newcomb equation,24 i.e. the equation for the radial fluid displacement 24 From Newcomb (1960). See also

Rosenbluth (1958) and Suydam (1958).in a straight screw-pinch at marginal stability (that is equation (D.2) in
appendix D).
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For many applications it is useful to isolate the dominant contribu-
tions appearing in equation (7.65). These are obtained by writing the
toroidal current density in terms of k̂ | |, i.e.

m〈
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Bφ
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〉 =
1
f ′0
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′
)
. (7.67)

Hence, by means of (7.66) and exploiting the fact that at leading order
f ′0 /r = B0 (see (7.14)), we get
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Using this result into (7.65) yields

d
dr

(
r 3k2
| |

dξrm
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)
− r k2

| |
(m2 − 1)ξrm = 0. (7.69)

As a final remark, we point out that equation (7.65) can be formally
written asThis will turn out to be of crucial impor-

tance in the analysis of them = 1 internal
kink mode in the next chapter.

d
dr

(
r 3 f1

dξrm
dr

)
− r k2

| |
(m2 − 1)ξrm + f2 = 0,

where f1 and f2 are some functions of r with f1 ∼ 1 and f2 ∼ ε2r ξrm , this
holding true also for fast growing instabilities with γ/ωA ∼ 1.

In summary, the linear dynamics of the dominant mth harmonic is
fully described by equations (7.34), (7.51), (7.53), (7.55), (7.57), (7.59),
(7.62), (7.63) and (7.65), and its simplified expression given by (7.69).
What is missing now is an equation for the sideband harmonics. This is
worked out in the next section.

Local behaviour about a resonance at marginal stability

Suppose that the radial fluid displacement obeys Eq. (7.69). We are
interested in the behaviour of ξrm in proximity of rs where k | | = 0. Assume
m > 1. Upon introducing the variable x = (r − rs )/rs , near this point we
write

ξrm ∝ 1 + a1xν (ν > 0),

and approximate k | | ∝ x . This means that we are looking at perturbations
which are not vanishing at rs . When this form of ξrm is plugged into (7.69)
we obtain

a1ν(ν + 1)xν−2 − (m2 − 1) = 0.

This is solved by setting ν = 2, meaning that at marginal stability the
eigenfunction of an ideal mode obeying (7.69) approaches the resonance
with vanishing radial derivative.
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7.5.2 Equations for the neighbouring sidebands

The derivation of the equations for the sidebands follows the one em-
ployed for the main mode. Luckily, it is much simpler. Let us assume
that m − 1 , 0, meaning that we consider m > 1. In line with the
arguments of earlier sections, we suppose that the only non-vanishing
harmonics are those with poloidal mode numbers m and m ± 1, and the
magnitude of the m ± 1 sidebands is ε times smaller compared to that
of the mode m. Furthermore, working within the assumption of slow-
growing modes, inertial corrections can be neglected since they are of
higher order. We start from the equivalent of (7.56), where only the
leading order contributions are retained. This is(
√
gB0 · ∇

J̃ φ

Bφ
0

−
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]
. (7.70)

Notice that di�erently from (7.52), corrections due to mode coupling
are of the same order as other terms.

It is immediate to verify that (
√
g J0 · ∇B̃φ/Bφ

0 )m±1 is negligible com-
pared to other terms and thus it can be dropped. The remaining contri-
butions are (
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where D±1m±1 and E±1m±1 are given by (7.62) and (7.63) respectively, and
the term proportional to ∆pm vanishes by virtue of (7.30).

Hence, making use of (7.58) and (7.68), the equation for the side-
bands can be cast as

1
r
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dr

(
r 3[(m ± 1)µ − n]2
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− [(m ± 1)2 − 1][(m ± 1)µ − n]2ξrm±1
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= 0. (7.71)

Upon a simple inspection, we shall note that this equation could have
been derived directly from (7.65) by replacing m → m±1 and exploiting
the fact that ξrm± ∼ εξ

r
m (the ordering of the magnetic field components

follows accordingly). This concludes the derivation of the sideband
eigenmode equations for m > 1.

When m = 1, we have to provide an additional equation for (
√
g B̃ϑ)0.

This is because this quantity cannot be expressed in terms of the radial
field through (7.25) due to the appearance of diverging terms propor-
tional to 1

m−1 . Since this a�ects modes with m = 1 only, we leave the
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discussion on how to deal with these quantities to the next chapters
where the stability properties of such perturbations are addressed.

Each of the next five chapters will be focussing on one of the insta-
bilities mentioned at the beginning of chapter 6.
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8
The m = 1 internal kink mode

In this chapter we analyse the MHD instability known as the m = 1 ideal
internal kink mode (or simply internal kink mode). We call internal
mode any perturbation whose associated radial displacement vanishes
at the plasma edge. The typical feature of modes with poloidal mode
number equal to 1 is the fact that at each toroidal section they corre-
spond to a rigid shift of the flux surfaces. This helical perturbation has
particular relevance in tokamaks when the poloidal and toroidal mode
numbers are equal, that is m = n = 1. In such a case, this mode can be
driven unstable if a q = 1 resonant surface appears within the plasma.

The importance of them = 1 internal kink comes from the fact that it
has been associated with the phenomenon, observed basically in all toka-
maks, of sawtooth oscillations (or sawteeth).1 These oscillations are 1 Sawteeth have a detrimental e�ect on

the energy confinement because of the
temperature modulation (this is a serious
concern when aiming at ignition), and
can potentially trigger other helical per-
turbations. Nonetheless, sawteeth may
help in avoiding accumulation of impu-
rities and fusion ashes (Helium).

quasi-periodic relaxation events which cause a sudden drop in the tem-
perature and density in the centre of the plasma (see figure 8.1). They
have been experimentally associated with the growth of a m = n = 1
perturbation: during the cycle of this oscillation before the temperature
crash, a m = 1 internal mode develops when the safety factor on axis
is less then unity (q (0) < 1). Although the explanation, albeit rudimen-
tary, of the sawtooth cycle requires a step beyond ideal MHD (this will
be elaborated further in chapter 15) the understanding of the linear dy-
namics of the m = 1 ideal internal kink mode proves to be of crucial
importance.

This mode has been first studied in cylindrical geometry by Shafra-
nov (1970) and Rosenbluth (1973). However, it was soon realised that
the cylindrical description was inadequate, and thus a proper toroidal
treatment was presented by Bussac (1975). It was found that the inclu-
sion of toroidal e�ects cancels out entirely the cylindrical contribution
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Figure 8.1: Example of the time evolu-
tion of the electron temperature during a
sawtooth oscillation at three di�erent ra-
dial locations (a) and the electron tem-
perature radial profile vs minor radius
right before and shortly after the temper-
ature drop (b).

axis(a)

(b)

leading to the realisation that cylindrical results are in some cases, mis-
leading.

The complete analysis of the internal kink mode requires by far the
largest amount of unpleasant algebra compared to any other MHD in-
stability. Since the calculations can be quite involute, here we present,
hopefully clear enough, a step-by-step derivation. The calculations we
carry out will eventually provide an expression for the growth rate of the
mode and its stability boundaries. A brief discussion of the stability of
the m = n = 1 mode with a non-monotonic safety factor is also given.

8.1 The general form of the growth rate

Let us take a monotonic safety factor profile with a single m/n reso-
nance, similar the one shown in figure 7.1. An ideal conducting wall
is assumed surrounding the plasma, implying that the perturbed fluid
displacement at the boundary is vanishing at all orders (cf. (6.16)).

Figure 8.2: Safety factor (a) and leading
order radial fluid displacement (b) asso-
ciated with the m = n = 1 internal kink
mode.

We assume that the spectrum of the perturbed fluid displacement
consists of a main harmonic of helicity (1, n) accompanied by ε times
smaller sidebands with mode numbers (0, n) and (2, n) respectively. Since
the equilibrium is almost circular, it will be clear that no further side-
bands are required. For the sake of simplicity we also suppose that at
equilibrium ρ′ = 0 and assume that γ/ωA ∼ ε. Setting m = 1 while
keeping n generic (so that k | | = µ− n), the leading order of (7.65) reads
(cf. (7.69))

d
dr

(
r 3k2
| |

dξr1
dr

)
= 0. (8.1)

Because of the singularity at rs where q = 1/n, i.e. the resonance, we
solve the equation above for r < rs and r > rs separately. The solution
which is finite on the magnetic axis and zero at the plasma edge is

ξr1 =

{
C, r < rs ,

0, r > rs ,
(8.2)

where C is a constant (cf. Fig. 8.2). An example of the resulting flux
surfaces displaced by such a perturbation is shown in figure 8.3.

We now seek a solution of the full equation (7.65) of the form ξr1 =

C + X1 where X1 ∼ ε
2C . By means of (7.34) for the slow-growing mode
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Figure 8.3: Example of the displacement of the flux surfaces due to the m = n = 1
internal kink at various toroidal angles (the Shafranov shift has been neglected).

case, a quick computation shows that at leading order ∆p2 = 0 and
∆p ′0 = 0 both on the left and on the right of rs . Away from rs , it is
immediate to see that due to the orderings given in §7.2 the inertial
contributions in (7.65), viz. E±11 (∆p) and the whole term on the right
hand side, cancel (this is seen by plugging ∆p0 and ∆p2 in (7.63)). Thus,
to second order in ε Eq. (7.65) is formally written as

1
r
d
dr

(
r 3k2
| |

dX1

dr

)
+UC = 0, (8.3)

having defined U = U0 +UTC ∼ ε2 (TC standing for toroidal coupling)
which is obtained from equation (7.65) with
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+
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0
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(
〈R2〉′

F
−
〈R2〉F ′

F 2

)]
,

(8.4)

UTC =
iR0

CB0

∑
m′=±1

[
ik | |C

m′
1 +D

m′
1 − E

m′
1 (p̂)

]
, (8.5)

where we recall that p̂ is given by (7.59).
Up to now, the growth rate γ did not appear in the equations that

we presented above due to the fact that the right-hand-side of (7.65) van-
ishes. This is because dξr1/dr = 0 at leading order. However, inertial
contributions should not be neglected in the region near the step of ξr1,
i.e. close to rs , where strong radial gradients of the perturbed displace-
ment develop. Indeed, although γ/ωA is small, in this region dξr1/dr
becomes large and its product with the growth rate can be of order of
unity. Therefore, in proximity of rs we employ the layer ordering (7.36),
that is

r
dξr1
dr
∼
ξr1
ε
, k | | ≈ −nsx,

where s = rsq ′s is the magnetic shear at rs and x = (r − rs )/rs ∼ ε. As
mentioned in the previous chapter, we refer to the region close to rs as
the inertial layer.
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If we change the radial coordinate from r to x and deploy the order-
ing given above, in a neighbourhood of rs we can reduce (7.65) to the
following form22 Note that the singularity in rs appear-

ing in (8.1) and (8.3) is resolved by the
inclusion of inertia. At marginal stability
plasma inertia is negligible and discon-
tinuities in the perturbed quantities can
appear.

d
dx

[(
n2s 2x2 + (1 + 2

n2
)
γ2

ω2
A

)
dξrm
dx

]
= 0. (8.6)

The factor 2
n2

originates from the contribution of plasma compressibil-
ity and is usually referred to as the inertia enhancement factor (the
box at the end of this section explains more in detail how to include such
a term). Let us rescale the Alfvén frequency as ω̂2

A = ω
2
A/(1 +

2
n2
). Note

that the thickness δr of the inertial layer can be estimated by balancing
the two terms in the big round brackets in (8.6) giving33 This argument can be generalised

for other instabilities such as Mercier
and ballooning modes discussed in chap-
ters 11 and 12.

δr
rs
∼

γ

ns ω̂A
. (8.7)

The solution of equation (8.6) which reduces to (8.2) for ωAx/γ � 1
(i.e. far from rs ) is easily computed and reads

ξr1 =
C
2

[
1 −

2
π
arctan

(
nsx
γ/ω̂A

)]
. (8.8)

The growth rate is then obtained by requiring that moving away from rs
equation (8.8) matches smoothly (i.e. with a continuous first derivative)
the asymptotic behaviour of the solution obtained from (7.65) when rs is
approached. This technique is known as asymptotic matching, and a
visual example of how this procedure is worked out is shown in figure 8.4.

rs

Figure 8.4: Graphical example of the
asymptotic matching technique. The
layer solution (solid line) joins smoothly
on the left and on the right of rs the exter-
nal one represented by the dashed line.

Far from rs Eq. (8.8) yields

dξr1
dx
≈ −

C γ
πns ω̂Ax2

. (8.9)

In proximity of the resonance, accounting for regularity of the solution
on the magnetic axis, equation (8.3) gives

dX1

dr
≈


−

C

r 3s n2s 2x2

∫ rs−ε

0
rU dr, r < rs ,

c0
r 3s n2s 2x2

, r > rs ,
(8.10)

where c0 is a generic constant of integration and ε is an infinitesimal
positive quantity with the dimensions of a length (if not specified, the
dimensions of ε will be clear from the context). Therefore, by comparing
(8.9) and (8.10), we finally obtain the expression for the growth rate γ:

γ

ωA
=

π

r 2s ns
√
1 + 2

n2

∫ rs−ε

0
rU dr . (8.11)

Note that the matching for r > rs is automatically achieved by a suit-
able choice of c0. The relation above shows that γ/ωA ∼ ε2 for s ∼ 1.
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Although this ordering di�ers from (7.24), we could have consistently
ordered a priori γ/ωA ∼ δ, r dξr1/dr ∼ ξr1/δ and x ∼ δ with δ ∼ ε2

yielding the same conclusions. This shows that the typical time-scale of
growth of the internal kink is small, and in experiments it usually falls
in the range of few milliseconds (with ωA of the order of some mega-
hertz). Also note that the dependence upon the inverse of the magnetic
shear may enhance the growth rate if s is not large at rs . The marginal
stability boundary, i.e. the state for which γ = 0, is identified by the
relation ∫ rs−ε

0
rU dr = 0.

This could have also been obtained directly by multiplying (8.3) by r ξr1
and then integrating from 0 to a.4 4 Use of (8.1) must be made.

Hence, to complete the analysis of the m = 1 internal kink it ”only”
remains to evaluate the integral in (8.11) by calculating U for r < rs .

This only part is algebraically formidably
long and tedious. Most of the times it is
either skipped or presented it in such a
compressed way that it is almost impos-
sible to understand what is going on.

Unfortunately, this is quite a laborious task.
We tackle the problem as follows: we first derive an expression for

the m = 0 and m = 2 satellite harmonics. By means of the resulting
expressions for these sidebands, we reduceUTC to a form which depends
on C only. We then rearrange the function U0 separating the cylindrical
and toroidal contributions to finally evaluate the integral in (8.11). This
eventually leads to the desired expressions for growth rate and stability
criterion. We warn the reader that the following sections will contain
many mathematical details, which unfortunately cannot be sacrificed if
the algebra wants to be understandable.

8.1.1 Inertia enhancement

In this box we show how plasma compressibility, i.e. ∆p, modifies iner-
tia. We shall keep m generic. Starting from (7.34) and assuming that
the mode grows slowly, we employ the layer ordering (7.36) giving in
proximity of the resonant surface rs

∆pm±1 ≈ ±
q 2s B

2
0

mR0

γ2

ω2
A

dξrm
dx

,

where qs is the value of the safety factor at rs . Hence, noting that

(1/Bφ
0 )±1 = r /B0, (8.12)

it follows that (7.63) becomes

E±1m (∆p) ≈ ∓
ir
B0
∆p ′m∓1.

We thus have

imB0

∑
m′=±1

Em
′

m (∆p) = −
2q 2s B

2
0

R0

γ2

ω2
A

d 2ξrm
dx2

.
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Plugging this result into (7.65) yields close to rs

d
dx

[(
k2
| |
+ (1 + 2q 2s )

γ2

ω2
A

)
dξrm
dx

]
= 0.

Equation (8.6) then follows with qs = 1/n.

8.2 Equations for the satellite harmonics

We require a detailed knowledge of the function U appearing in (8.3).
The functionUTC depends upon the sideband radial fluid displacements
and magnetic field components (ℓ = 0, 2)

ξrℓ , (
√
g B̃ r )ℓ , (

√
g B̃ϑ)ℓ

through the coupling coe�cients Cm
′

1 , Dm
′

1 and Em
′

1 . We refer to the
m − 1(= 0) harmonic as the lower sideband, whereas the m + 1(= 2)
mode is the upper sideband. Hence, an explicit expression for the
satellite harmonics needs to be derived.

8.2.1 Lower ℓ = 0 sideband

Making use of (7.25) and (7.26), it is immediate to see that5 (
√
g B̃ r )0 ∼5 Multiply (7.25) by ℓ , then take ℓ = 0

and average in ϑ. ε2aB0ξ
r
1, and employing this in the 0th Fourier projection of (7.7) we also

get ξr0 ∼ ε2ξr1. Therefore, we can safely set ξr0 = (
√
g B̃ r )0 = 0. Notice

that we could have arrived to the same conclusion by an inspection of
(7.71) requiring that ξr0 is finite on the axis.66 This automatically implies that ξr0 = 0.

Let us now introduce the quantity

lm = r (µ − n/m).

The expression for (
√
g B̃ϑ)0 is obtained by multiplying (7.12) by 1/Bφ

0
and then averaging it. Using the fact that p̂0 = ∆p1 = 07 and under the7

∆p1 = 0 follows from (7.32). Note that
from (7.7) one has (

√
g B̃r )ℓ = iB0ℓ lℓ ξ

r
ℓ . assumption that ξϑ0 ∼ ξ

φ
0 ∼ εξ

r
1, inertial contributions can be neglected,

so that to leading order one has

Y0 ≡ (
√
g B̃ϑ)0 =

R0B0

r

[
N−1(l1ξr1)

′ − il1M−1ξr1 +
r p ′0
µB2

0

ξr1

]
, (8.13)

where we used (7.25) again and

( J φ0 /B
φ
0 )±1 = −q p

′
0/B

2
0 . (8.14)

Hereafter the notation for the metric coe�cients follows the one em-
ployed in Eqs. (5.25) and (5.26).
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8.2.2 Upper ℓ = 2 sideband

It is clear that (7.7) allows us to write (
√
g B̃ r )2 in terms of ξr2. Also, by

means of (7.25) and (7.26), the quantity (
√
g B̃ϑ)2 can be written as a

function of (
√
g B̃ r )2, and thus of ξr2. This yields

(
√
g B̃ r )2 =2iB0l2ξr2,

(
√
g B̃ϑ)2 ≈ −

1
2i
(
√
g B̃ r )′2 = −B0[l2ξr2]

′.

The equation for ξr2 obtained from (7.71) reads The sign on the non-homogeneous term
of (8.15) reflects the choice of the
parametrisation or R which is R = R0 +

r cos ϑ + . . .. In the literature, we can
often find it multiplied by a minus fac-
tor. This is because in the latter case
the poloidal direction is flipped, that is
R = R0 − r cos ϑ + . . ..

d
dr

(
r 3[2µ − n]2

dξr2
dr

)
− 3r [2µ − n]2ξr2

+ 2i
rR0

B0

[
i (2µ − n)C 1

2 +D
1
2 − E

1
2(p̂)

]
= 0. (8.15)

Assume now that the analysis is carried out for r < rs , for which

(
√
g B̃ r )1 = iB0l1C, (

√
g B̃ϑ)1 = −B0l ′1C .

Upon defining

ζ = ∆′ +
r

2R0
, (8.16)

by means of (8.12) and (8.14) it is possible to show that8 8 Note that M−1 =
i (r ζ)′

2R0
, N1 =

r
R0

(
ζ − r

2R0

)
and l ′′1 = l

′′
2 .

r [D1
2 − E

1
2(p̂)] = −2il2r

2
(
p ′0
r µB0

) ′
C,

ir (2µ − n)C 1
2 = −2iB0Cl2

[ (
N1l ′1 + iM−1l1

) ′
− 2

(
L1l1 − iM−1l ′1

) ]
= i

B0

R0
l2

[
(l1(r ζ)′)

′
− 2

(
l ′′2 +

2
r
(µ − n)

)
r ζ +

r 2

R0

(
l ′′2 + 2µ

′
) ]
C,

(8.17)
having used the fact that M−1 = −M1, whereas N−1 = N1 and L1 = L−1.
By expressing p ′0 in terms of ζ through (4.33),9 after some rearrange- 9 We use the fact that

r∆′′ + ∆′ + r /R0 = (r ζ)′ so that
2R0p′0
µB2

0
=

−µ
[
(r ζ)′ + 2

(
1 + r µ′

µ

)
ζ −

(
3 + r µ′

µ

)
r
R0

]
.

ments we write the intermediate step

r
[
i (2µ − n)C 1

2 +D
1
2 − E

1
2(p̂)

]
= 2i

B0

R0
Cl2

[
(l2(r ζ)′)

′
+ r µ′(r ζ)′ +

(
2n
r
− 2µ′ −

4
r
µ

)
r ζ

]
= 2i

B0

R0
Cl2

[
(r (l2ζ)′)

′
− 4

l2
r
ζ − r ζ

(
1
r (r l2)

′
) ′ ]

.

Referring to equations (7.58), (7.67) and (7.68) we have the following
relations (notice that these can be straightforwardly extended to the case
of arbitrary poloidal mode number)

l2[r (l2X )′]′ =
(
r l 22X

′
) ′
+ (r l ′2)

′l2X ,

1
r (r l

′
2)
′ − [ 1r (r l2)

′]′ = 1
r (µ − n/2).
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When the two results above are plugged into (8.15) we finally obtain

d
dr

(
r 3[2µ − n]2

dξr2
dr

)
− 3r [2µ − n]2ξr2

=


[
d
dr

(
r 3[2µ − n]2

dζ
dr

)
− 3r [2µ − n]2ζ

]
C, r < rs ,

0, r > rs ,
(8.18)

The jump condition for the derivative of ξr2 at rs is obtained by inte-
grating (8.15) across the q = 1 surface and exploiting the Dirac-delta

singularity of the main mode, i.e.
dξr1
dr ∼ δ(r − rs ) (cf. 8.2)10

10 Remember that k | | ∼ (r − rs ) close to
rs and xδ(x) = 0.

where we
implicitly assume that ξr2 does not diverge at rs (an account of the math-
ematics employed for carrying out these computations is outlined in the
box at the end of this section). The only contributing terms come from
d (
√
g B̃ϑ)1
dr and

d (p′0ξ
r
1)

dr , respectively, in C 1
2 and E1

2 . This yields

rs

t
dξr2
dr

|

=
2
n2

[
nr µ′∆′ +

R0p ′0
B2
0

]
rs

C = −
[
r∆′′ + 3∆′ −

r
R0

]
rs

C, (8.19)

where the right-hand-side of the equation above has to be evaluated at
r = rs and J·K = (·)rs+ε − (·)rs−ε with ε → 0. The last equality is obtained
by means of (4.33). A further integration shows that Jξr2K = 0, i.e. the
upper sideband is continuous at rs .

We now need to identify the appropriate boundary conditions for ξr2.
The sideband ξr2 must be finite on the magnetic axis. Furthermore, if no
q = 2 surface is in the plasma, then ξr2(a) = 0, otherwise we require that
ξr2 is regular, meaning finite, at the q = 2 resonant surface. Let X i

2 and
X e
2 be the solution to the homogeneous equation (8.18) for r < rs and

r > rs respectively.11
11 Thanks to the regularity condition at
the axis and either at a or at the q = 2
surface if it exists in the plasma, we can
write

ξr2
C
=


ζ + c1

X i2 (r )

X i2 (rs )
, r < rs ,

c2
X e2 (r )

X e2 (rs )
, r > rs ,

where c1 and c2 are two constants.

X i
2 satisfies the regularity condition on the axis,

whereas X e
2 fulfils the aforementioned requirements for ξr2 either at the

plasma boundary or at the resonant q = 2 surface. We introduce the
quantities (do not confuse the symbols s and ŝ )

b =
rs
4
[
d
dr

ln(X i
2/r )]rs , c =

rs
4
[
d
dr

ln(X e
2 r

3)]rs , ŝ =
ℓi (rs )
2
−
1
4
, (8.20)

where ℓi is given by (4.37). By requiring continuity of ξr2 at rs and im-
posing the jump condition (8.19), we finally obtain

ξr2
C
=


∆
′ +

r
2R0
+
rs
R0

(
−3/4 + c [3/4 + ŝ + βp (rs )]

1 + b − c

)
X i
2 (r )

X i
2 (rs )

, r < rs ,

rs
R0

(
ŝ + βp (rs ) + b[3/4 + ŝ + βp (rs )]

1 + b − c

)
X e
2 (r )

X e
2 (rs )

, r > rs ,

(8.21)
where use of (4.35) has been made. It is worth noting that some inertial
contributions, i.e. terms which depend on γ, may appear at the resonant
surface of the m = 2 mode if this occurs within the plasma. This is
because of the sharp gradient of ξr2 at this point (this is analogous to what
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has been discussed in the previous section about inertia at rs ). However,
it is rather immediate to convince ourselves that these corrections which
will eventually appear in (8.11) are negligible as they enter at higher
order. Therefore, we will ignore them altogether. Now we have all the
elements needed to evaluate the integral of the function U .

8.2.3 Integrations across a point

It is rather common to see these sort of integrations, particularly when
abrupt steps in the coe�cients of the integrated equation appear. To
explain how to deal with them let us take the model equation

d
dr

(
a1
df
dr

)
+ a2 f + λ = 0,

where r varies from 0 to 1 with r0 some position within this interval and
ai are regular functions of r which are continuous and di�erent from
zero. We take λ(r ) = δ(r − r0) and integrate this equation once yielding

a1 f ′ + F (r ) = 0,

where F (r ) =
∫ r
0

(
a2(%)f (%) + δ(% − r0)

)
d%. It is obvious that if f is non-

diverging (i.e. an integral of f exists), then the function F is discontinu-
ous at most at r0. Dividing the expression above by a1, which is supposed
to be non-vanishing, a further integration shows that

f +
∫ r F (%)

a1(%)
d% = const .

The continuity of f across r0 is evident. Note that if λ(r ) = δ′(r − r0),
then f becomes discontinuous.

8.3 Evaluation of
∫ rs
0 rUTCdr

InUTC it is more convenient to split individually the contributions from
the m − 1 = 0 and m + 1 = 2 harmonics. This is written as UTC =
U (0)TC +U

(2)
TC with

U (0)TC =
iR0

CB0

[
ik | |C

1
1 +D

1
1 − E

1
1(p̂)

]
,

U (2)TC =
iR0

CB0

[
ik | |C

−1
1 +D

−1
1 − E

−1
1 (p̂)

]
.

We shall analyse the contribution from U (2)TC first. A rather tedious
algebraic manipulation shows that

rU (2)TC =
R0

C

[(
l1l2N−1

dξr2
dr

) ′
+T12

dξr2
dr
+U12ξ

r
2

]
, (8.22)
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where

T12 = N−1
(
l1l ′2 − l

′
1l2

)
− 3iM−1l1l2 −

n
2

r 2p ′0
µB2

0

,

U12 = l1
(
N−1l ′2

) ′
− 3il1l ′2M−1 − 2l1l2

(
L−1 + iM ′−1

)
−
r p ′0
µB2

0

(2µ −
n
2
) + l1

(
r p ′0
µB2

0

) ′
,

having used (8.12) and (8.14). Note that the terms proportional to the
pressure originate fromD−11 and E−11 . The following relation holds (recall
that ζ is given by (8.16)):

T ′12 −U12 = −l2

[
(N−1l ′1 + iM−1l1)

′ − 2(L1l1 − iM−1l ′1) + r
2

(
p ′0
r µB2

0

) ′]
=

r
2iB0C

[
i (2µ − n)C 1

2 +D
1
2 − E

1
2(p̂)

]
=

1
R0

[
d
dr

(
r 3[µ −

n
2
]2
dζ
dr

)
− 3r [µ −

n
2
]2ζ

]
≡

1
R0
L(ζ),

where in obtaining the last line we compared with the right-hand-side of
Eq. (8.17). Note that the relation above defines implicitly the operator
L.12 Therefore, integrating (8.22) by parts from 0 to rs − ε with ε → 012 Equation (8.18) can be written as

L(ξr2) = CL(ζ) for r < rs . and exploiting (8.18) yields∫ rs−ε

0
rU (2)TCdr =

R0

C

[ (
T12ξr2

) ���rs−ε
0
−

∫ rs−ε

0

(
T ′12 −U12

)
ξr2dr

]
=
R0

C

[ (
T12ξr2

) ���
rs−ε
−

1
R0

∫ rs−ε

0
L(ζ)ξr2dr

]
=

[
R0T12

ξr2
C
−
n2r 3

4

(
ζ ′
ξr2
C
− ζ
(ξr2)

′

C

)]
rs−ε
−

∫ rs−ε

0
ζL(ζ)dr .

From equation (8.21) we write

ξr2
C

���
rs−ε
= ζs + ν,

(ξr2)
′

C

���
rs−ε
= ζ ′s +

ν

rs
(1 + 4b),

where the subscript s means that the quantity is evaluated at rs , and ν

reads

ν =
rs
R0

(
−3/4 + c [3/4 + ŝ + βp (rs )]

1 + b − c

)
.

Expressing T12 as a function of ζ gives

T12
���
rs
=
n2r 2s
4R0

(
rs ζ ′s + 3ζs −

3rs
R0

)
,

so that one readily has∫ rs−ε

0
rU (2)TCdr =

n2r 2s
4

[
3 (ζs + ν)

(
ζs −

rs
R0

)
+ νζs (1 + 4b)

]
+

∫ rs−ε

0

[
r l 22 ζ

′2 + 3
l 22
r
ζ2

]
dr . (8.23)
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We now focus on U (0)TC . Since p̂0 = −p ′0ξ
r
0 = 0, it then follows that

E1
1(p̂) = 0. Therefore, by means of (7.53) and (7.62) it is possible to

show that

rU (0)TC = −
R0

CB0

[
l1 (N1Y0)

′ − il1M1Y0 −
r p ′0
µB2

0

Y0

]
= −

R0

CB0
(l1N1Y0)

′ +
R0

CB0

[
l ′1N1 + il1M1 +

r p ′0
µB2

0

]
Y0. (8.24)

whereY0 is given by (8.13). Thus, we have∫ rs−ε

0
rU (0)TCdr = R

2
0

∫ rs−ε

0

[
l ′1N1 + il1M1 +

r p ′0
µB2

0

]2
dr
r

=

∫ rs−ε

0
r 3

[
n
2

(
ζ ′ +

3
r
ζ −

1
R0

)
−

µ

R0

]2
dr, (8.25)

where we exploited the fact that the integration is carried out for r < rs .
Therefore, collating (8.23) and (8.25), we eventually obtain∫ rs−ε

0
rUTCdr =

n2r 2s
4

[
3 (ζs + ν)

(
ζs −

rs
R0

)
+ νζs (1 + 4b)

]
+

∫ rs

0

[
r l 22 ζ

′2 + 3
l 22
r
ζ2 + r 3

[
n
2

(
ζ ′ +

3
r
ζ −

1
R0

)
−

µ

R0

]2]
dr .

(8.26)

We may let ε = 0 in the integral on the right hand side.13 It only remains 13 This is because there is no domain
ambiguity of the quantities under the
sign of integration.

to evaluate the integral of U0. This is discussed in the next section.

8.4 Integrals involving the function U0

The evaluation of the integral of the function U0 given by (8.4) is a te-
dious and rather straightforward procedure, which nevertheless requires
several mathematical steps. We shall carefully go through each of them
in order to make the algebra more transparent.

The strategy for tackling this problem is to write U0 as a sum of a
cylindrical (U0c ) and a toroidal (U0t ) contribution such that U0 = U0c +

U0t . Let us start by writing

〈L〉 =
1
rR0
(1 +L ) , 〈N 〉 =

r
R0
(1 +N ) ,

where L ,N ∼ ε2 and their expressions are obtained from (5.24) and
(5.25) reading

L =
9
4
r 2

R2
0

+ 4
r∆′

R0
+
∆

R0
+ 2∆′2 +

r 2

2
∆
′′2 +

r 2

R0
∆
′′ + r∆′∆′′,

N =
∆′2

2
+

3r 2

4R2
0

+
∆

R0
.
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Furthermore, we exploit the choice of the parametrisation in chapter 5
for which one hasG = R0/r . From this it follows that f ′0 /r = F /R0 where
F is given by (4.31) and its expression is the same in both cylindrical
and toroidal geometry. Hence, by means of (7.67) with m = 1, we obtain

f ′0
r
〈
J φ0
Bφ
0

〉′ =

(
f ′0
r
〈
J φ0
Bφ
0

〉′

)
cyl

+
B0

R0

[
1
r

(
r 2µN

) ′] ′
,

where the subscript cyl indicates the cylindrical part. A fairly straightfor-
ward manipulation shows that the cylindrical and toroidal contributions
to U0 are given, respectively, by

U0c =
r k̂ | |
B2
0


1
r

(
r (r k̂ | |)′

1 + h

) ′
−
k̂ | |
r
−R0

(
f ′0
r
〈
J φ0
Bφ
0

〉′

)
cyl


+
R0

B0

[
P 2

R0B0
+ nµ′

r 2

R2
0

P − nrk | |

(
rP

R2
0

) ′
+ p ′0

R2
0F
′

F 2

]
, (8.27)

U0t =
l1
r

(
rN l ′1

) ′
−
l 21
r 2

L − l1

[
1
r

(
r 2µN

) ′] ′
−
p ′0
B2
0

〈R2〉′. (8.28)

A quick comparison of (7.65), (8.3) and (8.27) with (D.2) and (D.8)
shows that we can approximate1414 The cylindrical approximation for the

safety factor q = rBz
R0Bp

has been used.

U0c ≈ −n2
[
2r p ′0
B2
0

−
r 2

R2
0

(µ − n) (µ + 3n)

]
. (8.29)

We now write

U0 =

(
1 −

1
n2

)
U0c +

(
U0c

n2
+U0t

)
. (8.30)

The computation of the last term in brackets in the equation above con-
cludes the analysis of the stability of the m = 1 internal kink mode. This
requires few manipulations which will be explained below step-by-step.

First define the integral quantity

W =

∫ rs−ε

0
r
(
U0c

n2
+U0t

)
dr .

A little rearrangement shows that (8.28) can be recast asWe use the relation µ = l1
r + n to express

µ′ and µ′′ as a function of l1. Moreover,
one has

l1l
′
1N

′ =
(r l21N ′)′

2r
− r

(
rN ′

) ′ l21
2r 2

.

U0t =
[
N −L − r (rN ′)

′
] l 21
r 2
− l1l ′1N

′ − nl1 (3N ′ + rN ′′) −
p ′0
B2
0

〈R2〉′,

and thus, by using (5.21), we can write

W =

∫ rs

0
dr

[
r 3

R2
0

(µ − n) (µ + 3n) − n
l1
r

(
r 3N ′

) ′
+

[
N −L −

r
2
(rN ′)

′
] l 21
r
+ r 2R0

p ′0
B2
0

(
∆
′′ +

3∆′

r
−

1
R0

) ]
, (8.31)
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having dropped the infinitesimal quantity ε as we did in (8.26).15
15 No ambiguities appear so that the in-
tegration can be carried up to rs without
concerns.

We now
express the coe�cients appearing in the integral above as a function of
ζ (see (8.16)) by means of the following relations:

(
r 3N ′

) ′
=

[
5r 4

4R2
0

+
r 3ζ
2R0
−
r 4ζ ′

2R0
+ r 3ζ ζ ′

] ′
,

r
[
N −L −

r
2
(rN ′)

′
]
= −

r 3

R2
0

−
3(r 3ζ)′

4R0
+
(r 4ζ ′)′

4R0

−
3
2
r ζ2 −

r 3

2
ζ ′2 −

1
2

(
r 3ζ ζ ′

) ′
,

r 2R0
p ′0
B2
0

(
∆
′′ +

3∆′

r
−

1
R0

)
= −

r 3µ2

2

(
ζ ′ +

3ζ
r
−

3
R0

)2
− r 3µµ′

(
ζ −

r
2R0

) (
ζ ′ +

3ζ
r
−

3
R0

)
.

Plugging these formulae into (8.31) yields

W =

∫ rs

0
dr

[
n(n − µ)

(
r 4

4R2
0

+
r 3ζ
2R0
−
r 4ζ ′

2R0
+ r 3ζ ζ ′

) ′
+

(
(r 4ζ ′)′

4R0
−
3(r 3ζ)′

4R0
−
3
2
r ζ2 −

r 3

2
ζ ′2 −

1
2
(r 3ζ ζ ′)′

)
l 21
r 2

−
r 3µ2

2

(
ζ ′ +

3ζ
r
−

3
R0

)2
− r 3µµ′

(
ζ −

r
2R0

) (
ζ ′ +

3ζ
r
−

3
R0

) ]
.

(8.32)

Although (8.32) appears complicated, this equation can be greatly
simplified by some integrations by parts The two relations below prove to be very

useful:∫ rs

0
dr

(
n
l1
r
+
l21
2r 2

)
(r 4ζ ′)′

2R0

= −

∫ rs

0
dr µµ′

r 4ζ ′

2R0
,∫ rs

0
dr

(
n
l1
r
+
l21
2r 2

)
(r 3ζ ζ ′)′

= −

∫ rs

0
dr µµ′r 3ζ ζ ′.

and using the following relation

(3
2
r ζ2 +

r 3

2
ζ ′2

) l 21
r 2
+
r 3µ2

2

(
ζ ′ +

3ζ
r
−

3
R0

)2
= 3

l 22
r
ζ2 + r l 22 ζ

′2 + r 3
n2

4

(
ζ ′ +

3ζ
r

)2
+
3n2

4
(r 2ζ2)′

− 3r 2µµ′ζ2 +
r 3µ2

2

[
9

R2
0

−
6
R0

(
ζ ′ +

3ζ
r

)]
+
3
2

[
r 2

(
µ2 − n2

)
ζ2

] ′
.

Therefore, with some straightforward manipulations, one has Note that ζ ′ + 3ζ/r = (r 3ζ)′/r 3.

W =

∫ rs

0
dr

[
n(n − µ)

r 3

R2
0

+
(r 3ζ)′

4R0

(
9µ2 + 4nµ − n2

)
− r l 22 ζ

′2 − 3
l 22
r
ζ2

− r 3
n2

4

(
ζ ′ +

3ζ
r

)2
−
3n2

4
(r 2ζ2)′ −

9r 3

2R2
0

µ2 + r 3µµ′
(
9ζ
2R0
−

3r

2R2
0

) ]
.
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Since µµ′ = (µ2)′/2, the last term in the expression above can be inte-
grated by parts, and rearranging we get

W = −
3n2

4
r 2s ζ

2
s +

9n2

4
r 3s
R0

ζs −
3n2

4
r 4s
R2
0

−

∫ rs

0

[
3n2

4R0

(
(r 3ζ)′ −

r 3

R0

)
+ r 3

[
n
2

(
ζ ′ +

3ζ
r

)
−
µ + n/2
R0

]2
+
r 3

2R2
0

(µ2 − n2) + r l 22 ζ
′2 + 3

l 22
r
ζ2

]
dr .

The calculation is almost over. By means of (4.37) we can write

1
2

∫ rs

0
dr
r 3

R2
0

(µ2 − n2) =
n2r 4s
2R2

0

ŝ, (8.33)

and carrying out the obvious integrations we finally have

W = −
3
4
n2r 2s

(
ζs −

rs
2R0

) (
ζs −

3rs
2R0

)
−
r 4s
2R2

0

n2ŝ

−

∫ rs

0

[
r l 22 ζ

′2 + 3
l 22
r
ζ2 + r 3

[
n
2

(
ζ ′ +

3ζ
r

)
−
µ + n/2
R0

]2 ]
dr . (8.34)

This concludes the analysis of the integrals appearing in (8.11). The
stability of the m = 1 internal kink mode can be fully determined by
the results contained in equations (8.26) and (8.34). Its discussion is the
aim of the next section.

8.5 The stability criterion

By means of (8.30), we are finally able to express the integral in (8.11)
as∫ rs−ε

0
rU dr =

(
1 −

1
n2

) ∫ rs

0
rU0cdr +

∫ rs−ε

0
r
(
U0c

n2
+U0t +UTC

)
dr,

(8.35)
where U0c in the first integral is obtained from (8.29). If (8.35) is posi-
tive instability occurs, whereas stability is achieved when the total
integral is negative (cf. (8.11)). Before discussing the full toroidal re-
sult, we highlight some properties of the m = n = 1 internal kink mode
in a cylinder. In such a geometry U0t = UTC = 0, so that the stability is
determined by U0c only. Inspecting equation (8.29), it is immediate to
see that for any decreasing pressure profile with q < 1 over 0 < r < rs
where rs is some position within the plasma,That is p ′0 < 0 and µ(0) > 1. the integral of U0c is pos-
itive. This leads to the conclusion that as long as there is a q = 1
resonance in the plasma the internal kink in a cylinder is always
unstable for a monotonically decreasing pressure pro�le.

We now show that the inclusion of toroidicity opens a window of
stability at low pressure. With n generic, plugging (8.26) and (8.34)
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into (8.35) and writing ζs = rs [βp (rs ) + ŝ + 3/4]/R0 gives the following
expression Here we used (4.35) and (4.37) to express

all equilibrium quantities as function of
βp and ŝ with the latter being defined
in section 8.2.2.

∫ rs−ε

0
rU dr =

(
1 −

1
n2

) ∫ rs

0
rU0cdr − n2

r 4s
R2
0

δWT , (8.36)

where we defined

δWT =
8ŝ (1 + b − c ) + 9b(1 − c ) − 24bc (βp + ŝ ) − 16c (1 + b)(βp + ŝ )2

16(1 + b − c )
,

(8.37)
having employed, for the sake of simplicity, the short hand notation βp ≡
βp (rs ). Letting n = 1, the system is stable against the m = 1 internal kink
mode when δWT > 0. This is the so calledBussac stability criterion. In
general, for n , 1, it is found that δWT is numerically smaller compared
to the integral involving U0c , so that the stability of modes with n > 1
can be described fairly well in cylindrical approximation. In tokamak
experiments, however, it is unlikely to have q (0) below 0.7, so that only
perturbations with n = 1 turn out to be relevant.

Figure 8.5: Critical βp versus the po-
sition of the q = 1 resonance from Eq.
(8.37). The coe�cients b and c have been
obtained by solving numerically the ho-
mogeneous equation (8.18) with a safety
factor of the form (8.38) (Bussac (1975)).
Instability occurs for βp above the corre-
sponding curve. rs is modified by vary-
ing the value of q on axis.

It can be recognised that since the coe�cients b , c and ŝ depend
solely on the current profile distribution (that is the safety factor profile)
a critical value of βp above which the internal kink is unstable may be
identified. An example of the numerically computed critical values of
βp (rs ) for a q profile of the form

q = q0
r 2∫ r

0 2r (1 − (r /a)ν1)ν2dr
(8.38)

is shown in figure 8.5 (this corresponds to a current profile J φ ∝ (1 −
(r /a)ν1)ν2). One sees that, contrarily to the cylindrical case, the
toroidal internal kink mode is stable for su�ciently low values of
βp .

Unfortunately, although (8.37) is general, it is not of easy interpreta-
tion. A simplified stability criterion, and the associated critical βp , can
be obtained for safety factor profiles of the form

q = 1 − ∆q

[
1 −

(
r
rs

)2]
, (8.39)

with ∆q � 1 small enough so that there is no q = 2 surface within the
plasma. Let the functions X i

2 and X e
2 obey the homogeneous equation

(8.18). Upon writing

X i
2 = xi + yi, X e

2 = xe + ye

with yi/xi ∼ ye/xe ∼ ∆q , we set C = 0 and expand (8.18) for small ∆q
with the safety factor given by (8.39). For X i

2 this yields

d
dr

(
r 3
dxi
dr

)
− 3r xi = 0,

d
dr

(
r 3
dyi
dr

)
− 3r yi −

4∆q

r 2s

[
d
dr

(
r 5
dxi
dr

)
− 3r 3xi = 0

]
.
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The same applies to X e
2 with the obvious substitutions. It follows that

the leading order solutions satisfying the conditions at the magnetic axis
and at the plasma boundary are

xi ∝ r, xe ∝ (a/r )3 − r /a .

Thus, it is quite easy to see that to first order in ∆q one hasThe solution of the equation for yi and
ye can be found either by applying the
method of variation constants or expand-
ing y = Ar α + Br β . X i

2 ∝
r
rs
+
2
3
∆q

(
r
rs

)3
,

X e
2 ∝

a3

r 3
−
r
a
+ ∆q

(
6
(
a
rs

)3 rs
r
−
2
3
rs
a

(
r
rs

)3)
−
16
3
∆q

(
a
rs

)2 r
a
.

The computation of the parameter b is immediate and gives b = ∆q/3.
The quantity c is obtained by expanding [r (X e

2 )
′/X e

2 ]rs to first order in
∆q so that for su�ciently small rs/a one has c ≈ 3∆q − (rs/a)4. Finally,
by means of (8.33) it is straightforward to see that ŝ ≈ ∆q/6. Plugging
these results into (8.37), and neglecting the term (rs/a)4 in c gives the
following stability criterion

(1 − q (0))
(
β2p −

13
144

)
< 0. (8.40)

Note that within these approximations, the value of the critical pressure
is independent of q (0).

It is worth to point out that stabilisation of the m = 1 internal kink
mode can be achieved in a high-pressure plasma with βp ∼ 1/ε (Krym-
skii (1979), Crew (1982), Tokuda (1982), Manickam (1984)). This result
is not captured by our analysis which has been carried out within the
ordering βp ∼ 1.

On the (im)possibility of global m > 1 internal modes

Let us assume that the safety factor is of the form shown in figure 8.2-
(b) and take q > 1. Apply the standard low-β ordering β ∼ r β ′ ∼
ε2. The leading order of the eigenmode equation for a generic fluid
displacement X is formally written as (cf. (7.69))

d
dr

[
r 3

(
k2
| |
+ γ2n

) dX
dr

]
− r (m2 − 1)

(
k2
| |
+ γ2n

)
X = 0,

with γ2n = γ
2(1+ 2q 2)/ω2

A where a constant mass density profile has been
chosen. For the sake of simplicity we assume that X is a real valued
function. We let k | | ∼ m ∼ 1, i.e. we consider global modes. After
multiplying the equation above by X and integrating from 0 to a with
the boundary condition X (a) = 0 we obtain

γ2n = −

∫ a
0 dr [r

3k2
| |
|X ′ |2 + r (m2 − 1)k2

| |
|X |2]∫ a

0 dr [r
3 |X ′ |2 + r (m2 − 1)|X |2]

.
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The right-hand-side is negative (and of the order of unity) indicating
stability. This shows that no global internal modes with m > 1 are
allowed with a monotonic safety factor of the form of Fig. 8.2-(b) and
k | | ∼ 1, that is a magnetic shear of order unity, within the low-β ordering.
However, if q has a di�erent shape (i.e. k | | is ordered di�erently), or the
mode is strongly localised with m � 1, instabilities with m > 1 can occur
(this will be discussed in the next chapters).

8.6 The m = 1 internal kink with a hollow q

Configurations with a non-monotonic (or hollow) q profile above unity,
having a small or weakly reversed magnetic shear in the core region, are
part of the family of the so called hybrid scenarios.

These configurations are envisaged to be
a candidate scenario for continuous toka-
mak operation. This is because of the
high fraction of non inductively gener-
ated current and global good confine-
ment.

Although the ab-
sence of the q = 1 surface makes them intrinsically sawteeth-free, MHD
activity is still observed experimentally. In particular, these scenarios
can be a�ected by m = n = 1 activity which, similar to sawtooth oscilla-
tions, can either induce a severe deconfinement of the population of fast
particles which are needed to provide the necessary heating power to
sustain the fusion reactions (see chapter 1), or lead to a plasma collapse
by driving secondary instabilities (or both).

In this section we show how an internal perturbation with mode num-
bers m = n = 1 can develop even without the presence of a resonant
q = 1 surface when the safety factor is hollow and its minimum remains
su�ciently close to 1.

0 rs a

1
q0

δq

Figure 8.6: Example of an experimen-
tally relevant inverted q profile. Here q0
denotes the value of the safety factor on
the magnetic axis. Note that as the cur-
rent is increased, q drops and its mini-
mum may dangerously lie close to one.

Let us consider a safety factor profile as the one depicted in figure 8.6
with its minimum value qmin close to 1. The radius rs is such that q (rs ) =
qmin . We further assume that the di�erence between q on axis (q0) and
qmin is of order of unity. Following the same steps outlined in (8.1.1) it
is easy to see that for n = 1

−i
R0

B0

∑
m′=±1

Em
′

1 (∆p) =
2γ2

ω2
A

×
1
r
d
dr

(
r 3
dξr1
dr

)
.

Then, the full eigenmode equation for the m = n = 1 internal kink mode
is

1
r
d
dr

[
r 3

(
1 +N

1 + h

k̂2
| |

B2
0

+ 3
γ2

ω2
A

)
dξr1
dr

]
+U0ξ

r
1 + ÛTC = 0, (8.41)

where U0 is given by (8.4), and from (8.5) we defined

ÛTC = CUTC =
iR0

B0

∑
m′=±1

[
ik | |C

m′
1 +D

m′
1 − E

m′
1 (p̂)

]
.

We consider cases with 0 < γ/ωA � 1. Since γ is a small number and k | |
becomes of the order ε when rs is approached, the leading order solution
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of equation (8.41) is still given by (8.2). It is easy to convince ourselves
that small corrections due to N and h in the first term of (8.41) can be
dropped. Hence, we let N ,h → 0 and also approximate k̂ | |/B0 ≈ k | |.

We now multiply (8.41) by r ξr1 and integrate from 0 to a. This gives

∫ a

0
r 3

(
k2
| |
+ 3

γ2

ω2
A

) ���dξr1
dr

���2dr = ∫ a

0
r
(
U0 |ξ

r
1 |
2 + ÛTC ξ

r
1

)
dr . (8.42)

Let us analyse the right-hand-side first. It is immediate to see that for
r > rs the contribution to the integral due to the term containing U0 is
negligible. Upon defining

Û (0)TC = CU
(0)
TC , and Û (2)TC = CU

(2)
TC ,

a simple inspection of Eqs. (8.13), (8.22) and (8.24) with some integra-
tions by parts shows thatNote that ξr2 is discontinuous at the q =

2 resonance, if this exists within the
plasma, where l2 = 0. Moreover, l1 ∼ ε
at rs .

∫ a

0
rÛTC ξ

r
1dr ≈ C

2
∫ rs

0
r (U (0)TC +U

(2)
TC )dr .

Now, because of the step-like nature of the leading order of the radial
displacement, we expect that contributions to the left-hand-side of (8.42)
should come only from a region close to rs where ξr1 has large gradients.
We can therefore approximate the function under the integral sign with
its local behaviour close to rs . Thus, integrating (8.41) from 0 to a radius
su�ciently close to rs gives

dξr1
dr
≈ −

C
∫ rs
0 r (U0 +UTC )dr

r 3s (k2| | + 3
γ2

ω2
A
)

,

having exploited the fact that to leading order ξr1 is given by (8.2).Note that we allow k | | to vary with r . Using
these results, (8.42) transforms into∫ a

0

∫ rs
0 r (U0 +UTC )dr

r 3s

(
k2
| |
+ 3 γ2

ω2
A

) dr = 1.

With some simple rearrangements, and introducing the variable z =
ωA(r − rs )/(rs

√
3γ) with γ > 0 the equation above reads

√
3
γ

ωA

[∫ ∞

−∞

dz

1 + ω2
Ak

2
| |
/(3γ2)

]−1
= −

r 2s
R2
0

δWT . (8.43)

having used (8.36) with δWT given by (8.37). Near rs we may expand
k | | as

k | |
√
3γ/ωA

=
µs − 1
√
3γ/ωA

+ rs µ′s z +

√
3
2

γ

ωA
r 2s µ

′′
s z

2 + . . . ,
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with the subscript s indicating, as usual, that the quantity must be eval-
uated at rs .

When the safety factor is monotonic as the one used in §8.1, we
recover the expression of the growth rate given by (8.11) by setting µs = 1
and neglecting terms proportional to z 2 or of higher order.

π/4

-π/4

Figure 8.7: The shaded areas indicate
the loci of the poles of (8.44) for ∆ > 0.
Note that we choose the argument of a
complex number z = x + i y such that
−π < arg(z ) < π to conform to the nega-
tive real axis branch cut, having defined
the principal root

√
z =

√
|z |e iarg(z )/2 =√

|z |+x
2 + isgn(y)

√
|z |−x
2 . Furthermore

with −∞ < ∆ < ∞ purely real we have
√
i ± ∆ = i

√
−i ∓ ∆ and

√
∆ + i

√
∆ − i =√

1 + ∆2.

With a non-monotonic safety factor profile instead (cf. figure 8.6),
we let µ′s → 0 and take µs < 1. Thus, the integral on the left-hand-side
of (8.43) becomes∫ ∞

−∞

dz

1 + ω2
Ak

2
| |
/(3γ2)

=

∫ ∞

−∞

dz

1 +
(
∆ +

√
3
2

γ
ωA
r 2s q ′′s z 2

)2
=

1
2i

∫ ∞

−∞

dz
©­« 1

∆ +
√
3
2

γ
ωA
r 2s q ′′s z 2 − i

−
1

∆ +
√
3
2

γ
ωA
r 2s q ′′s z 2 + i

ª®¬ (8.44)

where ∆ = ωA(1 − µs )/(
√
3γ) > 0.

The integrals in the expression above can be evaluated by means of
the residue theorem accounting for the poles as indicated in Fig. 8.7.
This gives∫ ∞

−∞

dz

1 + ω2
Ak

2
| |
/(3γ2)

=
π

2i
√
A

√
∆ + i −

√
∆ − i

√
1 + ∆2

=
π

[2A(1 + ∆2)(∆ +
√
1 + ∆2)]1/2

,

with A =
√
3
2

γ
ωA
r 2s q
′′
s . Defining X =

√
1 + ∆2 we have

(X − ∆)(X + ∆) = X 2 − ∆2 = 1,

so that X − ∆ = 1/(X + ∆).

By plugging this into (8.43) we finally obtain

rs
√
q ′′s
π

γ̄3/2
[
1 +

δq
γ̄

]1/2
= −

r 2s
R2
0

δWT ,

where γ̄2 = 3γ2/ω2
A + (δq )

2 having approximated 1 − µs ≈ δq . When the
safety factor is above unity, the system is stable if δWT > 0, while for
a given value of δWT < 0 instability occurs when qmin < 1 + δqc . The
critical value δqc which identifies marginal stability is

(δqc )3/2 = −
πrs

R2
0

√
2q ′′s

δWT .

One can extend these findings to negative values of ∆, that is qs < 1,
only if the safety factor does not drop too far below 1 such that the
separation of the two q = 1 surfaces is not larger than the width of
the inertial layer. The case of two distinct q = 1 reso-

nant surfaces, requires a more convo-
luted analysis (Hastie (1987), Kuvshinov
(1988)) which is not discussed in this re-
port.

We stress the point that these results hold as long as
q0 − qmin ∼ 1. When the two values di�er only by a small amount, the
eigenfunction of the m = 1 harmonic is not given by (8.2) anymore, and
a di�erent approach to the stability analysis must be deployed. This
case, and its generalisation to perturbations with poloidal and toroidal
mode numbers bigger than unity is addressed in the next chapter.
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9
Infernal modes

Infernal modes are a particular class of internal kink-like perturbations,
i.e. helical distortions with a principal poloidal harmonic of helicity
say m/n located within the plasma, which can be driven unstable by
pressure gradients when the safety factor is �at or the magnetic
shear is small over a wide region. The significant reduction of �eld
line bending stabilisation over the broad region of weak magnetic shear
(this is due to the first term in (6.19)) allows pressure e�ects to dominate
the dynamics of the perturbation, potentially triggering the instability.
The important feature of infernal modes is that, similar to the m = 1
internal kink mode with a hollow safety factor, they do not necessarily
require an exact q = m/n resonance to occur. An example of safety
factor profiles prone to developing infernal modes is given in figure 9.1.

Figure 9.1: Model safety factor profiles,
monotonic (solid line, (a)) and weakly
reversed (dot-dashed line, (b)), which
may be susceptible to infernal modes.
Note that these are highly simplified pro-
files: in experiments the transition of q
from flat to sheared at r0 is smoother.

With a flat safety factor over a vast portion of the plasma, even very
small pressure gradients can destabilise these perturbations, therefore a
careful optimisation of the current and pressure profile must be deployed
in order to operate in instability-free conditions. Hence, the aim of this
chapter is to describe the driving mechanisms of these perturbations,
and to identify the associated (in)stability regions in the appropriate
parameter space.

Although infernal modes are more commonly observed in reversed
shear con�gurations (an example of a typical ideal MHD perturbation
in shear reversed experiments is shown in Fig. 9.2), here we focus primar-
ily on cases in which the safety factor is monotonic and flattened across
the whole internal region (cf. profile (a) in Fig. 9.1). Thus, the analysis
of the infernal instability is divided into two domains: a core low-shear
region extending from the magnetic axis to some radius in which the
safety factor is flat with with q ≈ m/n, and an outer high-shear region
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where the magnetic shear is of order unity. Similar to the analysis of
chapter 8, we consider an ideal metallic wall directly interfaced with the
plasma, i.e. there is no vacuum gap. We also strictly assume q > 1,

Them = 1 version of the infernal mode is
also known as quasi-interchange mode

so
that m = 1 internal kink modes do not develop.

The derivation of the governing equation is carried out separately in
the low and high-shear regions by taking the appropriate limiting cases
of (7.65) and (7.71). The dispersion relation, that is the relation which
links growth rate and equilibrium quantities (pressure, current etc.), is
then obtained by joining the resulting eigenfunctions at the transition
point between low-shear and high-shear regions. To simplify the algebra,
we work out the calculations with a highly simplified yet physically rele-
vant pressure profile. These techniques are also applied to address the
stability of infernal modes in scenarios with a non-monotonic safety fac-
tor. A more detailed analysis of the case when an exact m/n resonance
appears in the plasma is briefly discussed at the end of the chapter.

Figure 9.2: Example of experimentally
relevant safety factor (a) and fluid fluctu-
ation ξr (b) associated with infernal-like
perturbations with poloidal mode num-
ber m > 1 for qmin > 1 (see e.g. Man-
ickam (1996), Fredrickson (1996), Ok-
abayashi (1998)).

9.1 High-shear region equations

We first examine the region of high shear for which r µ′ ∼ k | | ∼ 1, which
extends from r0 to the plasma boundary. We shall consider global slow-
growing modes for which γ/ωA ∼ ε (cf. §7.2). Similar to the analysis of
the m = 1 internal kink mode, we assume that the radial fluid displace-
ment ξr can be decomposed in a Fourier series of the form (7.17), that
is

ξr = ξrme
i (mϑ−nφ) + ξrm+1e

i [(m+1)ϑ−nφ] + ξrm−1e
i [(m−1)ϑ−nφ] + . . . , (9.1)

where the sidebands are ordered according to (7.18), i.e. ξrm±1 ∼ εξrm ,
and m ∼ n ∼ 1. Higher order poloidal harmonics are neglected.1 As1 These can be included if shaping ef-

fects, such as elongation and triangular-
ity, are retained.

usual, we fix the toroidal mode number n (there are no couplings be-
tween di�erent n’s) and omit to write the subscript n.

According to (7.65) and expansion (9.1), the radial structure of the
main mode m is described at leading order by (7.69), whereas sidebands
obey equation (7.71). Multiplying (7.69) by ξrm , which is assumed to be
a real function of r , and integrating from r0 to a yields(
r 3k2
| |
ξrm
dξrm
dr

) ���a
r0
−

∫ a

r0

[
r 3k2
| |

(
dξrm
dr

)2
+ r k2

| |
(m2 − 1)(ξrm)

2

]
dr = 0. (9.2)

The ideal conducting wall boundary condition (6.16) dictates ξrm(a) = 0.
Since k | |(r0) ∼ ε and k | | ∼ 1 for r0 < r < a, the first term in the equation
above can be set to zero, and so we are left with an integral of positive
definite quantities. Hence, in order for (9.2) to be fulfilled, we must have

In the low shear region we still have
ξ (0) , 0. ξrm = 0, for r0 < r < a . (9.3)

Consequently, because of the vanishing of the dominant harmonic in this
region, coupling terms in (7.71) vanish as well. Thence, the sidebands
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obey equation

1
r
d
dr

(
r 3[(m ± 1)µ − n]2

dξrm±1
dr

)
− [(m ± 1)2 − 1][(m ± 1)µ − n]2ξrm±1 = 0,

(9.4)
which is nothing but (7.69) specified for the harmonic m ± 1 instead of
m.

9.2 Low-shear region equations

In this section we deal with the eigenmode behaviour where q is flattened.
Within the low-shear region, we deploy the following ordering

µ′ = 0, and k | | = mµ − n ∼ ε, (9.5)

and assume that expansion (9.1) still holds. Furthermore, for the sake of
simplicity we set ρ′0 = 0. We shall analyse the equations for the sidebands
first.

9.2.1 Sidebands

In §7.3 we saw that the contravariant toroidal component of the per-
turbed magnetic field is ε2 times smaller than B0ξ

r
m/
√
g (see equation

(7.26)). This allows us to write (cf. (7.25))

(
√
g B̃ϑ)ℓ ≈ −

1
iℓ
(
√
g B̃ r )′ℓ ,

with ℓ = m,m ± 1. Using (7.7) and (9.5) we readily obtain r (
√
g B̃ϑ)m ∼

(
√
g B̃ r )m ∼ εrB0ξ

r
m . From this, we see that the coe�cientsC ±1m±1 andD

±1
m±1

appearing in the equation for the sidebands (7.71) can be neglected: they
indeed depend upon the magnetic perturbation of the main mode, and
thus are small because k | | ∼ ε (cf. (9.5)).

Hence, using the fact that q ≈ m/n, we obtain

1
r
d
dr

(
r 3
dξrm±1
dr

)
− [(m ± 1)2 − 1]ξrm±1 − i

m2R0

n2B0
(m ± 1)E±1m±1(p̂) = 0. (9.6)

Introducing the ballooning parameter (see (4.41))

α = −
2R0p ′0q

2

B2
0

,

and making use of Eqs. (7.59) and (7.63),2 the equation for the side- 2 Recall that (1/Bφ0 )±1 = r /R0.

bands can be recast in a more compact form as[
r −1∓2m

(
r 2±mξrm±1

) ′] ′
=
1 ±m
2

[
r ∓mαξrm

] ′
. (9.7)

As in §8.2, the m − 1 and m + 1 harmonics are referred to as the lower
and upper sidebands respectively. We now need an equation for the
main mode ξrm . This is derived in the next subsection.
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9.2.2 Dominant harmonic

Following the analysis presented in section 7.5.1, the equation for the
dominant radial fluid displacement is given by Eq. (7.65). By means of
(9.5) and equation (7.55), we may write P = R0p ′0/B0. Therefore, using
(7.67)With a constant safety factor, we have

〈
J φ0
Bφ0
〉′ = 0 at leading order. Moreover

recall that f ′0 /r ≈ B0 and 〈N 〉 ≈ r /R0.

we can simplify (7.65) to obtain at leading order

1
r
d
dr

[
r 3

(
k2
| |
+
γ2

ω2
A

)
dξrm
dr

]
− (m2 − 1)

(
k2
| |
+
γ2

ω2
A

)
ξrm

+m2

(
R0p ′0
B2
0

)2
−
R0p ′0
B0

(
〈R2〉′

F
−
〈R2〉F ′

F 2

) ξrm
+ im

R0

B0

∑
m′,0

[
Dm

′

m − E
m′
m (p̂) − E

m′
m (∆p)

]
= 0, (9.8)

where we recall that p̂ is defined by (7.59). By employing (7.34) and
(7.63) in the limit of small growth rates, the inertia enhancement factor
is easily computed (cf.section 8.1.1)

m
R0

B0

∑
m′,0

Em
′

m (∆p) = i
2m2γ2

n2ω2
A

[
1
r
d
dr

(
r 3
dξrm
dr

)
− (m2 − 1)ξrm

]
, (9.9)

where we exploited the fact that q ≈ m/n.
The second line of (9.8) can be simplified by means of (4.31), (4.33)

and (5.21) yielding in the limit s → 0

F ′ =
B0

q 2

(
α

2
−

2r
R0

)
, 〈R2〉′ = −rR0

(
α

r
+

2
R0

)
.

This allows us to recast (9.8) as

1
r
d
dr

[
r 3Q

dξrm
dr

]
+

[
(1 −m2)Q +

rα
R0

(
n2

m2
− 1

)
−
α2

2

]
ξrm

+ i
mR0

n2B0

∑
m′,0

[
Dm

′

m − E
m′
m (p̂)

]
= 0, (9.10)

where the termQ containing the inertial contribution, namely the growth
rate, is given by33 Note that the higher the q the larger

the δq for which k | | ∼ ε.

Q =
1
n2

(
k2
| |
+
γ2

ω2
A

(1 + 2
m2

n2
)

)
≈

(
δq
q

)2
+

γ2

n2ω2
A

(1 + 2
m2

n2
). (9.11)

In the last passage we approximated q ≈ m/n + δq with δq � 1, con-
forming to the ordering in (9.5).

For the last term in square brackets on the left-hand-side of Eq.
(9.10), a separate treatment is needed depending on whether m = 1
or m > 1. This is because, as discussed in sections 7.5.2 and 8.2.1, when
m = 1 the radial displacement of the lower sideband with m − 1 = 0
vanishes and the associated poloidal magnetic perturbation computed
from (7.25) exhibits an apparent singularity of the type 1

m−1 =
1
0 .
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Let us analyse the m , 1 case first. From (7.25) and (7.26) we have

(
√
g B̃ r )m±1 = ±irB0

n
m
ξrm±1, (

√
g B̃ϑ)m±1 = −

nB0

m(1 ±m)
(r ξrm±1)

′.

When these are plugged into Dm
′

m , with the help of (7.59), (8.12) and
(8.14) we obtain∑
m′,0

[
Dm

′

m − E
m′
m (p̂)

]
=
imp ′0
B0

[
r −1−m

1 +m

(
r 2+mξrm+1

) ′
+
r −1+m

1 −m

(
r 2−mξrm−1

) ′]
.

Conversely, if m = 1 we follow the same steps employed in §8.2 to
show that ξr0 = 0 while (

√
g B̃ϑ)0 is given by (8.13), whose expression at

leading order reads

(
√
g B̃ϑ)0 = R0

mp ′0
nB0

ξr1,

having taken into account (9.5). Thus, letting p̂0 → 0, one has∑
m′,0

[
Dm

′

1 − E
m′
1 (p̂)

]
= −i

n2

4
B0

R0

[
αr −2

(
r 3ξr2

) ′
+ α2ξr1

]
.

Therefore, we can finally cast equation (9.10) as

1
r
d
dr

[
r 3Q

dξrm
dr

]
+

[
(1 −m2)Q +

rα
R0

(
n2

m2
− 1

)
−
α2

2

]
ξrm

=


−
α

2

[
r −1−m

1 +m

(
r 2+mξrm+1

) ′
+
r −1+m

1 −m

(
r 2−mξrm−1

) ′]
, m > 1,

−
α

2

[
r −2

2

(
r 3ξr2

) ′
+
α

2
ξr1

]
, m = 1.

(9.12)

Hence, for infernal modes, the fluid perturbation of the form (9.1)
in the low-shear region is completely determined by equations (9.7) and
(9.12). We are now ready for the derivation of the dispersion relation,
which will be aim of the next section.

9.3 The dispersion relation

Let us first note that, since (7.65) does not exhibit singularities if q >

m/n in the low-shear region, then ξrm has to be continuous in the domain
0 < r < a. Thus, thanks to (9.3), we have ξrm(r0) = 0. This is a subtle point and it is discussed

in the box at the end of this section.
We may still

suppose that this holds true if the safety factor drops below m/n in the
shear-free region as long the condition |q − m/n | ∼ ε is fulfilled in the
core so that the singularity at the m/n mode resonance is regularised
by inertia (i.e. there is no narrow inertial layer where strong gradients
develop). In analogy with the discussion presented in section 8.2.2, a
series of successive integrations of (7.71) across r0 shows that both ξrm+1
and dξrm+1/dr are continuous at r0. As for the m = 1 internal kink,



124 Infernal modes

any inertia contribution coming from the resonances associated with
the sideband harmonics (the m + 1 in our case), if they appear in the
plasma, turns out to be negligible. We have now all the elements to
compute the dispersion relation.

We shall focus on the m > 1 case first. Equation (9.7) can be inte-
grated once giving

r −1∓2m
(
r 2±mξrm±1

) ′
= L± +

1 ±m
2

r ∓mαξrm, (9.13)

where L± are some constants. Multiplying the equation above by r 1±2m ,
a further integration yields

r 2±mξrm±1 = C± +
r 2±2mL±
2 ± 2m

+
1 ±m
2

∫ r

0
r 1±mαξrmdr, (9.14)

where C± are two additional constants of integration. It is obvious that
regularity on the magnetic axis requires C+ = L− = 0.

In order to have an expression the constant L+, we evaluate (9.13)
at r0 exploiting the fact that ξrm(r0) = 0. This gives

L+ = r −m0

(
2 +m +

r dξrm+1/dr

ξrm+1

���
r0

)
ξrm+1(r0).

The quantity ξrm+1(r0) is obtained by evaluating (9.14) at r0. Combining
this result with the expression of L+ above gives

L+
1 +m

=
1 +m

r 2+2m0

(
2 +m + ĉ
m − ĉ

) ∫ r0

0
r 1+mαξrmdr, (9.15)

where we defined (ε → 0)

ĉ =
r dξrm+1/dr

ξrm+1

���
r0+ε

.

Here ĉ is a well defined quantity thanks to the continuity of ξrm+1 and its
derivative at r0, and its expression is obtained by solving equation (9.4)
for ξrm+1 with appropriate boundary conditions.4 Thus, plugging (9.13)4 That is either ξrm+1(a) = 0 with no q =

m+1
n resonance, or with ξrm+1(rs ) finite at

the q = m+1
n resonance rs if it appears in

the plasma.

into (9.12) gives

1
r
d
dr

[
r 3Q

dξrm
dr

]
+

[
(1 −m2)Q +

rα
R0

(
n2

m2
− 1

)]
ξrm +

α

2

(
rmL+
1 +m

)
= 0,

(9.16)
where L+ is given by (9.15).

For m = 1, it is straightforward to show that one obtains precisely
(9.16) with the very same definition of L+ given by (9.15).

Let us note that (9.16) is a linear function of ξrm so that ξrm/A with
A some number is still a solution of this equation. We thus divide the
equation above by A =

∫ r0
0 r 1+m/r 2+m0 αξrmdr and cast (9.16) as

1
r
d
dr

[
r 3Q

dX
dr

]
+

[
(1 −m2)Q +

rα
R0

(
n2

m2
− 1

)]
X

+ α

(
r
r0

)m 1 +m
2

(
2 +m + ĉ
m − ĉ

)
= 0, (9.17)
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where X = ξrm/A. The general procedure to obtain the growth rate
consists in first solving (9.17) with the boundary conditions X (r0) = 0
and either X (0) finite for m = 1 or X (0) = 0 for m > 1,5 5 This determines the two constants mul-

tiplying the two independent solutions of
the homogeneous second order di�eren-
tial equation.

and then
computing the following expression∫ r0

0

r 1+m

r 2+m0

αX dr =
1
A

∫ r0

0

r 1+m

r 2+m0

αξrmdr = 1. (9.18)

To compute the integral above, an exact solution of (9.17) is required
which, in general, has a complicated form even for simple pressure pro-
files. It follows that in most cases the associated dispersion relation is so
involved to be of no practical use.

Upon inspecting (9.16), we see that the key physical ingredient char-
acterising the ”infernal equations” (9.7) and (9.12) is the presence of a
pressure gradient in the low-shear region which drives the coupling be-
tween the main mode and its neighbouring sidebands. Note that this instability driving mecha-

nism is exactly the same as the one of the
m = 1 internal kink mode.

Now, one notices
that (9.18) involves an integral of αξrm . This induces us to conjecture
that the exact shape of the pressure gradient is not really fundamen-
tal, as this appears under a sign of integration over the whole low-shear
region. Thus, in order to simplify the analysis, and yet having a mean-
ingful result, we take a top-hat pressure profile with the step located at
0 < rp < r0 as shown in Fig. 9.3. We denote with p1 and p2 the values
of the pressure on the magnetic axis and at rp < r0 respectively. Hence,
we write

α ≈ −2R0[p2 − p1]q 2δ(r − rp )/B2
0 = rpδ(r − rp )αc

where p2 < p1 = p0(0) with δ(r ) indicating the Dirac-delta function of
argument r . The expression above defines the parameter

αc = −2
R0

rp

[p2 − p1]

B2
0

q 2.

Here we shall approximate q 2 ≈ (m/n)2.

0 rp r0 a

p1

p2

Figure 9.3: Model stepped pressure pro-
file. The location and height of the
step may be determined by imposing that
the global β and pressure peaking factor
have some given values.

Thus, instead of using (9.17) and (9.18), we follow an equivalent
but slightly more straightforward procedure which requires (9.16) only.
Following the mathematical steps indicated in the box at the end of this
section, with such a pressure profile, a double integration across rp shows
that ξrm is continuous at this point. Hence, its expression which fulfils
the correct boundary conditions at rp and r0 is readily obtained

ξrm =


(r /rp )m−1, r < rp,

(r /r0)m−1 − (r /r0)−m−1

(rp/r0)m−1 − (rp/r0)−m−1
, r > rp,

(9.19)

where, for the sake of simplicity, we normalised ξrm to unity at rp .
We point out that the eigenfunction of the m = 1 infernal mode

di�ers from the typical top-hat function associated with the internal kink
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Figure 9.4: Safety factor profile (a)
and associated eigenfunction of an un-
stable m = 1 mode (b) showing the
smooth transition from infernal to kink-
type structure of ξr1 as the value of q
on the axis (q0) drops below unity (see
Hastie (1987) for a full numerical treat-
ment). The horizontal dashed line indi-
cates the q = 1 level.

(a) (b)

analysed in the previous chapter in that it is smoother. It is worth to
point out that in such a case the structure of the eigenfunction of the
unstable perturbation transitions continuously from infernal to kink-like
(i.e. stepped) as q drops below unity and q (0)−1 becomes more negative.
This behaviour is shown in figure 9.4.

Thus, exploiting the Dirac-delta behaviour of α and taking q ≈ m/n,
we multiply Eq. (9.16) by r and integrate across rp yielding

rpQ
rdξrm
dr

z

rp
+
rpαc
R0

(
n2

m2
− 1

)
+ α2

c
1 +m
2

(
2 +m + ĉ
m − ĉ

) r 2+2mp

r 2+2m0

= 0, (9.20)

where J·Krp = (·)rp+ε −(·)rp−ε with ε indicating, as usual, an infinitesimally
small positive quantity. Using (9.19), one has

rp
rdξrm
dr

z

rp
= −

2m
1 − (rp/r0)2m

. (9.21)

It only remains to calculate an expression for ĉ . This can be easily
obtained by assuming that the safety factor is increasing parabolically
in the high-shear region, that is q = m/n(r /r0)2 for r > r0.6 With such a6 This corresponds to the case of vanish-

ing current outside r0 (see Eq. (4.28)).
Notice that we do not consider δq cor-
rections to the expression of ĉ as these
are of higher order.

safety factor, the solution of (9.4) reads

ξrm+1 =
A1

(
r
rs

)m
+ A2

(
r
rs

)−2−m
(m + 1)µ − n

, (9.22)

where rs = r0
√
(m + 1)/m. If rs < a, that is the position of the q = 2

resonant surface is inside the plasma, A1 and A2 are chosen such that
ξrm+1 is finite at rs . For the case of rs > a we instead require that ξ

r
m+1(a) =

0. This then yields

A2

A1
=


− 1, rs < a,

−

(
a
rs

)2+2m
, rs > a .

Therefore, by means of (9.22), the quantity ĉ is readily obtained:

ĉ =
2 + 3m +m A2

A1
(rs/r0)2+2m

1 + A2
A1
(rs/r0)2+2m

. (9.23)
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Figure 9.5: Growth rate for n = 1 (a),
n = 2 (b) and n = 3 (c) infernal modes
with r0/a = 0.5, R0 = 10, rp/a = 0.4,
ᾱ = αc /(m/n)2 = 0.062. The shaded ar-
eas in (d) indicate the instability regions.
The mode numbers of the dominant har-
monic are indicated.
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By plugging (9.11), (9.21) and (9.23) into (9.20) we finally obtain the
dispersion relation for the ideal infernal instability:

γ2

n2ω2
A

(1 + 2
m2

n2
) =

1 −
(
rp
r0

)2m
2m

{
α2
c
1 +m
2

[(
r∗
r0

)2+2m
− 2

] (
rp
r0

)2+2m
−
rpαc
R0

(
1 −

n2

m2

) }
−

(
δq
m/n

)2
, (9.24)

where either r∗ = rs for rs < a, or r∗ = a for rs > a. The growth rates
and the associated stability regions obtained from (9.24) are shown in
figure 9.5. The destabilising role of the pressure gradient is evident, as
well as the field line bending stabilising e�ect represented by the term
proportional to δq 2. Note that the farther the central q from a rational
value, the more stable the system. It should be noted that we allowed
negative values of δq < 0 under the assumption that inertial e�ects
(i.e. γ2 terms) are strong enough to regularise the singular behaviour at
the resonant point where q = m/n. A more detailed discussion on the
instability dynamics when q drops even further and inertia regularisation
is severely weakened will be discussed later.

This exhausts the analysis of infernal modes of arbitrary m and n
mode numbers (m ≥ n) in scenarios with a monotonically increasing
safety factor. In the next section we shall briefly address the problem of
infernal stability in hollow q plasmas.

Eigenmode behaviour across steps

By inspecting (7.65), we formally write the equation for the main mode
ξrm as

d
dr

(
f1
dξrm
dr

)
− f2ξrm − f3 = 0, (9.25)
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where f1 is a continuous function, with f2 and f3 discontinuous at most.
We take f1 , 0 everywhere but on the magnetic axis. The infernal or-
dering assumes that f1 ∼ f2 ∼ ε2 for r < r0 (low-shear region), whereas
f1 ∼ f2 ∼ 1 for r > r0 (high-shear region). We let f3 ∼ ε2 across the whole
domain. Integrating (9.25) across r0 gives

r
f1
dξrm
dr

zr0+ε
r0−ε
= 0.

Due to the continuity of f1, one has f1(r0) ∼ ε2 so that this equation
does not provide information on the ε0 order of dξrm/dr at r0. Therefore,
dξrm/dr may be discontinuous at r0.
Contrarily, after integrating once (9.25) from 0 to some radius r , we may
write

dξrm
dr
=

1
f1

∫ r

0
(f2ξrm + f3)d%,

having assumed that this expression is well defined on the magnetic axis.
We notice that the right-hand-side of this equation is of order 1 across
the whole plasma column. A further integration across r0 shows that ξrm
is continuous at this point.

9.4 Infernal modes with a reversed q > 1

We shall consider a non-monotonic safety factor similar to the one of
figures 9.1 (profile b) and 9.2. Let us assume that q ≈ m/n for r1 < r < r2
and focus on modes with m > 1 (m , n). In analogy with the analysis
of §9.1 we multiply (7.69) by ξrm , and integrate from 0 to r1 and from r2
to a. This shows that ξrm = 0 for 0 < r < r1 and for r2 < r < a, and thus
implies that the sidebands fulfil equation (9.4) outside the flat-q region.

From (9.13) we obtain(
r 2±mξrm±1

) ′
= L±r 1±2m +

1 ±m
2

r 1±mαξrm . (9.26)

Evaluating the equation above at r1 and r2 respectively gives

ξrm±1(r1) =
r ±m1 L±

2 ±m + ĉ±1
, with ĉ±1 =

(
r
dξrm±1/dr

ξrm±1

) ���
r1
,

ξrm±1(r2) =
r ±m2 L±

2 ±m + ĉ±2
, with ĉ±2 =

(
r
dξrm±1/dr

ξrm±1

) ���
r2
.

Here, the constants ĉ±1 and ĉ±2 are obtained by solving the equation for
the sidebands, that is (9.4), in the regions 0 < r < r1 and r2 < r < a.77 In computing these coe�cients one has

to take into account possible resonances
of the m + 1 harmonic. These may occur
in either of the regions 0 < r < r1 and
r2 < r < a.

The constants L± are found by integrating (9.26) from r1 to r2 yielding

L± =
(1 ±m)2(2 ±m + ĉ±1)(2 ±m + ĉ±2)

∫ r2
r1
r 1±mαξrmdr

(2 ±m + ĉ±1)(±m − ĉ±2)r 2±2m2 − (2 ±m + ĉ±2)(±m − ĉ±1)r 2±2m1

.
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Contrarily to the case of monotonic safety factor, the constant L− is not
vanishing. However, if r1/r2 → 0, (9.15) is recovered with L− = 0. By
means of (9.26), equation (9.12) becomes (cf. (9.16))

d
dr

[
r 3Q

dξrm
dr

]
+ r

[
(1 −m2)Q +

rα
R0

(
n2

m2
− 1

)]
ξrm

+
α

2

(
r 1+mL+
1 +m

+
r 1−mL−
1 −m

)
= 0. (9.27)

Analogously to what we did in §9.3 for the derivation of (9.20), we
assume that the pressure has a step located at some position r1 < rp < r2
such that α = rpδ(r − rp )αc with αc defined as before. Normalising
ξrm(rp ) = 1 for convenience, the dispersion relation is then obtained by
integrating equation (9.26) across rp yielding8 8 Notice that L± ∼ αc .

rpQ
rdξrm
dr

z

rp
+
rpαc
R0

(
n2

m2
− 1

)
+
αc
2

(
rmp L+

1 +m
+
r −mp L−

1 −m

)
= 0,

where instead of (9.21) we have

rp
rdξrm
dr

z

rp
= −2m

(rp/r2)2m − (rp/r1)2m

[1 − (rp/r2)2m][1 − (rp/r1)2m]
.

For su�ciently small r1/r2 the dispersion relation above reduces to (9.20).
As for the case of the m = 1 internal kink mode with two q = 1

resonant surfaces, the stability analysis of scenarios with a hollow safety
factor with a broad region of flattened q ≈ 1 is much more complicated
than the one just discussed (Kuvshinov (1989), de Blank (1991)). We
point out, however, that if r1 is either close to r2, or su�ciently near to
the axis the results of §8.6 or §9.3, respectively, should apply.

We should finally note that instabilities exhibiting an infernal-type
behaviour, i.e. characterised by a dominant mode of helicity (m, n) with
m and n of the order of unity accompanied by two smaller sidebands
with poloidal mode numbers m ± 1, can be observed also in scenarios
with small but finite magnetic shear as long as the pressure gradient
is strong enough to drive mode coupling. This is elaborated more in
detail in the next section.

9.5 Hybrid kink—infernal perturbations

In the preceding sections, we wrote q = m/n+δq in the low-shear region
and allowed δq to take positive and negative values. The eigenfunction
was assumed to vanish at the transition point between low and high
shear regions under the assumption that inertial e�ects are comparable
in amplitude with those associated with field line bending, that is

k | | ∼ γ/ωA . (9.28)
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However, if an exact q = m/n resonance appears at some radial
position rs within the plasma, a radical change in the character of the
eigenfunction may be expected either close to marginal stability when
inertia is small or when δq becomes su�ciently negative so that ordering
(9.28) no longer holds (this was hinted in figure 9.4). To treat such a case,
we have to tweak the infernal analysis outlined in the previous sections.

Let us consider the case of a monotonically increasing safety fac-
tor in which, for 0 < r < rs , both r µ′ and k | | are small quantities of order
ε while for r > rs we take s ∼ 1.9 Furthermore, we keep β ∼ ε2 and im-9 This means that pressure driven

toroidal coupling is allowed to still oc-
cur at leading order, but inertial e�ects
only matter in a neighbourhood of the
q = m/n resonance.

pose the usual ideal wall boundary conditions at r = a. For simplicity,
we focus on marginal stability (γ = 0) only and assume q > 1.

In the region of large shear, one still has ξrm(r > rs ) = 0 (see (9.3)).
Where the magnetic shear is small instead, that is for 0 < r < rs , we let
the perturbation obey equations (9.7) and (9.12) with (cf. (9.11))

Q = k2
| |
/n2,

where now k | | is a function of r . In addition, di�erently from what has
been discussed in §9.3 but analogous to the m = 1 internal kink mode,
we allow ξrm(rs − ε ) with ε → 0 to be �nite.

Therefore, we find that integration of (9.7) across rs yields

r
r −1∓m

(
r 2±mξrm±1

) ′z
rs
= −

1 ±m
2

αs ξ
r
m(rs − ε ),

having used the notation α(rs ) = αs . It easy to see that ξrm±1 are contin-
uous at rs , hence we are left with[

r
dξrm±1
dr

]
rs−ε
=

[
r
dξrm±1
dr

]
rs+ε
+
1 ±m
2

αs ξ
r
m(rs − ε ). (9.29)

This shows that, contrary to the ”standard” infernal case, the radial
derivatives of the sideband harmonics have a jump at rs . Notice that
this relation bears a close resemblance to (8.19).

Proceeding further, we have that both equations (9.13) and (9.14)
still hold with C+ = L− = 0. Thus, evaluating (9.13) at rs − ε and using
(9.29) gives (cf. (9.3))

L+ = r −ms (2 +m + ĉ ) ξ
r
m+1(rs ), ĉ =

r dξrm+1/dr

ξrm+1

���
rs+ε

.

Finally, getting ξrm+1(rs ) from (9.14) (again, this is computed at rs − ε)
we find that the expression for L+ is given by (see (9.15))

L+
1 +m

=
1 +m

r 2+2ms

(
2 +m + ĉ
m − ĉ

) ∫ rs−ε

0
r 1+mαξrmdr .

Plugging (9.13) into (9.12) eventually yields the desired equation for
ξrm only, namely (9.16). Now, if we adopt the same procedure employed
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earlier and exploit linearity, we can recast (9.16) as10 10 Thanks to the smallness of the mag-
netic shear we approximate

α ≈ −2
R0p ′m2

B2
0n

2
.

1
r
d
dr

(
r 3
k2
| |

n2
dX
dr

)
+

[
(1 −m2)

k2
| |

n2
+
rα
R0

(
n2

m2
− 1

)]
X

+ α

(
r
rs

)m 1 +m
2

(
2 +m + ĉ
m − ĉ

)
= 0,

where the normalised fluid displacement X is subject to the condition
(9.18)) ∫ rs−ε

0

r 1+m

r 2+ms
αX dr = 1.

This provides a functional relation between, say, q and β at marginal
stability. We note that the equation X conforms to is formally the same
as (9.17), but the appearance of an exact resonance modifies the bound-
ary condition at rs which now reads (this is immediately obtained from
the equations above) We just mention that techniques similar

to those we just discussed can be applied
to deal with cases with a hollow q as the
ones treated in §9.4.X (rs − ε ) =

R0

rs

1 +m
2

(
2 +m + ĉ
m − ĉ

) / (
1 −

n2

m2

)
. (9.30)

We shall now elucidate how the appearance of an exact resonance
influences stability even when the magnetic shear is very weak. Let us
denote with q0 the safety factor at the axis and rs some radial position
within the plasma. We take q = m

n (r /rs )
2 for r > rs (see sidenote 16

above) so that the constant ĉ is fully determined.11 Upon introducing 11 In analogy to (9.23), here we have

ĉ =
2 + 3m +mσ(rm+1/rs )2+2m

1 + σ(rm+1/rs )2+2m
.

with rm+1 denoting the resonance of the
m + 1 mode where σ = −1 if rm+1 < a
and σ = −(a/rm+1)2+2m otherwise.

the parameter ∆q = q0 −m/n, for r ≤ rs we choose a safety factor of the
form

q = q0, q0 > m/n (∆q positive),

q = 1/
{ n
m
+

( 1
q0
−
n
m

) [
1 − (r /rs )λ

]}
, q0 < m/n (∆q negative).

When q0 > m/n we impose X (rs ) = 0, otherwise X has to conform to
(9.30). With a parabolic pressure profile p = p0(1 − r 2/a2) the resulting
stability boundaries computed numerically for the m = 2, n = 1 infernal
mode are show in figure 9.5. In contrast with fig. 9.5-(d), we see that as q0
drops below the rational value m/n (= 2/1 in our example) the marginal
boundary curve in the β − q0 plane is not symmetric with respect to the
m/n level and stability is worsened when ∆q is negative.

Figure 9.6: Marginal values of q0 for
the infernal mode with a dominant m =
2, n = 1 harmonic as a function of
β defined as in (4.10) with

√
g ≈ rR0.

The lower curve has been computed with
rs = 0.6 and ε = 0.3 for some di�erent
values of λ as indicated. Instability oc-
curs within the shaded areas.

We shall conclude with a brief investigation of the eigenmode radial
structure. Computing (9.13) at rs − ε and using (9.29) yields(

2 −m +
dξrm−1/dr

ξrm−1

���
rs+ε

)
ξrm−1(rs − ε ) = 0.

Since the third term in brackets on the left-hand-side is generally di�er-
ent from zero, one must have ξrm−1(rs − ε ) = 0. This result in conjunction
with the constraint of vanishing radial fluid displacement at the wall
requires that ξrm−1 = 0 for r > rs .
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Hence, normalising by A =
∫ rs−ε
0 r 1+m/r 2+ms αξrmdr , the behaviour of

the satellite harmonics in the low-shear region conforms to equations
(this holds true even when there is no q = /m/n surface)

Xm+1 =
ξrm+1
A
=
1 +m
2

[(
r
rs

)m 2 +m + ĉ
m − ĉ

+ r −2−m
∫ r

0
r 1+mαX dr

]
,

Xm−1 =
ξrm−1
A
=
m − 1
2

rm−2
[∫ rs−ε

0
r 1−mαX dr −

∫ r

0
r 1−mαX dr

]
.

An example of shape of the radial eigenfunctions when the m/n reso-
nance appears in the plasma is shown in figure 9.7. We see that beyond
the standard infernal character in which the pressure gradient drives
the coupling with the first neighbouring sidebands, the displacement of
the dominant harmonic acquires a kink character in that, similar to the
m = 1 internal kink mode, it has an abrupt discontinuity at the position
of the q (rs ) = m/n resonance. This induces a jump in the radial deriva-
tives of the satellite harmonics at rs . The sudden jump in X is gradually
smoothened as inertial e�ects becomes strong enough to remove the
singularity at rs .

Figure 9.7: Structure of the radial fluid
displacements of the m = 2, n = 1 infer-
nal mode computed with the same pa-
rameters of Fig. 9.6 with q0 = 1.85. References
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10
External kinks

External kink modes are current driven instabilities which can develop
when the plasma is surrounded by a vacuum region. Their e�ect is to
produce a global displacement of the plasma column which is non van-
ishing at the edge. An example of a corrugation of the plasma boundary
induced by an external kink for di�erent m poloidal mode numbers is
depicted in figures 10.1 and 10.2. Depending on the parallel wave vector
associated with the perturbation and the shape of the current profile,
these type of instabilities can grow on Alfvénic timescales, that is within
few microseconds.

1

0Z m= 1

1

0 m= 2

1
R/R0

0Z m= 3

1
R/R0

0 m= 4

Figure 10.1: Perturbation of the plasma
boundary induced by a m = 1, . . . , 4 ex-
ternal kink. For a mode with toroidal
mode number n the lobes rotate n
times for one toroidal revolution (see fig-
ure 10.2).

Although it is not uncommon to observe high-m external kink modes
in the early phase of the discharge (i.e. when the current is ramped-
up and the value of the edge safety factor decreases, see (4.29)), long
wavelength external kinks, primarily modes with m ≤ 3, are generally
deleterious. In fact, their uncontrolled growth, which typically happens
on much shorter timescales than those of the response of feedback con-
trollers, is likely to make the plasma column to touch the surrounding
structures, leading eventually to a complete loss of confinement (namely
a disruption).

Hence, for steady and safe tokamak operation, these instabilities
must be avoided. It is therefore of crucial importance to identify pre-
cisely the physical conditions under which external kink modes develop.

This is the aim of this chapter, in which we discuss the conditions
favouring the onset of such instabilities, giving particular emphasis to the
impact of the shape of the plasma current and the e�ect of a surrounding
ideally conducting wall.

Figure 10.2: Example of the 3D struc-
ture of a m = 4, n = 1 external kink per-
turbation.
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10.1 Eigenmode equations

Figure 10.3: Plasma and conducting
wall geometry.

The geometry of the system is shown in figure 10.3. It is assumed
the presence of a perfectly conducting wall at position b > a such that
b/R0 ∼ ε. The most general Fourier expansion of the radial fluid dis-
placement is

ξr =
∑
m,n

ξrm,ne
i (mϑ−nφ),

where all the Fourier components are allowed to be, in principle, of the
same order. Let us fix the toroidal number n and, as in §9.1, we take
k | | ∼ m ∼ 1 with k | | given by (7.51). Since coupling between harmonics
with di�erent toroidal mode numbers does not occur, we may write

ξr =
∑
m

ξrme
i (mϑ−nφ) (n fixed), (10.1)

having omitted, for the sake of simplicity, to make explicit in ξrm the
dependence upon the toroidal mode number n. In order to model the
fast timescales typical of the growth rates of current driven external kink
instabilities, we let γ/ωA ∼ 1 while β e�ects are kept to be of second
order in ε.1 This highlights the fact that external kink modes are current1 Recall that ωA =

B0
R0
√
ρ0

with normali-

sation µ0 = 1. driven perturbations. Now we shall discuss the governing equations,
treating plasma and vacuum regions separately.

Within the plasma, a perturbation of dominant helicity (m, n) obeys
(7.65). By means of (7.14), (7.57), (7.67) and approximating 〈L〉 ≈
1/(rR0) and 〈N 〉 ≈ r /R0, it follows that to leading order the dynamics
of the harmonic ξrm in expansion (10.1) is described by

1
r
d
dr

[
r 3

(
k2
| |
+
γ2

ω2
A

)
dξrm
dr

]
−

[
(m2 − 1)

(
k2
| |
+
γ2

ω2
A

)
−
γ2

ω2
A

r ρ′0
ρ0

]
ξrm = 0,

(10.2)
where we recall that k | | is defined in (7.51). Notice that pressure terms do
not appear, and no coupling between harmonics with di�erent poloidal
mode numbers occurs at this order. The inertia enhancement factor
associated with plasma compressibility (cf. (7.34)) is also absent due
to the ordering of the growth rate and β which makes this contribution
to be ε2 times smaller compared to the dominant terms. An important
point to stress is that contrarily to the m = 1 internal kink and infernal
modes, it is crucial to include mass density gradients.

Focussing now on the vacuum region, the governing equations for
the magnetic perturbation are (cf. (6.6))

∇ × ˜B = 0, ∇ · ˜B = 0.

This allows us to write the vacuum perturbation as ˜B = ∇χ, with χ

obeying
∇2χ = 0. (10.3)
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Expanding χ in a form similar to (10.1), equation (10.3) yields at leading
order In a cylinder one has g r r = 1, g ϑϑ =

1/r 2, g φφ = 1/R2
0, g

rϑ = g r φ = 0 and
√
g = rR0. Note that in such a geometry

there is no distinction between rectified
and geometric poloidal angles.

(
r χ ′m

) ′
−
m2

r
χm = 0.

It is clear that the large aspect ratio cylindrical approximation proves to
be accurate enough. Hence, the description of external kink modes in
a torus is exactly the same as the one in a cylinder. Since B̃ rm ≈ χ ′m , we
multiply the expression above by r , and then take the radial derivative
to eventually give [

r
(√
g B̃ rm

) ′] ′
−
m2

r
√
g B̃ rm = 0. (10.4)

Imposing the boundary condition (6.13) at the perfectly conducting wall,
the solution of (10.4) reads

√
g B̃ rm ∝

( r
b

)m
−

(b
r

)m
. (10.5)

In the vacuum, the safety factor increases parabolically (cf. Eq.
(4.48)) and is continuous at the plasma-vacuum interface a in absence
of surface current densities. Hence, we introduce a �ctitious vacuum
displacement ξv such that2 2 Notice that we are not concerned if ξv

is singular at some locations a < r < b .
√
g B̃ rm = r [m(a/r )

2/q (a) − n]ξv, (10.6)

where q (a) denotes the value of the safety factor at the plasma boundary.
We can thus recast (10.4) as follows

1
r
d
dr

[
r 3k2
| |

dξv
dr

]
− (m2 − 1)k2

| |
ξv = 0. (10.7)

Since ρ0 = 0 in the vacuum region, we see that ξrm with ξv obey the same
equation, that is Eq. (10.2). We may therefore identify them employing
the symbol ξrm also to denote ξv , bearing in mind that the vacuum per-
turbation is obtained by solving (10.4) for B̃ rm . The dispersion relation
is then derived by joining the plasma and vacuum solutions applying ap-
propriate boundary conditions at the plasma-vacuum interface. These
calculations are carried out in the next sections.

10.2 Necessary condition for instability

Assume that there are no surface currents at the plasma boundary so that
q is continuous at r = a. Boundary condition Eq. (6.7) forces B̃ rm , and
thus ξrm , to be continuous at the plasma-vacuum interface. We use (6.11) with the condition n0 ·B0 =

0 (it is easily show that the equilibrium
field is continuous at r = a).

Therefore,
multiplying (10.2) by r and then integrating across a yields

a

[(
k2
| |
+
γ2

ω2
A

)
dξrm
dr

]a+ε
a−ε

−
R2
0γ

2

B2
0

ρ0(a − ε )ξrm(a) = 0, (10.8)



136 External kinks

where ε is, as usual, an infinitesimally small positive quantity. Notice
that we allowed radial excursions of the mass density across the plasma
boundary, and took ρ0(a + ε ) = 0 meaning no plasma beyond r = a. A
trivial rearrangement of this expression gives

a
(
m
q (a)

− n
)2 [

dξrm/dr
ξrm

]a+ε
a−ε
=
R2
0γ

2

B2
0

ρ0(a−ε )
(
1 + a

dξrm/dr
ξrm

���
a−ε

)
. (10.9)

Furthermore, the following relation holds

d
dr

(
r 3
γ2

ω2
A

dξrm
dr

)
−r

γ2

ω2
A

[
(m2−1)−r

ρ′0
ρ0

]
ξrm = r

[
r
γ2

ω2
A

(
r ξrm

) ′] ′
−m2 γ

2

ω2
A

r ξrm .

(10.10)
Thus, if we multiply (10.2) by r ξrm and integrate from 0 to a − ε ,

under the assumption that ξrm is a real valued function, by means of
(10.10) we obtain

a2 |ξrm |
2
[
a

(
m
q (a)

− n
)2dξrm/dr

ξrm

���
a−ε
+
R2
0γ

2

B2
0

ρ0(a − ε )
(
1 + a

dξrm/dr
ξrm

���
a−ε

) ]
−

∫ a−ε

0
r k2
| |

(
r 2

���dξrm
dr

���2 + (m2 − 1)|ξrm |
2
)
dr

−

∫ a−ε

0
r
γ2

ω2
A

(
|(r ξrm)

′ |2 +m2 |ξrm |
2
)
dr = 0.

Plugging (10.9) into this equation yields∫ a−ε

0
r
γ2

ω2
A

(
|(r ξrm)

′ |2 +m2 |ξrm |
2
)
dr =

a3 |ξrm |
2
(
m
q (a)

− n
)2 dξrm/dr

ξrm

���
a+ε
−

∫ a−ε

0
r k2
| |

(
r 2

���dξrm
dr

���2 + (m2 − 1)|ξrm |
2
)
dr .

(10.11)

It is thus evident that instability can develop only if the first term
on the right-hand-side of the expression above is positive. By means of
(10.5) and (10.6) we can easily compute

a
dξrm/dr
ξrm

���
a+ε
=

2m
m − nq (a)

−
m + 1 + (m − 1)

( a
b

)2m
1 −

( a
b

)2m . (10.12)

The last term of (10.12) is always negative. Therefore, γ2 in (10.11) may
become positive only if

q (a) <
m
n
, (10.13)

that is the external kink mode with helicity (m, n) can be made
unstable only if its associated resonance occurs in the vacuum.

Note that q (a) > m/n is a su�cient
condition for stability. This translates
into a constraint on the plasma current
Ip which we recall scales as Ip ∝ 1/q (a)
(see (4.29)).

We
stress that this is a general result independent of the shape of the current
and mass density profiles inside the plasma.
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10.3 Marginal boundaries

The marginal stability boundaries are readily obtained from (10.8) by
setting γ = 0, yielding(

m
q (a)

− n
)2
a

[
dξrm/dr
ξrm

���
a+ε
−
dξrm/dr
ξrm

���
a−ε

]
= 0. (10.14)

The first term in the square brackets, which is associated with the vac-
uum solution, is given by equation (10.12), while the second is obtained
from solving (10.2) in the region r < a with vanishing γ. It is worth
noting that the marginal boundaries are independent of the shape of
the mass density profile.

For generic current profiles, the solution of equation (10.2) is typi-
cally tackled numerically. However, an exact analytic solution can be
found for a current profile of the form

R2
0 J

φ

B0
=

{
2/q0, r < r0,

0, r > r0,
(10.15)

with r0 ≤ a measuring the extension of the current channel. The corre-
sponding q profile is flat and equal to q0 for 0 < r < r0, while q = q0(r /r0)2

for r > r0.3 It is immediate to verify that r0/a =
√
q0/q (a). Integrating 3 This form of q extends smoothly into

the vacuum region.(10.2) across r0 shows that both dξrm/dr and ξrm are continuous at r0.
Hence, with such a safety factor profile, the expression of ξrm fulfilling
the regularity condition on the magnetic axis is easily obtained and reads

ξrm = C ×


(r /r0)m−1, r < r0,

(r /r0)1−m + (m − 1 − nq0)(r /r0)1+m

m − nq
, r > r0,

(10.16)

where C is a constant. Using this form of the plasma displacement, we
can compute

a
dξrm/dr
ξrm

���
a−ε
= m + 1 −

2m
1 + (m − 1 − nq0)(a/r0)2m

+
2nq (a)
m − nq (a)

. (10.17)

Plugging this result and (10.12) into (10.14) gives4 4 If q (a) < m/n, according to (10.28),
instability occurs when the term in the
square brackets on the left-hand-side of
(10.18) is positive.

(
m
q (a)

− n
)2 [

1
1 + (m − 1 − nq0)(a/r0)2m

−
1

1 −
( a
b

)2m ]
= 0. (10.18)

This equation is satisfied either when q (a) = m/n (cf. (10.13)) or when
the term in the square brackets cancels. We shall now analyse separately
instabilities with poloidal mode numbers m = 1 and m ≥ 2.

10.3.1 m = 1 external kinks

We start by noticing that if m = 1 and a/b → 0, Eq. (10.18) is fulfilled
only for q (a) = 1/n. Let us take the equilibrium mass density profile to
be a step function, that is (see figure 10.4)

ρ0 ∝ H (a − r ), ρ′0 ∝ δ(r − a), (10.19)
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where H denotes the Heaviside step function and δ is the Dirac-delta
function. With such a mass density profile, the solution of (10.2) for
m = 1 is ξr1 = const . This result holds even for γ , 0, and, more
importantly, is completely independent of the shape of the current
pro�le (with a q profile which is finite on the magnetic axis).

0 a

ρ0

Figure 10.4: Model equilibrium mass
density profile for the computation of the
external kink stability.

When this expression for the m = 1 radial displacement is plugged
into (10.11), by means of (10.12) we obtain

γ2

ω2
A

= 2
(

1
q (a)

− n
)2 (

1
1 − nq (a)

−
1

1 −
( a
b

)2 ) . (10.20)

Notice that this equation could have been equally obtained from (10.9).
We see that in the no-wall limit ((a/b)2 → 0) the growth rate γ2 is
always positive for q (a) < 1/n. For the n = 1 mode, which turns out be
the most dangerous one, this leads to the celebratedKruskal-Shafranov
stability criterion

q (a) > 1.

This criterion sets a hard limit on the maximum allowed current that
can be carried by the plasma. A window of stability appears for small
values of q (a) if an ideal wall with a/b finite surrounds the plasma.

10.3.2 m ≥ 2 external kinks

In the limit (a/b)2m → 0 and using (10.13), equation (10.18) provides
a su�cient condition for stability expressed by the maximum extension
of the current channel. This is55 Exploit the relation q0 = qa (r0/a)2. (r0

a

)2
<
m − 1
m

.

Since r0/a has to be smaller than unity, the widest window in q (a) within
which instability can develop is identified by the following relation:This comes from the fact that in the limit

of b → ∞ from (10.18) one has m − 1 =
nq (a)(r0/a)2 < nq (a). m − 1

n
< q (a) <

m
n
. (10.21)

More precisely, whenever q (a) < m/n the plasma is expected to be stable
if (see (10.18))

q (a)
q0
≥
nq (a)
m − 1

. (10.22)

If wall e�ects are taken into account, (10.18) yields the instability
window

m − 1 + (r0/b)2m

n(r0/a)2
< q (a) <

m
n
.

Under the assumption that (a/b)2m � 1, for a given q (a) < m/n the
maximum extension of the current channel required for stability is(r0

a

)2
=
m − 1
nq (a)

+
(m − 1)m

[nq (a)]m+1

(a
b

)2m
.
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The stabilising role of the wall, allowing for a wider current channel, is
evident.

0 2 4 6 8
q(a)

1

1.5

2

2.5

q(
a
)/
q 0

Figure 10.5: Marginal boundaries and
expected instability region (shaded area)
for the no-wall external kink stability
with the stepped current profile. The ver-
tical axis measures the peaking of the
current (the flatter the current the more
unstable the plasma).

An example of the region of instability for safety factor and mass den-
sity profiles used in the calculations above in the no-wall limit is shown
in figure 10.5. Wider regions of stability can be accessed by allowing the
current to have di�erent shapes (Wesson 1978).

10.4 Growth rates

We assume an equilibrium mass density of the form of Eq. (10.19), and
the dispersion relation is given by equation (10.9) with ρ0(a−ε ) = ρ0(r =
0). For the particular case of a flat current, (10.9) can be solved analyti-
cally (a numerical solution is typically needed for more general current
profiles). Setting ρ′0 = 0 in (10.2), for r < a the radial displacement
reads

ξrm ∝ r
m−1.

It follows at once that a dξ
r
m/dr
ξrm

���
a−ε
= m−1. Thus, by means of Eq. (10.12)

we then have

γ2

ω2
A

= 2
(
m
q (a)

− n
)2 [

1
m − nq (a)

−
1

1 −
( a
b

)2m ]
. (10.23)

This expression reduces to (10.20) for m = 1. Since γ/ωA ∼ 1, it is
seen that the instability grows on Alfvénic timescales meaning that for
ωA of the order of megahertz (which is a typical value for currently
operating tokamaks) external kinks can grow within few microseconds.
Notice that, if a/b → 0, for a given q (a) (with q0/q (a) = 1) there are
always some m and n mode numbers which yield instability, that is no
stable regions can be identified (cf. 10.5). Moreover, one sees that the
stabilising e�ect the ideal wall at fixed a/b becomes less e�ective as m
increases.

However, by comparing with Fig. 10.5, we are induced to infer that
more peaked current profiles should mitigate this virulent growth.6 This 6 This is not expected to hold for the

m = 1 mode whose growth rate is inde-
pendent of the shape of q , or current (cf.
(10.2)).

is indeed the case as exemplified by figure 10.6 where the growth rates
obtained from the numerical solution of (10.2) for two current profiles,
one flat and the other parabolic, are shown.

Figure 10.6: No wall (a/b → 0) growth
rate of the n = 1 and m = 1, . . . , 4
modes versus q (a) for a flat mass den-
sity profile with the current of the form
R2
0 J

φ/B0 =
2
q0
(1 − (r /a)2)ν with ν = 0

(a) and ν = 1 (b). With such a profile
one has q (a)/q0 = 1 + ν. High-m modes
are stabilised if the edge current gradient
is su�ciently small.
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On the instability condition

Let us take a current profile of the form (10.15) and assume that we are
close to the stability boundary identified by (10.22) with q (a) far from an
integer (that is we focus on a neighbourhood of the oblique lines in figure
(10.5) such that k | |(a) � R2

0ρ0(0)γ
2/B2

0). We now write the perturbed
plasma displacement as

ξrm = X0 + X2, (10.24)

where both X0 and X2 are regular at the magnetic axis with X2/X0 ∼

(γ/ωA)
2. We expand (10.2) in orders of (γ/ωA)2 and by means of (10.10)

we obtain (′ ≡ d/dr )

L(X0) ≡

(
r 3k2
| |
X ′0

) ′
− r (m2 − 1)k2

| |
X0 = 0, (10.25)

L(X2) + r
[
r γ̄2 (rX0)

′
] ′
−m2γ̄2rX0 = 0, (10.26)

where γ̄2 = R2
0ρ0(r )γ

2/B2
0 . Multiplying (10.26) by X0 and integrating

from 0 to a − ε (ε has the usual meaning) yields

a3k2
| |
(a)

[
X0X ′2 − X2X ′0

]
a−ε =

∫ a−ε

0
X0L(X2)dr

= −a2γ̄2
[
X0 + rX0X ′0

]
a−ε +

∫ a−ε

0
r γ̄2

(
[(rX0)

′]
2
+m2X 2

0

)
dr, (10.27)

having made use of (10.25) with X0 a real valued function. Plugging ξrm
from (10.24) into equation (10.8) gives

ak2
| |
(a)

(
ξ ′v

��
a+ε − X

′
0

��
a−ε

)
− ak2

| |
(a)X ′2

��
a−ε − γ̄

2 [
rX ′0 + X0

]
a−ε = 0,

where, for the sake of clarity, we used ξv for denoting the vacuum per-
turbation (see (10.7)). When this is used in (10.27) to eliminate X ′2 we
get

a3k2
| |
(a)X0(a − ε )

[
ξ ′v

��
a+ε − X

′
0

��
a−ε

]
− a3k2

| |
(a)

[
X2X ′0

]
a−ε

=

∫ a−ε

0
r γ̄2

(
[(rX0)

′]
2
+m2X 2

0

)
dr .

Dividing this expression by X0(a − ε )ξrm(a) and exploiting the fact that
1/ξrm(a) ≈ (1 − X2/X0)/X0 |a−ε with ξrm(a) = ξv (a), to leading orders in
(γ/ωA)

2 we finally obtain

ak2
| |
(a)

[
dξv/dr
ξv

���
a+ε
−
dX0/dr
X0

���
a−ε

]
=

1

a2X 2
0 (a)

∫ a−ε

0
r γ̄2

(
[(rX0)

′]
2
+m2X 2

0

)
dr, (10.28)

having dropped ε in the argument of X0. It is clear that instability
occurs when the left-hand-side is positive. This is computed from
Eqs. (10.12) and (10.17).
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11
Mercier modes

We showed at the end of chapter 8 that in a toroidal plasma at low-β with
a monotonic q profile and a magnetic shear of the order of unity, no
long-wavelength global internal modes are allowed if the q = m/n reso-
nance occurs within the plasma. However, with a small shear, along with
infernal modes, highly localised pressure driven short wavelength per-
turbations (m � 1) can also become unstable.

These instabilities cause a localised ripple of neighbouring flux sur-
faces yielding an interchange of the associated fluid elements. From this,
the name interchange modes. Such perturbations, which are typically
characterised by a poloidal spectrum with a dominant Fourier harmonic,
are found in the literature under many names: in a cylinder these are
usually referred to as Suydammodes, whereas in a torus they are known
as Mercier modes, after Suydam (1958) and Mercier (1961) who first
described such instabilities in cylindrical and toroidal geometry respec-
tively. Sometimes these perturbations are also called �ute instabilities.
In this chapter, we shall restrict our attention to interchange modes in
a tokamak, thus hereafter we will address these instablities as Mercier
modes (we may still have a brief mention to Suydam modes when the
specific case of a cylinder is considered which is a trivial reduction of
the toroidal one).

Although rarely seen in tokamaks (an example of an interchange-
type fluctuation which might be observed in present tokamak experi-
ments is shown in figure 11.1), the techniques employed in the stability
analysis of Mercier modes, particularly subtle in some points, are usu-
ally employed in the analytical treatment of their resistive counterpart,
namely resistive interchange modes, and also for the more commonly
observed instabilities known as ballooning modes (the latter will be
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Figure 11.1: Example of an interchange-
like perturbation with a core inverted
pressure profile and q > 1 (see In
(2000)). (a) Safety factor and pressure
profiles. (b) Radial fluid displacement of
the Mercier instability.

(a) (b)

discussed in the next chapter even though we will study their stability
properties using some alternative methods). Here we present a detailed
exposition of the derivation of the eigenmode equations for Mercier
modes, and a thorough discussion of the associated stability boundaries
and growth rates.

11.1 Eigenmode equation

As for the instabilities analysed in the preceding chapters, the following
derivation is based on the results presented in §7.4 and §7.5. As usual, we
let p0/B2

0 . ε2 with r p ′0 ∼ p0 and look at a single toroidal harmonic at a
time with fixed n � 1. Since n � 1 and q ∼ 1, it necessarily follows that
m � 1. These short wavelength perturbations are assumed to be highly
localised about their resonant surface rs for which k | |(rs ) = mµ(rs )−n = 0
(cf. (7.51)). This means that, ideally, the flux surfaces that get distorted
by these instabilities are only those in a very narrow neighbourhood
around rs . An example of a flux surface perturbed by an interchange
instability is shown in Fig. 11.2.

Following the logical steps discussed in §7.2, we assume that per-
turbed quantities fulfil the condition

1

f̃

d f̃
dx
∼ m � 1, (11.1)

with x = (r − rs )/rs . Hence, the mode radial extension is expected to be
proportional to 1

m so that we order x ∼ 1/m. From this, we approximate

k | | ≈ −nsx, (11.2)

where here s is the magnetic shear at rs . It follows that nx ∼ 1 and
k | | ∼ s .

1
R/R0

0Z

Figure 11.2: Example of the flux surface
distortion due to a m = 30 interchange
perturbation localised about its resonant
surface (indicated by the dashed line).
Compare with Fig. 10.1.

Using these estimates and the orderings presented in §7.4, from
(7.55) one can write to leading order in 1

m

P ≈
R0

B0
p ′0,

where it is implicitly assumed that p ′0 = p
′
0(rs ). The eigenmode equa-

tion is given by (7.65) which, for the sake of clarity, is reproduced below
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for a flat mass density profile (ρ′0 = 0):

1
r
d
dr

(
r 2〈N 〉
1 + h

k̂2
| |

dξrm
dr

)
+

{
r k̂ | |

[
1
r

(
〈N 〉(r k̂ | |)′

1 + h

) ′
−m2k̂ | | 〈L〉 −m

f ′0
r
〈
J φ0
Bφ
0

〉′

]
+m2B0

[
P 2

R0B0
+
nµ′

m
r 2

R2
0

P − nr
k | |
m2

(
rP

R2
0

) ′
− p ′0

(
〈R2〉′

F
−
〈R2〉F ′

F 2

)] }
ξrm

+ imB0

∑
m′

[
ik | |C

m′
m +D

m′
m − E

m′
m (p̂) − E

m′
m (∆p)

]
= −

B2
0

R0

γ2

ω2
A

[
1
r
d
dr

(
r 3
dξrm
dr

)
− (m2 − 1)ξrm

]
, (11.3)

where p̂ is given by (7.59). Notice that we allowed the poloidal spectrum
to contain more than one harmonic. It will be clear that, to the required
accuracy, we can take

f ′0
r
→ B0, 〈L〉 →

1
rR0

, 〈N 〉 →
r
R0

.

We shall now analyse each term in the equation above one by one.
By means of the above-mentioned ordering, and the discussion pre-

sented in §7.4, we easily obtain

1
r
d
dr

(
r 2〈N 〉
1 + h

k̂2
| |

dξrm
dr

)
≈
n2s 2B2

0

R0

d
dx

(
x2
dξrm
dx

)
.

Employing (7.68), the second term on the left-hand-side of (7.65) can be
cast to leading order in 1/m as

r k̂ | |

[
1
r

(
〈N 〉(r k̂ | |)′

1 + h

) ′
−m2k̂ | | 〈L〉 −m

f ′0
r
〈
J φ0
Bφ
0

〉′

]
≈ −

B2
0

R0
(mnsx)2.

Making use of (4.31), (4.33) and (5.21) the third term is rearranged as
follows We employ the relations

〈R2〉′ = −R0
(
α + 2r /R0 + 2s∆

′
)
,

F ′ = −R0B0

[
p ′0
B2
0

+
r

R2
0q

2
(2 − s )

]
.

P 2

R0B0
+
nµ′

m
r 2

R2
0

P − nr
k | |
m2

(
rP

R2
0

) ′
− p ′0

(
〈R2〉′

F
−
〈R2〉F ′

F 2

)
≈
R0(p ′0)

2

B3
0

−
sr p ′0
q 2B0R0

− p ′0

(
〈R2〉′

F
−
〈R2〉F ′

F 2

)
≈
p ′0
B0

[
2r
R0

(
1 −

1
q 2

)
+ α + 2s∆′

]
, (11.4)

where α is the ballooning parameter defined by (4.41) which is ordered
as α . ε. Note that the expression above is intended to be evaluated
at rs . In cylindrical geometry one has 〈R2〉′ = 0, and the following
replacement should be made:

p ′0
B0

[
2r
R0

(
1 −

1
q 2

)
+ α + 2s∆′

]
→ −

2r p ′0
R0B0q 2

.
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We shall analyse now the inertial contributions exploiting the find-
ings of section 7.4.2. The right-hand-side of (11.3) is readily cast as

1
r
d
dr

(
γ2

ω2
A

r 3
dξrm
dr

)
−
γ2

ω2
A

(m2 − 1)ξrm ≈
γ2

ω2
A

(
d 2ξrm
dx2

−m2ξrm

)
,

while the term involving ∆p is obtained from (9.9) and reads

−im
R0

B0

∑
m′
Em

′

m (∆p) ≈
2m2γ2

n2ω2
A

(
d 2ξrm
dx2

−m2ξrm

)
.

Note that in cylindrical geometry this term does not appear due to the
fact that no coupling occurs between harmonics with di�erent poloidal
mode numbers. We may point out that for su�ciently small growth
rates, inertial contributions should matter only very close to the mode
resonance where the radial derivatives of ξrm are expected to become
large.

By collating these results together, we obtain

d
dx

(
x2
dξrm
dx

)
−

{
m2x2 +

α

s 2

[
rs
R0

(
1 −

1
q 2

)
+
α

2
+ s∆′

] }
ξrm

+
γ2(1 + 2q 2)

n2s 2ω2
A

(
d 2ξrm
dx2

−m2ξrm

)
= −

imR0

n2s 2B0

∑
m′

[
ik | |C

m′
m +D

m′
m − E

m′
m (p̂)

]
.

(11.5)

It is clear that, from balancing all terms in the equation above so that
they are of similar magnitude, the magnetic shear must be small hence
we take s ∼ ε.

We now analyse the right-hand-side of (11.5), namely the contribu-
tions due to couplings with the neighbouring sidebands. Similar to the
term which generates the inertia enhancement factor, these corrections
vanish in a cylinder, thence the following analysis pertains toroidal ge-
ometry only. By means of (7.63) and (8.12), one can verify that

mR0

n2s 2B0
Em

′

m (p̂) ∼
α

s 2
ξrm±1, (11.6)

with m ′ = ±1 which is valid also when r dξrm±1/dr ∼ mξ
r
m±1. Explicitly,

one has

E±1m (p̂) = −
i p ′0
B0

(
mξrm±1 ±

dξrm±1
dx

)
.

Without loss of generality, we assume that (11.1) holds for the m ± 1
modes as well so that

r
m ± 1

d
dr
∼ 1. (11.7)

Thus, from (7.49) we see that (
√
g B̃φ)m±1 ∼ B0ε

2ξrm and by means of
(7.25) we obtain r (

√
g B̃ϑ)m±1 ∼ (

√
g B̃ r )m±1. Hence, we can write

(
√
g B̃ r )m±1 ∼ rB0ξ

r
m±1, (

√
g B̃ϑ)m±1 ∼ B0ξ

r
m±1. (11.8)
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Employing (8.14), one has from (7.62)

mR0

n2s 2B0
Dm

′

m ∼
α

ms 2
ξrm±1. (11.9)

Due to the smallness of the magnetic shear, it is immediate to recognise
that this contribution can be neglected when compared with the one
involving Em

′

m . The remaining term is evaluated using (7.53) which gives

mR0

n2s 2B0
k | |C

m′
m ∼

ε

s
ξrm±1. (11.10)

Thus, since εs/α � 1, we may neglect the contribution arising from
(11.10) compared with the one associated with (11.6).

Using the condition s � 1 once more and thanks to the fact that
∆ ∼ rα, equation (11.5) can be cast as This is essentially the localised m � 1

limiting case of (9.12) where Q is given
by (9.11) with k | | = mµ − n.d

dx

(
(x2 + γ2H )

dξrm
dx

)
−

[
m2(x2 + γ2H ) +

αr
s 2R0

(
1 −

1
q 2

)
+
α2

2s 2

]
ξrm

=
imR0

n2s 2B0

∑
m′
Em

′

m (p̂) = −
α

2ms 2

∑
±

(
mξrm±1 ±

dξrm±1
dx

)
, (11.11)

having defined

γ2H =
γ2(1 + 2q 2)

n2s 2ω2
A

. (11.12)

Taking the sidebands ξrm±1 to be of higher order compared with the
harmonic ξrm , they are expected to obey equation (7.71). Since the mag-
netic shear is small, this equation can be reduced to (9.6) or (9.7). For
localised perturbations with m � 1 this is cast as(

d 2

dx2
−m2

)
ξrm±1 = ±

mα
2

(
d
dx
∓m

)
ξrm, (11.13)

which, assuming once again that (11.7) holds, Note that since m � 1 one can replace
m → m ± 1 with no harm.

shows that

ξrm±1 ∼ αξ
r
m,

implying that the right-hand-side of (11.11) is a quantity of order α2

s 2
ξrm .

Equation (11.13) can be readily integrated giving (r /rs )m = em ln(r /rs ) ≈ em ln(1+x) ≈ emx .(
d
dx
+m

)
ξrm+1 =

mα
2
ξrm +C+e

mx,(
d
dx
−m

)
ξrm−1 = −

mα
2
ξrm +C−e

−mx .

When these expressions are plugged into (11.11) we obtain

d
dx

(
(x2 + γ2H )

dξrm
dx

)
−

[
m2(x2 + γ2H ) +

αr
s 2R0

(
1 −

1
q 2

)]
ξrm

= −
α

2ms 2
(C+emx −C−e−mx ) .
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The requirement that ξrm is well localised about its own resonance implies
that C± → 0.

Note that we could have obtained the same result by ignoring terms
proportional to α2 under the assumption that the pressure gradient is
su�ciently weak. More specifically, taking the ratio between the second
and third term in square brackets in (11.11) and asking that the result is
small yields α � ε. Therefore, in equation (11.11) all the α dependent
terms but the one proportional to (1 − 1/q 2) may be dropped. These
conditions are fulfilled by ordering

α ∼ ε3/2, s ∼ ε.

Thus, changing variable from x to z = mx , the equation which gov-
erns the dynamics of Mercier (or Suydam in a cylinder) modes is

d
dz

(
(z 2 +m2γ2H )

dξrm
dz

)
−

(
z 2 +m2γ2H + Û

)
ξrm = 0, (11.14)

where

Û =


−

αr
s 2R0q 2

, cylinder,

αrs
s 2R0

(
1 −

1
q 2

)
, torus.

(11.15)

Note that we let Û ∼ 1. As mentioned earlier, in a cylinder there is no
inertia enhancement arising from the sideband compressibility, so that

for this case we must perform the replacement γ2H →
γ2

n2s 2ω2
A
. Follow-

ing the same reasoning which led to (8.7), the width of the layer where
inertial contributions become relevant is approximately11 Compared to (8.7), the inertia

enhancement factor is generalised to
modes with m > 1. δr

rs
∼
γ
√
1 + 2(m/n)2

nsωA
. (11.16)

In the next sections, information on marginal stability boundaries,
growth rates and mode radial structure is extracted from the analysis of
equation (11.14).

11.2 The Mercier stability criterion

Since m � 1, the perturbation is highly localised and we may let z to
vary from −∞ to +∞. Let us assume ξrm to be a real function. In the
limit of z →∞, Eq. (11.14) reduces to

d
dz

(
z 2
dξrm
dz

)
− z 2ξrm = 0,

whose solution which decays at infinity is proportional to exp(−|z |)/z .
This shows that both ξrm and zξrm are square integrable for −∞ < z < ∞
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if ξrm is well behaving at the origin. Hence, we multiply (11.14) by ξrm
and integrate from −∞ to +∞. This gives

m2γ2H

∫ ∞

−∞

(���dξrm
dz

���2 + |ξrm |2) dz = −∫ ∞

−∞

[
z 2

���dξrm
dz

���2 + (
z 2 + Û

)
|ξrm |

2
]
dz .

(11.17)
Using Schwarz inequality, we have2 2 For a square integrable real function

f the following relation holds

1
4

[∫ ∞
−∞

f 2dz
]2
=

[
1
2

∫ ∞
−∞

z
df 2

dz
dz

]2
=

[∫ ∞
−∞

z f
df
dz
dz

]2
≤

[∫ ∞
−∞

z2
(
df
dz

)2
dz

] [∫ ∞
−∞

f 2dz
]
.

1
4

∫ ∞

−∞

|ξrm |
2dz ≤

∫ ∞

−∞

z 2
���dξrm
dz

���2dz,
so that

m2γ2H

∫ ∞

−∞

(���dξrm
dz

���2 + |ξrm |2) dz ≤ −∫ ∞

−∞

(
z 2 + Û +

1
4

)
|ξrm |

2dz . (11.18)

Hence, if Û + 1/4 ≥ 0 the right-hand-side of the expression above is
always negative, and therefore stability is guaranteed. Note that we
could have drawn the same conclusion by using the equality (which holds
for a function decreasing as exp(−|z |) for z →∞)∫ ∞

−∞

(
z 2

���dξrm
dz

���2 − 1
4
|ξrm |

2
)
dz =

∫ ∞

−∞

(
z
dξrm
dz
+
1
2
ξrm

)2
dz .

We may now infer that Û + 1/4 = 0 identifies the marginal stability
boundary, that is γ → 0 for Û → − 1

4 , by arguing that perturbations
described by Eq. (11.14) are so localised in space about z = 0, so that
the contribution due to the term proportional to z 2 on the right-hand-
side of (11.18) is negligible. It will be indeed proven in the next section
that the stability boundary is identified by the relation Û + 1/4 = 0, this
eventually leading to the following stability criterion:

−
1
4
≤


2rs p ′0(rs )

s 2B2
0

, cylinder,

2rs p ′0(rs )

s 2B2
0

(
1 − q 2

)
, torus.

(11.19)

In toroidal geometry this is known asMercier stability criterion, whereas
in a cylinder it takes the name of Suydam stability criterion. In the literature, the criterion (11.19) can

be found written as e.g. DM < 1/4,
DI < 0 or sometimes DI > 0. It is
worth pointing out that plasma shaping
can strongly modify this criterion: elon-
gation of the flux surfaces alone is detri-
mental for stability, whereas adding a
small amount of triangularity improves
it (Lutjens (1992)).

Note that
this is a local criterion, in that it determines stability against localised
perturbations at a single resonant surface. Hence, the equilibrium is
stable against Mercier (or Suydam) modes if (11.19) is fulfilled at each
radial position.

Since in tokamaks the safety factor is usually larger than unity for
most of the plasma radius, it is clear from (11.19) why, with a decreasing
pressure profile, Mercier modes are rare events. These may still develop
in regions where q < 1, but in such cases they are typically overshadowed
by the m = 1 internal kink activity (some more detailed considerations
on the existence of Mercier modes are discussed in the box at the end
of this chapter).

The next section is devoted to the derivation of the dispersion re-
lation, i.e. the growth rate.
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11.3 Dispersion relation and growth rate

Having established the conditions which allow localised perturbations
to be unstable, we now focus on determining their growth rate. This
requires a more advanced mathematical treatment, involving the deriva-
tion of a dispersion relation through the asymptotic matching of ap-
proximate solutions. Let us introduce the parameter

ν =

√
Û + 1/4. (11.20)

Since (11.19) predicts stability for ν > 0, we let Û < −1/4. This means
that ν is purely imaginary.The ν = 0 case is discussed as the limit

ν → 0. We recast equation (11.14) in terms of the variable y = z/(mγH ),
with γH a positive definite quantity, as

d
dy

(
(1 + y2)

dξrm
dy

)
−m2γ2H

(
1 + y2 +

Û

m2γ2H

)
ξrm = 0. (11.21)

We let γH to be small enough so that Û /(m2γ2H ) � 1.3 Hence, the3 This means that we are investigating
the behaviour close to the marginal sta-
bility boundary, i.e. γ → 0.

unity factor in the second term of the left-hand-side of (11.21) can be
neglected. The resulting equation is thus analysed in two limiting cases,
one for which y � 1 and the other with y . 1.

Starting with the large y case, ξrm obeys

d
dy

(
y2
dξrm
dy

)
−m2γ2H

(
y2 +

Û

m2γ2H

)
ξrm = 0, (11.22)

whose solution which is regular at infinity is

ξrm ∼
Kν(|z |)√
|z |

, (11.23)

where Kν is the modified Bessel function of second kind. We call this
the outer solution.

In the opposite limit, when y . 1, Eq. (11.21) reduces to

d
dy

(
(1 + y2)

dξrm
dy

)
− Û ξrm = 0. (11.24)

By letting X = −y2, this is transformed into a hypergeometric di�erential
equation

X (1 − X )
d 2ξrm
dX 2

+

(
1
2
−
3
2
X

)
dξrm
dX
+
Û
4
ξrm = 0,

whose two linearly independent solutionsYe (even) andYo (odd) are44 These solutions can be analytically
continued for Re (X ) < 0 in the complex
plane. Note that since 2F1 (A,B ;C ; 0) =

2F1(A −C + 1,B −C + 1; 2 −C ; 0) = 1, it
follows that ξrm is well defined for X = 0.

Ye = 2F1
(
A,B ;C ;−y2

)
,

Yo = y × 2F1(A −C + 1,B −C + 1; 2 −C ;−y2),
(11.25)
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where 2F1 is the hypergeometric function and

A =
1
2

(
1
2
− ν

)
, B =

1
2

(
1
2
+ ν

)
, C = 1/2.

Therefore, for y . 1 one has

ξrm = c1Ye + c2Yo, (11.26)

where c1 and c2 are some constants. This is referred to as the inner
solution.

The dispersion relation is obtained by matching asymptotically (11.23)

and (11.26) when 1 � y �
√
Û

mγH
(this procedure is depicted graphically

in figure (8.4)). We first note that for y �
√
Û

mγH
one has z �

√
Û ∼ 1.

Therefore, we can perform a small argument expansion of (11.23) yield-
ing5 5 We use the relation Kν(z ) ∝ I−ν(z ) −

Iν(z ) where Iν is the modified Bessel
function of first kind.ξrm ∼ |z |

−
1
2−ν

[
1 +

Γ(−ν)

Γ(ν)

(
|z |
2

)2ν]
, (11.27)

which holds for both z < 0 and z > 0. The asymptotic behaviour ofYe,o
is obtained by applying formula (Lebedev (1965)) This is valid for a − b , 0,±1,±2, . . . and

c , . . . ,−2,−1, 0. Note that here a, b
and c denote generic numbers and must
not be confused with the plasma or wall
radii.

2F1(a, b ; c ;−y2) =
(
1 + y2

)−a Γ(c )Γ(b − a)
Γ(c − a)Γ(b) 2

F1

(
a, c − b ; 1 + a − b ;

1
1 + y2

)
+

(
1 + y2

)−b Γ(c )Γ(a − b)
Γ(c − b)Γ(a) 2

F1

(
c − a, b ; 1 − a + b ;

1
1 + y2

)
(11.28)

to Eqs. (11.26). Thus, by letting y � 1 we easily get

Ye ∼ |z |
−
1
2−ν

[
1 + ∆e

(
|z |
mγH

)2ν]
, Yo ∼ |z |

−
1
2−ν

[
1 + ∆o

(
|z |
mγH

)2ν]
,

where

∆e =
Γ(ν)Γ2( 14 −

ν
2 )

Γ(−ν)Γ2( 14 +
ν
2 )
, ∆o =

Γ(ν)Γ2( 34 −
ν
2 )

Γ(−ν)Γ2( 34 +
ν
2 )
. (11.29)

Therefore, it follows that the inner solution behaves asymptotically as

ξrm ∝


|z |−

1
2−ν

[
1 +

(
|z |
mγH

)2ν c1∆e + c2∆o
c1 + c2

]
, z > 0,

|z |−
1
2−ν

[
1 +

(
|z |
mγH

)2ν c1∆e − c2∆o
c1 − c2

]
, z < 0.

(11.30)

Matching (11.27) with (11.30) gives

∆e +
c2
c1
∆o

1 + c2
c1

=
(mγH

2

)2ν Γ(−ν)
Γ(ν)

=
∆e −

c2
c1
∆o

1 − c2
c1

. (11.31)

One can see that this equation can be satisfied only if c2/c1 = 0 (even
ξrm) or c2/c1 →∞ (odd ξrm).
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(a)(a) (b)

Figure 11.3: Even mode eigenfunctions (a) and growth rates (b). In (a) the
solid(dashed) curve is the numerical solution of (11.21) with −Û ≈ 0.4(0.8) correspond-
ing to the diamond(square) in (b). In panel (b) the solid(dotted) line is the growth rate
of even(odd) modes computed from Eq. (11.33), whereas the numerical solution for
even modes is represented by the dots. The dashed vertical line gives the −Û = 1/4
location.

It is a feature typical of high-m modes to have eigenfunctions with a
definite parity: even parity in ξ is called interchange parity (or twisting
sometimes) whereas odd parity in ξ is referred to as tearing parity.6

6 Note that B̃r has opposite parity com-
pared to ξ . It is not uncommon to have
parity referring to B̃r rather that ξ , and
thus the odd(even) parity in B̃ is referred
to as interchange(tearing) parity.

Using the property of the Gamma function xΓ(x) = Γ(1 + x), the
resulting dispersion relation then reads

(mγH
2

)2ν
=


Γ2(1 + ν)Γ2( 14 −

ν
2 )

Γ2(1 − ν)Γ2( 14 +
ν
2 )
, even modes,

Γ2(1 + ν)Γ2( 34 −
ν
2 )

Γ2(1 − ν)Γ2( 34 +
ν
2 )
, odd modes.

(11.32)

We shall now express the growth rate associated with even and odd
modes in a more explicit form.

Since ν is purely imaginary we write ν = i χ with χ > 0. Thus, by
exploiting the fact that x = exp[log(x) − 2ikπ] and using (11.12), the
growth rate is 77 Letting an overbar to denote complex

conjugation, the argument of a complex
number c is given by arg(c ) = −i log c

|c | =

− i2 log
c
c . Note also that the Gamma func-

tion fulfils

Γ(c ) = Γ(c ), logΓ(c ) = logΓ(c ).

γq
√
1 + 2q 2

sωA
= 2 exp

[
−
kπ
χ
+

2
χ
arg(Γ(1 + i χ)) +

2
χ
arg(Γ( t4 − i

χ
2 ))

]
,

(11.33)
with t = 1 for even modes, t = 3 for odd modes and k = 0,±1,±2, . . ..
We first notice that, since the arg function is bounded, γ → 0 only when
χ → 0. Hence, by expanding (11.33) for χ � 1, we obtain

γq
√
1 + 2q 2

sωA
= 2 exp

[
−
kπ
χ
+ 2Ψ(1) − Ψ(t/4)

]
,

where Ψ denotes the Digamma function. The ambiguity on the choice
of k is resolved by imposing that the growth rate does not present a
discontinuity for ν → 0. From this, it follows that only k = 1, 2, . . .



Dispersion relation and growth rate 153

values are allowed with k = 1 identifying the largest growth rate. We
also note that since Ψ(1/4) < Ψ(3/4), even modes grow faster than odd
modes. The numerically computed eigenfunction and associated growth
rates for Mercier/Suydam modes obtained from (11.21) are shown in
figure 11.3 where the comparison with Eq. (11.33) is also given. Finally,
the behaviour of the matched inner and outer analytic eigenfunctions
from Eqs. (11.27) and (11.27) is depicted in Fig. 11.4, which is also
compared with the numerical solution.

Figure 11.4: Matched inner and outer
eigenfunctions compared with the nu-
merically computed solution for the
−Û ≈ 0.4 case of figure 11.3. Note the
linear scale of the y-axis of the inset fig-
ure. The exact solution almost overlaps
the outer one for large y .

Some remarks on Mercier modes existence conditions

Inequality (11.19) poses very strict constraints on the instability
window of Mercier modes. It is evident that these perturbations
may become unstable if either q < 1 with p ′0 < 0, or q > 1 and
p ′0 > 0. The latter case is rarely observed (pressure gradient
reversals are unlikely, particularly if in steady state and far from
the magnetic axis, cf. Fig. 11.1).
For the p ′0 < 0 case, (11.19) suggests that these instabilities can
develop only where q drops below unity, and they are mostly un-
stable in regions of weak magnetic shear, i.e. close to the axis.
However, although Û ∼ 1/s 2 can become large, γ scales linearly
with s (cf. Eq. (11.33)) meaning that Mercier modes developing
in these regions are expected to have very small growth rates.
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12
Ballooning modes

Numerical investigations of the highest attainable pressure in toroidal
devices initiated the interest in ballooning modes. These studies showed
that as β was increased too much, instabilities bulging in the outer edge
of the torus, the tokamak low-field-side (LFS), featuring a mix of poloidal
harmonics (ballooning character) were triggered. Unless the safety fac-
tor profile has broad regions of weak shear1

1 In these cases the stabilising e�ect
of field line bending is reduced and
infernal-type perturbations are likely to
be triggered.

the most pessimistic predic-
tion for the maximum achievable pressure is usually dictated by the sta-
bility properties of modes with large toroidal mode numbers (n → ∞).
We refer to such perturbations as ballooning modes.

Like infernal and Mercier modes, large-n balloonings are pressure
driven instabilities sharing with the former a poloidal spectrum which is
a superposition of multiple harmonics, and with the latter a pronounced
radial localisation. Di�erently from infernal instabilities, the spectral
content of ballooning modes is much richer in that is composed of a large
number of poloidal harmonics of similar amplitude (cf. Fig. 12.1) which
results in a much broader radial extension compared to that of Mercier
modes (infernal modes can be considered as a particular case of low-n
ballooning-type perturbations with a spectrum characterised by three
harmonics only). Figure 12.2 shows the interference pattern of several
and almost equivalent poloidal harmonics resulting in the bulging in the
region of weaker toroidal magnetic field.

Figure 12.1: Harmonics of a generic
fluid displacement ξ for a n � 1
ballooning-like perturbation.In experiments, such type of perturbations are commonly observed

in regions where the local reduction of transport2

2 This can be of particles, momentum,
and heat either for ions or electrons.

allows large pressure
gradients to develop. These are referred to as transport barriers. They
can form either in the core or at the plasma edge, or both. Internal
transport barriers (ITBs) usually develop in scenarios with weak or neg-
ative shear, and infernal-type low-n precursors are often observed before
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φ

(a) (b)

Figure 12.2: Rough example of the structure of a medium-n ballooning mode. The
poloidal spectrum in the angle θ (chosen for convenience to be the geometric angle)
of the radial fluid displacement consisting of 20 harmonics ranging from m = 10 to
m = 30 is shown in (a). In (b) the contours (red for negative and black for positive)
of ξr (r, θ) =

∑
m ξ

r
m (r ) cos(mθ) are shown. The wiggly curve in (b) corresponds to the

distorted flux surface at the position highlighted by the vertical dashed line in (a). The
interference of the various harmonics forces the distortion of the flux surfaces to be
weaker on the high-field-side for all toroidal angles. In a realistic geometry the bulging
aligns with the lines of constant straightened angle.

a disruptive plasma termination.

Edge transport barriers (ETBs) are what typically characterise the so
called high confinement operating regime (orH-mode in short): discov-
ered in the early 80s in the ASDEX tokamak, the plasma was observed
to transition spontaneously into a state of improved confinement when
a threshold in the externally applied heating power was exceeded. This
transition from low to high confinement is known in tokamak jargon as
L-H transition. Associated with this confinement enhancement is the
formation of strong edge pressure gradients. When the pressure gradi-
ent becomes too strong, quasi-periodic relaxation phenomena a�ecting
the edge of the plasma known as Edge Localised Modes (ELMs) may
appear.3 Ballooning modes are believed to play an important role in3 ELMs, which are ubiquitous in H-mode

tokamak plasmas, are periodic bursts re-
laxing the edge pressure with a filamen-
tary structure accompanied by a sudden
particle and energy expulsion associated
with large heat fluxes onto the vessel wall.
Although ELMs may be helpful for the
flushing of the impurities which tend to
accumulate in the plasma, the heat loads
associated with these events are gener-
ally not tolerable for the integrity of the
components facing the plasma.

making ELMs occur. Figure 12.3 shows an example of the typical pro-
files associated with ETBs and ITBs (notice that ETBs and ITBs can
occur simultaneously).

The aim of this chapter is therefore to provide a detailed charac-
terisation of the phenomenology of ballooning modes. First we derive
an eigenmode equation which accounts for the richness of the poloidal
spectrum of ballooning instabilities for the cases of both weak and strong
magnetic shear; we then detail various mathematical techniques used for
tackling the solution of the eigenmode equation in these two limits. A
thorough discussion on mode parity, growth rate and marginal bound-
aries is finally presented.
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Figure 12.3: Pressure profiles in ETB
regimes before and after the L-H transi-
tion (a) and in scenarios with ITBs (b).
In (b) the shape of a safety factor typi-
cally seen in ITB plasmas is also shown.

(a) (b)

pressure

safety 
factor

pre L-H

post L-H

12.1 The ballooning equation

It is instructive to discuss first the derivation of the ballooning equation
in regimes of small pressure gradient and weak magnetic shear (these
conditions are usually met near the magnetic axis).

Let us fix the toroidal mode number n � 1,4 and express a generic 4 Recall that harmonics with di�erent n
behave independently.perturbed quantity f̃ as

f̃ =
∑
m

f̃me imϑ−inφ. (12.1)

After selecting a poloidal harmonic, say the mth, we define k | | = m/q −n
with rm denoting the radial position for which k | | = 0. Similar to the
analysis of Mercier modes, we deploy the ordering (11.1):

1

f̃m

d f̃m
dx
∼ m ∼ ε−1 � 1 with x = (r − rm)/rm ∼ ε, (12.2)

assuming that (11.2) holds with n ∼ m ∼ ε−1 such that m/n = q ∼ 1.
According to the discussion in the introduction, we postulate that,

and this is the crucial feature which characterises ballooning modes,
di�erent Fourier harmonics have similar amplitude. This means
that we can order the harmonics appearing in (12.1) as

f̃m ∼ f̃m±1 ∼ f̃m±2 ∼ . . . . (12.3)

Each of these modes is expected to be localised about its resonant sur-
face with a radial extension of the order of the distance between the two
resonances of its first neighbouring sidebands.

The safety factor is expanded around rm as

q ≈ m
n (1 + sx),

where s is the magnetic shear at rm which is assumed to be constant. It
follows that the resonances associated with the m ± 1,m ± 2, . . . modes
are equally spaced, and their location is5 5 Note that at leading order (rm+1 −

rm )/rm ≈ (rm+1 − rm )/rm±1.

xm±ℓ = ±
ℓ
sm

, (ℓ = 1, 2, . . .). (12.4)
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We assume that the poloidal spectrum of the perturbation is composed
of a very large but finite number of harmonics. For m and n tending to
infinity, the separation between adjacent resonant surfaces becomes in-
finitesimal and, as long as ℓ increases but remains finite, the position of
these resonances practically corresponds to rm .6

6 Since m � 1, it is not necessary to
specify on which m we restrict our anal-
ysis. In reality, as m gets larger the spa-
tial structure of the mode is so small that
the MHD single fluid limit becomes in-
appropriate. One should then refine the
analysis by considering, e.g., finite Lar-
mor radius (FLR) e�ects.

The associated balloon-
ing perturbation is expected to be highly localised about the q = m/n
surface so that the stability analysis can be restricted to a single flux
surface at a time, e.g. the one labelled by q . Stability should then be
only determined by n and the values of the equilibrium quantities at rm .

Upon introducing the ballooning parameter α defined by (4.41),
we now order the pressure and its gradient as p0/B2

0 ∼ ε
2 and r p ′0 ∼ p0,

such that

α ∼ ε � 1, (12.5)

where s is regarded as a small parameter whose ordering is yet to be
determined.

In the particular regime of small pressure gradient and weak mag-
netic shear the ballooning mode analysis is based on equation (11.5)
which is reproduced below:

d
dx

(
x2
dξrm
dx

)
−

{
m2x2 +

α

s 2

[
rm
R0

(
1 −

1
q 2

)
+
α

2
+ s∆′

] }
ξrm

+ γ2H

(
d 2ξrm
dx2

−m2ξrm

)
= −

imR0

n2s 2B0

∑
m′,0

[
ik | |C

m′
m +D

m′
m − E

m′
m (p̂)

]
, (12.6)

where γH defined by (11.12).7 Because of the assumption of strong lo-7 The inertia enhancement factor due to
the sidebands compressibility is obtained
using the orderings discussed in §7.4.

calisation of the instability, it is implicit that all equilibrium quantities
are to be evaluated at rm .

We note that the terms proportional to Em
′

m , Dm
′

m and Cm
′

m scale ac-
cording to (11.6), (11.9) and (11.10) respectively, hence we see that Dm

′

m

is negligible compared to Em
′

m , the latter also dominating over Cm
′

m if

s �
α

ε
∼ 1, (12.7)

having used (12.5) for the last estimate.
Now, according to (12.3), we take the radial displacement of di�erent

poloidal harmonics to be of the same order, that is

ξrm ∼ ξ
r
m±1 ∼ ξ

r
m±2 ∼ . . . , (12.8)

each of which with a radial extension ∆x ∼ 1
sm . From the estimation of

the term Em
′

m , one sees the strength of the coupling between neighbour-
ing sidebands is proportional to α/s 2. Hence, allowing for (12.8) and
assuming that coupling contributions enter at leading order into (12.6),
we let

α

s 2
∼ 1. (12.9)
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By means of (12.5), and in agreement with (12.7), this relation im-
plies

s ∼
√
ε, (12.10)

showing that the magnetic shear is indeed a small parameter. Note that
sm ∼ 1/

√
ε, which still indicates a pronounced localisation of the mode

structure. Thus, making use of Eqs. (7.59), (7.63) and (8.12) we obtain

imR0

n2s 2B0
Em

′

m (p̂) = −
α

2ms 2

[
mξrm±1 ±

dξrm±1
dx

]
, (12.11)

having exploited the fact that m � 1.
Simplifying further, we note that the term proportional to s∆′ in

(12.6) can be neglected owing to the smallness of the magnetic shear
and due to the fact that ∆′ ∼ ε. Hence, the contribution arising from
the terms inside the square bracket on the left-hand-side of (12.6) reads

rm
R0

(
1 −

1
q 2

)
+
α

2
.

Although this is formally a higher order correction, we retain it because it
proves to plays an important role in determining the ballooning stability
later on.8 8 In real experiments, the aspect ra-

tio is not such a small number, so that
the physics contained in this term is ex-
pected to have non negligible impact on
stability. Note also that these terms re-
move the singular behaviour of ξrm at
x = 0 when γ = 0 (cf. (12.12)).

Therefore, we collate these findings to write equation (12.6) as

d
dx

(
(x2 + γ2H )

dξrm
dx

)
−

[
m2(x2 + γ2H ) +

αrm
s 2R0

(
1 −

1
q 2

)
+
α2

2s 2

]
ξrm

+
α

2ms 2

[(
mξrm+1 +

dξrm+1
dx

)
+

(
mξrm−1 −

dξrm−1
dx

)]
= 0. (12.12)

This equation has exactly the same form of (11.11), which we recall can
be viewed as the large m local limit of (9.12), where the only di�erence
lies in the ordering of α/s 2 and the amplitude of the sideband harmonics.
It is thus interesting to note that the dynamics of infernal, Mercier and
ballooning modes can be essentially described by one equation only in
which the �avour of the perturbation can be tuned by an appropriate
ordering of m and α/s 2.9 9 Given m (large or of order one), the

structure of the poloidal spectrum of the
radial fluid displacement is roughly de-
termined by balancing terms of the form

d
dr

(
(r − rm )2

dξrm
dr

)
and

α

s 2
ξrm±1,

with rm denoting either the resonance of
the mode (m, n) if this is in the plasma,
or some other convenient reference po-
sition. It is then evident that as long
as dξrm/dr , 0, the relative amplitude
between adjacent harmonics is propor-
tional to α/s 2. Note that for the m = 1
internal kink mode for which dξrm/dr =
0 at leading order, we can still have
ξrm±1/ξ

r
m ∼ ε even if α/s 2 ∼ 1.

Now, in analogy with the derivation presented in §11.3, we can
slightly simplify equation (12.12) by dropping some inertial contribu-
tions. According to the discussion of section 7.4.2, inertia becomes im-
portant in a neighbourhood of rm where the mth harmonic is expected to
develop large gradients while dominating over the sidebands. In this nar-
row layer, whose thickness is estimated from (11.16), we let (cf. (7.50))

r
dξrm/dr
ξrm

� m, (r − rm)
d
dr
∼ 1. (12.13)

Within this ordering, using (7.30) and (7.31), which were shown to hold
for small scale modes as well, gives

−
imR0

B0
γ2

[ ∂
∂r

( ρ0
Bφ
0

ξϑ

)
−

∂

∂ϑ

( ρ0
Bφ
0

ξr

)]
m
≈
d
dx

[ γ2
ω2
A

dξrm
dx

]
, (12.14)
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where we recall that ω2
A = B

2
0/(R

2
0ρ0). Similar arguments are invoked to

simplify Em
′

m (∆p), thus yielding (cf. (7.34) and (cf. (11.3))10
10 At leading order only terms propor-
tional to ∆p ′m±1 matter.

−
imR0

B0

∑
m′,0

Em
′

m (∆p) ≈
d
dx

(
2q 2

γ2

ω2
A

dξrm
dx

)
. (12.15)

Therefore, we may drop the term m2γ2H in the second term on the
left-hand-side of (12.12) so that the ballooning equation in the radial
coordinate for small pressure gradient and small magnetic shear may
be finally written as

d
dx

(
(x2 + γ2H )

dξrm
dx

)
−

[
m2x2 +

αεm

s 2

(
1 −

1
q 2

)
+
α2

2s 2

]
ξrm

+
α

2ms 2

[(
mξrm+1 +

dξrm+1
dx

)
+

(
mξrm−1 −

dξrm−1
dx

)]
= 0, (12.16)

where εm = rm/R0. In the large n limit each of the harmonics com-
posing the spectrum of a ballooning perturbation is expected to obey
(12.16). We shall now discuss how to extend this equation to the more
experimentally relevant case of α and s of the order of unity.

12.1.1 Extending to the s − α equilibrium

The calculations that we present below become relevant when modelling
ballooning instabilities located in the edge region of plasmas with ETBs,
where both the magnetic shear and the local pressure gradient are fairly
large.

Such scenarios are typically described within the s − α equilibrium
model (see section 4.3.4) in which large pressure gradients are allowed
to exist in a narrow region so that locally r p ′0/B

2
0 ∼ ε while the global

pressure remains small, i.e. p0/B2
0 ∼ ε

2.
Ordering s ∼ α ∼ 1, it was found that ∆/a ∼ ∆′ ∼ ε whereas r∆′′ = α

(cf. (4.40)). From this, Eqs. (4.31) and (5.21) may be written as

F ′ ≈ −
R0p ′0
B0

, 〈R2〉′ ≈ −rR0∆
′′ = −R0α. (12.17)

The geometry of the equilibrium is determined by the expressions of the
metric coe�cients given in (5.28). For the sake of simplicity we assume
α = const .1111 This is a good approximation as long

as the perturbation is radially well lo-
calised.

As before, we fix n (which is a large) and select a poloidal mode
number m � 1 whose associated resonance is located at rm . Let us
consider a region su�ciently far from rm where (see (11.2) and Fig. 12.4)

k | | = mµ − n ≈ −nsx ∼ 1,

with x defined in (12.2). From (7.7) we immediately see that

(
√
g B̃ r )m = −irmB0nsxξrm ∼ rB0ξ

r , (12.18)
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and from (7.25) it follows that

(
√
g B̃ϑ)m ∼ (

√
g B̃ r )m/r .

Furthermore, using the expressions for the metric coe�cients given in §5.4
one has 〈 J φ0 /B

φ
0 〉 ∼ ε/r , and from (7.49) we obtain

(
√
g B̃φ)m =

rmp ′0
B0

ξrm ∼ ε
2(
√
g B̃ r )m/r .

Figure 12.4: Ballooning mode structure
with shaded areas indicating the regions
where inertial e�ects are expected to be
negligible.

We now consider the vorticity equation, namely (7.13), in which we
require that di�erent Fourier harmonics are equivalent (cf. (7.46)
and figure 12.4). Thanks to the ordering of the growth rate (see (7.44)),
we ignore, for the moment, inertial e�ects by setting γ → 0 and ∆p → 0.
Thus, by means of the expressions above and using (7.14), (7.54), (7.55)
(7.60) and (7.61), the mth Fourier projection of the vorticity equation
reads

−insx(
√
g J̃ φ)m + 〈

J φ0
Bφ
0

〉′(
√
g B̃ r )m +

∑
m′,0

Dm
′

m − im
R0

B3
0

(p ′0)
2ξrm

− im〈
1

Bφ
0

〉′p̂m −
∑
m′,0

Em
′

m (p̂) = 0, (12.19)

where Dm
′

m and Em
′

m are given by (7.62) and (7.63) respectively, with p̂
defined by (7.59).

It is easy to see that

(
√
g J̃ φ)m ∼ (

√
g B̃ r )m/r 2, 〈

J φ0
Bφ
0

〉′(
√
g B̃ r )m ∼ ε(

√
g B̃ r )m/r 2,

( J φ0 /B
φ
0 )
′
±1 ∼ ( J

φ
0 /B

φ
0 )
′
±2 ∼ ε/r

2.

It follows at once that the terms proportional to 〈 J φ0 /B
φ
0 〉
′ and Dm

′

m in
(12.19) can be dropped. Furthermore, from (12.17) one has

〈
1

Bφ
0

〉′ =
〈R2〉′

F
−
〈R2〉F ′

F 2
= −

α

B0
+
R0p ′0
B3
0

.

Hence, equation (12.19) can be written as

−insx(
√
g J̃ φ)m − im

α

B0
p ′0ξ

r
m −

∑
m′,0

Em
′

m (p̂) = 0. (12.20)

The perturbed toroidal current is computed through (7.52) and (7.53)
which yields at leading order12 12 The term h appearing in (7.52) is

approximated from the full expression
h = 〈gϑϑ/

√
g 〉/G . We also exploit the

fact that (ℓ = 1, 2, . . .)

(
√
g B̃ϑ)m±ℓ ∼

1
r (
√
g B̃r )m±ℓ ∼

1
r (
√
g B̃r )m .

(
√
g J̃ φ)m ≈ −

1
im

{ [
〈N 〉(
√
g B̃ r )′m

] ′
−m2〈L〉(

√
g B̃ r )m

}
+

∑
±

[
2M∓1(

√
g B̃ r )′m±1 − imL∓2(

√
g B̃ r )m±2

]
,
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where L, M and N must be evaluated using (5.28).
It remains to get an expression for Em

′

m (p̂) which is a quantity that
depends on (1/Bφ

0 )
′ = (R2/F )′. By means of (5.20), we notice that the

radial derivative of R2 generates a term proportional to ∆′′:

dR2

dr
= 2R0

(
cos ϑ − r∆′′ sin2 ϑ

)
.

Exploiting the fact that m is large, we obtainUse (R2/F )′
±ℓ ≈ (R

2)′
±ℓ /F . ∑

m′,0

Em
′

m (p̂) ≈
i
B0

∑
±

(
mp̂m±1 ± r p̂ ′m±1 +

mα
2
p̂m±2

)
. (12.21)

The inclusion of plasma inertia is almost trivial: these corrections
become important only when the resonance is approached so that they
can be easily accounted for by allowing terms of the form (12.14) and
(12.15).13 Thus, collating these results together, and expressing (

√
g B̃ r )m13 By adopting ordering (12.13) we avoid

nasty calculations which might appear
when r ρ′0ρ ∼ 1/ε. Density gradients
of this magnitude are commonly encoun-
tered in the region where edge transport
barriers develop.

as a function of ξrm through (12.18), one finally has

d
dx

[
(x2 + γ2H )

dξrm
dx

]
−

[ (
1 +

α2

2

)
m2x2 +

α2

2s 2

]
ξrm

+
α

2ms 2

∑
±

[
mξrm±1 ±

dξrm±1
dx

+
mα
2
ξrm±2

]
+
xq
s

∑
±

[
mα2

4
(nsx ∓ 2µ)ξrm±2 ± α

d [(nsx ∓ µ)ξrm±1]

dx

]
= 0. (12.22)

Note that this equation could have been derived directly from (7.65)
allowing for enhanced pressure gradients and accounting appropriately
for modifications of the equilibrium geometry.

For small α and weak shear with α/s 2 ∼ 1, Eq. (12.22) reduces to
(12.16) when εm → 0. Therefore, by adding the small term proportional
to (1 − 1/q 2), these two equations can be combined into a single one
reading

d
dx

[
(x2 + γ2H )

dξrm
dx

]
−

[ (
1 +

α2

2

)
m2x2 + Û +

α2

2s 2

]
ξrm

+
α

2ms 2

∑
±

[
mξrm±1 ±

dξrm±1
dx

+
mα
2
ξrm±2

]
+
xq
s

∑
±

[
mα2

4
(nsx ∓ 2µ)ξrm±2 ± α

d [(nsx ∓ µ)ξrm±1]

dx

]
= 0.

(12.23)

where α is evaluated at rm and Û is the same as (11.15) with the replace-
ment rs → rm that is

Û =
αεm

s 2

(
1 −

1
q 2

)
. (12.24)

We shall refer to Û as the Mercier correction, whereas we call (12.23)
the generalised ballooning equation. Hereafter we only consider cases
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which are stable against Mercier modes, hence we take q > 1 and α >

0 such that Û > 0. Equation (12.23) can be used to analyse the stability
of ballooning modes both in low and high shear regions. Due to the
complexity of solving simultaneously a very large number of mutually
coupled equations, the problem of the ballooning stability is generally
tackled numerically. Luckily, characterising in a more precise manner
the underlying assumption of the equivalence of the poloidal harmonics,
a great deal of simplification is achieved by representing equation (12.23)
in a convenient Fourier space. This is elaborated in the next section.

12.2 Fourier space representation

Let us select a radius rm and a poloidal mode number m � 1 such that
q (rm) = m/n. Suppose that the perturbation of the radial fluid displace-
ment is composed of a large number of harmonics coupled together.
Each of these is expected to be centred about its own resonance. No-
tice that, intuitively because the poloidal mode number is large, if j ∼ 1
there should be no di�erence if we refer to the mth or the (m+ j )th mode.
Thus, one is allowed to assume that these harmonics are translation-
ally invariant with period equal to the spacing between neighbouring
resonances, that is (cf. (12.4))

ξrm(x) = ξ
r
m±1(x ± d ) = . . . = ξ

r
m±ℓ (x ±ℓ d ) = . . . , (12.25)

where d = 1/(nqs ) and ℓ an integer.14 14 Up to this point we do not have any in-
formation about the parity of the various
functions ξrℓ (x).

In analogy with (11.14), we introduce the variable z = mx so that
(12.23) becomes

d
dz

[
(z 2 +m2γ2H )

dξrm
dz

]
−

[ (
1 +

α2

2

)
z 2 + Û +

α2

2s 2

]
ξrm

+
∑
±

[
α

2s 2

(
ξrm±1 ±

dξrm±1
dz

+
α

2
ξrm±2

)
+
zq
s

(
α2

4
Ym±2 ± α

dYm±1
dz

)]
= 0, (12.26)

with Ym±ℓ = [µs z ∓ ℓ µ]ξrm±ℓ . The invariance (12.25) transforms into15 15 Exploiting this, the eigenfunction at
large z obeys

0 =
d
dz

(
z2
dξrm
dz

)
−

(
1 +

α2

2

)
z2ξrm

+
α2

4

∑
±

zq
s
Ym±2 ≈

d
dz

(
z2
dξrm
dz

)
− z2ξrm,

implying that ξrm ∝ exp(−|z |)/z .

ξrm(z ) = ξ
r
m±ℓ (z ±ℓ /s ).

Since m is large (we ideally take the limit m →∞), the variable z is
allowed to vary from −∞ to +∞. Thus, we take the Fourier transform
of the fluid displacement by defining

ξ∗(k ) =
∫ ∞

−∞

ξrm(z )e
−ikzdz . (12.27)

The space where ξ∗(k ) is defined is referred to as k -space. Exploiting
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the invariance (12.25), it follows that∫ ∞

−∞

ξrm±ℓ (z )e
−ikzdz =

∫ ∞

−∞

ξrm(z ∓ℓ /s )e
−ikzdz = e∓ikℓ /s ξ∗(k ),∫ ∞

−∞

Ym±ℓ (z )e
−ikzdz = i s µ

(
dξ∗(k )
dk

)
e∓ikℓ /s ,

having performed the substitutions d
dz → ik and z → i ddk .

Hence, by Fourier transforming equation (12.26) to k -space we ob-
tain1616 The translational invariance assump-

tion (12.25) can be generalised by taking
ξrm±ℓ (z ) = e

∓ik0ℓ /s ξrm (z ∓ℓ /s ). From this,
the argument of the oscillating terms (i.e.
the sine and cosine) in (12.28) must be
replaced with k/s → (k + k0)/s .

k
[(
d 2

dk2
−m2γ2H

)
(kξ∗)

]
+

[ (
1 +

α2

2

)
d 2

dk2
− Û −

α2

2s 2

]
ξ∗

+
α

2s 2

[
(e−ik/s + e ik/s ) + ik (e−ik/s − e ik/s ) +

α

2
(e−2ik/s + e 2ik/s )

]
ξ∗

−
d
dk

{[
α2

4
(e−2ik/s + e 2ik/s ) + αik (e−ik/s − e ik/s )

]
dξ∗

dk

}
= 0.

By means of Euler’s formula and noticing that 1−cos(2k/s ) = 2 sin2(k/s ),
after some algebra the expression above can be further simplified finally
yielding the ballooning equation in Fourier space (Connor (1978)):

d
dk

{[
1 +

(
k − α sin

k
s

)2 ] dξ∗
dk

}
−

{
Û +m2γ2H k

2

−
α

s 2

[
cos

k
s
+ sin

k
s

(
k − α sin

k
s

)] }
ξ∗ = 0. (12.28)

In order for the Fourier transform of ξrm and its inverse to exist, we must
haveThis is due to the Fourier inversion the-

orem. ∫ ∞

−∞

|ξ∗ |dk < ∞, (12.29)

implying that ξ∗ must vanish for k → ±∞. Since the Fourier trans-
form preserves parity, even/odd functions in k -space are associated with
even/odd functions in real space.

Equation (12.28), with both α and s of the order of unity, is gener-
ally solved numerically. Nonetheless, some analytical techniques can be
employed when the magnetic shear is either very large or very small. In
the latter case, instead of (12.28), we use its limiting expression obtained
directly from (12.16) for s, α � 1 which is

d
dk

[
(1 + k2)

dξ∗

dk

]
−

[
Û +

α2

2s 2
+m2γ2H k

2 −
α

s 2

(
cos

k
s
+ k sin

k
s

) ]
ξ∗ = 0.

(12.30)
Although there is a quantitative di�erence between the results obtained
from (12.28) and (12.30), their qualitative behaviour is fairly similar.
Moreover, the big advantage of using (12.30) instead of (12.28) is be-
cause the mathematical manipulations are much easier to handle, there-
fore serving as an excellent testbed for learning such techniques. The
two cases of large and small magnetic shear are discussed in the next
sections.
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12.3 The small shear case

As just discussed, in this section the analysis is based on (12.30). For our
purposes, it is more convenient to write ξ∗ = X /[1 + k2]1/2 and recast
(12.30) as

d 2X
dk2
−

[
Û + α2

2s 2 +m
2γ2H k

2 − α
s 2
(cos ks + k sin

k
s )

1 + k2
+

1
(1 + k2)2

]
X = 0.

(12.31)
This equation features some oscillating terms which depend on k/s . If
the magnetic shear is small, they will exhibit rapid oscillations on the
scale 2π/s . Therefore, the behaviour of X , and thus of ξ∗, is expected to
be composed of a fast oscillation over the variable χ = k/s superimposed
on a more slowly varying function of k .

The method for analysing the marginal boundaries and growth rates
associated with (12.30) involves the elimination of the fast oscillations by
averaging over their period (averaging method). Let us write (12.31)
as

d 2X
dk2
−V (k, χ)X = 0,

V (k, χ) =
Û + α2

2s 2 +m
2γ2H k

2 − α
s 2
(cos χ + k sin χ)

1 + k2
+

1
(1 + k2)2

.

(12.32)

Introducing the smallness parameter δ, we order

s ∼ δ2, α ∼ δ, εm ∼ δ
3, mγH ∼ 1, (12.33)

and separate the fast and slow length scales by writing

d
dk
→

∂

∂k
+
1
s
∂

∂χ
.

Note that within this ordering we have Û ∼ 1 and γ/ωA ∼ s .
The eigenfunction X is expanded as (the deltas in brackets are tags

denoting the order of magnitude of the associated term)

X = X0(k ) + (δ)X1(k, χ) + (δ2)X2(k, χ) + (δ3)X3(k, χ) + . . . , (12.34)

with the requirement that the functions X1,X2, . . . vanish when averaged
in the variable χ over a period of 2π. Thus, equation (12.32) is solved
order by order in δ, from δ−3 to δ−1, providing an expression for Xi
(i = 1, 2, 3). These are then plugged into the zeroth order (in δ) of
(12.32), and averaging over χ yields an equation for X0. Let us go
through each of these steps one-by-one.

To order δ−3 we have

1
s 2
∂2X1

∂χ2
+
α

s 2
(cos χ + k sin χ)

1 + k2
X0 = 0,



166 Ballooning modes

whose solution reads

X1 =
α(cos χ + k sin χ)

1 + k2
X0. (12.35)

To the next order we have

1
s 2
∂2X2

∂χ2
=
α2/(2s 2)
1 + k2

X0 −
α

s 2
(cos χ + k sin χ)

1 + k2
X1

= −
α2

2s 2

(
(1 − k2) cos 2χ + 2k sin 2χ

(1 + k2)2

)
X0,

where the last passage has been obtained by using (12.35). Again, the
integration in χ is trivial and leads to

X2 =
α2

8

(
(1 − k2) cos 2χ + 2k sin 2χ

(1 + k2)2

)
X0. (12.36)

Proceeding further, we get the equation for X3 by considering the order
δ−1 of (12.32) which yields

1
s 2
∂2X3

∂χ2
+
2
s
∂X1

∂k∂χ
−

[
α2

2s 2
X1

1 + k2
−
α

s 2
(cos χ + k sin χ)

1 + k2
X2

]
= 0.

Finally, the equation for X0 is obtained by averaging (12.32) in χ

giving

d 2X0

dk2
−

(
Û +m2γ2H k

2

1 + k2
+

1
(1 + k2)2

)
X0

+
α/s 2

2π(1 + k2)

∫ 2π

0
(cos χ + k sin χ)X3dχ = 0.

Carrying out the appropriate integrations17 we finally get the eigenvalue17 For a function f (χ) of period 2π we
have∫ 2π

0
f cos χdχ = −

∫ 2π

0
cos χ

d2 f

dχ2
dχ,∫ 2π

0
f sin χdχ = −

∫ 2π

0
sin χ

d2 f

dχ2
dχ.

equation for ballooning modes in the limit of small magnetic shear:

d 2X0

dk2
−

(
Û +m2γ2H k

2

1 + k2
+
1 − α2

s +
7
32

α4

s 2

(1 + k2)2

)
X0 = 0. (12.37)

The usual procedure for solving this equation is based on an asymptotic
analysis which employs the same techniques developed in §11.3 (Anton-
sen (1982), Correa-Restrepo (1985)). Here, we shall deploy a simplified
method to obtain the desired results.

For the sake of simplicity we take Û = 0, and define

b = 1 −
α2

s
+

7
32
α4

s 2
. (12.38)

Equation (12.37) is then written as

d 2X0

dk2
−

(
m2γ2H k

2

1 + k2
+ V̂ (k )

)
X0 = 0, (12.39)

with V̂ (k ) = b/(1+k2)2. This is similar to a time independent Schrödinger
equation with a one dimensional potential.
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A great deal of simplification can be achieved by i) noticing that
due to the smallness of the growth rate the term proportional to mγH
becomes important only at very large k where V̂ (k ) is negligibly small,
and ii) replacing the potential V̂ (k ) with a Heaviside step function which
is vanishing for |k | > π/4 such that its integral is equal to

∫ ∞
0 dk/(1 +

k2)2 = π/4 (see figure 12.5).

0 π/4
0

1

k

Figure 12.5: Approximation of 1/(1 +
k2)2 with a step function which yields
the same integral for 0 < k < ∞.
Surprisingly, at least for ideal balloon-
ings, this yields fairly accurate results not
too di�erent from those obtained by a
more precise analysis (see e.g. Strauss
(1981)). The latter will be needed
in §16.2 for studying ballooning instabil-
ities augmented by resistive e�ects.

By employing these simplifications, equation (12.39) is cast as

d 2X0

dk2
− bX0 = 0, |k | < π/4, (12.40)

d 2X0

dk2
−m2γ2HX0 = 0, |k | > π/4, (12.41)

with the requirement that X0 is smooth and continuous at k = ±π/4
(ε → 0)

dX0/dk
X0

���
±π/4−ε

=
dX0/dk
X0

���
±π/4+ε

. (12.42)

With a positive growth rate (γH > 0), the solutions of (12.40) and
(12.41) which are regular at infinity are easily derived and read

X0 = c1e
√
bk + c2e−

√
bk, |k | < π

4 ,

= d1e−mγH k, k > π
4 ,

= d2emγH k, k < − π4 ,

where c1, c2,d1,d2 are some constants. It is evident that smooth matching
at ±π/4 requires b < 0. The system given by (12.42) is solvable only if
X0 has de�nite parity, that is either even or odd. The odd solution has
c1/c2 = d1/d2 = −1, whereas for the even one we have c1/c2 = d1/d2 = 1.
Thus, the corresponding growth rates are

mγH = −
√
b coth

(
π
√
b

4

)
(odd),

mγH = −
√
b tanh

(
π
√
b

4

)
(even).

A positive growth rate is found if b < −4 for odd modes or b < 0 for
even modes. Since no real α2/s satisfies the relation b = d for d < −1/7,
solutions with odd parity are discarded. We then find that ballooning
modes of even parity can be unstable for −1/7 < b < 0 with the
marginal boundary identified by b = 0 yielding

α2

s
=
16
7

(
1 ±

√
2
4

)
. (12.43)

According to the equation above, when α > 0 ballooning instabilities
seem not to occur in regions of negative magnetic shear.

Letting α to take negative values,
the marginal boundaries of ballooning
modes for small s and Û = 0 are inde-
pendent of the sign of α.
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Solving (12.39) with the inclusion of the Mercier correction Û > 0
follows the same procedure described above with the potential V̂ now
replaced by18

18 Note that
∫ ∞
0 dk/(1 + k2) = π/2.

Hence, we substitute Û /(1 + k2) →
Û H (π/2 − k ) where H is the Heaviside
step function.

V̂ = b + Û, |k | < π
4 ,

= Û, π
4 < |k | <

π
2 ,

= 0, |k | > π
2 .

Smooth matching at k = π/4 and k = π/2 yields the dispersion relation.
Also in this case odd modes are discarded if Û is small, whereas the
marginal boundary of even perturbations is given by√

b + Û tanh
(π
4

√
b + Û

)
+

√
Û tanh

(π
4

√
Û

)
= 0. (12.44)

Stability is improved if 0 ≤ Û � 1, and ballooning modes of even
parity are marginally stable if b = −2Û (a more refined analysis based
on asymptotic matching techniques gives b = −Û ).19 The inclusion of19 Within our framework, we could have

obtained this result by replacing V̂ (k )
with an e�ective potential V̂e� (k ) = (b +
Û )H (ke� − k ) with ke� ∼ 1. In such a
case only matching at |ke� | is needed:
remarkably, the marginal boundaries do
not depend on the choice of ke� . It is im-
portant to point out that shaping e�ects,
namely plasma elongation and triangu-
larity, modify the expression of Û . An
elongated plasma with positive triangu-
larity exhibits improved stability at low
magnetic shear (Krymskii (1981), Lüt-
jens (1992)).

Mercier corrections has a strong stabilising influence at low magnetic
shear.

Improved marginal boundaries at low shear

The marginal boundaries identified by (12.43) are not particularly
accurate at moderately small shear and pressure gradient. A bet-
ter estimate can be obtained by using (12.28) instead of (12.30).
For the sake of simplicity we set Û = 0.
With the substitution

ξ∗ = X0

/ [
1 +

(
k − α sin

k
s

)2]1/2
,

and performing the same expansion analysis in the small param-
eter δ employed in the low shear case, one arrives at the following
equation (Hazeltine (1985))

d 2X0

dk2
−

(
m2γ2H k

2

1 + k2
+

1
(1 + k2)2

−
2α

2

s −
3
8
α4

s 2

(1 + k2)3

)
X0 = 0. (12.45)

The algebra involved in its derivation is rather lengthy and is left
as an exercise for the brave reader. We set c = 3

8
α4

s 2
− 2α

2

s , and, in
analogy to what we did earlier, we approximate

1
(1 + k2)2

→ H ( π4 − k ),
1

(1 + k2)3
→ H ( 3π16 − k ),

with H the Heaviside step function. Carrying out the appropriate
matching at k = 3π/16 and k = π/4 (cf. (12.42)) yields even
and odd eigensolutions, with odd modes to be discarded because
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no positive growth rate is found with real α2/s . The marginal
boundaries of even modes are given by the relation

√
c + 1 tanh

(
3π
16

√
c + 1

)
+ tanh

π

16
= 0.

This equation has solution c ≈ −1.317, so that the unstable region
in the α − s plane lies between by the two parabolae

s ≈ 0.22α2, s ≈ 1.3α2. (12.46)

An exact solution of (12.45) in the limit γ → 0 written in terms
of Mathieu functions has been obtained in Dominguez-Vergara
(1987) and Fu (1990) (see also Furth (1965) and Miyamoto
(1997)).

12.4 The large shear case

Now, we assume that both α and the magnetic shear are of the same
order with s � 1. For this case we shall employ equation (12.28). The
stability analysis is approached through the construction of an integral
functional which is then evaluated by plugging a convenient trial func-
tion (integral approach, Hazeltine (1978) and Pogutse (1979)).

We assume γ positive, even though it is allowed to be arbitrarily
small. To explain the idea behind the integral approach let us write a
model equation

γ2Q (k )X +L (X ) = 0, (12.47)

where Q is a function of k and L is a linear di�erential operator such
that for two functions X1 and X2 which vanish at infinity one has∫ ∞

−∞

X1L (X2)dk =
∫ ∞

−∞

X2L (X1)dk . (12.48)

We say that L is self-adjoint.

If we multiply (12.47) by X and integrate from −∞ to +∞, the fol-
lowing expression is obtained

γ2 = −

∫ ∞
−∞
XL (X )dk∫ ∞
−∞
QX 2dk

. (12.49)

The eigenvalue γ2 can be viewed as a functional of X . Let X0 and
X = X0 + δX be the solutions of (12.47) with eigenvalue γ0 and γ re-
spectively20 with both X0 and δX vanishing at infinity. Omitting to write 20 That is γ20QX0 +L (X0) = 0.

the bounds of integration and assuming that δX is a small correction to
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X0, from (12.49) we obtain

γ2 = −

∫
(X0 + δX )L (X0 + δX )dk∫

Q (X0 + δX )2dk
= −

∫
X0L (X0)dk∫
QX 2

0 dk

(
1 −

∫
2δXQX0dk∫
QX 2

0 dk

+

∫
2δXL (X0)dk∫
X0L (X0)dk

)
+ o(δX 2) = γ20 + o(δX

2),

having exploited the self-adjointness of the operator L . This shows that
a small deviation δX from the original function X0 produces a correction
of order δX 2 to the original eigenvalue γ20 meaning that even with a
rough guess of the eigenfunction one can have a rather good estimate
of the true eigenvalue. We say that (12.49) is the variational principle
for γ2 in that the first order corrections to the eigenvalue are vanishing,
i.e. γ2 is a stationary point with respect to small variations δX .

Hence, we multiply (12.28) by ξ∗ and integrate from −∞ to ∞. This
yields∫ ∞

−∞

dk
{(
1 + (k − α sin k

s )
2) (

dξ∗

dk

)2
+

[
Û +m2γ2H k

2

−
α

s 2

(
cos ks + sin

k
s (k − α sin

k
s )

) ]
|ξ∗ |2

}
= 0. (12.50)

For the sake of simplicity we take Û = 0 and focus on the identification
of the marginal stability boundaries, that is we consider the eigenvalue
m2γ2H = 0. We have now to guess a sensible trial function to be plugged
into this expression.

it

-h h
0

Figure 12.6: The integrals in (12.50) are
evaluated with the help of∫ ∞
−∞

e−y
2
dy =

√
π,

∫ ∞
0

y z−1e−ydy = Γ(z ),∫ ∞
−∞

cos(2t y)e−y
2
dy = e−t

2√
π,∫ ∞

−∞

y2 cos(2t y)e−y
2
dy = e−t

2
√
π
2 (1 − 2t

2).

Noting that exp(2it y) = cos(2t y) +
i sin(2t y), the last two expressions are ob-
tained by computing through the residue
theorem the integrals of e−y

2
and y2e−y

2

over the closed path indicated in the fig-
ure with h → ∞. Furthermore one notes
that y sin(y) = −(d (cos ay)/da)a=1.

Let us consider either (12.16) or (12.23) and compare the two terms

d
dx

(
x2
dξrm
dx

)
,

α

ms 2
dξrm±1
dx

.

The first one is related to the e�ect of field line bending, while the second
measures the strength of mode coupling. These must be of the same
order. Because of the equivalence of di�erent Fourier harmonics (cf.
(12.8)), by letting d/dx → 1/∆x with ∆x denoting the width of the
radial harmonic in the x -space and taking α ∼ s , one has

∆x ∼
1
ms

.

In §12.2 we introduced the variable z = mx , so that ∆z = m∆x ∼ 1/s .
It is a well known fact of the Fourier transform that a function strongly
localised in z is broadly spread in k and the other way around. This
reciprocity of the widths in z and k -space is then represented by

∆z∆k ∼ 1.

Because of this, the Fourier transformed function ξ∗ is expected to have
width ∆k ∼ s . Therefore, we choose the following trial function:

ξ∗ = exp(−k2/s 2).
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Figure 12.7: (a): Even modes marginal
boundaries in the α − s plane computed
from (12.43) (dotted), (12.46) (dashed),
(12.51) (dot-dashed) and from the nu-
merical solution of (12.28) (continuous
line) with boundary condition (12.29)
and Û = 0. In (a) the grey area indi-
cates the unstable region. (b): Associ-
ated eigenfunctions ξ∗ for the high (tri-
angle)/low (dot) shear case.

(a)

(b)

(i)

(ii)

Note that when this function is transformed back to the real x -space
one still obtains a Gaussian. When this is plugged into (12.50), after
working out the appropriate integrations (see Fig. 12.6) it is found that
the marginal boundaries in the α − s space fulfil the relation

s 2 −
13
6
e−1/8αs +

4
3

[
1 + α2

(
1 −

1

2
√
e

)
− αe−1/8

]
= 0. (12.51)

Figure 12.7 shows the marginal boundaries identified by (12.46) and
(12.51) compared with the ones obtained from the numerical solution
of (12.28). One notes two separate regions of stability: the one labelled
(i) is called �rst stability region, while the other labelled (ii) is
known as the second stability region.

From the existence of the second region of stability we may infer
that, starting from an unstable configuration and keeping the magnetic
shear fixed, stability can be reached again if the pressure gradient is
further increased to su�ciently large values. This is very appealing from
the experimental point of view because it indicates the possibility to
operate quiescently at high pressure. Now, upon increasing the pressure
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gradient, large amplitude ballooning modes are likely to occur as soon as
the system hits the marginal boundary of the first stability region: this
prevents the pressure to further build up making the second stability
region inaccessible (this argument is invoked to partially explain the
cycles of big ELMs). Hence operation at high pressure appears to be
impossible to achieve. However, the inclusion of Mercier corrections can
”connect” the two stability regions (see equation (12.44) and figure 12.8)
so that, at least theoretically, a stable trajectory from region (i) to region
(ii) can exist.

(i)

(ii)

Figure 12.8: Ballooning modes stabil-
ity region computed with the inclusion of
Mercier corrections with εm (1 − 1/q 2) =
0.2 (shaded area). The dashed lines are
the marginal boundaries computed nu-
merically of Fig. 12.7-(a). Note that the
first and second stability regions are now
connected.
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Part IV

RESISTIVE STABILITY





13
Resistive MHD in tokamaks: the basics

Up to now, the discussion focussed on MHD instabilities in an ideal
plasma. In this framework, plasma resistivity is set to zero, i.e. the
conductivity is infinite, so that thanks to the frozen-in theorem any fluid
displacement, which may be caused by a perturbation, is glued to the
magnetic field. As a consequence, the magnetic topology of the flux
surfaces, although distorted, is preserved.1 1 Flux surfaces can be deformed but they

cannot break: any equilibrium smooth
flux surface is mapped continuously into
a new smooth and closed one. For any
point of the surface the correspondence
is 1-to-1.

By allowing for dissipative e�ects in the form of a small but non
vanishing plasma resistivity η, the flux freezing condition is not valid
anymore (see §2.2) so that rearrangements of the magnetic topology may
occur due to the di�usion of the magnetic flux. In the Spitzer model,
a fully ionised plasma with a single ion species with charge number Zi
has resistivity (expressed in SI units)

η =
4
√
2π
3

Zie 2e
√
me lnΛ

(4πε0)2(kBTe )3/2
,

where ee and me are the electron charge and mass respectively, lnΛ the
Coulomb logarithm,2 ε0 the electric permittivity of free space, kB the 2 This usually takes values around 10.

Boltzmann constant, and Te the electron temperature (in Kelvin).
Typically, resistivity is small for temperatures of the order of tens

of keV , 3 so that treating the plasma as an ideal conductor is a rather 3 For a plasma withTe ≈ 1keV , η is com-
parable to that of Copper at room tem-
perature.

good assumption when describing dynamics which occur on timescales
faster that those associated with resistive di�usion. This approximation,
however, fails to capture the behaviour of some phenomena observed
experimentally which can only be explained by allowing the plasma to
be resistive. We refer to these resistivity driven disturbances as resistive
instabilities or resistive modes.4

4 Commonly observed resistive instabil-
ities in tokamaks are those which break
and reconnect the magnetic field lines.
This process results in the formation of
magnetic islands (see next chapter).

Usually, the onset of such perturbations is observed to occur below
the limits set by ideal MHD: in other words, a plasma which is healthy
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within the ideal framework may still develop instabilities due to dissi-
pation mechanisms (resistivity in our case) leading, consequently, to
confinement degradation. The aim of this chapter is thus to provide the
basic tools for the description of the perturbed dynamics in a resistive
plasma.

Contrary to stability analyses performed with the idealMHDmodel,
one cannot construct a self-adjoint force operator in the form of equa-
tion (6.5) meaning that stability approaches based on the exploitation
of an energy principle, as the one briefly discussed in chapter 6, can-
not, in general, be used.5 This also implies that, within a normal mode5 An extended resistive energy principle

can be derived but only for some special
cases (Biskamp (1993)).

analysis, the eigenvalues are allowed to be complex valued.
Luckily, most of the machinery developed in the previous chapters,

based on the solution of eigenmode di�erential equations, is what is
needed to tackle the problem of resistive stability. Hence, we first write
down the fundamental equations of the resistive MHD model appropri-
ately expressed in a toroidally symmetric geometry. After presenting a
brief discussion about the regions where resistive e�ects become impor-
tant, the set of the resistive equations is simplified accordingly. Finally,
we discuss their solution and the structure of the associated eigenfunc-
tion from which the growth rate is extracted via an asymptotic match-
ing procedure which will be exploited extensively in the following chap-
ters. We recall that the analysis is carried out in normalised units
with µ0 = 1.

13.1 Fundamental equations

For analysing the problem of resistive stability in tokamaks, we borrow
some equations from the ideal MHD model of chapter 7: these are Eqs.
(7.9) and (7.11)-(7.13) namely the evolution equation for the perturbed
pressure, the equation for the divergence ofB , the contravariant poloidal
projection of the momentum equation and the vorticity equation. For the
sake of clarity, we reproduce them below:

p̃ = −p ′0ξ
r + ∆p, ∆p = −Γp0∇ · ξ, (13.1)

∂
√
g B̃ϑ

∂ϑ
= −

∂
√
g B̃ r

∂r
−
∂
√
g B̃φ

∂φ
, (13.2)

ρ0γ
2ξϑ = −

∂p̃
∂ϑ
+ J φ0

(√
g B̃ r

)
− Bφ

0

(
gφφ
√
g

∂
√
g B̃φ

∂ϑ
−
∂B̃ϑ
∂φ

)
, (13.3)

γ2
√
g

[ ∂
∂r

( ρ0
Bφ
0

ξϑ

)
−

∂

∂ϑ

( ρ0
Bφ
0

ξr

)]
= B0 · ∇

J̃ φ

Bφ
0

+ ˜B · ∇
J φ0
Bφ
0

− J0 · ∇
B̃φ

Bφ
0

− ∇φ · ∇ 1

Bφ
0

× ∇p̃,
(13.4)

where the perturbed current density is computed by means of (7.6).
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We notice that this set of equations is valid in both the ideal and re-
sistive framework. The plasma response is accounted for by allowing for
a small, although non-vanishing, resistivity in the induction equation.
This is then written as (cf. (2.14))6 6 Note that (2.14) implies that with a non

zero resistivity an electric field appears at
equilibrium which is given by E0 = η0 J0.∂B

∂t
= ∇ × (u × B ) − ∇ ×

(
η J

)
. (13.5)

As an immediate consequence, both equations (7.7) and (7.8) must be
augmented by resistive corrections leading to

Within the Sptitzer model, we find that
η̃ = −3/2η0T̃ /T0. We further assume that
T̃ ∼ T ′0 ξ

r .

√
g B̃ r =

√
gB0 · ∇ξr −

1
γ

(
∂(̃η Jφ)

∂ϑ
−
∂(̃η Jϑ)
∂φ

)
, (13.6)

√
g B̃φ =

√
gB0 · ∇ξφ −

√
g∇ · (ξBφ

0 ) −
1
γ

(
∂(̃η Jϑ)
∂r

−
∂(̃η Jr )
∂ϑ

)
. (13.7)

Due to the breaking of the ideal approximation, we must replace (7.10),
which is the equation for the compressible contribution of the perturbed
pressure, with

ρ0γ
2B0 · ξ = −B̃ r p ′0 + B0 · ∇

(
p ′0ξ

r − ∆p
)
. (13.8)

Thus, the resistive MHD analysis will be entirely based on the set of
equations (13.1)-(13.4), (13.6)-(13.8), where, as usual, we assume that
the equilibrium is static meaning that there are no mass flows.

Now, as for the ideal case, resistive stability will be studied by Fourier
decomposing the perturbation in the cyclic variables, namely the poloidal
and toroidal angles. Hence, for our purposes it is useful to write down
the poloidal and toroidal Fourier projections of some of the equations
listed above. This will turn out to be particularly useful when the impact
of toroidicity on resistive modes will be assessed in chapter 17.

Assume that a generic perturbed quantity can be written in a Fourier
series as in (6.20),7 and consider the (ℓ , n) Fourier projection of equa- 7 Because of axisymmetry, the toroidal

spectral decomposition is trivial (i.e. one
simply substitutes ∂/∂φ → −in with n
the toroidal mode number).

tions (13.1)-(13.4). Equation (13.2) can be immediately reduced to (7.25)
while the covariant poloidal projection of the momentum equation, i.e.
(13.3), reads

ρ0γ
2

f ′0
(
√
g ξϑ)ℓ = −iℓ 〈

1

Bφ
0

〉p̃ℓ + 〈
J φ0
Bφ
0

〉(
√
g B̃ r )ℓ − iℓG (

√
g B̃φ)ℓ

− in〈N 〉(
√
g B̃ϑ)ℓ −

∑
ℓ ′,0

[( 1

Bφ
0

)
ℓ ′
i (ℓ −ℓ ′)p̃ℓ−ℓ ′

−

(( J φ0
Bφ
0

)
ℓ ′
− inMℓ ′

)
(
√
g B̃ r )ℓ−ℓ ′ + inNℓ ′(

√
g B̃ϑ)ℓ−ℓ ′

]
. (13.9)

We use the notation introduced in chapter 5 for the metric coe�cients
and recall that angular brackets indicate the operation of poloidal aver-
age as defined in (5.18). Proceeding further, the vorticity equation can
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be arranged to give

γ2
[ ∂
∂r

( ρ0
Bφ
0

ξϑ

)
−

∂

∂ϑ

( ρ0
Bφ
0

ξr

)]
ℓ
= i [ℓ µ − n](

√
g J̃ φ)ℓ

+ 〈
J φ0
Bφ
0

〉′(
√
g B̃ r )ℓ −

(
√
g J0 · ∇

B̃φ

Bφ
0

)
ℓ
− iℓ 〈

1

Bφ
0

〉′p̃ℓ

+
∑
ℓ ′,0

[( J φ0
Bφ
0

) ′
ℓ ′
(
√
g B̃ r )ℓ−ℓ ′ + iℓ

′
( J φ0
Bφ
0

)
ℓ ′
(
√
g B̃ϑ)ℓ−ℓ ′

−

( 1

Bφ
0

) ′
ℓ ′
i (ℓ −ℓ ′)p̃ℓ−ℓ ′ + iℓ

′
( 1

Bφ
0

)
ℓ ′
p̃ ′ℓ−ℓ ′

]
, (13.10)

where the perturbed current density is given by the relation (cf. (7.52)
and (7.53))

(
√
g J̃ φ)ℓ = [〈N 〉(

√
g B̃ϑ)ℓ ]

′ − iℓ 〈L〉(
√
g B̃ r )ℓ

+
∑
ℓ ′,0

{
[Mℓ ′(

√
g B̃ r )ℓ−ℓ ′ + Nℓ ′(

√
g B̃ϑ)ℓ−ℓ ′]

′

− iℓ [Lℓ ′(
√
g B̃ r )ℓ−ℓ ′ +Mℓ ′(

√
g B̃ϑ)ℓ−ℓ ′]

}
. (13.11)

The remaining equations, that is (13.6)-(13.8) and the expression for the
perturbed pressure, will be discussed later.

Although this set equations appears to have quite a complicated
structure, it will be shown that resistive e�ects become relevant only at
very specific locations where the perturbation exhibits strong radial gra-
dients. Allowing for this fact, the stability analysis of resistive modes can
be dramatically simplified by deploying an appropriate ordering near
these points. This will be addressed in detail in the next two sections.

13.2 Where resistivity matters

For the sake of a qualitative understanding, let us assume that the plasma
resistivity is a constant and write the induction equation as

∂B
∂t
= ∇ × (u × B ) + η0∇2B, (13.12)

Ignoring the term proportional to u , we see that this equation has the
structure of a di�usion equation for the magnetic �eld in the variable
x/L where L is some characteristic length. The typical di�usion time
is then88 To convert to SI units one performs the

substitution η → η/µ0. τdi� =
L2

η0
.

Upon perturbing (13.12), we take the ratio of the last term on the
right-hand-side and the one on the left-hand-side to give

|η0∇2
˜B |

|∂˜B/∂t |
∼
η0
γ

d 2

dr 2
. (13.13)
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We choose the characteristic length L to be the plasmaminor radius (L =
a), and introduce a dimensionless parameter S known as the Lundquist
number9 defined as 9 This is a particular case of the

magnetic Reynolds number in a sys-
tem whose characteristic velocity is the
Alfvén one.

S ≡ τRωA =
τR
τA
, (13.14)

with τR = a2/η0 and τA = 1/ωA = R0
√
ρ/B0 (τA is called the Alfvén

time). This quantity estimates the ratio between the resistive di�usion
timescales and the Alfvén wave transit speed; in tokamaks this is a large
number typically falling within the range of ∼ 108 − 109 for plasma tem-
peratures of the order of keV .

Thus, from (13.13) one sees that resistive e�ects become significant
when

a2
d 2

dr 2
∼ S

γ

ωA
. (13.15)

Usually, resistive instabilities in tokamaks grow on timescales of the or-
der of several (tens of) milliseconds. With a typical Alfvén frequency of
the order of megahertz, one then finds that γ/ωA ∼ 10−5 − 10−4. Hence,
with the large values of S mentioned earlier, it is evident that (13.15)
implies that resistive e�ects come into play where the perturbation de-
velops strong radial second derivatives.

Consider now for the sake of simplicity a generic perturbed quantity
f̃ characterised by a single Fourier harmonic of helicity (m, n), with both
m and n of the order of unity and resonance located at rs . In line with
the findings of the previous chapters, we expect large radial gradients to
appear in proximity of rs where [rs (b · ∇ f̃ )]/ f̃ � 1 (b is the unit vector
along the equilibrium field). Therefore, according to (13.15), resistivity
is going to matter only in a thin layer around this singular point. This
is usually referred to as the resistive layer.

Su�ciently far from the resonance instead, the radial gradients of
the perturbation are weak so that the dynamics can be described within
the ideal approximation. We call this region, where the MHD equations
are solved in the η → 0 limit, the ideal region.

Thus, the stability analysis of resistive perturbations can be simpli-
fied as follows: far from the resonance we borrow the results obtained
in the previous chapters within the ideal MHD framework, whereas the
resistive layer equations are solved only retaining terms which contain
higher order derivatives. Now that we have a basic understanding of
where and how resistive e�ects enter into play, we shall proceed by de-
ploying an appropriate ordering aimed to obtain a simplified set of cou-
pled equations suitable for the description the restive layer dynamics.
This is discussed in the next section.

13.3 Resistive layer orderings

Let us first flag that because many of the calculations presented below
closely follows those of sections 7.3.2 and 7.4.2, some of the mathemati-
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cal steps are omitted (the reader is referred to the afore-mentioned sec-
tions).

Consider a low-β plasma with p0/B2
0 ∼ r p ′0/B

2
0 ∼ ε2, and fix, as

usual, the toroidal mode number n. Assume that the perturbation can be
decomposed in a Fourier series with multiple poloidal harmonics, each
of these with a dependence on the toroidal angle and time of the form
exp(γt − inφ). We further assume that the growth rates are significantly
smaller than the typical Alfvén timescales. The analysis is carried out
in a narrow region very close to the radius rs where q = m/n for some
poloidal mode number m. Thus, we conveniently take1010 With such an ordering of the layer ra-

dial variable x we can address simultane-
ously low-m and high-m modes. γ/ωA ∼ ε,

r − rs
rs
= x ∼ ε/m. (13.16)

Denoting with s the magnetic shear at rs , it follows that

mµ − n ≈ −nsx ∼ sε.

As for the ideal case (see (7.36) and (7.50)), fluctuating quantities
are expected to exhibit strong radial excursions in the resistive layer
about rs , hence we take (η0 is the equilibrium resistivity)

η0
γ

d 2

dr 2
∼ 1, and r

d
dr
∼
m
ε
. (13.17)

We allow these relations to hold for modes with either m ∼ 1 or m � 1.
We now assume that in the resistive layer the spectrum of the dis-

turbance is dominated by the harmonic with poloidal mode number m.
Hence, the magnetic perturbation and the fluid fluctuation are assumed
to conform to the orderings given in (7.37) and (7.38). It turns out
that within these orderings most of the contributions arising from mode
coupling, apart from those associated with plasma compressibility, can
be treated as negligible corrections. Furthermore, in the layer analysis
poloidal harmonics of mode number m ±ℓ with ℓ ≥ 2 are ignored alto-
gether since their amplitude is supposed to be negligibly small compared
to the one of the first neighbouring sidebands.

Hence, the mth Fourier projection of (13.6) reads

(
√
g B̃ r )m = irsB0 (mµ − n) ξrm +

η0
γ

d 2(
√
g B̃ r )m
dr 2

, (13.18)

where only the terms with higher order derivatives have been retained
in the expression for the perturbed current.1111 It is easy to prove that mode cou-

pling only occurs at higher order, so that
contributions due to neighbouring side-
bands can be safely dropped. It follows
that at this stage we can take the cylindri-
cal limit for the terms proportional to the
plasma resistivity. A more careful analy-
sis will be deployed in chapter 17.

The expressions for other
poloidal harmonics are not needed. From (13.7) one has instead (cf.
(7.39))(

1 −
η0GN
γ

∂2

∂r 2

)
√
g B̃φ = −f ′0

(
1
f ′0

∂(f ′0 ξ
r )

∂r
+
∂ξϑ

∂ϑ
− µ

∂ξφ

∂ϑ

)
. (13.19)

We point out that the right-hand-side of the equation above is exact,
whereas the left-hand-side has been approximated by only considering
its leading contributions.
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By means of (13.19) we find that the ℓ th Fourier component of the
divergence of ξ can be approximated as (cf. (7.40))

(∇ · ξ)ℓ = −
1
f ′0

[(
1 −

η0GN
γ

∂2

∂r 2

)
√
g B̃φ

]
ℓ
+

(
〈
(
√
g )′
√
g
〉 −

f ′′0
f ′0

)
ξrℓ

+ i (ℓ µ − n)ξφℓ +
∑
ℓ ′,0

[(∂√g /∂r
√
g

)
ℓ ′
ξrℓ−ℓ ′ +

(∂√g /∂ϑ
√
g

)
ℓ ′
ξϑℓ−ℓ ′

]
. (13.20)

From this, and employing the afore-mentioned orderings for the mag-
netic perturbation and the fluid displacement, one sees that (∇ · ξ)m ∼
ξr /r so that

p̃m ∼ ε2B2
0ξ
r
m/r . (13.21)

Thus, to leading order in ε, the mth Fourier projection of (13.9) yields
explicitly

0 = −im〈
1

Bφ
0

〉p̃m − imG (
√
g B̃φ)m − in〈N 〉(

√
g B̃ϑ)m,

which shows that (
√
g B̃φ)m ∼ ε

2B0ξ
r
m . Repeating the same procedure for

the m ± 1 harmonics one finds that (
√
g B̃φ)m±1 is also small. Hence, by

plugging these results into (13.19), we see that both (7.27) and (7.41)
hold in the resistive layer as well.

Focussing on the parallel projection of the perturbed momentum
equation, one has (cf. (7.10) and (13.8))

B2
0
R2

R2
0

γ2

ω2
A

[
ξφ +

µ

R2

(
grϑξr + gϑϑξϑ

)]
= −

(
µ
∂

∂ϑ
− in

)
p̃ −

p ′0
f ′0

√
g B̃ r .

(13.22)
By taking the mth Fourier component of this equation we see that ξφm ∼
εξrm/r at most; it follows that at leading order (cf. (7.31)) A more precise expression for ξϑm and ξφm

will be derived in chapter 16.

ξϑm ≈ −
1
im

dξrm
dr

. (13.23)

Exploiting the smallness of the toroidal fluid displacement, from the first
of (7.41) we infer that (∇ ·ξ)m ∼ εξrm and ∆pm ∼ ε3B2

0ξ
r
m/r , thence letting

us to set
∆pm = 0. (13.24)

Retaining only the dominant contributions, the m±1 Fourier projec-
tions of (13.22) yield

∓i µ∆pm±1 =
ρ0γ

2

f ′0
(
√
gB0 · ξ)m±1 ≈ B2

0
γ2

ω2
A

ξ
φ
m±1.

It is important to stress that corrections due to poloidal harmonics other
than the m and m ± 1 are assumed to be small enough so that they have
been ignored. By combining this with the second of (7.41) we obtain (m ± 1)µ − n ≈ ±µ.[

1 +
q 2γ2/ω2

A

Γp0/B2
0

]
∆pm±1 ≈ ±

B2
0r

mR0

q 2γ2

ω2
A

dξrm
dr

. (13.25)
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If the growth rate is su�ciently small, the second term in the square
brackets on the left-hand-side can be dropped, and we recover the usual
inertia enhancement factor for slow-growing instabilities (the β → 0
case with a non vanishing γ will be briefly discussed in the next chapter).
This gives the estimate p̃m±1 ∼ ε3B2

0ξ
r
m/r .

We have now all the elements to derive the dynamical equations
in the resistive layer. By applying the orderings just discussed to Eqs.
(13.10) and (13.11),Namely the the vorticity equation and

the one for the perturbed current.
and recalling that (1/Bφ

0 )±1 = r /B0 we obtain

γ2

ω2
A

d 2ξrm
dx2

=
nsx
irB0

d 2(
√
g B̃ r )m
dx2

+m
R0

B2
0

d
dx

(
p̃m−1 − p̃m+1

)
. (13.26)

Finally, employing the expression for the compressible contribution to
the perturbed pressure, we reduce (13.18) and (13.26) to the following
system of coupled linear equations:[

1 −
η0

r 2s γ

d 2

dx2

]
(
√
g B̃ r )m
irsB0

= −nsxξrm, (13.27)

γ2

ω2
A

(1 + 2q 2s )
d 2ξrm
dx2

=
nsx
irsB0

d 2(
√
g B̃ r )m
dx2

, (13.28)

where qs = m/n and s is the magnetic shear at the resonance. A more
refined analysis of the layer equations including higher order toroidal
e�ects will be presented in chapter 17.

Equations (13.27) and (13.28) govern the leading order dynamics in
the resistive layer whose radial thickness can be estimated as follows: let
us write d 2/dx2 ∼ 1/(δx)2. From (13.27) and using (13.17), the order of
magnitude of the magnetic perturbation is (

√
g B̃ r )m/irB0 ∼ ns ξrmδx .

1212 Here we take x ∼ δx .

Plugging this into (13.28) yields (8.7). Relation (13.15) can be written
as 1/(δx)2 ∼ S γ

ωA
, and when this is combined with (8.7) we find that the

approximate width of the resistive layer around rs is

δx ∼
©­­«
√
1 + 2q 2s

nsS

ª®®¬
1/3

. (13.29)

For tokamak-relevant values of S one finds that δx � 1.
We point out that our analysis assumes that the mode resonance oc-

curs well inside the plasma. This implies that the boundary conditions
at the plasma edge, either with or without a vacuum gap, are those dis-
cussed in section 6.1.1 within ideal MHD framework. The next section
will be devoted to the construction of the resistive layer solution.

13.4 Solution of the resistive layer equations

Equations (13.27) and (13.28) can be reduced to a single one by deploy-
ing an appropriate Fourier transform in the radial variable x .13

13 One can in principle avoid using
the Fourier transform and obtain a sin-
gle fourth order di�erential equation for
(
√
g B̃r )m .

Let us
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introduce a smallness parameter εR > 0 whose definition will be given
later, and define

y =
x
εR
.

If εR is su�ciently small, moving away from the resistive layer we may
allow y to vary from −∞ to +∞.

Upon defining the k -space Fourier quantities We select a narrow interval about the res-
onance whose boundaries in the variable
y , that is the one which is Fourier trans-
formed, e�ectively become ±∞. In such
a case, the Fourier transform is well de-
fined.

ψ∗ =

∫ ∞

−∞

(
√
g B̃ r )me−ikydy, ξ∗ =

∫ ∞

−∞

ξrme
−ikydy, (13.30)

the induction and vorticity equations, namely Eqs. (13.27) and (13.28),
now read (

1 +
η0

r 2s γ

k2

ε2R

)
ψ∗ = rsB0ns εR

dξ∗

dk
,

γ2

ω2
A

(1 + 2q 2s )k
2ξ∗ =

ns
rsB0

εR
d
dk

(
k2ψ∗

)
.

(13.31)

When combined together, these give

d
dk

(
k2

1 +V k2/ε2R

dξ∗

dk

)
−
γ2

ω2
A

(1 + 2q 2s )
n2s 2

k2

ε2R
ξ∗ = 0, (13.32)

having defined for convenience

V =
η0

r 2s γ
.

We choose as smallness parameter

εR = S −1/3/m (13.33)

where

S =
r 2s ωA
η0

, (13.34)

is the Lundquist number introduced earlier with the replacement a → rs .
Then, equation (13.32) is cast as14 14 Note that if we choose εR = 1/m when

m is large, the Fourier variable k corre-
sponds to that of §12.2.d

dk

(
k2

1 +Vek2
dξ∗

dk

)
−Qk2ξ∗ = 0, (13.35)

where

Ve =
m2

γ/ωA
S −1/3, Q =

γ2

s 2ω2
A

q 2s (1 + 2q
2
s )S

2/3. (13.36)

It is worth noting that (13.35) is independent of the sign of the mag-
netic shear. Hence, when solving the equation above, we have to bear
in mind that any time that s appears this actually means |s |.

Now, similar to what we saw in the analysis of ballooning instabilities,
we must require ξ∗(k ) → 0 for k → ∞ in order to have its Fourier
inverse ξrm(r ) to exist. Since (13.35) is singular at k = 0, we first find
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a solution for k > 0. Following Mikhailovskii (1998), we introduce the
variable ζ = (QVe )1/2k2 and write ξ∗ = e−ζ/2Y (ζ) so that equation (13.35)
transforms into

ζ
d 2Y
dζ2
+

(
1
2
− ζ +

1
1 + ζ/Mt

)
dY
dζ
−

(
Mt + 1

4
+

1
2(1 + ζ/Mt )

)
Y = 0,

(13.37)
having defined

Mt = (Q /Ve )1/2. (13.38)

The particular solution to this equation which decays for ζ (and
hence k) going to infinity is

Y (ζ) = U
(
Mt + 5

4
,
3
2
, ζ

)
+

2
Mt
U

(
Mt + 1

4
,
1
2
, ζ

)
, (13.39)

where U denotes the con�uent hypergeometric function. The box at
the end of the chapter shows by direct substitution that this expression
solves (13.37). The explicit solution procedure for a more general case
is outlined in Correa-Restrepo (1982), and it will be briefly discussed at
the end of section 16.3.3.

To extend the solution of (13.35) to the k < 0 plane, from (13.39) we
generate even and odd solutions valid in the whole domain −∞ < k < ∞
by defining ξ∗(−k ) = ξ∗(k ) and ξ∗(−k ) = −ξ∗(k ).

In order to obtain the dispersion relation, the solution in the resis-
tive layer has to be matched with the one computed in the ideal re-
gion. Hence we need to obtain from ξ∗ the corresponding asymptotic
behaviour in real space far from rs , i.e. for large y . Let us write the
Fourier inverse of ξ∗(k ):

ξrm(y) =
1
2π

∫ ∞

−∞

ξ∗(k )e ikydk . (13.40)

By expanding the even and odd solutions ξ∗(k ) in a power series in k
we obtain

ξ∗ ∝


1 +

∆R

|k |
+

∞∑
ℓ=1

aℓ |k |
ℓ , even,(

1 +
∆R

|k |
+

∞∑
ℓ=1

aℓ |k |
ℓ

)
sgn(k ), odd,

(13.41)

where aℓ are some numerical coe�cients and the resistive layer param-
eter ∆R is defined as (Γ is the Gamma function)

∆R = −

√
Mt/Ve

2(Mt − 1)

Γ

(
Mt+3
4

)
Γ

(
Mt+5
4

) . (13.42)

Applying definition (13.40), we inverse Fourier transform each of the
terms appearing in the expansion series (13.41). In doing this, we use
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the following formulae (Lighthill (1958))15
15 In the notation of Lighthill (1958) one
defines the Fourier transform, here de-
noted by an asterisk, of the function f
as

f ∗(k̂ ) =
∫ ∞
−∞

f (x̂)e−2πi k̂ x̂dx̂ .

The following relations hold:[
1
x̂

]∗
= −iπ sgn(k̂ ), [sgn(x̂)]∗ =

1

iπk̂
,[

1
|x̂ |

]∗
= −2

(
ln |k̂ | +C

)
, [1]∗ = δ(k̂ ),

[x̂ℓ sgn(x̂)]∗ =
2(n!)

(2πi k̂ )ℓ+1
, [x̂ℓ ]∗ =

δ(ℓ )(k̂ )

(−2πi )ℓ
,

where ℓ is a positive integer and C an
arbitrary constant. For our purposes, by
comparing with (13.40), we identify x̂ →
k/(2π) and k̂ → −y .

1→ δ(y),

1
k
→

i
2
sgn(y),

1
|k |
→ −

1
π

(
ln |y | +C

)
,

sgn(k ) → −
1
iπy

,

(13.43)

where C is an arbitrary constant.
Noticing that the inverse Fourier transform of the terms appearing

under the sign of sum in (13.41) yields contributions which decay faster
than 1/y , hence negligible for y � 1, we finally find that the even and
odd solutions in the resistive layer behave asymptotically in real space
for large y as

ξrm,even ∝ δ(y) −
∆R

π

(
ln |y | +C

)
,

ξrm,odd ∝ −
1
iπy
+
i
2
∆R sgn(y).

An example of the shape of the odd solution both in k and real (y) space
is shown in figure 13.1.

0
k

0
ξ
∗
(k

)

0
y

0

ξ
r m
(y

)

Figure 13.1: Example of the shape of
odd ξ∗(k ) and corresponding ξrm (r ) for
Mt � 1.

It is worth mentioning that the most general solution of the equation
k f (k ) = 0 is f ∝ δ(k ). Hence, since k2dξ∗/dk = kd (kξ∗)/dk − kξ∗, the
function ξ∗ ∝ δ(k ) is also a solution of (13.35). When this is transformed
back to real space, a constant will be generated which for convenience
is absorbed in the C factor of the expression above. We point out that
for y , 0 (and hence x , 0) the Dirac-delta function appearing in the
even solution can be ignored.

Thus, with a trivial rearrangement, the expressions above are con-
veniently written in terms of the variable x as follows:

ξrm,even ∝ 1 +
1

Ĉ
ln |x |, (13.44)

ξrm,odd ∝
1
x

(
1 +

mπ∆R
2

S 1/3 |x |
)
, (13.45)

having replaced the constant C with another arbitrary constant Ĉ . The
eigenfunction in the resistive layer is then written as a linear combina-
tion of even and odd solutions whose asymptotic behaviour conforms
to (13.44) and (13.45) respectively.

The growth rate and the structure of the eigenfunction are both de-
termined by matching the resistive layer solution with the one obtained
in the ideal region. This will be studied in detail in the next chapters,
where we will analyse the resistive stability properties of both global and
localised perturbations, namely

• tearing modes,
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• m = 1 resistive kink,

• resistive interchange modes,

• resistive ballooning modes,

External kink and infernal modes do not require a resonance in the
plasma to become unstable, so they do not need a resistive treatment.1616 Infernal modes may be analysed

within the resistive framework by allow-
ing for resistive e�ects at the resonance
of the upper sideband. On the contrary,
hybrid kink-infernal perturbations have
a dominant harmonic which exhibits an
exact resonance. In such a case one can
include e�ects associated with resistivity
in a similar fashion to the m = 1 resistive
kink.

A slight refinement of the resistive layer equations is needed for resistive
interchange and ballooning modes; this will be thoroughly detailed in
chapter 16.

On the resistive layer solution

Here we show by direct substitution that (13.39) solves (13.37).
Let us start by calling h = (Mt + 1)/4 and define

U1 = U
(
h + 1,

3
2
, ζ

)
, U2 = U

(
h,
1
2
, ζ

)
.

By writingY = U1 +
2
Mt
U2 and exploiting the fact that U1 and U2

solve respectively

ζ
d 2

dζ2
U1 +

(
3
2
− ζ

)
dU1

dζ
− (h + 1)U1 = 0, (13.46)

ζ
d 2

dζ2
U2 +

(
1
2
− ζ

)
dU2

dζ
− hU2 = 0, (13.47)

equation (13.37) is then cast as

1
1 + ζ/Mt

d
dζ

(
U1 +

2
Mt
U2

)
−
dU1

dζ
+U1 −

U1 +
2
Mt
U2

2(1 + ζ/Mt )
= 0.

After multiplying this by 1 + ζ/Mt we obtain

2
Mt

dU2

dζ
−

ζ

Mt

dU1

dζ
+

(
1
2
+

ζ

Mt

)
U1 −

U2

Mt
= 0.

Since U1 = −
1
hdU2/dζ , this reduces to (13.47), thus proving that

(13.39) is a solution of (13.37).
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14
Tearing modes

As mentioned in the previous chapter, one of the must striking e�ects
of letting the plasma to be resistive is that the magnetic topology can
be rearranged. This permits the breaking and reconnection of the mag-
netic field lines which then produces regions of isolated flux tubes known
as magnetic islands. In tokamaks (and other toroidal confinement de-
vices), the structure of magnetic islands consists of nested flux surfaces
centred about a secondary magnetic axis (see fig. 14.1). These revolve
helically around the plasma column following this secondary magnetic
axis, and eventually close on themselves after an integer number of
poloidal and toroidal turns. Typically, in experiments, magnetic islands
rotate dragged by flow of the bulk plasma. Figure 14.1: Example of the poloidal

structure of a m = 3 island chain.
In presence of such perturbations, transport of energy and parti-

cles across the plasma is enhanced, and the temperature is equilibrated
within the island. Further worsening of confinement may arise from
the overlap of neighbouring island chains causing the magnetic field to
become stochastic. A schematic depiction of the deterioration of the
plasma performance due to the presence of one or more magnetic is-
lands is shown in figure 14.2.

Figure 14.2: Core temperature decrease
due to the presence of one or more mag-
netic islands creating a ”belt” of width w
where temperature is flattened. The sub-
script I stands for initial and f for final.

Although the reduction in performance is highly undesirable, some
actuators can be put in place to mitigate it. However, it is not uncom-
mon to observe a reduction (in the lab frame) of the rotation frequency
of magnetic islands, eventually locking onto the surrounding structures
(this is usually referred to as mode locking): in such a case, the island
amplitude grows to such an extent that a catastrophic loss of confine-
ment, i.e. a disruption, is often triggered (typically for islands with he-
licity 2/1). Therefore, for safe device operation and to preserve machine
integrity, once should reduce as much as possible the likelihood of such
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events. To this purpose, we need to i) understand the physical mecha-
nisms which drive the formation of magnetic islands, and ii) identify the
associated regions of stability.

In its simplest form, the instability which is responsible for the forma-
tion of magnetic islands is the so called tearing mode. Tearing modes
are single helicity perturbations driven unstable by the gradient of the
toroidal current density, i.e. these are current driven instabilities with
evolution timescales of the order of several tens of milliseconds (longer
than those of ideal modes which usually grow within few milliseconds
or less). Linearly unstable tearing modes are referred to as classical or
spontaneous, and this chapter is devoted to a thorough exposition of
their linear stability properties.

Magnetic islands may also form in a linearly tearing stable configu-
ration when a ”seed” appears, whose growth in amplitude is sustained
non-linearly by local pressure gradients. These are known in the litera-
ture as neoclassical tearing modes (NTMs).11 The seed might be generated by, e.g.,

linear coupling between poloidal har-
monics of fluid or magnetic perturba-
tions, or through a non-linear interaction
of disparate plasma fluctuations. The
non-linear growth of the island width is
usually algebraic, i.e. it grows with some
power of time. Experimentally, once de-
tected, there is margin to apply actua-
tors to control or suppress the growth of
NTMs.

Although of high exper-
imental relevance, we will not address neither the physics of the seeding
nor the non-linear evolution of NTMs.

Thus, this chapter is structured as follows: we first briefly discuss
how the magnetic flux is modified by the presence of local small per-
turbations and how this rearrangement yields magnetic islands. Subse-
quently, the tearing equation, namely the equation that determines the
global structure of the eigenfunction, is derived and solved analytically
for a very idealised, though insightful, safety factor profile. Then, the
growth rate is obtained by means of the asymptotic matching techniques
discussed in the previous chapter. Finally, the stability of few more gen-
eral q profiles, including non-monotonic ones, is examined mainly from
a numerical point of view. The e�ects of the plasma pressure on the
growth rate of unstable tearing modes are briefly discussed.

14.1 The reconnected �ux

To gain more insight on the consequences of the violation of the flux
conservation, and thus on the structure of the flux surfaces subject to
small perturbations, we shall analyse a simple case of a large aspect
ratio tokamak equilibrium with a monotonic safety factor (the details of
whether or not a vacuum gap surrounds the plasma are not important).

(a)

(b)

Figure 14.3: Example of monotonic
safety factor with resonance m/n at posi-
tion rs (a) and corresponding helical flux
defined by (14.1).

We start by noting that in straight field line coordinates, the equilib-
rium magnetic field can be conveniently written as (cf. (4.4))

B = ∇Φ(r ) × ∇ϑ − ∇ψ(r ) × ∇φ,

where the toroidal flux Φ is given by (4.6). After selecting two integers
m and n such that q (rs ) = m/n at some position rs , we introduce the
helical �ux Ψ∗ defined as (see Fig. 14.3)

Ψ
∗ =

∫ r

rs

(
ψ ′ −

n
m
Φ
′
)
dr, (14.1)



The reconnected flux 191

and the helical coordinate χ

χ = ϑ −
n
m
φ.

Using these two quantities, the equilibrium field is recast as

B = ∇Φ × ∇χ − ∇Ψ∗ × ∇φ ≡ ∇Φ × ∇χ + B ∗.

This expression implicitly defines the auxiliary �eld B ∗. One sees that
Ψ∗ ∼ (r − rs )2 in a neighbourhood of the resonance, so that the poloidal
component of B ∗ changes sign moving from the left to the right of rs . It
will be clear that it is this auxiliary field that undergoes reconnection.
We now allow for a small flux perturbation of the form ψ̃m = ψ̃(r ) cosm χ
which is obviously associated with the appearance of a radial magnetic
field. Following the results of the previous chapters, we expect the per-
turbation of the toroidal flux to be ε2 times smaller than ψ̃m , thence
Φ is assumed to retain its equilibrium value. It then follows that the
perturbed magnetic field is ˜B = −∇ψ̃m × ∇φ. It is easy to see that

(B + ˜B ) · ∇(Ψ∗ + ψ̃m) = 0,

indicating that the total flux Ψ∗tot = Ψ
∗ + ψ̃m labels the perturbed mag-

netic surfaces.

x-point

o-point

Figure 14.4: Contours of Ψ∗tot about a
resonance rs where q (rs ) = m/n after
adding a helical perturbation with mode
numbers m = 2 and n = 1 (here both
d2Ψ∗/dr 2 |rs and ψ̃ are negative). The o
and x-points, denoting respectively the
local extrema of the total flux and the
locii of intersection of the magnetic sep-
aratrix, are indicated.

By expanding Ψ∗ about rs and assuming that ψ̃ is almost constant
around this narrow region, the flux surfaces for which Ψ∗tot = const are
parametrised by

r − rs =

√
2
Ψ∗tot − ψ̃ cosm χ

d 2Ψ∗/dr 2 |rs
.

An example of the structure of the reconnected flux is shown in fig-
ure 14.4. Similar to the dynamics of particles in a magnetic field (cf. ap-
pendix A), the expression above provides a functional relation between
r and the helical angle χ which gives the trajectory (or orbit) of the mag-
netic field lines. One sees that in the r − χ plane field lines have open
and closed orbits, and the two domains are divided by a so calledmag-
netic separatrix. Assuming that d 2Ψ∗/dr 2 |rs and ψ̃ are both negative,
the value of the helical flux at the separatrix is Ψ∗tot = ψ̃ and this can be
used to estimate the maximum width w of the magnetic island yielding

rsep(χ = π/m) − rs =
w
2
= 2

√
ψ̃

d 2Ψ∗/dr 2 |rs
.

Notice that these results hold if the magnetic perturbation is su�ciently
small, while more complex behaviours are observed in realistic geome-
tries.

In ideal MHD such a rearrangement of the structure of the helical
flux in the plasma2

2 When we discussed external kink
modes in chapter 10, we allowed for
a non-vanishing magnetic fluctuation in
the vacuum (cf. (10.5)). This means
that external kinks e�ectively produce
magnetic islands in vacuum. Notice that
the vacuum is sometimes modelled as a
plasma with infinite resistivity.

does not occur because of the requirement of the
finiteness of the radial fluid displacement at the resonance, which forces
the radial magnetic perturbation to be vanishing at this point (cf. (7.7)).
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14.2 The tearing equation

As discussed in §13.4, the resistive stability analysis is based on the
asymptotic matching of the solution obtained in the region far from
rs where plasma inertia and resistivity are negligible, with the one com-
puted in proximity of the resonance, that is within the resistive layer. The
asymptotic behaviour of the latter when moving away from rs has been
solved in the preceding chapter, so it remains to compute the solution
in the ideal region.

Far from the resonance we can use the set of ideal MHD equations
of chapter 7 specifically (7.7), which links the magnetic and fluid per-
turbations, and (7.65). The latter, after dropping contributions from
mode coupling and inertia, and retaining only the higher order terms
can be reduced to (7.69), i.e. the cylindrical approximation proves to
be su�cient for the required accuracy. It follows that, to leading order,
the equations governing the dynamics in the ideal region of the mag-
netic and fluid perturbation charaterised by a single Fourier harmonic
of helicity (m, n) are

ψ̃m ≡ (
√
g B̃ r )m = irB0k | |ξ

r
m, (14.2)

d
dr

(
r 3k2
| |

dξrm
dr

)
− r k2

| |
(m2 − 1)ξrm = 0, (14.3)

where k | | = mµ − n as usual. Finiteness of ξrm has to be imposed at the
magnetic axis, and appropriate boundary conditions must be applied at
r = a, depending whether or not a vacuum region surrounds the plasma.
As already noted earlier, the equation of ξrm is singular where k | | = 0. For
the sake of simplicity, we assume for the moment that there is only one
position rs for which k | |(rs ) = 0 (a generalisation to cases with multiple
resonances will be discussed in §14.5).

Hence, equation (14.3) is solved separately for r < rs and r > rs , and
matching it with (13.44) and (13.45) eventually yields the growth rate. It
will be shown that the linear stability of a tearing mode of helicity (m, n)
is determined by the sign of the quantity33 This is often referred to this as the log-

arithmic jump of the magnetic fluctua-
tion across the resonance. rs∆′ ≡

[
r

ψ̃m(r )

d ψ̃m(r )
dr

]rs+ε
rs−ε

, (14.4)

where ε is an infinitesimally small positive quantity with the dimensions
of a length. The quantity ∆′, not to be confused with the derivative
of the Shafranov shift, is called the tearing stability index. It is
important to stress again that in the tearing analysis the radial magnetic
perturbation is allowed to be di�erent from zero at the resonance.

Rather than solving (14.3), tearing stabilityEither analytic or numerical. is more often analysed
in terms of its equivalent form written in terms of ψ̃m which is

d
dr

(
r
d ψ̃m
dr

)
−
m2

r
ψ̃m −

mR0

k | |

(
d
dr
〈
J φ0
Bφ
0

〉

)
ψ̃m = 0, (14.5)
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where the last term is computed from (7.67) in the cylindrical limit.
This is commonly called the tearing equation, and it can be derived
directly from (7.13) by just considering its dominant terms:

B0 · ∇
J̃ φ

Bφ
0

+ ˜B · ∇
J φ0
Bφ
0

= 0.

Equation (14.5) allows for a slightly more transparent identification
of the behaviour of the perturbation near the resonant point. In a neigh-
bourhood of rs where k | | ≈ −nsx with x = (r−rs )/rs , we may approximate
this equation as

d 2ψ̃m
dx2

−
λ

x
ψ̃m = 0, λ = −

mrsR0

ns
d
dr
〈
J φ0
Bφ
0

〉. (14.6)

Few integrations show that close to the resonance the behaviour of ψ̃m
is

ψ̃m(x)

ψ̃m(rs )
= 1 + c+x + λx ln x, r > rs ,

= 1 + c−x + λx ln |x |, r < rs ,
(14.7)

where c± are some constants. We then find that (14.4) can be expressed
as

rs∆′ = c+ − c−.

Notice that the logarithmic term in ψ̃m , and thus the singular behaviour
of ψ̃ ′m , disappears when there are no current gradients at rs .

The solution of (14.3), or equivalently (14.5), is generally computed
numerically. However, exact analytic solutions can be found for some
model safety factors. In the next section we present a detailed analysis
of (14.3) for the simple case of a step current profile, which is similar to
the one employed in the analysis of external kink modes of chapter 10.
Although very crude, the analysis performed with this model safety fac-
tor is able to capture many important features of the tearing dynamics
in tokamaks.

14.3 Eigenfunction and growth rate for the step
current model

Let us consider a toroidal plasma separated by a vacuum region from
an ideally conducting wall located at b > a. We say that the wall is at
infinity when a/b � 1. Assume now a safety factor profile of the form

q =


q0, r < r0,

q0

(
r
r0

)2
, r > r0,

(14.8)

with q0 < m/n. Note that q extends parabolically into the vacuum re-
gion (see §4.4). This corresponds to a stepped current of the form given
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by (10.15); we recall that r0 ≤ a measures the radial extension of the
current, i.e the current channel. The reason for using such an idealised
profile is that, although other exact analytic solutions can be found with
smooth profiles, this choice of q allows for straightforward algebraic ma-
nipulations yet yielding meaningful results.44 A method for analysing the stability

of tearing modes based on the WKB
approximation has been presented in
Hegna and Callen (1993).

With this safety factor profile, the two independent solutions of (14.3)
are readily found so that

ξrm(r ) =
1
k | |

(
c1

(
r
r0

)m−1
+ c2

(
r
r0

)−m−1)
, (14.9)

where c1 and c2 are some numbers. Notice that k | | is constant for r < r0.
A double integration of (14.3) across r0 shows that ξrm(r ) is continuous
and smooth at this position. We require ξrm(r ) to be finite at the magnetic
axis, whereas the interface conditions at the plasma-vacuum boundary
are those given by (10.12).5 The position of the resonant surface asso-5 Recall that if the metallic wall is di-

rectly interfaced with the plasma, the
boundary condition at the edge becomes
ξrm (a) = 0.

ciated with the mode (m, n) is

rs = r0

√
m
nq0

, (14.10)

and is always assumed to occur within the plasma. Therefore, by means
of (14.9), we readily obtain the following system

ξrm(r ) ∝



(
r
r0

)m−1
, 0 < r < r0,

1
k | |

[(
r
r0

)m−1
+

1
m − 1 − nq0

(
r
r0

)−m−1]
, r0 < r < rs ,

1
k | |

[(
r
a

)m−1
−

(
b
a

)2m (
r
a

)−m−1]
, rs < r < a .

(14.11)

The constants which multiply the first and second expressions must be
chosen in order to ensure that ξrm is continuous at r0. We shall call
(14.11) the outer region solution or outer solution.

In a neighbourhood of the resonance, it is rather immediate to show
that the eigenfunction behaves as66 The trick to simplify the calculation is

to write the eigenfunction in the outer re-
gion in the form

ξrm ∼
1
k | |

[(
r
rs

)m−1
+ A±

(
r
rs

)−m−1 ]
,

where ± stands for r ≷ rs .

ξrm = −
ĉ1
x

(
1 +

m + 1/2 − (m − 1/2)A−
1 + A−

x
)
, r < rs ,

=
ĉ2
x

(
1 +

m + 1/2 − (m − 1/2)A+
1 + A+

x
)
, r > rs ,

(14.12)

where ĉ1 and ĉ2 are some other constants, and

A− =
(r0/rs )2m

m − 1 − nq0
, A+ = −(b/rs )2m . (14.13)

The solution we just obtained has now to be matched smoothly with
the one computed in the resistive layer. We start by noting that because
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of our choice of the safety factor the quantity λ introduced in equation
(14.6) in the previous section is vanishing, so that the outer region so-
lution does not exhibit any logarithmic behaviour near rs . Therefore, in
(13.44) we take Ĉ →∞.7 7 For more generic q profiles, logarithmic

terms of the form of the ones discussed
in §14.2 appear. These are automatically
matched with the inner layer solution by
a suitable choice of Ĉ .

Let us call

∆± =
m + 1/2 − (m − 1/2)A±

1 + A±
. (14.14)

Equation (14.4) written in terms of these quantities becomes

rs∆′ = ∆+ − ∆−.

Since ∆− diverges when m = 1 (for any n), here we restrict the analysis
to modes with m > 1 (the m = 1 tearing mode will be studied in detail
in the next chapter). Hence, on the left and right of the resonance we
write

ce −
co
|x |

(
1 +

mπ∆R
2

S 1/3 |x |
)
=
ĉ1
|x |
(1 − ∆− |x |) , r < rs , (14.15)

ce +
co
|x |

(
1 +

mπ∆R
2

S 1/3 |x |
)
=
ĉ2
|x |
(1 + ∆+ |x |) , r > rs , (14.16)

where ce and co are two constants which multiply (13.44) and (13.45) re-
spectively. The relations above guarantee smooth matching on the left
and on the right of the resonance between the outer solution and the
resistive layer one, the latter written asymptotically as a linear combina-
tion (13.44) and (13.45). Summing and subtracting (14.15) and (14.16)
produces:

2ce =
ĉ1 + ĉ2
|x |

+ ĉ2∆+ − ĉ1∆−,

2
co
|x |

(
1 +

mπ∆R
2

S 1/3 |x |
)
=
ĉ2 − ĉ1
|x |

+ ĉ2∆+ + ĉ1∆−.

It follows that balancing the powers of |x | requires

ĉ1 + ĉ2 = 0, 2co = ĉ2 − ĉ1,

2ce = ĉ2∆+ − ĉ1∆−, comπ∆RS 1/3 = ĉ2∆+ + ĉ1∆−.
(14.17)

By means of equation (13.42), the dispersion relation is written as Recall that qs = m/n.

(γ/ωA)
5/4

1 −Mt

Γ

(
Mt+3
4

)
Γ

(
Mt+5
4

) = 2
π

rs∆′

S 3/4

√
ms/qs

(1 + 2q 2s )1/2
(14.18)

where Mt is given by (13.38) and explicitly reads

Mt =

(
γ

ωA

)3/2 qsS 1/2

sm

√
1 + 2q 2s . (14.19)

We anticipate that the dispersion relation for other resistive instabil-
ities retains the same structure, with the ideal limit obtained by setting
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Mt → ∞. For tearing modes, (14.18) can be simplified further; let’s see
how. We saw in §14.1 that magnetic islands can be induced by allow-
ing for a small and slowly varying (spatially) magnetic perturbation in
proximity of the resonance rs . Upon comparing (14.2) with (14.12), we
choose to focus on cases for which ∆± are not too large, which in turn
implies that rs∆′ is not big either. Then, the right-hand-side of (14.18)
is small since, typically, S � 1.

0 1 2 3
Re(Mt)
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Figure 14.5: Contour levels of

|Γ

(
Mt+1
4

)
/Γ

(
Mt+5
4

)
| as a function of

the real and imaginary parts ofMt . Note
we restricted the plot to the Re (Mt ) > 0
half-plane.

We further notice that the absolute value of Γ
(
Mt+1
4

)
/Γ

(
Mt+5
4

)
does

not exhibit strong variations when Mt , as a complex quantity, varies
within quite a broad range (see Fig. 14.5). Hence, by balancing the left
and right-hand-side of (14.18) we expect Mt and thus γ/ωA to be small.
Therefore, by taking the Mt � 1 limit, the dispersion relation (14.18)
can be reduced to(

γ

ωA

)5/4
=

2
π

Γ

(
5
4

)
Γ

(
3
4

) rs∆′
S 3/4

√
ms/qs

(1 + 2q 2s )1/2
. (14.20)

For such a case instability occurs when88 The solution of x5/4 = 1 is x = 1,
whereas x5/4 = −1 is solved by x ≈
−0.81 ± 0.59i . These results can be ob-
tained via a graphical analysis through
Nyquist techniques (see chapter 17).

∆
′ > 0. (14.21)

This is known as the tearing instability criterion. For rs∆′ ∼ 1,
the growth rate of tearing perturbations scales as S −3/5, hence, with
Lundquist numbers of the order of 108 − 109, we see that these instabil-
ities are associated with timescales of the order of several tens of mil-
liseconds, thus they exhibit a much slower growth compared to ideal
modes.

Having established the conditions for the appearence of a tearing in-
stability through Eq. (14.21), we shall now investigate more in detail the
structure of ∆′ associated with the model q given by (14.8). Although the
analysis is based on a highly idealised profile, several important physical
conclusions can be drawn from this simple model.

By means of (14.13) and (14.14), one has

rs∆′ = −2m
A+ − A−

(1 + A+)(1 + A−)

= −2m
m − 1 − nq0 + (r0/b)2m

[1 − (rs/b)2m][m − 1 − nq0 + (r0/rs )2m]

= −2m
(

1
1 − (rs/b)2m

−
(r0/rs )2m

m − 1 − nq0 + (r0/rs )2m

)
. (14.22)

From this expression we observe that:99 Note that nq0 = m(r0/rs )2.

i) For m su�ciently large at fixed q0, one finds ∆′ = −2m/rs with
−∆+ ≈ ∆− ≈ m. Hence, in a typical tokamak plasma with q0 ∼ 1
and q (a) around 3 or 4, high-m tearing modes are expected to
be stable. One arrives to the same result for m finite by letting
b →∞ (no wall) and r0/rs → 0 (large gap between resonance and
current channel).
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ii) The denominators on the second line of (14.22) is always positive,
so that the sign of ∆′ is determined by m −1−nq0+ (r0/b)2m , more
specifically ∆′ > 0 if (r0/a)2m = [q0/q (a)]m < (1 −m + nq0)(b/a)2m .

iii) In the limit b/a → ∞, a mode with poloidal mode number m is
unstable when

√
(m − 1)/m < r0/rs . Since m − 1− nq0 + (r0/rs )2m =

m[1−(r0/rs )2]−1+(r0/rs )2m , we find that ∆′ diverges when rs → r0,
that is the closer the resonance to the current gradient the
more unstable the system.

iv) If b = a, another singularity in ∆′ is found when rs → a but in
this case ∆′→ −∞ showing the strong stabilising e�ect of an ideal
wall when the resonance approaches a.

An example of the regions of positive ∆′ in the q0 − [q0/q (a)] plane are
shown in figure 14.6.

1 2 3 4 5
q0

0

1/2

1

q 0
/
q(
a
)

m= 2 m= 3 m= 4 m= 5

Figure 14.6: The shaded areas show the
regions of positive tearing stability index
for several poloidal harmonics with n = 1
and b = a. We indicate which poloidal
harmonic is unstable in the correspond-
ing region. The m/n resonance of the
corresponding modes lies in the vacuum
for values of q0/q (a) above the dashed
lines.

Point iii) highlights the fact that for m ∼ 1 the stability of tearing
modes is dictated by the global gradient of the current density, not
necessarily by the gradient at the resonance position. Large m modes
instead are well localised about rs , hence their stability properties are
determined by the local current gradient near the resonance.

We finally point out that the values of ∆± dictate the structure of
the eigenfunction in the resistive layer. This, indeed, can be inferred
by evaluating the relative strength of the even and odd solutions from
(14.17) yielding

ce
co
=
∆+ + ∆−

2
. (14.23)

It is clear that the odd part of the radial fluid displacement dominates
when ∆+ ≈ −∆−. Typically, the tearing mode eigenfunction in the re-
sistive layer (i.e. in real space) has a shape similar to that shown in
figure 13.1. When this happens, we say that the eigenfunction has a
tearing character.

14.4 The numerical solution of the tearing equa-
tion for generic pro�les

Since tearing stability is entirely determined by ∆′, the analysis boils
down to the computation of the shape of ξrm or ψ̃m in the ideal region
(cf. (14.3) and (14.5)).

So far we dealt with a highly idealised current density profile which
allowed analytically tractable algebraic manipulations. Although many
important physical e�ects can be deduced from such a simplified analy-
sis, this is not suited for describing realistic situations characterised by
safety factor profiles with more generic shapes. Unfortunately, even in
the simplest case of a low-β large aspect ratio tokamak of circular cross
section10

10 One can still employ the cylindrical
limit at low β with weak shaping, mean-
ing that mode coupling e�ects can be
dropped altogether.

for which the fluid/magnetic perturbation is described by (14.3)
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and (14.5), it is not typically possible to write an exact analytic solution
with a generic q , so that a numerical procedure is usually sought.

Numerical schemes typically focus on the solution of (14.5) since
ψ̃m , contrarily to ξrm , does not diverge at the resonance, although its
derivative may present a logarithmic singularity as discussed in §14.2.
Given the shape of the current density, i.e. the safety factor, this equa-
tion is solved separately on the left and on the right of the resonance
constraining ψ̃m to be continuous at rs . The behaviour in proximity of
the magnetic axis is of the form ψ̃m ∝ rm as easily seen from (14.5),1111 λ defined in (14.6) is finite at the axis.

In particular

mR0
k | |
〈
J φ0

Bφ0
〉′ =

m
mµ − n

[
1
r

(
r 2

q

) ′] ′
.

This quantity only depends on mode
numbers and the safety factor profile.

whereas at the plasma edge the boundary conditions depend on the pres-
ence (or absence) of a vacuum region separating the plasma from the
surrounding metallic structures: if an ideally conducting metallic wall is
directly interfaced with the plasma we require ψ̃m(a) = 0, while with the
wall at distance b > a from the plasma one imposes (cf. (10.12))

r d ψ̃m/dr

ψ̃m

���
a
=

[ 1
k | |

d (r k | |)

dr

]
a−ε
+

2m
m − nq (a)

−
m + 1 + (m − 1)

( a
b

)2m
1 −

( a
b

)2m ,

(14.24)
where we used the fact that q ∝ r 2 in the vacuum region (see §4.4).

When the boundary conditions allow to have an explicit expression
for ψ̃m and d ψ̃m/dr at one of the two endpoints of the interval where
(14.5) is solved, one can set a Cauchy initial value problem, other-
wise a scheme based on the shooting method is employed. Once ψ̃m
is obtained for r < rs and r > rs , the computation of ∆′ is typically ac-
complished by fitting d ψ̃m/dr in a neighbourhood of rs with a function
of the form c1 + c2 ln x with c1 and c2 two parameters.

0 0.25 0.5 0.75 1
rs/a

10

0

10

20

30

40

50

a
∆
′

peaked
rounded
flattened

Figure 14.7: Values of ∆′ for the m =
2, n = 1 mode for the peaked, rounded
and flattened model computed with xb =
2 assuming an ideal wall directly inter-
faced with the plasma. Note that a∆′ →
−∞ as the ideal wall is approached.

We shall now report few numerical results on tokamak tearing sta-
bility based on two widely used safety factor parametrisations. One has
been discussed by Furth et al. (1973) and reads

q = q0
[
1 +

(
xb
r
a

)aF ]bF
. (14.25)

With this shape of q at fixed xb , the flattening or peaking of the associated
current density profile is controlled by the parameters aF and bF . In the
work by Furth et al. (1973), three di�erent cases labelled peaked, rounded
and �attened models have been analysed corresponding, respectively, to
the following values of aF and bF :

aF bF

peaked 2 1
rounded 4 1/2
flattened 8 1/4

The values of the tearing stability index of the m = 2, n = 1 mode for
the three models listed in the table above are shown in figure 14.7, where
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Figure 14.8: Shape of them = 2, n = 1 tearing mode eigenfunction for the peaked model
for di�erent radial locations of the resonant surfaces with (a) a wall directly interfaced
with the plasma, and (b) in the no wall limit. Here xb = 2. Notice the divergence of the
derivative of ψ̃m as the resonance is approached.

the position of the resonance has been modified by varying the value
of q0. The associated eigenfunction computed for the peaked model
with and without (a/b → 0) a wall directly interfaced with the plasma
is shown in Fig. 14.8 for di�erent locations of the resonance. In the
notation of Furth et al. (1973) one has the following identifications

(r0∆′)Furth → 1
xb
(a∆′), (xs )Furth → xbrs/a .

In line with the result obtained for the stepped model of §14.3, the nu-
merical computation also finds that large m instabilities have a negative
tearing stability index:

∆
′ ≈ −

2m
rs
, (14.26)
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Figure 14.9: Tearing stability index for
the m = 2, n = 1 mode with and with-
out an ideal wall surrounding directly
the plasma computed using the q pro-
file given in (14.27) with g1 = 1 and
g2 = αD = 0. Note that di�erently from
Fig. 14.7, here the quantity rs∆′ is plot-
ted.

We shall now analyse tearing stability with another parametrisation
of the safety factor (Yu (1996)):

q = q0
r 2∫ r

0 2r [1 − (r /a)2]g1[1 + αD (r /a)2]g2dr
. (14.27)

Notice that this parametrisation is also capable of dealing with non-
monotonic shapes of the current profile, and it will be employed in the
next section when discussing the stability of tearing modes with multiple
resonant surfaces associated with same q value. The simple case with
g1 = 1 and g2 = αD = 0 yields a parabolic current density profile J φ =
J0(1 − r 2/a2), and the resulting stability has been analysed by Wesson
(2011) (see figure 14.9).

Summarising, the study of tearing stability in tokamaks can be re-
duced, in its simplest form, to the analysis of the solution of a single
di�erential equation, namely Eq. (14.5). The inclusion of additional
e�ects such as plasma shaping, finite β and mode coupling is a much
more complicated task which requires more advanced/refined techniques
which we do not discuss.
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On the β dependence of the inertia enhancement

Let us consider a mode of helicity (m, n) for which ∆′ > 0. We further as-
sume that β e�ects are weak enough not to a�ect ψ̃m , so that we regard ∆′

to be β independent. By means of Eq. (13.25), the inertia enhancement
factor reads

γ2

ω2
A

→
γ2

ω2
A

©­­«1 +
2q 2s

1 + q 2s
γ2/ω2

A

Γp0/B2
0

ª®®¬ ≡
γ2

ω2
A

Iγ,

where the equilibrium quantities are evaluated at the resonant surface of
the (m, n) mode. For rs∆′ not too large, plugging this result into (14.20)
shows that the growth rate of the tearing mode scales as

γ

ωA
∝
(rs∆′)4/5

S 3/5
I −1/5γ .

Since ∆′ > 0 by hypothesis, the growth rate at zero β is finite with Iγ → 1.
When finite pressure e�ects are taken into account, in the limit β �
γ2/ω2

A one gets Iγ → 1 + 2q 2s .
Thus, upon defining β̂ = Γp0/B2

0 , it is straightforward to obtain the lim-
iting cases

γ

ωA
∝
(rs∆′)4/5

S 3/5

(
1 −

2
5

β̂S 6/5

C 2
0 (rs∆

′)8/5

)
,

β̂

γ2/ω2
A

� 1,

∝
(rs∆′)4/5

S 3/5
(1 + 2q 2s )

−1/5,
β̂

γ2/ω2
A

� 1,

where in writing the first line we exploited the fact that γ/ωA ∼

(rs∆′)4/5/S 3/5.

14.5 Double tearing modes

It is not unusual in tokamaks to have non-monotonic current profiles as-
sociated with hollow safety factors. 12 In these situations, multiple radii12 This may happen, e.g., during the cur-

rent ramp-up in the early stage of the
plasma discharge. Particle impurities ac-
cumulating in the core can also produce
hollow current profiles.

with identical q values may appear so that a magnetic perturbation with
helicity (m, n) can resonate at di�erent radial positions inducing magnetic
islands to form at these points. Cases with three or more radii associated
with the same value of q are much more unlikely, therefore we focus our
attention on hollow safety factors with a shape similar to that shown in
Fig. 4.7. Resistive perturbations with a tearing character featuring two
resonant locations are called double tearing modes.

For fixed m and n, let us denote with r1 and r2 the radial locations
of the two resonances where q = m/n with r1 < r2. For the sake of
simplicity, we assume the plasma to be directly interfaced with an
ideal wall. Although an analytical treatment can be deployed, we shall
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approach the problem of double tearing stability in a manner which is
more easily implemented in numerical schemes. We start by writing the
solution of equation (14.5) as a combination of two basis functions ψ1

and ψ2, the former defined in the interval 0 < r < r2 and the latter in
r1 < r < a, such that ψ1(r2) = ψ2(r1) = 0. The shape of these two basis
functions is shown in figure 14.10. The ideal wall boundary condition
at the plasma edge dictates ψ̃m(a) = 0. Normalising ψ̃m(r1) = 1, the
eigenfunction of equation (14.5) is then expressed as

ψ̃m =
ψ1

ψ1(r1)
, 0 < r < r1,

=
ψ1 + σψ2

ψ1(r1)
, r1 < r < r2,

= σ
ψ2

ψ1(r1)
, r2 < r < a,

where σ is a numerical coe�cient and continuity of the magnetic fluc-
tuation at both resonances has been imposed.

Figure 14.10: Example of the basis func-
tions ψ1 and ψ2, and the associated hol-
low safety factor.

Now, analogously to (14.4), we define the logarithmic jumps of ψ̃m
at r1 and r2, that is

∆
′
1 =

ψ ′1 + σψ
′
2

ψ1(r1)

���
r1+ε
−

ψ ′1
ψ1(r1)

���
r1−ε

,

∆
′
2 =

ψ ′2
ψ2(r2)

���
r2+ε
−
ψ ′1 + σψ

′
2

σψ2(r2)

���
r2−ε

.

Matching with the solutions in the two resistive layers around r1 and r2,
as we did for equation (14.18) in §14.3,13 formally gives 13 The same matching procedure out-

lined earlier, i.e. (14.17), remains valid.
It is important to keep in mind that we
will have di�erent expressions for the co-
e�cients ∆± depending on whether these
are evaluated at r1 or r2.

∆
∗
R,1(γ) ≡ mπ∆R,1S

1/3
1 = r1∆′1,

∆
∗
R,2(γ) ≡ mπ∆R,2S

1/3
2 = r2∆′2,

(14.28)

where ∆R,i is computed according to (13.42) with the subscript 1(2) in-
dicating that the associated quantity must be evaluated at r1(r2). The
radial dependence of the Lundquist number is because S ∼ 1/η ∼ T 3/2.

It now remains to determine σ and thus the growth rate γ. Upon
defining

∆
′
11 =

ψ ′1
ψ1(r1)

���
r1+ε
−

ψ ′1
ψ1(r1)

���
r1−ε

,

∆
′
22 =

ψ ′2
ψ2(r2)

���
r2+ε
−

ψ ′2
ψ2(r2)

���
r2−ε

,

∆
′
12 =

ψ ′2
ψ2(r2)

���
r1+ε

,

∆
′
21 = −

ψ ′1
ψ1(r1)

���
r2−ε

,

(14.29)

where ε has the same meaning as in (14.4), the matching conditions
(14.28) can be written as

∆
∗
R,1(γ) − r1∆

′
11 = σr1∆

′
12
ψ2(r2)
ψ1(r1)

,

∆
∗
R,2(γ) − r2∆

′
22 =

1
σ
r2∆′21

ψ1(r1)
ψ2(r2)

.
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Multiplying these two together yields the following dispersion relation(
∆
∗
R,1(γ) − r1∆

′
11

) (
∆
∗
R,2(γ) − r2∆

′
22

)
= r1r2∆′12∆

′
21. (14.30)

Figure 14.11: Graphical representation
of the dispersion relation (14.32) for a <
0 and b < 0. All the other cases are found
by either translating horizontally the hy-
perbola, or moving vertically the x − a
line.

We now notice that both ψ1 and ψ2 satisfy equation (14.5), from
which we immediately obtain

d
dr

(
rψ2

dψ1

dr

)
− r

dψ1

dr
dψ2

dr
−

[m2

r
+
mR0

k | |

(
d
dr
〈
J φ0
Bφ
0

〉

)]
ψ1ψ2 = 0,

d
dr

(
rψ1

dψ2

dr

)
− r

dψ1

dr
dψ2

dr
−

[m2

r
+
mR0

k | |

(
d
dr
〈
J φ0
Bφ
0

〉

)]
ψ1ψ2 = 0.

By equating these expressions and integrating from r1 to r2 one then
finds that

r1
ψ ′2(r1 + ε )

ψ2(r2)
= −r2

ψ ′1(r2 − ε )

ψ1(r1)
. (14.31)

This relation implies that ∆′12∆
′
21 ≥ 0 so that the right-hand-side of

(14.30) is positive or zero. By means of this result, several conclusions
can be now drawn from (14.30) by visualising it graphically. For simplic-
ity we only consider the limit of small growth rate for which, similarly
to (14.20), one can approximate ∆∗R,i = Ki (γ/ωA)

5/4 with Ki a positive
coe�cient.

Let us write equation (14.30) in the following form:

x − a =
c

x − b
. (14.32)

where x = (γ/ωA)5/4, a ∝ r2∆′11 b ∝ r2∆
′
22 and c > 0 a constant. The left-

hand-side of this equation describes a straight line with positive slope,
while the right-hand-side traces a hyperbola. A real solution for γ exists
any time the straight line crosses the hyperbola in the x > 0 half-plane.
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Figure 14.12: Numerical values of a∆′i j
for the m = 2, n = 1 mode as a func-
tion of the relative distance of the two
resonances r1 and r2, with a safety factor
of the form (14.27) with q0 = 2.3, and
g1 = g2 = 3. The parameter αD has
been varied within the range 1.75-2.5 (Yu
(1996)). An ideally conducting wall is at
position r = a. Relation (14.31) has been
verified to hold.

One then finds that the system in unstable whenever

∆
′
11 > 0, and ∆

′
22 > 0,

or
∆
′
11∆
′
22 < 0.

Conversely, when ∆′11 and ∆′22 are both negative, instability only oc-
curs when ∆′11∆

′
22 < ∆′12∆

′
21. This is intuitively depicted in Fig. 14.11.

Therefore, the stability analysis of double tearing modes reduces to the
computation of the ∆′i j coe�cients, and thence checking their sign and
relative amplitude. Figure 14.12 gives an example of the values of a∆′i j
obtained numerically from the solution of (14.5) with a safety factor of
the form (14.27). An alternative graphical approach which can be em-
ployed for determining the stability of the double tearing mode is based
on Nyquist techniques (these will be used in chapter 17).

One notices from Fig. 14.12 that ∆i j increases as the distance be-
tween the resonances is reduced. When ∆i j becomes su�ciently large,
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(a) (b) (c)

Figure 14.13: Safety factor profiles (a) used for the computation of Mt1 (b) and growth
rate (c) from equation (14.33). For the calculation we employed the same parameters
of Fig. 14.12 having set S1 = S2 = 108 with the plasma directly interfaced with an ideal
wall. The distance between the two resonances is controlled by varying αD from 1.645
to 2.14 (this is indicated in (a)). In (c) only the largest growth rate (largest positive
root) is shown.

we cannot approximate ∆∗R,i ∝ (γ/ωA)
5/4 anymore, and the full resistive

response at the two layers expressed by (14.18) should be used. This
leads to the following dispersion relation (cf. (14.30))(

Mt1

1 −Mt1

Γ

(
(Mt1 + 3)/4

)
Γ

(
(Mt1 + 5)/4

) − r1∆′11
C1

)
×

×

(
Mt2

1 −Mt2

Γ

(
(Mt2 + 3)/4

)
Γ

(
(Mt2 + 5)/4

) − r1∆′22
C2

)
= r1r2

∆′12∆
′
21

C1C2
, (14.33)

where by means of (13.36) and (13.38) we defined (assume for the sake
of simplicity a constant mass density profile)

C1 =
π

2

(
n |s1 |S1√

1 + 2(m/n)2

)1/3
, C2 = C1

(
|s2 |S2
|s1 |S1

)1/3
,

Mt1 =

(
γ

ωA

)3/2 √
1 + 2(m/n)2

n |s1 |
S 1/2
1 , Mt2 = Mt1

|s1 |
|s2 |

√
S2
S1
.

Equation (14.33) can be solved for Mt1 from which the value of γ is
extracted.

As shown in figure 14.13-(b), Mt1 becomes of order of unity when
the separation between the two resonances is very small. In such a
case one finds that γ ∼ |s1 |2/3S

1/3
1 . Since |s1 | approaches zero as the

resonant points get closer, it follows that the growth rate is negligibly
small when r1 → r2 (see Fig. 14.13-(c)). We shall nevertheless stress
that the manipulations outlined above are valid as long as the distance
between the two resonances is larger than the resistive layer width.

References

• B. Coppi et al., Nucl. Fusion 6, 101 (1966).



204 Tearing modes

• R. L. Dewar, and M. Persson, Phys. Fluids B 5, 4273 (1993).

• R. Fitzpatrick, Phys. Plasmas 2, 825 (1995).

• H. P. Furth et al., Phys. Fluids 6, 459 (1963).

• H. P. Furth et al., Phys. Fluids 16, 1054 (1973).

• S. Günter et al., Nucl. Fusion 40, 1541 (2000).

• C. C. Hegna and J. D. Callen, Phys. Plasmas 1, 2308 (1994).

• T. C. Hender et al., Nucl. Fusion 27, 1389 (1987).

• Y. Ishii et al., Phys. Plasmas 7, 4477 (2000).

• B. B. Kadomtsev and O. P. Pogutse, Zh. Eksp. Teor. Fiz. 65, 575 (1973) [Sov.
Phys.-JETP 38, 283 (1974)].

• B. B. Kadomtsev, Fiz. Plazmy 1, 710 (1975) [Sov. J. Plasma Phys. 1, 389 (1975)].

• B. N. Kuvshinov and A. B. Mikhailovskii, Fiz. Plazmy 16, 1102 (1990) [Sov. J.
Plasma Phys. 16, 639 (1990)].

• R. J. La Haye, Phys. Plasmas 13, 055501 (2006).

• S. Migliuolo, Nucl. Fusion 33, 1721 (1993).

• Y. Nishimura et al., Phys. Plasmas 5, 4292 (1998).

• J. A. Wesson, Tokamaks, Oxford University Press (Oxford, UK), 2011.

• Q. Yu, Phys. Plasmas 3, 2898 (1996).



15
The m = 1 resistive mode

We mentioned in chapter 8 that the cyclic events known as sawtooth
oscillations are linked to the appearance of a global instability with
poloidal mode number m = 1 when the safety factor on the magnetic
axis is less than unity. During these periodic cycles, a slow ramp in tem-
perature is followed by a rapid drop (crash) usually after the onset of a
m = n = 1 mode which may exhibit a structure similar to that of an inter-
nal kink. The time occurring between the onset of the m = n = 1 mode
and the temperature crash is called precursor phase (see figure 15.1).
After the crash, due to enhanced transport across flux surfaces, the
temperature and mass density profiles become flat (cf. Fig. 8.1) approxi-
mately up to the radial position of the q = 1 radius of the pre-crash safety
factor (we denote this radius with rq=1). The current density changes as
well, leading to either a complete or a partial flattening of the safety
factor profile within the region extending from the magnetic axis to rq=1.1

1 In tokamak jargon, complete (or full)
reconnection refers to cases when q is
completely flattened across the core, oth-
erwise we talk about incomplete (or
partial) reconnection. The onset of a
tearing-like fluctuation is often observed
right after the temperature crash.An example of the shape of q is shown in Fig. 15.2.

Figure 15.1: Time evolution of the elec-
tron temperature on the magnetic axis in
presence of a MHD precursor right be-
fore the crash during a sawtooh cycle.
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In ideal MHD flux surfaces may be displaced but not torn, so that
transport across them is expected to be weak. It follows that ideal in-
stabilities should not yield a temperature and current redistribution as
is observed during sawteeth cycles. The simplest e�ect that may be
invoked to account for such dynamics is the breaking and reconnec-
tion of the magnetic flux surfaces, which thus requires some amount of
plasma resistivity to occur.

Hence, in this short chapter we address the problem of the stability
of the m = 1 resistive mode, i.e. the resistive counterpart of the internal
kink perturbation studied in chapter 8. It is important to stress that
although the m = 1 resistive instability is sought to be a key player in the
dynamics of the sawtooth oscillation, here we do not attempt to provide
an exhaustive picture of the sawtooth phenomenon whose explanation
requires a far more advanced treatment which is not captured by our
basic analysis.

Figure 15.2: Example of safety factor
profile before (pre) the crash and after
a full and partial reconnection.

This chapter is structured as follows: after obtaining the correct
asymptotic behaviour of the m = 1 eigenfunction near the q = 1 res-
onance, we derive a simple dispersion relation which is expressed in a
form similar to Eq. (14.18). Various limiting cases are then analysed,
thoroughly detailing for each of those the associates growth rate and
mode structure. We then detail more accurately the smooth transition
of the character of the m = 1 perturbation, from tearing to kink-like,
when the marginal stability boundary of the m = 1 ideal internal kink
is approached. Finally, we present a brief discussion on the coupling of
the 1/1 and the 2/1 modes.

15.1 The dispersion relation

Let us take a perturbation with poloidal and toroidal mode numbers
m = n = 1. As usual, we consider a monotonically increasing safety
factor with the q = 1 resonance located at some position rs within the
plasma (cf. Fig. 7.1). The magnetic shear is of the order of unity. Most
of the calculations which are required to obtain the dispersion relation
have already been presented in chapters 8 and 14, so that it is su�cient
to give a brief summary of those results.

In the outer region far from rs , the m = 1 eigenfunction is written as

ξr1 = ξ∞ + X1 r < rs ,

= X1, r > rs ,

where ξ∞ is a constant and X1/ξ∞ ∼ ε2. When the resonance is ap-
proached, the derivative of the eigenfunction behaves as in (8.10). This
expression can be integrated, and, without loss of generality, we may
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write

ξr1 =


ξ∞

(
1 +

∫ rs
0 rU dr

r 2s s 2x

)
= ξ∞

(
1 −

r 2s δWT

R2
0s

2x

)
, r < rs ,

cnst
x

, r > rs ,

(15.1)

where the quantity δWT is defined by equation (8.36) and cnst is some
constant which does not need to be specified. The eigenfunction given
by Eq. (15.1) can be cast in a form similar to (14.12) as

ξr1 =
ĉ1
|x |
(1 − ∆− |x |) , r < rs ,

=
ĉ2
|x |
(1 + ∆+ |x |) , r > rs ,

(15.2)

having defined

∆− = −
R2
0s

2

r 2s δWT
, and ∆+ = 0, (15.3)

where ĉ1 and ĉ2 are some multiplicative constants.
The dispersion relation is immediately obtained from the matching

conditions (14.15), (14.16) and (14.17), and reads (cf. (14.18))

31/4S 3/4

√
s

(γ/ωA)
5/4

Mt − 1

Γ

(
Mt+3
4

)
Γ

(
Mt+5
4

) = − 2
π

R2
0s

2

r 2s δWT
≡

2
λH

. (15.4)

We recall that Mt is given by (13.38) in which we have to set m = n =
qs = 1. Here we introduced the quantity λH , commonly found in the
literature, which is a measure of the stability of the ideal m = 1 mode:
the m = 1 ideal internal kink mode is unstable when λH is positive, and
marginally stable for λH = 0. The stability of the resistive mode depends
on the value of λH , and various limiting case will be investigated in detail
in the next subsections.

15.1.1 The ideal limit

Let us first define the normalised quantity

λ̂H = λH

(
sS
√
3

)1/3
. (15.5)

By means of (14.19) we rearrange equation (15.4) as

Mt − 1

M 5/6
t

Γ

(
Mt+5
4

)
Γ

(
Mt+3
4

) = λ̂H
2
. (15.6)

For positive and su�ciently large λH such that λ̂H � 1 one must have
Mt →∞. Expanding the expression above forMt large yieldsM

2/3
t = λ̂H

which can be written as
γ

ωA
=
sλH
√
3
.
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This is equivalent to (8.11), that is the growth rate of the m = 1 ideal
internal kink mode. One sees that in the unstable region of the m = 1
ideal internal kink mode resistivity does not play any significant role.

15.1.2 The m = 1 resistive internal kink

Let us now look at the λH ≈ 0 case. It follows that the right-hand-side
of (15.6) is very small, thus implying that the left-hand-side is small too.
This can only be accomplished if Mt ≈ 1 which yields the growth rate

γ

ωA
=

s 2/3

(3S )1/3
. (15.7)

For typical values of the Lundquist number in tokamaks, this gives
γ/ωA ∼ 10−4 − 10−3, indicating that the time-scale of the growth of the
instability is of the order of few milliseconds.

We can be slightly more precise, and from (15.4) we write

Mt = 1 + (γ/ωA)5/4λH
31/4S 3/4

√
sπ

.

If λH is su�ciently small, we can solve this expression perturbatively for
γ, eventually giving

γ

ωA
=

s 2/3

(3S )1/3

[
1 +

2
3
λH
√
π

(
sS
√
3

)1/3]
.

This shows that stability is improved as λH becomes more negative.
Note that this equation can also be written as

M 2/3
t = 1 +

2
3
λ̂H
√
π
. (15.8)

The shape of the associated eigenfunction is now easily obtained.
Setting Mt = 1 in (13.39), one finds that

Y (ζ) =
2
√
ζ
,

so that the even and odd solutions in k -space read

ξ∗ =
e−Vek

2/2

|k |
(even),

=
e−Vek

2/2

k
(odd),

(15.9)

where Ve = m2(1 + 2q 2s )
1/3/(ns )2/3 = (3/s 2)1/3 has been computed by

plugging (15.7) into (13.36).
Let us first focus on the behaviour in real (y) space, as defined

in §13.4, of the even solution. By expanding in k the first of (15.9)
we obtain a power series of the form (cf. (13.41))

ξ∗ ∝
1
|k |

(
1 −Vek2/2 + . . .

)
,
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where only the first term in brackets is needed. Asymptotic matching
with (15.1) requires C → ∞ in the expression for the Fourier transform
of 1/|k | given in (13.43), so that the even solution in real space is simply
a constant. The Fourier transform of the odd solution yields the error
function,2 2 The error function is defined as

erf(x) = 2√
π

∫ x
0 e
−t2dt . To obtain

(15.10), one uses the convolution the-
orem which states that the Fourier trans-
form of the product of two functions f
and g is the convolution of the product
of their transform. Denoting

ĥ(y) =
1
2π

∫ ∞
−∞

h(k )e ikydk,

the convolution theorem is written as�(f g )(y) = ∫ ∞
−∞

ˆf (τ)ĝ (y − τ)dτ.

We set f (k ) = e−Vek
2/2 and g (k ) = 1/k ,

and the resulting integrals are evaluated
following the caption of Fig. 12.6.

that is

1
2π

∫ ∞

−∞

e−Vek
2/2

k
e ikydk =

i
2
erf

(
y
√
2Ve

)
. (15.10)

Therefore, we can write the even and odd functions in real space as

ξr1 = 1 (even),

= erf
(
y
√
2Ve

)
(odd),

It follows that the solution in the resistive layer which matches asymp-
totically the one computed in the outer region is

ξr1 =
ξ∞
2

(
1 − erf

(
y
√
2Ve

))
. (15.11)

When this expression is plugged into (13.28), the radial perturbation of
the magnetic field reads

(
√
g B̃ r )1 ∝

y
√
2Ve

erf
(
y
√
2Ve

)
−

y
√
2Ve
+
e−y

2/(2Ve )

√
π

, (15.12)

where, as boundary condition, we imposed that (
√
g B̃ r )1 vanishes for

y → +∞: this is because in the ideal region (
√
g B̃ r )1 ∝ k | |ξr1, and since

ξr1 is vanishing, the magnetic perturbation must be zero as well. No-
tice that this determines both of the constants of integration originating
from the solution of (13.28). One notices that, contrary to ideal MHD
results, the magnetic perturbation at the q = 1 resonance is not van-
ishing i.e. (

√
g B̃ r )1(rs ) , 0. A rearrangement of the magnetic topology

of the magnetic flux is therefore allowed, so that magnetic islands may
form as discussed in the previous chapter (see Fig. 15.3).

Figure 15.3: Radial shape of ξr1 and
ψ̃1 ≡ (

√
g B̃r )1 in the resistive layer. Here

we borrow the notation from (14.2).

15.1.3 The m = 1 reconnecting mode

We now investigate the λH < 0 case with |λH | ∼ 1, i.e. we assume to
carry out the analysis in the region of stability of the ideal internal kink
mode. It is obvious that for large values of the Lundquist number, the
left-hand-side of (15.6) is large. Let us first note that if we take Mt � 1
the right-hand-side of (15.6) becomes proportional to γ which must then
be equal to a negative quantity thus indicating stability. Hence, the only
possibility for having an unstable mode is to take Mt � 1. We therefore
obtain the m = 1 equivalent of the dispersion relation for tearing modes
(14.20), that is (

γ

ωA

)5/4
=

2
|λH |

Γ

(
5
4

)
Γ

(
3
4

) √
s

31/4S 3/4
.
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The growth rate of this instability scales as S −3/5, showing that it grows
on tearing timescales which are much slower than those of the modes
analysed in the previous sections.

Since we have been able to find a positive growth rate for any value
of λH , we then infer that the m = 1 resistive mode is always unstable
when there is a q = 1 surface in the plasma (see Fig. 15.4-(a)). One
should note, however, that in a realistic situation additional e�ects, not
captured by our analysis, can contribute to the stability of the mode:
further stabilisation may indeed arise from two-fluid (FLR) or kinetic
corrections, and also from other e�ects associated with toroidicity (a
brief account of the latter will be given in chapter 17).

We shall finally discuss the spatial structure of the m = 1 resistive
perturbation. The character of this instability is dictated by Mt , namely
its growth rate (this is computed at fixed plasma parameters such has
Lundquist number and magnetic shear). In order to see the change in
shape of the layer eigenfunction as Mt is varied, we express γ/ωA and
Ve in terms of Mt as (cf. (13.36) and (13.38))

γ

ωA
=

©­­«
msMt

S 1/2qs
√
1 + 2q 2s

ª®®¬
2/3

,

Ve =
©­­«
m2qs

√
1 + 2q 2s

s

ª®®¬
2/3

M −2/3t ≡ A2M −2/3t ,

(15.13)

where the constant A > 0, implicitly defined in the latter of the two
equations above, is a quantity of the order of unity. Note that we must
take m = qs = 1 in the expressions above.

By making use of (13.40), we now want to transform to real space
in the variable y/A the even and odd solutions generated by (13.39) for
arbitrary Mt (cf. §13.4). The even solution is expanded according to
(13.41), and, in analogy with the discussion of section 15.1.2, we find
that in real space this is a constant.3 Focussing on the odd solutions, by3 This holds also for tearing perturba-

tions with m > 1 computed with the step-
current profile employed in the analysis
of §14.3 (compare with (13.44)).

means of two expressions above, we have

ξ∗odd = e
−M 1/3

t A2k2/2
[
U

(
Mt + 5

4
,
3
2
,M 1/3

t A2k2
)

+
2
Mt
U

(
Mt + 1

4
,
1
2
,M 1/3

t A2k2
) ]

sgn(k ). (15.14)

Its inverse Fourier transform is performed numerically, and figure 15.4-
(b) summarises the results of this computation: the change in character
of the eigenfunction when Mt becomes smaller than unity becomes ev-
ident. We say that the odd fuction acquires a tearing character when
Mt � 1. The global structure (in real space) of the eigenfuntion is finally
obtained by combining together the even and odd solutions in order to
fulfil the correct boundary conditions at y/A = ±∞. This is detailed in
the next section.
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Figure 15.4: (a): Dependence ofM 2/3
t ∝

γ upon λ̂H obtained from the numeri-
cal solution of (15.6). The oblique black
dashed line denotes the growth rate of
the m = 1 ideal mode. (b): Resistive
layer odd solution in real space for dif-
ferent values of the parameter Mt .

(a) (b)

15.1.4 On the relative amplitude of the even and odd solu-
tions

For the m = 1 mode we found that ∆+ = 0 and ∆− ∼ ε−2 � 1 for δWT of
the order of unity or less (cf. (15.3)). If one then uses (14.23), it seems
that the even solution in the resistive layer always dominates over the
odd one. Using the constants ce and co , however, may be misleading in
that they only measure the relative amplitude of the large-y expansions
of the layer solutions, i.e. Eqs. (13.44) and (13.45).

To resolve this ambiguity, let us take ξr1 = ce ξeven + i ĉoξodd where
ξeven = 1 and

ξodd =
1
2π

∫ ∞

−∞

ξ∗odd(k )e
ikydk,

with ξ∗odd given by (15.14). For 0 < k � 1, from (15.14) we have to
leading order

ξ∗odd =
2
√
π(1 −Mt )

MtΓ

(
Mt+3
4

) (
1 +

∆R

|k |

)
sgn(k ),

so that taking the large y limit of the inverse Fourier transform of ξ∗odd
yields (cf. (13.45))

ξodd =
2i (1 −Mt )εR
√
πMtΓ

(
Mt+3
4

) × 1
x

(
1 +

mπ∆R
2

S 1/3 |x |
)
,

where we recall that εR = 1/(mS 1/3). A comparison with (14.15) and
(14.16) shows that

co =
2(Mt − 1)εR
√
πMtΓ

(
Mt+3
4

) ĉo .
Thus, plugging this result into (14.23) gives According to the discussion in the previ-

ous section one has A = (
√
3/s )1/3.

ce
ĉo/A

=

√
π(Mt − 1)

MtΓ

(
Mt+3
4

) λ̂−1H .

The singularity at λ̂H = 0 is removed thanks to (15.8).
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Figure 15.5: Ratio of the multiplying constants of the even (ce ) and odd (ξM ĉo/A)
solutions as function of the variable y/A. The insets show the structure of the normalised
eigenfunction ξr1 in the resistive layer. For large and negative λ̂H the eigenfunction is
mainly odd.

Now, when ξr1 is written in terms of the variable y/A, it reads

ξr1 = ce −
(
ĉo
A
ξM

)
×

1
2πξM

∫ ∞

−∞

ξ∗odd(κ) sin
(
κ

( y
A

))
)dκ,

where κ = Ak and ξM is the maximum value in the y -domain taken by
function 1

2π

∫ ∞
−∞

ξ∗odd(κ) sin
(
κ(y/A)

)
)dκ. We therefore take the function

(bounded between −1 and 1)

1
2πξM

∫ ∞

−∞

ξ∗odd(κ) sin
(
κ

( y
A

))
)dκ

to be the odd solution in the resistive layer. The quantity ĉoξM/A now
measures the odd contribution to the full linear eigenfunction. Since we
constructed an odd solution which is comparable in magnitude with the
even one, the quantity Ace/(ĉoξM) represents a good estimate of their
mutual strength. Its behaviour as a function of λ̂H is shown in Fig. 15.5.

15.2 Interacting resistive layers

The linear dynamics of the 1/1 mode, either ideal or resistive, depends
crucially on the coupling with its first neighbouring sidebands. A mu-
tual interaction between the q = 1 and the q = 2 layers, if the latter is
within the plasma, will then occur. We now make the following consid-
erations: the dynamics at the q = 2 surface is expected to have an e�ect
on the global stability of the n = 1 perturbation, namely growth rate
and marginal boundaries, while the amplitude of the 1/1 harmonic will
dictate the structure of the 2/1 magnetic perturbation. In this section we
shall analyse more in detail such behaviours.
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Our starting point is the expression for δWT as given in (8.37) where
the coe�cients b , c and ŝ are defined by Eq. (8.20). We decompose the
factor c as c = cI +cR where cI is independent of γ and η. A more precise
definition of these quantities will be given later. Plugging this into (8.37)
gives

δWT = δWI −

(
cR/(1 + b − cI )

1 − cR/(1 + b − cI )

)
δWR,

having defined δWI and δWR as

δWI =
ŝ
2
+
9b(1 − cI ) − 24bcI (βp + ŝ ) − 16cI (1 + b)(βp + ŝ )2

16(1 + b − cI )
,

δWR =
[ 34b + (1 + b)(βp + ŝ )]

2

(1 + b − cI )
.

(15.15)

Upon conveniently introducing the quantities

λ̂ I = −

(
sS
√
3

)1/3 πr 2s δWI

s 2R2
0

, λ̂R =

(
sS
√
3

)1/3 πr 2s δWR

s 2R2
0

,

where s and S are the magnetic shear and the Lundquist number com-
puted at the q = 1 surface labelled by rs , the dispersion relation (15.6)
becomes

Mt − 1

M 5/6
t

Γ

(
Mt+5
4

)
Γ

(
Mt+3
4

) − λ̂ I
2
=

cR/(1 + b − cI )
1 − cR/(1 + b − cI )

λ̂R
2
. (15.16)

Notice that equilibrium quantities appearing in Mt have to be evaluated
at rs .

We now consider a safety factor profile of the form (see (14.8))

q = q0, r < r0,

= (r /rs )2, r > r0.

We take q0 < 1 and also rs < a/
√
2 so that the q = 2 surface located

at r = r2 is within the plasma. It is easily shown that r2/rs =
√
2 and

r0/rs =
√
q0 while s = 2 for r > r0. Thus, employing (4.37) and (14.11),

we find that the expressions for the coe�cients ŝ and b are

ŝ = − 1
2 ln q0, b =

1 − q0
1 − q0(1 − q0)

,

both of which are greater than zero. The tearing stability index of the
2/1 mode computed in the cylindrical limit according to the analysis of
the preceding chapter, is (see Eq. (14.22))

r2∆′c = −
16(1 − q0)

1 + (3 − q0)(1 − q0)
+

4
1 − (bw/r2)4

.

where bw is the radial position of an ideally conducting wall. For q0 < 1
the quantity above is always negative thus indicating that the classical
2/1 tearing mode is stable.

Since q (a) > 2 and thus q (a)/q0 > 2, a
quick comparison with figure 10.5 shows
that external kink modes are stable.
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Now, following the calculations of §14.3 (see in particular sidenote
6) we may write X e

2 as

X e
2 ∝

[ r
r2
+ A−

(
r
r2

)−3 ] /
(2µ − 1), rs < r < r2,

∝

[ r
r2
+ A+

(
r
r2

)−3 ] /
(2µ − 1), r > r2, (15.17)

where A+ = −(bw/r2)4 and A−, still undetermined, contains the contri-
butions from inertia and resistivity at the q = 2 surface. Thus, by means
of the equation above, the quantity c is readily obtained

c =
2 + 4A−
1 + 4A−

. (15.18)

Letting x = (r − r2)/r2, as r2 is approached one has (cf. (14.12))

X e
2 (r → r2 − ε ) ∝

1
x
+ ∆−, X e

2 (r → r2 + ε ) ∝
1
x
+ ∆+,

where, in analogy with (14.14), we defined

∆± =

5
2 −

3
2A±

1 + A±
. (15.19)

Matching with the inner layer solution of the q = 2 resonance yields a
dispersion similar to (14.18) that is

∆∗ ≡
π

2

(
2
3
S2

)1/3 M 5/6
t2

1 −Mt2

Γ

(
(Mt2 + 3)/4

)
Γ

(
(Mt2 + 5)/4

) = ∆+ − ∆−, (15.20)

where the subscript 2 means that the corresponding quantity has to be
evaluated at r2. Equation (15.20) is now combined with (15.19) to obtain
an expression for A− which reads

A− =
(
4A+

1 + A+
+ ∆∗

) / (
4

1 + A+
− ∆∗

)
. (15.21)

Thus, if we let δWI to denote the growth rate of the ideal internal kink
as given in §8.5, we consistently set cI = limA−→−1 c .

4 It then follows that4 This is equivalent to letting the re-
sponse at the q = 2 resonance to be ideal
in the limit of very small growth rates.

cI = 2/3, whereas the correction containing the q = 2 layer response
reads

cR =
4
3

(
1 + A−
1 + 4A−

)
=

16/3
3∆∗ + 4(1 + 4A+)/(1 + A+)

.

A quick computation finally yields

cR/(1 + b − cI )
1 − cR/(1 + b − cI )

=
16/3

(1 + 3b)(∆∗ − r2∆′c )
.

Therefore, combining this result with equation (15.16) eventually gives

1
φ(Mt )

−
λ̂ I
2
= −

8λ̂R/(3c0)
(1 + 3b)(φ(Mt2) + r2∆′c/c0)

, (15.22)
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where c0 = π
2 (2S2/3)

1/3 and the function φ is defined as With a generic q profile, Eq. (15.22) can
be formally cast as (Connor (1988))

1
φ(Mt )

− A = −
B2

φ(Mt2) + r2∆′c /c0
.

It is worth to point out that the disper-
sion relation of two generic interacting
inertial/resistive layers retains essentially
the same structure although di�erent ex-
pressions for A, B , c0 and r2∆′c must be
employed.

φ(M ) =
M 5/6

M − 1

Γ

(
(M + 3)/4

)
Γ

(
(M + 5)/4

) .
Let us study (15.22) more carefully. If we keep S2 finite and let

S →∞, i.e. the response at the q = 1 surface is ideal, the left-hand-side
of (15.22) is computed in the limit Mt → ∞. Thus, by letting γ → 0,
one can identify the marginal boundary

δWI +
8δWR/3

r2∆′c (1 + 3b)
= 0.

Since δWR > 0 and r2∆′c < 0 with our choice of the safety factor, resistiv-
ity at the q = 2 surface yields a critical βp lower than the one obtained
from the fully ideal computation.

Now assume S < ∞ and, for the sake of simplicity, take Mt2 = Mt .5 5 In analogy to what was
discussed in §14.5, one has

Mt2/Mt1 =
|s1 |
|s2 |

√
S2(1+2q 22 )

S1(1+2q 21 )
with the

subscripts 1 and 2 referring to the
resonances at r1 and r2 respectively.

It is easy to see that if λ̂ I ≈ 0 then Mt ≈ 1 which is the growth rate of
the m = 1 resistive kink mode studied earlier. The important di�erence
compared to what has been discussed in the previous sections is that
a non-vanishing radial magnetic perturbation is allowed at the q = 2
surface. This occurs even if the tearing stability index associated
with the 2/1 mode is negative meaning that a 2/1 magnetic island,
dragged by the 1/1 mode, may develop.

To quantify the amplitude of the magnetic perturbation at r2, fol-
lowing the procedure of section 15.1.4, we first write the 2/1 radial fluid
displacement in its corresponding resonant resistive layer as

ξr2(y) = ce − co

√
πMtΓ

(
Mt+3
4

)
2i (Mt − 1)εR

1
2π

∫ ∞

−∞

ξ∗odd(k )e
ikydy,

y =
r − r2
εRr2

, εR =
1

2S 1/3
2

,

(15.23)

where ce and co are the constants of Eqs. (14.15) and (14.16) while ξ∗odd is
defined by (15.14). The quantityA is computed according to (15.13) with
m = qs = s = 2 and n = 1. Furthermore, we let ξ∗ = 1

2π

∫ ∞
−∞

ξr2(y)e
−ikydy

and find that the odd contribution to ξ∗ is The Fourier transform of an even/odd
real valued function is an even purely
real/odd purely imaginary function in k -
space.(ξ∗)odd = −co

√
πMtΓ

(
Mt+3
4

)
2i (Mt − 1)εR

ξ∗odd(k ). (15.24)

The magnetic perturbation associated with ξ∗ in k -space is referred to
as ψ∗.

Far from the q = 2 resonance, we use (8.21) and (15.17) to obtain at
leading order

ξr2(r → r2 − ε ) ≈
C11rs
2R0

(
ŝ + βp (rs ) + b[3/4 + ŝ + βp (rs )]

1 + b − c

)
×

×

(
1 + A−

(rs/r2) + A−(r2/rs )3

)
1
|x |
(1 − ∆− |x |) ,
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where C11 is the amplitude of the 1/1 harmonic and ε → 0. Thus, by
following the matching rules (14.17) we can identify

ĉ1 = −co =
C11rs
2R0

(
ŝ + βp (rs ) + b[3/4 + ŝ + βp (rs )]

1 + b − c

)
×

×
1 + A−

(rs/r2) + A−(r2/rs )3
. (15.25)

The quantity A− is obtained from (15.21) which, in the limit bw/a →∞
with Mt ≈ 1, yields

1 + A− = −
4
∆∗
≈
2A(Mt − 1)
√
πS 1/3

2

.

We recall that the constant A is defined in (15.13) with the aforemen-
tioned substitutions.

We now exploit the fact that in k -space ξ∗ vanishes at infinity and
use the first of (13.31) to write

(
√
g B̃ r )2(0) =

1
2π

∫ ∞

−∞

ψ∗(k )dk =
r2B0Ve

πS 1/3
2

∫ ∞

−∞

kξ∗(k )
(1 +Vek2)2

dk .

One notices that in the expression above only the odd contribution to
ξ∗ is needed. Hence, after setting Mt ≈ 1 and using (15.24), we finally
obtainRemember that when Mt = 1 the func-

tion ξ∗odd as defined in (15.14) becomes

ξ∗odd = 2e−A
2k2/2/(Ak ).

(
√
g B̃ r )2(0)

ir2B0
=
C11r2
R0

(
ŝ + βp (rs ) + b[3/4 + ŝ + βp (rs )]

1 + b − cI

)
A
√
2

3
√
πS 1/3

2

.
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16
Localised resistive instabilities

In this chapter we investigate the e�ect of plasma resistivity on the dy-
namics of two types of localised perturbations, namely resistive bal-
looning and resistive interchange modes.

(b)

(a)

L-mode

ideal MHD
unstable

Figure 16.1: (a): H-mode edge pres-
sure profile. (b) Example of the stabil-
ity diagram of the edge region expressed
in terms of density and temperature at
rped (hyperbolae denote isobars) at fixed
positive magnetic shear. The H-mode
is accessed above the black dashed line.
Type-III ELMs may appear in the region
highlighted in light grey.

Resistive ballooning modes are likely to appear in regions of steep
pressure gradients and large plasma collisionality. These condition are
usually met in proximity of the plasma edge when the pressure gradient
starts to build up at the H-mode entry (see Figs. 12.3 and 16.1). It is
common in this regime to observe high frequency, small amplitude Edge
Localised Modes (ELMs) which appear well below the ideal ballooning
limit (this is the maximum achievable pressure beyond which ideal bal-
looning modes become unstable). These event are commonly labelled
as type-III ELMs. The frequency of type-III ELMs decreases with in-
creased injected power, and in some cases they seem to occur below
a threshold in the electron temperature suggesting the possible role of
plasma resistivity. Resistive ballooning modes are supposed to play an
important role in explaining the appearance of type-III ELMs.

Other localised perturbations discussed in this chapter are resistive
interchange modes, namely the resistive counterpart of Mercier modes.
These instabilities may be associated with a soft β limit not so catas-
trophic to terminate the plasma discharge but serious enough to de-
grade plasma performance. Although the stability criteria associated
with resistive interchange modes are less stringent than those of Mercier
perturbations, we will see that tokamaks operating with monotonically
increasing safety factors are quite resilient against such types of instabil-
ities.1

1 Resistive interchange modes could
pose a concern to stability in plasma dis-
charges of long duration with a reversed
magnetic shear. A more precise charac-
terisation of the relevance of such insta-
bilities will be given in the next chapter.

Similar to their corresponding ideal perturbations, both resistive in-
terchange and ballooning modes are pressure driven instabilities where
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the poloidal spectrum of the former is composed of one dominant har-
monic, while the latter features multiple equivalent modes.

The aim of this chapter is therefore to provide an approximate yet
meaningful discussion of the linear dynamics of these perturbations de-
tailing the mathematical techniques employed in their modelling. Firstly,
we derive a set of eigenmode equations which properly account for re-
sistive e�ects when dealing with localised instabilities. Subsequently, we
will focus separately on the two aforementioned perturbations discussing
in detail their stability properties.

16.1 Governing equations

Let us fix the poloidal and toroidal mode numbers m and n, both much
larger than unity and such that m/n ∼ 1. The associated resonance for
which q = m/n is at position rs , and we define x = (r − rs )/rs . We now
identify two regions: one far from the resonance such that

mx ∼ 1, (16.1)

and a narrow layer about rs whose radial extension is such that

mx ∼ ε � 1. (16.2)

These orderings conform to (12.2) and (13.16) respectively. In analogy
with the notation employed earlier, we call the former the outer region
(also known as ideal region) and the latter the resistive layer (or sim-
ply layer) region. Furthermore, we assume to deal with slow-growing
instabilities such that γ/ωA ∼ ε.2 Resistive e�ects are only allowed in2 Although we adopt the same slow-

growing ordering of ideal modes, resis-
tive perturbations are expected to grow
on much longer timescales.

the layer region.
Since we are dealing with highly localised perturbations, following

(11.2) the expression of the parallel wave vector defined in (7.51) can be
approximated as

k | | = mµ − n ≈ −nsx,

where s is the magnetic shear at rs and µ = 1/q with q ∼ 1; this expres-
sion is assumed to hold in the outer and layer regions.

Thus, according to (13.18), in the resistive layer close to the reso-
nance the magnetic perturbation with mode number m obeys (η0 is the
equilibrium resistivity)(

1 −
η0

r 2s γ

d 2

dx2

)
(
√
g B̃ r )m = −irsB0nsxξrm . (16.3)

Close to rs we allow the second term in brackets on the left-hand-side
to be of the order of unity. Far from the resonance, instead, the radial
gradients of the perturbation are weaker so that resistive corrections
become negligible. Therefore, the equation for the radial field in the
outer region is obtained from (16.3) by simply setting η0 → 0.Note that the magnitude of (

√
g B̃r )m is

proportional to srsB0ξrm .
Sideband
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harmonics are supposed to obey equation (13.18) with the replacement
m → m ± 1.

Having established a link between the magnetic perturbation and
the fluid displacement, we now need an equation for the latter. For this
purpose we formally start from the vorticity equation, i.e. Eq. (13.4),
and apply the orderings for small scale modes far from resonance pre-
sented in §7.4.3 The dynamics in the resistive layer is obtained by simply 3 This procedure loosely follows the

one employed in the derivation of the
Mercier and ideal ballooning modes
equation in sections 11.1 and 12.1.1.

allowing radial derivatives of the perturbed quantities to be the domi-
nant ones. Since the perturbation is supposed to be highly localised,
throughout this chapter, equilibrium quantities are evaluated at the res-
onance rs . With the definition of the ballooning parameter given in
(4.41) which is (qs = m/n) Remember that we normalised µ0 = 1.

α = −
2R0p ′0q

2
s

B2
0

,

for the sake of simplicity and similar to §12.1, we consider a configura-
tion with α � 1 and s � 1 such that (12.5), (12.7) and (12.9) hold. We
further assume p ′0 constant.

Let us start by taking the mth component of (13.22). We recall that
the contribution coming from ∆pm , that is the compressible part of the
perturbed pressure associated with the harmonic m, is small both close
to and far from rs (cf. (7.48) and (13.24)), hence it can be neglected.
Therefore, recalling that p̂ is given by (7.59), we can approximate

B2
0
γ2

ω2
A

ξ
φ
m ≈ −i (mµ − n)p̂m −

p ′0
f ′0
(
√
g B̃ r )m

= −
p ′0
f ′0

η0

r 2s γ

d 2

dx2
(
√
g B̃ r )m . (16.4)

Notice that contrary to the ideal case, there is no exact cancellation be-
tween the magnetic fluctuation and the radial fluid displacement. Then,
from the first of (7.27) we have

ξϑm = −
1
imr

(
r ξrm

) ′
−
n
m

p ′0
B3
0

η0

r 3s γ3/ω2
A

d 2

dx2
(
√
g B̃ r )m, (16.5)

where we approximated f ′0 ≈ rsB0 (cf. (7.14)). We retain the second
term on the right-hand-side even though it is smaller compared to the
first one (this will help with some calculations in the next chapter).

Because of the smallness of the growth rate, the inertial contribution
on the left-hand-side of (13.4) is easily computed by applying the layer
ordering (13.17) and using (16.5). In doing that, corrections due to
mode coupling with satellite harmonics are ignored and we get

γ2
[ ∂
∂r

( ρ0
Bφ
0

ξϑ

)
−

∂

∂ϑ

( ρ0
Bφ
0

ξr

)]
m
≈
iB0

mR0

γ2

ω2
A

d 2ξrm
dx2

−
n
m

p ′0
R0B2

0

η0

r 2s γ

d 3

dx3
(
√
g B̃ r )m . (16.6)
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We now look at the right-hand-side of (13.4).
In the limit of large m and under the assumption of small shear, we

approximate (7.55) as P ≈ R0
B0
p ′0 so that by means of (7.56), which is

valid within both the ideal and resistive MHD framework, we write(
√
gB0 · ∇

J̃ φ

Bφ
0

−
√
g J0 · ∇

B̃φ

Bφ
0

)
m

=
nsx
rsmR0

[ d 2
dx2
(
√
g B̃ r )m

−m2(
√
g B̃ r )m

]
−
n
m

p ′0
R0B2

0

η0

r 2s γ

d 3

dx3
(
√
g B̃ r )m − im

R0

B3
0

(p ′0)
2ξrm . (16.7)

Notice that in the expression above we retained terms proportional to
the plasma pressure, whereas contributions of the form k | |Cm

′

m have been
neglected as they only yield small corrections to the term in square brack-
ets on the right-hand-side; these are in fact proportional to the magnetic
shear, and they become small when s is small. A similar argument is in-
voked to drop the term proportional to the equilibrium current gradient,
that is the second one on the right-hand-side of (13.4).44 Notice that 〈 J φ0 /B

φ
0 〉
′ ∼ sε/r 2, and, ac-

cording to the results of §11.1 and §12.1,
the factors Dm

′

m are also small.
From equations (7.61), (7.63) and (12.11), we exploit once more

the fact that ∆pm is negligible, so that the term involving the perturbed
pressure is written as(√

g∇φ · ∇ 1

Bφ
0

× ∇p̃
)
m ≈ im

p ′0
B0

[ 2r
R0

(
1 −

1

q 2s

)
+ α −

R0p ′0
B2
0

]
ξrm

+
in2B0α

2m2R0

∑
±

(
mξrm±1 ±

dξrm±1
dx

)
+

∑
m′=±1

Em
′

m (∆p), (16.8)

where, again, contributions scaling with s have been dropped thanks
to the smallness of the magnetic shear. In analogy to the ideal case
(see §12.3), we keep the contribution in the square brackets of (16.8),
which, although smaller than other terms, plays an important role in
determining ballooning stability at small shear.

It remains to compute
∑
m′=±1 E

m′
m (∆p), and for this knowledge of

∆pm±1 is required. By means of (13.22) and using (13.18) we approximate

B2
0
γ2

ω2
A

ξ
φ
m±1 = −

p ′0
B0

η0

r 3s γ

d 2

dx2
(
√
g B̃ r )m±1 ∓ i µs∆pm±1, (16.9)

where µs = 1/qs = n/m. Note that this expression guarantees that the
ideal results are recovered in the limit η0 → 0. The left-hand-side of this
expression is expected to become important only in the narrow resistive
layer around the resonance where the perturbation develops strong ra-
dial gradients. Hence, assuming that (16.2) holds, from (16.4) we order
ξ
φ
m ∼

1
rB0
(
√
g B̃ r )m ∼ εξrm so that we may drop ξφm in (7.41) to obtain

ξ
φ
m±1 ≈ iqs

(
±
∆pm±1
Γp0

−
1

mR0

dξrm
dx

)
.

Thus, plugging this expression of ξφm±1 into (16.9) gives (cf. (13.25))

±∆pm±1 =
B2
0

mR0

q 2γ2

ω2
A

dξrm
dx
+ iqs

p ′0
B0

η0

r 3s γ

d 2

dx2
(
√
g B̃ r )m±1, (16.10)
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having neglected terms proportional to (γ/ωA)2/β under the assump-
tion that the growth rate is su�ciently small. Finally, from (7.63), we
approximate

E∓1m (∆p) =
i
B0

(
±
d∆pm±1
dx

+m∆pm±1

)
. (16.11)

Thus, upon defining the variable z = mx and introducing the quan-
tityA = s µs rsB0, we combine equations (16.6)-(16.8), (16.10) and (16.11)
to yield5 5 Recall that all equilibrium quantities

appearing in this expression need to be
evaluated at rs .

m2γ2H
d 2ξrm
dz 2

= −
i z
A

( d 2
dz 2
(
√
g B̃ r )m − (

√
g B̃ r )m

)
+

(
Û +

α2

2s 2

)
ξrm

−
α

2s 2

∑
±

(
ξrm±1 ±

dξrm±1
dz

)
+ i

α

2sA
m2η0

r 2s γ

∑
±

[
d 3

dz 3
(
√
g B̃ r )m±1 ±

d 2

dz 2
(
√
g B̃ r )m±1

]
,

(16.12)

where γH and Û are defined respectively by (cf. (11.12) and (12.24))

γ2H =
γ2(1 + 2q 2s )

n2s 2ω2
A

, Û =
αrs
s 2R0

(
1 −

1

q 2s

)
. (16.13)

As in chapter 12, we refer to Û as theMercier contribution. Equations
(16.3) and (16.12) form the basis of the stability analysis for resistive
ballooning and resistive interchange modes whose linear dynamics will
be thoroughly investigated in the next two sections. It is worth to point
out that these two equations have been written in such a way that they
are valid both in the ideal and resistive layer regions.

16.2 Resistive ballooning modes

16.2.1 The eigenmode equation

The logic lying behind the analysis of resistive ballooning modes closely
follows the one employed in chapter 12. This means that i) we deploy the
assumption of translational invariance of the radial fluid displacement
and magnetic perturbation expressed mathematically in a way similar to
(12.25), and ii) we exploit this to write a single eigenmode equation in a
convenient Fourier space. The growth rate is finally obtained through
an asymptotic analysis of the resulting eigensolution.

Since m is large,6 the variable z appearing in (16.12) is allowed to 6 We actually take the m →∞ limit.

vary from −∞ to +∞. Therefore, defining the Fourier transform of ξrm
and (

√
g B̃ r )m as in (13.30), from equations (16.3) and (16.12) we readily
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obtain77 Recall that the translational invariance
of a generic quantity X in the form of
(12.25) implies that∫ ∞
−∞

Xm±1(z )e
−ikzdz = e∓ik/sX ∗(k ).

(
1 + V̄ k2

)
ψ∗

A
=
dξ∗

dk
,

d
dk

(
(1 + k2)

ψ∗

A

)
−

[
Û +

α2

2s 2
+m2γ2H k

2 −
α

s 2

(
cos

k
s
+ k sin

k
s

)]
ξ∗

−
α

s
V̄

(
k3 cos

k
s
− k2 sin

k
s

)
ψ∗

A
= 0,

having introduced the quantity

V̄ =
m2η0

r 2s γ
.

These two equations are combined together to finally give the eigen-
mode equation for resistive ballooning modes:

d
dk

(
1 + k2

1 + V̄ k2
dξ∗

dk

)
−

[
Û +

α2

2s 2
+m2γ2H k

2 −
α

s 2

(
cos

k
s
+ k sin

k
s

) ]
ξ∗

−
α

s
V̄ k2

1 + V̄ k2

(
k cos

k
s
− sin

k
s

)
dξ∗

dk
= 0. (16.14)

Notice that this equation is valid over the whole domain −∞ < k < ∞.
Treating the magnetic shear as a small quantity, the dispersion relation,
i.e. the growth rate, is obtained by performing a double two scale anal-
ysis for k . 1 and k � 1.

16.2.2 The growth rate

For the sake of simplicity and facilitate the algebra, we drop the Mercier
contribution, that is we set Û = 0. Let us deploy the following ordering:

Compare this with (12.33)

s ∼ δ2, α ∼ δ, V̄ ∼ m2γ2H ∼ ε
2
η ∼ δ

4,

where εη is some small parameter. Typically, resistive instabilities grow
on much slower timescales compared to those of ideal modes, and this
is reflected by our choice of the ordering of the growth rate.

When k ∼ 1, exploiting the smallness of V̄ , we may drop the resis-
tive terms and inertial contributions so that Eq. (16.14) is reduced to
(12.30).8 Letting ξ∗ = X /[1 + k2]1/2 and expanding X as in (12.34), we8 This corresponds to considering the

ideal region far from rs in real space. follow the exact same techniques discussed in §12.3 to derive an equa-
tion for the non-oscillating (averaged) part of the eigenfunction ξ∗0 =

X0/[1 + k2]1/2. This yields (cf. (12.37))

d
dk

(
(1 + k2)

dξ∗0
dk

)
+

λ2

1 + k2
ξ∗0 = 0, λ2 =

α2

s
−

7
32
α4

s 2
.

The associated even and odd solutions are (Strauss (1981))

ξ∗even = cos[λ arctan(k )], ξ∗odd = sin[λ arctan(k )].
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One then finds that for large k these behave as

ξ∗even ∝ 1 +
∆̂e

|k |
,

ξ∗odd ∝

(
1 +

∆̂o

|k |

)
sgn(k ),

(16.15)

with the coe�cients ∆̂e and ∆̂o defined by

∆̂e = λ tan( π2λ),

∆̂o = −λ cot( π2λ).

We now consider the large k limit where resistive corrections become
important.9 After setting k = k̂/εη with k̂ ∼ 1, we define the ”periodic” 9 That is we are analysing the resistive

layer region in real space.variable χ = k/s appearing in the arguments of the sine and cosine
functions in equation (16.14) and write

d

dk̂

(
k̂2 + ε2η

1 + V̄ k̂2/ε2η

dξ∗

dk̂

)
−

[
α2

2s 2
+m2γ2H

k̂2

ε2η
−
α

s 2

(
cos χ +

k̂
εη

sin χ

) ]
ξ∗

−
α

s

V̄ k̂2/ε2η

1 + V̄ k̂2/ε2η

(
k̂ cos χ − εη sin χ

) dξ∗
dk̂
= 0.

(16.16)

We treat k̂ and χ as independent variables, thus allowing us to transform
the di�erential operator d/dk̂ into

d

dk̂
=

∂

∂k̂
+

1
εηs

∂

∂χ
.

In analogy with (12.34) we expand ξ∗ as

ξ∗ = ξ∗0(k ) + (δ
3)ξ∗1(k, χ) + (δ

5)ξ∗2(k, χ) + . . . ,

where the order of ξ∗i (i = 0, 1, . . .) is given by the δ-coe�cients in
brackets. As in the analysis of ideal ballooning modes, we require that∫ 2π
0 ξ∗i dχ = 0 for i ≥ 1. Hence, to the first two leading orders, (16.16)
yields

1

ε2ηs 2
k̂2

1 + V̄ k̂2/ε2η

∂2ξ∗1
∂χ2

= −
α

s 2
k̂
εη
ξ∗0 sin χ,

1

ε2ηs 2
k̂2

1 + V̄ k̂2/ε2η

∂2ξ∗2
∂χ2

= −
α

s 2
ξ∗0 cos χ.

(16.17)

The integration of these two equations is trivial showing that ξ∗1 ∼ sin χ
and ξ∗2 ∼ cos χ. Now, taking into account the non-vanishing contribu-
tions, we find that at leading order the average in χ of (16.16) yields

∂

∂k̂

(
k̂2

1 + V̄ k̂2/ε2η

∂ξ∗0

∂k̂

)
−

[
α2

2s 2
+m2γ2H

k̂2

ε2η

]
ξ∗0 +

α

s 2
k̂
εη
〈ξ∗1 sin χ〉χ

−
α

s 2
V̄ k̂3/ε3η

1 + V̄ k̂2/ε2η
〈cos χ

∂ξ∗1
∂χ
〉χ = 0,
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having introduced the notation 〈·〉χ = 1
2π

∫ 2π
0 (·)dχ. By means of (16.17)

we finally obtain the large-k averaged resistive ballooning equation

∂

∂k̂

(
k̂2

1 + V̄ k̂2/ε2η

∂ξ∗0

∂k̂

)
−m2γ2H

k̂2

ε2η
ξ∗0 = 0. (16.18)

If one chooses εη = S −1/3, this equation is formally equivalent to (13.35).
Correspondingly, the asymptotic small k̂ behaviour of the (regular) solu-
tion which is not diverging at infinity is determined by equation (13.41)
where the replacement k → k̂ has to be performed.

Therefore, matching the regular solution of (16.18) with (16.15) yields
the dispersion relation

∆̂e +
ĉo
ĉe
∆̂o

1 + ĉo
ĉe

=
∆R

εη
=
∆̂e −

ĉo
ĉe
∆̂o

1 − ĉo
ĉe

, (16.19)

where ∆R is given by (13.42) with Ve , Q and Mt defined in (13.36) and
(13.38). Here ĉe and ĉo are constants multiplying ξ∗even and ξ

∗
odd, respec-

tively, given by (16.15).
The expression above has the same structure of (11.31), and is solved

by setting either ĉo/ĉe = 0 or ĉo/ĉe = ∞. Therefore, in analogy to earlier
calculations for ideal localised instabilities, we immediately find that
resistive ballooning modes have de�nite parity: even perturbations
have ĉo/ĉe = 0, whereas odd ones are obtained by setting ĉo/ĉe = ∞. It
follows that the growth rate for odd and even resistive ballooning modes
is given by

M 5/6
t

(1 −Mt )

Γ

(
Mt+3
4

)
Γ

(
Mt+5
4

) = 2m
c0S 1/3

∆̂o, (odd), (16.20)

=
2m
c0S 1/3

∆̂e, (even), (16.21)

where c0 = (ns/
√
1 + 2q 2s )1/3. The behaviour of ∆̂e and ∆̂o as a function

of α2/s for positive shear is shown in figure 16.2. The ideal limit is
obtained by letting Mt → ∞ (care has to be taken when dealing with
the odd solution and when λ becomes imaginary for the even one, see
Strauss (1981)).

0 1 2 3 4 5 6
α2/s

-10

-5
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10

∆̂e

∆̂o

Figure 16.2: Parameters ∆̂e and ∆̂o ver-
sus α2/s . The ideal ballooning marginal
boundaries are denoted by the vertical
lines (cf. (12.43)).

Now, analysing the linear stability of resistive odd modes, we see that
the right-hand-side of (16.20) is small if S is large, so that the dispersion
relation is analogous to the one which we obtained earlier for tearing
perturbations. Hence odd parity resistive ballooning modes are unstable
when ∆̂o > 0, that is within the instability region of even ideal perturba-
tions. We conclude that these modes are of minor relevance due to the
fact that their instability window coincides with that of ideal balloon-
ings, and because they grow on tearing-like timescales (γ/ωA ∼ S −3/5)
which are much slower than those of ideal perturbations.
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Resistive balloonings of even parity, instead, become unstable for

0 < α2/s <
16
7

(
1 −

√
2
4

)
,

and
16
7

(
1 +

√
2
4

)
< α2/s <

32
7

meaning that they are unstable throughout the whole first stability re-
gion as well as in a small portion of the second stability region of ideal
balloonings. The quantity ∆̂e becomes very large when λ ≈ 1, i.e. in
proximity of the marginal boundary of ideal ballooning modes (these
are identified by the relation λ = 1). It follows that the growth rate of
the associated resistive instability is given by Mt ≈ 1: this is basically
equivalent to the dispersion relation of the m = 1 resistive internal kink
analysed earlier, yielding the fast scaling γ/ωA ∼ S −1/3. Su�ciently far
from the ideal marginal boundaries, i.e. in the regions of stability of ideal
ballooning modes, ∆̂e is of the order of unity and the structure of (16.21)
becomes essentially equivalent to (14.20), yielding slow-growing pertur-
bations with growth rates exhibiting a dependence upon the Lundquist
number of the type S −3/5, that is tearing-like.

0 0.5 1
α

0

0.5

s

Figure 16.3: The area shaded in dark
grey is unstable against ideal and odd
resistive balloonings, while even resistive
ballooning modes are found to be unsta-
ble in the region coloured in light grey.

The instability regions of resistive ballooning modes in the α−s plane
are shown in Figure 16.3. We briefly point out that if Mercier correc-
tions are taken into account, resistive stability can be greatly improved
(Strauss (1981) and Correa-Restrepo (1982)), and the corresponding
marginal boundaries are schematically depicted in Fig. 16.4. This sta-
bilisation mechanism is associated with curvature e�ects in the resistive
layer region, and is analogous to the one yielding the modified tearing
stability criterion discussed in the next chapter.

B
A

Figure 16.4: Instability regions for
ideal (region A) and resistive ballooning
modes (region B) of even parity when
Mercier corrections are taken into ac-
count. The resistive marginal bound-
aries eventually coincide with the ideal
ones if the resistivity is small enough.

16.3 Resistive interchange modes

As for ballooning instabilities, the analysis of resistive interchange modes
is based on equation (16.12). Let rs be the resonant point of the har-
monic with poloidal and toroidal mode numbers m and n, respectively,
such that q (rs ) = m/n and assume that the magnetic shear is small. Dif-
ferently from resistive balloonings, the analysis of interchange modes
does not encompass more resonances other than rs . We assume the mth
harmonic is well localised about this point and its amplitude is taken
to be much larger than the one of the sidebands with poloidal mode
number m ± 1.

This argument is corroborated by the fact that, if the radial extension
of the mode m is proportional to 1/m (cf. (11.1)) and the separation
between rs and the resonances of the first neighbouring sidebands is 1

sm
(cf. (12.4)), the smallness of the magnetic shear prevents the resonances
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of the satellite harmonics to occur in the vicinity of the region where the
mode m � 1 is localised.

Hence, evaluating the m ± 1 Fourier component of (13.18) in prox-
imity of rs yields

ξrm±1 = ∓
i

µs rsB0

(
1 −

m2η0

r 2s γ

d 2

dz 2

)
(
√
g B̃ r )m±1.

When this expression is plugged into (16.12) we obtain

m2γ2H
d 2ξrm
dz 2

= −
i z
A

( d 2
dz 2
(
√
g B̃ r )m − (

√
g B̃ r )m

)
+

(
Û +

α2

2s 2

)
ξrm

+ i
α

2sA

∑
±

[
d
dz
(
√
g B̃ r )m±1 ± (

√
g B̃ r )m±1

]
. (16.22)

We now assume that ordering (7.37) holds. Thus exploiting the small-
ness of the toroidal component of the perturbed magnetic field and using
(7.25), we find that the m±1 projections of (13.10) can be approximated
to leading orders as (cf. (11.13))1010 This is analogous to the derivation

presented in section 7.5.2. (
d 2(
√
g B̃ r )m
dz 2

− (
√
g B̃ r )m

)
= i (µrsB0)

α

2

(
dξrm
dz
∓ ξrm

)
, (16.23)

having dropped, as usual, contributions due to ∆pm .
In analogy to what we did for ideal Mercier modes, we integrate the

expression above once and set to zero the constants of integration to
guarantee localisation of ξrm . Upon combining (16.22) and the solution
of (16.23), we transform to k -space (cf. (13.30)) the resulting expression
to obtain the following eigenmode equation for resistive interchange
modes

d
dk

(
1 + k2

1 + V̄ k2
dξ∗

dk

)
−

(
Û +m2γ2H k

2
)
ξ∗ = 0. (16.24)

Equation (16.24) is studied by performing a two scale analysis in a
similar fashion to what has been discussed in the preceding section,
where here retaining the Mercier contribution proves to be essential.
We point out that for V̄ → 0, Eq. (16.24) is equivalent to the Fourier
transform of (11.14) where the small inertial contributions which are
not multiplied by k2 are dropped (these have been indeed proved to be
unimportant for determining ideal stability).

16.3.1 k . 1 eigenfunction

Let us first consider the k . 1 region, for which inertial and resistive
e�ects can be ignored. In such a case, equation (16.24) reduces to

d
dk

(
(1 + k2)

dξ∗

dk

)
− Û ξ∗ = 0. (16.25)

Noticing that this has exactly the same structure of (11.24), we introduce
the quantity ν as defined in (11.20) which is

ν =

√
1
4
+ Û .
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The system is supposed to be stable against Mercier modes so that we
take 0 < ν < 1. We refer to the solution of (16.25) as the ideal solu-
tion and its asymptotic behaviour for large k is immediately found from
(11.30) giving

ξ∗ ∝ |k |−
1
2−ν

(
1 +

ce∆e + co∆o
ce + co

|k |2ν
)
, k > 0,

∝ |k |−
1
2−ν

(
1 +

ce∆e − co∆o
ce − co

|k |2ν
)
, k < 0,

(16.26)

where ∆e and ∆o are defined in (11.29) and ce and co are some constants
multiplying the even and odd solutions respectively. We point out that
when ν > 1, the asymptotic behaviour of the solution of (16.25) is not
given by Eq. (16.26) anymore leading to important consequences which
will be discussed later.11 11 Let pi (i = 0, 1, . . .) some constants.

By means of (11.28), for ν > 1 not an
integer such that ν , 3/2 the behaviour
of ξ∗ in the large k limit for both the even
and odd solution is

ξ∗ ∝ |k |ν−1/2
(
1 + p0/k

2
)
, (*)

while if ν = 3/2 we have

ξ∗even ∝ k +
p1
k2
, ξ∗odd ∝ k .

Let now ν be a positive integer and in-
stead of (11.28) use the transformation
formula

F (a, b ; c ; z ) = (1 − z )−aF (a, c − b ; c ; z
z−1 ),

with |arg(1 − z )| < π. Also in this
case even and odd solutions behave sim-
ilarly: when ν = 2, 3, . . . we find the same
asymptotics as in (*), whereas for ν = 1
one has

ξ∗ ∝ |k |1/2
(
1 +

p2
k2
(1 + p3 ln |k |)

)
.

To obtain the dispersion relation it remains to analyse the solution in
the large k region: this requires few mathematical manipulations which
are detailed in the next subsection.

16.3.2 k � 1 eigenfunction

We first write Û = τ(τ + 1) choosing

τ = −
1
2
+ ν. (16.27)

Since 0 < ν < 1, τ varies between −1/2 and 1/2. We assume that k is
large and introduce the variable k̂ = k/S 1/3 such that k̂ is taken to be of
the order of unity. Contrary to the k ∼ 1 case, we retain resistive and
inertial e�ects, so that (16.24) can be approximated as

d

dk̂

(
k̂2

1 +Ve k̂2
dξ∗

dk̂

)
−

(
τ(τ + 1) +Qk̂2

)
ξ∗ = 0, (16.28)

whereVe andQ are defined in (13.36). Repeating the procedure outlined
in §13.4, we define the variable ζ = MtVe k̂2 withMt given by (13.38) and
write ξ∗ = ζ τ/2e−ζ/2Y (ζ). After some algebra, equation (16.28) becomes
(cf. (13.37))

ζ
d 2Y
dζ2
+

(
1
2
+ τ − ζ +

1
1 + ζ/Mt

)
dY
dζ
−

(
h +

1 + τ/Mt

2(1 + ζ/Mt )

)
Y = 0, (16.29)

having defined

h =
(Mt + τ)(Mt + τ + 1)

4Mt
.

Following Correa-Restrepo (1982), we write

Y =
dU

dζ
−

2h
Mt + τ

U ,
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and find that the function U obeys Kummer’s equation (see the box
at the end of the chapter)

ζ
d 2U
dζ2

+

(
1
2
+ τ − ζ

)
dU

dζ
− hU = 0, (16.30)

whose solutions are written in terms of the con�uent hypergeometric
functions M and U (we follow the notation of Abramowitz and Stegun
(1964)). Thus, the solution of (16.28) for k̂ > 0 which does not diverge
at infinity is

ξ∗ = ζ τ/2e−ζ/2
[
U

(
h + 1, τ +

3
2
, ζ

)
+

2
Mt + τ

U
(
h, τ +

1
2
, ζ

)]
. (16.31)

Even and odd solutions are constructed in the domain −∞ < k < ∞ by
setting ξ∗(−k ) = ξ∗(k ) and ξ∗(−k ) = −ξ∗(k ) (see §13.4).

Eventually, the asymptotic behaviour of ξ∗ when k̂ approaches zero
is readily obtained:

ξ∗ ∝ |k̂ |τ
[
1 + (MtVe )−1/2−τ

Γ

(
1
2 + τ

)
Γ

(
− 1
2 − τ

) (
Mt + τ

Mt − 1 − τ

)
×

×

Γ

(
1
4 (Mt + 3 − 2τ + τ(τ + 1)/Mt )

)
Γ

(
1
4 (Mt + 5 + 2τ + τ(τ + 1)/Mt )

) |k̂ |−1−2τ] .
The dispersion relation is finally obtained by matching this expression
with (16.26). Similar to ideal Mercier and resistive ballooning modes,
resistive interchange instabilities exhibit definite parity, either even or
odd, and the growth rate conforms to

(MtVe )−
1
2−τ

(
Mt + τ

Mt − 1 − τ

) Γ (
1
4 (Mt + 3 − 2τ + τ(τ + 1)/Mt )

)
Γ

(
1
4 (Mt + 5 + 2τ + τ(τ + 1)/Mt )

)
=
Γ2(1 − ν)Γ2( t4 +

ν
2 )

Γ2(1 + ν)Γ2( t4 −
ν
2 )
S −2ν/3, (16.32)

where t = 1 for even modes and t = 3 for the odd ones.12
12 The dispersion relation for ideal
Mercier modes is easily recovered by tak-
ing Mt →∞.

Before embarking on the analysis of the dispersion relation, we re-
mark that when τ ≥ 1/2, that is ν ≥ 1 the small k expansion of (16.31)
yields

ξ∗ ∝ |k |−3/2
(
1 + a0(1 + a1 ln |k |)k2

)
, (τ = 1/2),

∝ |k |−1/2−ν
(
1 + a2k2

)
, (τ > 1/2),

with ai (i = 0, 1, 2) some constants. By comparing with the asymp-
totic behaviour of the ideal solution described in the sidenote 11 in this
chapter, one comes to the conclusion that, generally, it is not possible to
match the solutions of (16.25) and (16.28). This means that no unstable
modes can be constructed for τ ≥ 1/2 (Correa-Restrepo (1982)).
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16.3.3 Growth rate and stability boundary

Assume that τ is su�ciently far away from either −1/2 or 1/2. In the
limit of S large and ν not too small, the right-hand-side of (16.32) is a
very small number. Therefore, this relation is satisfied when Mt fulfils
the following condition13

13 There are actually two solubility con-
ditions, that is

Mt + τ = 0,

Mt + 1 + 2τ + τ(τ + 1)/Mt = −4ℓ ,

with ℓ = 1, 2, . . .. For the second one we
used the fact that 5 + 4ℓ = 4(ℓ + 1) + 1.
These can be combined to yield (16.33).

Mt + 1 + 2τ + τ(τ + 1)/Mt = −4ℓ , ℓ = 0, 1, 2, . . . . (16.33)

The most unstable case is associated with the ℓ = 0 level and gives
Mt = −τ which, by means of (14.19), yields the growth rate

γ

ωA
=

©­­«
−snτ√
1 + 2q 2s

ª®®¬
2/3

S −1/3, (16.34)

where we recall that qs = m/n. One sees that a growing instability
requires τ < 0. We can be slightly more precise on the estimation of
the growth rate. Assume −1/2 < τ < 0 with τ neither too small nor too
close to −1/2, and formally write (16.32) as f (Mt ) = S −2ν/3/∆RI (t ) � 1
where

∆RI (t ) =
Γ2(1 + ν)Γ2( t4 −

ν
2 )

Γ2(1 − ν)Γ2( t4 +
ν
2 )
. (16.35)

By performing a series expansion of f (Mt ) around Mt = −τ we obtain

Mt = −τ −
2νm2ν

Γ(1 − ν)
(−τ)ν/3

∆RI (t )

©­­«
√
1 + 2q 2s

nsS

ª®®¬
2ν/3

.

Figure 16.5: Values of the inverse of
∆RI (t ) for t = 1 (even modes) and t = 3
(odd modes) as function of the param-
eter 0 < ν < 1/2 which corresponds to
−1/2 < τ < 0.

Since ∆RI (1) > ∆RI (3) as shown in figure 16.5, we find that even
modes grow faster than the odd ones, although their growth rates di�er
by a rather small amount.

If τ = 0, the right-hand-side of (16.32) is still a small number, being
actually zero for even modes due to the divergence of the Gamma func-
tion at ν = 1/2. Therefore, Eq. (16.32) can be reduced to a form which
is equivalent to the dispersion relation of tearing perturbations, that is
(cf. (14.20))

(
γ

ωA

)5/4
= −

m
∆RI

Γ

(
5
4

)
Γ

(
3
4

)√ ns

(1 + 2q 2s )1/2
S −3/4. (16.36)

Because ∆RI > 0 for odd modes, we conclude that no instability develops
when τ = 0. We thus infer that resistive interchange modes, either even
or odd, only occur when τ < 0.

A more general case in which the magnetic shear is allowed to be of
the order of unity will be briefly discussed in the next chapter.
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On the solution of equation (16.29)

We first note that if L̂ is a di�erential operator in the variable
ζ and the function U is such that L̂U = 0, then the following
relation holds

d
dζ
L̂U + f (ζ)L̂U = 0, (16.37)

with f (ζ) a generic function. Upon writing L̂ as

L̂ = ζ
d 2

dζ2
+ (A − ζ)

d
dζ
− B, (16.38)

with A and B some constants, equation (16.37) becomes

ζ
d 3U
dζ3

+
[
A + 1 − ζ + ζ f (ζ)

] d 2U
dζ2

−
[
B + 1 + f (ζ)(ζ − A)

] dU

dζ
− B f (ζ)U = 0. (16.39)

Now, letting Y = eaζ ddζ
(
e−aζU

)
= dU

dζ − aU where a is some
number, equation (16.29) then reads

ζ
d 3U
dζ3

+
[1
2
+ τ − (a + 1)ζ +

1
1 + ζ/Mt

] d 2U
dζ2

−

[
a
(1
2
+ τ − ζ +

1
1 + ζ/Mt

)
+ h +

1 + τ/Mt

2(1 + ζ/Mt )

] dU

dζ

+ a
[
h +

1 + τ/Mt

2(1 + ζ/Mt )

]
U = 0. (16.40)

A quick comparison between (16.39) and (16.40) shows that

A =
1
2
+ τ, B = h, a =

2h
Mt + τ

,

f (ζ) = −
1
Mt

(
Mt + τ + 1

2
+

1
1 + ζ/Mt

)
.

Equation (16.30) then follows from (16.38).
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17
Curvature e�ects in the resistive layer

So far, toroidicity e�ects, apart from those yielding inertia enhancement,
have been taken into account, in a rather approximate manner and for
the very specific case of small magnetic shear, only for the analysis of
resistive ballooning and resistive interchange modes. In contrast, the
non-ideal stability of tearing and m = 1 kink modes has been basically
carried out in the cylindrical limit. However, toroidal corrections, also
known as curvature e�ects, play an important role in the determination
of resistive stability, thence we need to devise an alternative procedure
to properly include them independently of the strength of the magnetic
shear.

In deriving the resistive layer equations presented in chapter 13 the
magnitude of the radial gradients of the perturbations was assumed to
be of the order of the inverse aspect ratio. Within this approximation,
by retaining the leading order contributions only, most of the e�ects
induced by toroidicity have been missed.

The alternative strategy, which guarantees that curvature e�ects are
properly included, is to introduce an additional smallness parameter δ
much smaller than ε, the inverse aspect ratio, and let the radial deriva-
tives of perturbed quantities to be as large as 1/δ. Assuming this to hold,
then i) the resistive MHD equations are expanded in δ, and ii) a further
expansion in ε to second order is performed (when needed) yielding,
formally, expressions of the form(

f + ε2g + . . .
)
+ o(δ) = 0.

If δ is small enough, all the relevant physics is contained in the dominant
term in δ, and toroidal corrections enter the equations to order ε2.

Having outlined the skeleton of the procedure we want to adopt, this
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chapter is organised as follows: we first introduce the resistive layer or-
dering for the perturbed pressure, fluid displacement and magnetic field.
Subsequently, a set of simplified expressions for some relevant physical
quantities are obtained. We then proceed to write the induction and vor-
ticity equations in a form similar to (13.27) and (13.28) but augmented
by toroidal e�ects. These equations are equivalent to the ones known in
the literature as the Glasser-Greene-Johnson (or GGJ in short) equa-
tions,Amore general derivation of the resistive

layer equations is given in appendix F
but computed in the limit of large aspect ratio for a circular toka-

mak. Following the same procedure presented in §13.4, we merge these
equations into a single one by transforming them in Fourier space. Mod-
ifications to stability due to curvature e�ects will be finally discussed for
some of the resistive perturbations analysed in earlier chapters.

17.1 Toroidal layer orderings

We consider a low-β plasma such that β ∼ ε2. The equilibrium is as-
sumed, for the sake of simplicity, to be up-down symmetric as described
in chapter 5. Perturbations depend on time and on the toroidal angle as
exp(γt − inφ) with n denoting, as usual, the toroidal mode number. Let
rs be radial position where q (rs ) = m/n ≡ qs with m and n both positive.

As discussed in chapter 13, we allow resistive e�ects to become im-
portant only in a narrow region close to the resonance rs where perturba-
tions are expected to develop large radial gradients. Upon introducing
the parameter δ, and letting resistive perturbations to grow on much
slower timescales than those of ideal modes, we deploy the following
ordering (cf. (13.17))ω−1A = τA = R0

√
ρ/B0.

γ/ωA ∼ δ,
r − rs
rs
= x ∼

δ

m
,

r
d
dr
∼
m
δ
,

η0
γ

d 2

dr 2
∼ 1, δ � ε2,

(17.1)

where the ordering of the radial derivatives is assumed to hold when
these are acting on perturbed quantities.The estimation of the thickness of the

inertial-resistive layer given by (13.29)
suggests that, for s,m, n ∼ 1 and typi-
cal tokamak values of the Ludquist num-
ber, the smallness parameter δ has to be
much smaller than ε.

As usual, η0 denotes the equi-
librium resistivity. From this, in a neighbourhood of rs the parallel wave
vector can be approximated as k | | = mµ − n ≈ −nsx ∼ δ where s is the
magnetic shear at the position of the resonance. Besides, we take the
numbers m and n to be as large as 1/ε at most. Finally, in the remain-
der of this chapter equilibrium quantities are implicitly supposed to be
evaluated at the resonance rs .

We now assume that in the thin layer around the resonance the radial
component of the fluid disturbance is dominated by the harmonic with
poloidal mode number m so that we take

ξrm±ℓ ∼ δε
ℓ ξrm . (17.2)

The reason for the multiplicative factor proportional to ε can be intu-
itively motivated by the fact that the poloidal spectrum is expected to
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be centred about the mth harmonic, with the magnitude of higher or-
der modes coupled through toroidicity gradually decreasing with some
powers of the inverse aspect ratio.

Since the divergence of the magnetic field is zero, we conveniently
order

(
√
g B̃ϑ)m ∼ (

√
g B̃φ)m ∼

1
r δ
(
√
g B̃ r )m ∼ B0ξ

r
m,

(
√
g B̃ϑ)m±ℓ ∼ (

√
g B̃φ)m±ℓ ∼

1
r δ
(
√
g B̃ r )m±ℓ ∼ ε

ℓB0ξ
r
m,

(17.3)

whereas the magnitudes of the poloidal and toroidal projections of the
fluid perturbation are

ξϑm ∼ ξ
φ
m ∼

1
r δ
ξrm,

ξϑm±ℓ ∼ ξ
φ

m±ℓ ∼
εℓ

r δ
ξrm .

(17.4)

The consistency of these orderings will later be evident.
The left-hand-side of the parallel projection of the perturbed momen-

tum equation, that is Eq. (13.22), is of order δB2
0ξ
r
m at most, hence by

taking the m and m ±ℓ Fourier components of this equation we have

p̃m ∼ B2
0ξ
r
m, p̃m±ℓ ∼ δB

2
0ξ
r
m/r . (17.5)

In particular, by balancing each of the terms appearing in the mth pro-
jection of (13.22) such that they have comparable magnitude, we can
further refine the ordering of the compressible part of the pressure and
the toroidal projection of the fluid displacement as

∆pm ∼ ε2B2
0ξ
r
m/r, ξ

φ
m ∼

ε2

r δ
ξrm . (17.6)

The latter will be proven to hold a posteriori.
Now, for many calculations, it is more convenient to express a generic

perturbed quantity f̃ as a sum of a resonant and non-resonant part,
that is Note that for a generic quantity A one

has

Am = 〈e−imϑ+inφA〉,

ANR = e
−imϑ+inφA − Am .

f̃ = e imϑ−inφ
(
f̃m(r ) + f̃NR(r, ϑ)

)
,

with the subscript NR standing for non-resonant. Explicitly, one has

f̃NR(r, ϑ) =
∑
ℓ,0

f̃m+ℓ (r )e
iℓ ϑ . (17.7)

This sum is assumed to be convergent, and because of this we may order

f̃NR ∼ the largest of f̃m+ℓ with ℓ , 0. (17.8)

It is evident that, by definition, 〈 f̃NR〉 = 0 where angular brackets denote
the poloidal average as defined by (5.18). With this decomposition of
the perturbation, the action of the parallel gradient reads

e−imϑ+inφ
√
g

f ′0
B0 · ∇ f̃ = i (mµ − n)

(
f̃m + f̃NR

)
+ µ

∂ f̃NR
∂ϑ

. (17.9)
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The programme of the next sections is to apply the orderings above
to work out the expressions of some physical quantities to be employed
in the derivation of the resistive layer dynamical equations, specifically
for the radial component of the fluid displacement and the magnetic
perturbation of the resonant Fourier harmonic.

17.2 Fields, displacements and pressure

To achieve the aforementioned objective, knowledge is needed about
some auxiliary quantities, such as the form of the fluctuation of the
toroidal field or the non-resonant contribution to the perturbed pressure.
This section is therefore devoted to work out these expressions. To keep
the algebra su�ciently clear, we carry out the analysis for the toroidal
field, fluid displacements and perturbed pressure separately.

17.2.1 Perturbed magnetic �eld

Exploiting (17.5), we see that the leading contribution (in δ) to the m±ℓ
Fourier projection of equation (13.10) readsThanks to the up-down symmetry, we

have (1/Bφ0 )ℓ = (1/B
φ
0 )−ℓ . Analogous ar-

guments apply to other quantities. µ(
√
g J̃ φ)m±ℓ + (1/B

φ
0 )ℓ p̃

′
m = 0, (17.10)

with the perturbed toroidal current written as (cf. (13.11))

(
√
g J̃ φ)m±ℓ = 〈N 〉(

√
g B̃ϑ)′m±ℓ +

∑
m′,0

Nm′(
√
g B̃ϑ)′m±ℓ−m′, (17.11)

having employed the notation of §5.3 to denote the metric coe�cients.
Only the m ± 1 components are needed,1 so that combining (17.10) and1 Contributions coming from other har-

monics are ε times smaller and so they
are dropped.

(17.11) and keeping the dominant terms in ε produces

〈N 〉(
√
g B̃ϑ)′m±1 = −[N1(

√
g B̃ϑ)m + q (1/B

φ
0 )1 p̃m]

′. (17.12)

By integrating this equation, a constant would appear which, to conform
to (17.3), is ordered as εB0ξ

r
m . We set this constant to zero for the mo-

ment (we will elaborate later on the consequences of having this quantity
not vanishing) and write

Y ≡ (
√
g B̃ϑ)m±1 = −

N1

〈N 〉
(
√
g B̃ϑ)m − q

(1/Bφ
0 )1

〈N 〉
p̃m ∼ εB0ξ

r
m . (17.13)

After selecting the mth Fourier component of (13.9) and using (17.5)
to drop contributions from the satellite harmonics to the perturbed pres-
sure, we obtain

0 = −im〈
1

Bφ
0

〉p̃m − imG (
√
g B̃φ)m − in〈N 〉(

√
g B̃ϑ)m

− in
∑
m′,0

Nm′(
√
g B̃ϑ)m−m′,
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which is exact at leading order in δ. Thus, using (17.13) and retaining
the dominant corrections in ε yields

(
√
g B̃φ)m ≈ −

r p̃m
B0
+ µ

r 2

R2
0

(
√
g B̃ r )′m
im

, (17.14)

which easily shows that (
√
g B̃φ)m ∼ ε

2B0ξ
r
m .

Now, by means of the orderings discussed in §17.1, the m±ℓ Fourier
projection of (13.9) is written as

0 =m
( 1

Bφ
0

)
ℓ
p̃m + (m ±ℓ )G (

√
g B̃φ)m±ℓ

+ n〈N 〉(
√
g B̃ϑ)m±ℓ + n

∑
m′,0

Nm′(
√
g B̃ϑ)m±ℓ−m′, (17.15)

where use of (17.5) has been made again. Plugging (17.10) and (17.11)
into this expression dictates that the perturbation of the toroidal field
associated with the non-resonating harmonics scales as ε3B0ξ

r
m at most,

therefore we can set When m±ℓ = 0 with m > 0 we need to be
more careful. One first notices that, by
means of (17.5), equation (17.15) gives

0 = m
( 1

Bφ0

)
−m

p̃ ′m + n(
√
g J̃ φ)0. (♣)

We now take the covariant radial projec-
tion of (7.1) which, upon linearisation,
yields to leading order in δ

p̃ ′

Bφ0
= −

∂G
√
g B̃φ

∂r
− µ
√
g J̃ φ .

By averaging in ϑ and using (♣)
in conjunction with (17.5), we obtain
(
√
g B̃φ)′0 = 0 which conforms to (17.17).

This result is rather general and applies
to any geometry, i.e. not necessarily up-
down symmetric.

(
√
g B̃φ)m±ℓ = 0. (17.16)

Thus, under the assumption that (17.8) holds, we conveniently write
(
√
g B̃φ)NR = 0. We point out that if the constant of integration in (17.13)

is allowed we end up with the following modified expressions of the
perturbed toroidal field

(
√
g B̃φ)m±ℓ = const,

(
√
g B̃φ)NR = D(ϑ),

(17.17)

where D is a function of the poloidal angle.

17.2.2 Poloidal and toroidal displacements

Let us assume that (17.8) holds, i.e. the magnitude of the non-resonant
part of the perturbation is the same as the one of the non-resonant
Fourier harmonic of lowest order (in ε). Thus, we employ the order-
ings (17.2)-(17.5) and (17.8) to write

p̃NR ∼ δB2
0ξ
r
m/r, ξrNR ∼ δεξ

r
m,

ξϑNR ∼ ξ
φ
NR ∼

ε

r δ
ξrm .

(17.18)

Owing to the smallness of the toroidal perturbation of the magnetic field
(see (17.14) and (17.16)), we take them andm±ℓ projections of equation
(13.19), which for our purposes proves to be accurate enough, yielding
to leading order (in δ)

ξϑm = µξ
φ
m −

1
im f ′0

d (f ′0 ξ
r
m)

dr
+ o(ε2ξrm/r ),

ξϑm±ℓ − µξ
φ

m±ℓ = o(ε
ℓ ξrm/r ).

(17.19)
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Exploiting (17.7), we readily find

ξϑNR = µξ
φ
NR + o(εξ

r
m/r ), (17.20)

where the small terms in this equation are supposed to have zero poloidal
average.

Now, the non-resonant contribution to the divergence of the fluid
displacement reads

(∇ · ξ)NR =
∂ξrNR
∂r
+ imξϑNR − inξ

φ
NR +

(
1
√
g

∂
√
g

∂r
− 〈

1
√
g

∂
√
g

∂r
〉

)
ξrm

+
1
√
g

∂
√
g

∂r
ξrNR − 〈

1
√
g

∂
√
g

∂r
ξrNR〉 +

∂ξϑNR
∂ϑ

+
∂
√
g

∂ϑ

(
ξϑm + ξ

ϑ
NR

)
√
g

− 〈
∂
√
g

∂ϑ

ξϑNR
√
g
〉. (17.21)

From (17.18) and the definition of the compressible part of the perturbed
pressure, we immediately see that (∇ · ξ)NR ∼ δ so that (17.20) and
(17.21) yield at leading order in δ:2

2 Recall that mµ −m ∼ δ.

o(r ξrm) =
∂

∂ϑ

(
√
g ξϑNR

)
+
∂
√
g

∂ϑ
ξϑm − 〈

∂
√
g

∂ϑ

ξϑNR
√
g
〉
√
g .

Averaging in ϑ shows that the last term in angular brackets on the right-
hand-side is of higher order (in δ) compared with the other contribu-
tions, and a further integration in ϑ finally yields

µξ
φ
NR = ξ

ϑ
NR =

(
1/
√
g

〈1/
√
g 〉
− 1

)
ξϑm . (17.22)

We now turn our attention to the expression of the toroidal displace-
ment of the dominant mode. Let us first note that to the leading orders
in the parameter δ we have

√
g

f ′0
B0 · ξ = e imϑ−inφ

[
gφφ

(
ξ
φ
m + ξ

φ
NR

)
+ µgϑϑ

(
ξϑm + ξ

ϑ
NR

)]
= e imϑ−inφ

[
gφφ

(
ξ
φ
m − q ξ

ϑ
m

)
+
G + µ2N
〈1/
√
g 〉

q ξϑm

]
, (17.23)

where we used (17.22) for expressing the non-resonant part of the poloidal
and toroidal perturbed fluid displacement. The mth Fourier projection
of (13.22) can be written as

B2
0

R2
0 f
′
0

γ2

ω2
A

(√
gB0 · ξ

)
m = −i (mµ − n) p̃m −

p ′0
f ′0
(
√
g B̃ r )m .

Thus, by plugging (17.23) into this expression and using the first of
(17.19) we obtain

ξ
φ
m =

q
im

(
1 −
〈R2〉〈1/

√
g 〉

G + µ2〈N 〉

)
dξrm
dr

−
〈1/
√
g 〉

G + µ2〈N 〉

R2
0/B

2
0

γ2/ω2
A

[
i (mµ − n) p̃m +

p ′0
f ′0
(
√
g B̃ r )m

]
. (17.24)
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A fairly easy computation performed employing the metric coe�cients
of chapter 5 shows that the order of this quantity conforms to (17.6). 1 −

〈R2〉〈R−2〉

1 + µ2〈N 〉/G
≈
r 2

R2
0

(µ2 − 2).

17.2.3 Perturbed pressure

The non-resonant part of (13.22) upon derivation along the radial vari-
able reads

ρ0γ
2

f ′0
(
√
gB0 · ξ)

′
NR = −µ

∂p̃ ′NR
∂ϑ
−
p ′0
f ′0
(
√
g B̃ r )′NR. (17.25)

Since the magnetic field is divergence-free and thanks to (17.16), it is
immediate to verify that to leading orders in ε we have

(
√
g B̃ r )′NR = [(

√
g B̃ r )m+1e iϑ + (

√
g B̃ r )m−1e−iϑ]′

= −i [(m + 1)(
√
g B̃ϑ)m+1e iϑ + (m − 1)(

√
g B̃ϑ)m−1e−iϑ]

= −2i [m cos ϑ + i sin ϑ]Y.

Note that harmonics of mode number m ±ℓ with ℓ > 1 have been dis-
carded since they are expected to become progressively smaller as ℓ
increases.3 Notice also that an additional function of ϑ (only) would 3 This can be inferred from (17.10)-

(17.13), from which the expected depen-
dence on the inverse aspect ratio is of the
form given in (17.3).

appear if we allowed for the constants of integration in (17.13). For the
moment we set this constant to zero.

To the accuracy required in the following calculations, it is su�cient
to approximate ξϑm ≈ −

1
imdξ

r
m/dr so that by means of (17.23) a straight-

forward computation shows that the inertial contribution can be written
as

1
f ′0
(
√
gB0 · ξ)NR =

q
im

[(
R2 − 〈R2〉

)
− µ2

N − 〈N 〉
〈1/
√
g 〉

]
dξrm
dr

.

Thus, collating these results together finally yields an expression for the
non-resonant part of the perturbed pressure

∂p̃ ′NR
∂ϑ

= 2iq
p ′0
f ′0
[m cos ϑ + i sin ϑ]Y

−
B2
0

R2
0

γ2

ω2
A

q 2

im

(
R2 − 〈R2〉 − µ2

N − 〈N 〉
〈1/
√
g 〉

)
d 2ξrm
dr 2

. (17.26)

We shall now investigate the order of magnitude of ∆pm . For this,
we explicitly compute the resonant part of the divergence of ξ which is

(∇ · ξ)m =
dξrm
dr
+ 〈

1
√
g

∂
√
g

∂r
〉ξrm + imξ

ϑ
m − inξ

φ
m

+ 〈
∂
√
g

∂r

ξrNR
√
g
〉 + 〈

∂
√
g

∂ϑ

ξϑNR
√
g
〉. (17.27)

Exploiting the fact that the perturbation of the toroidal magnetic
field is small, we may write the non-resonant contribution to equation
(13.19) as

∂ξrNR
∂r
+ im

(
ξϑNR − µξ

φ
NR

)
+

∂

∂ϑ

(
ξϑNR − µξ

φ
NR

)
= 0.
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The right-hand-side is actually a function of order ε3ξrm/r which, for the
accuracy required in our analysis, can be safely set to zero. When this
expression in plugged in (17.21), to leading order in δ we get

0 = i (mµ − n)ξφNR + µ
∂ξ

φ
NR

∂ϑ
+

(
1
√
g

∂
√
g

∂r
− 〈

1
√
g

∂
√
g

∂r
〉

)
ξrm

+
∂
√
g

∂ϑ

(
ξϑm + ξ

ϑ
NR

)
√
g

− 〈
∂
√
g

∂ϑ

ξϑNR
√
g
〉. (17.28)

If we multiply by
√
g and average in ϑ the following expression is ob-

tained

0 = i (mµ − n)〈
√
g ξφNR〉 + 〈

∂
√
g

∂ϑ

(
ξϑNR − µξ

φ
NR

)
〉

+

(
〈
∂
√
g

∂r
〉 − 〈
√
g 〉〈

1
√
g

∂
√
g

∂r
〉

)
ξrm − 〈

√
g 〉〈

∂
√
g

∂ϑ

ξϑNR
√
g
〉. (17.29)

Upon using (17.20) and (17.22), we find that 〈
∂
√
g

∂ϑ

ξϑNR√
g 〉 is a quantity of

order ε2ξrm/r . Thus, by combining the first of (17.19) with (17.27) and
using (17.22) we easily obtain44 Recall that to leading order

√
g = rR0

(
1 +

2r
R0

cos ϑ + o(ε2)
)
,

f ′0 = rB0
(
1 + o(ε2)

)
.

(∇ · ξ)m =
(
〈
1
√
g

∂
√
g

∂r
〉 −

f ′′0
f ′0

)
ξrm + i (mµ − n)ξ

φ
m

+ 〈
∂
√
g

∂ϑ

ξϑNR
√
g
〉 + o(ε2ξrm/r ) ∼ ε

2ξrm/r,

implying that ∆pm ∼ ε4B2
0ξ
r
m/r at most. Because of this, we conveniently

set
∆pm = 0, (17.30)

meaning that, to the required accuracy, corrections due to ∆pm do not
enter into play.

We now have all the elements to write the induction and vorticity
equations in a form equivalent to that of Eqs. (13.27) and (13.28) but
augmented by curvature e�ects. Since the algebra is slightly involute,
the derivation of each of the two equations is carried out separately.

17.3 The resistive layer equations

17.3.1 Induction equation

Instead of (13.18), the leading contributions in the small parameter δ
to the induction equation obtained from (13.6) are easily worked out to
give

√
g B̃ r = f ′0

(
µ
∂

∂ϑ
− in

)
ξr −

η0G
γ

∂

∂r

[
∂

∂ϑ
(N
√
g B̃ϑ) − inN

√
g B̃φ

]
.

(17.31)
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The mth Fourier component of this equation reads

(
√
g B̃ r )m = i f ′0 (mµ − n)ξ

r
m

− i
ηG
γ

[
〈N 〉[m(

√
g B̃ϑ)m − n(

√
g B̃φ)m]

′ + 2mN1Y ′
]
. (17.32)

By means of (17.30) and exploiting the smallness of the toroidal
field, we immediately find that the perturbation of the poloidal magnetic
field associated with the neighbouring sidebands can be approximated
to leading orders in ε as5 5 Remember that (1/Bφ0 )1 ≈ r /R0, 〈N 〉 ≈

r /R0 and N1 ≈ r∆′/R0.

Y =
N1

〈N 〉

(
√
g B̃ r )′m
im

+ q
R0p ′0
B0

ξrm . (17.33)

Since Y appears under the sign of radial derivation, the constants that
would appear from the integration of (17.12) are annihilated. There-
fore, using this result in conjunction with Eqs. (17.14)-(17.16), equation
(17.32) can be recast as

[
1 −

η0G 〈N 〉
γ

(
1 −

2N 2
1

〈N 〉2

)
d 2

dr 2

]
(
√
g B̃ r )m

= i f ′0 (mµ − n)ξ
r
m − i p

′
0
η0G 〈N 〉

γ
H
dξrm
dr

,

where the quantity H is defined as

H = 2mq
N1

〈N 〉2
(1/Bφ

0 )1 ≈ 2mq
N1

〈N 〉2
(r /B0). (17.34)

Notice that contributions of order ε3 or smaller have been ignored.

Without loss of generality, thanks to the smallness of the term pro-
portional to the perturbed pressure, we can rescale the resistivity to write
the resistive-layer induction equation as

ηR = η0G 〈N 〉
(
1 −

2N 2
1

〈N 〉2

)
.

[
1 −

ηR
γ

d 2

dr 2

]
(
√
g B̃ r )m = i f ′0 (mµ − n)ξ

r
m − i p

′
0
ηR
γ

H
dξrm
dr

. (17.35)

Finally, using this equation along with (17.30) into Eq. (17.24) allows us
to find a simplified expression for the toroidal displacement of the main
mode, which, to leading order in ε, reads

ξ
φ
m =

q
im

(
1 −
〈R2〉〈1/

√
g 〉

G + µ2〈N 〉

) dξrm
dr
−
p ′0ω

2
A

rsB3
0γ

2

(
ηR
γ

)
(
√
g B̃ r )′′m . (17.36)

To close the system, we need to derive an equation for ξrm : this is the
aim of the next subsection.
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Motivating the ordering of ξrm±ℓ
To leading order in δ, them±1 Fourier projection of (17.31) yields(

1 −
η0G 〈N 〉

γ

d 2

dr 2

)
(
√
g B̃ r )m±1 = ±i µf ′0 ξ

r
m±1

− i
η0G
γ

d
dr

[
N1((m ± 1)(

√
g B̃ϑ)m − n(

√
g B̃φ)m)

]
.

We now exploit the fact that the toroidal field is ε2 times smaller
than the poloidal one, and take the radial derivative of this equa-
tion to obtain(

1 −
η0G 〈N 〉

γ

d 2

dr 2

)
Y = ∓

µf ′0
m ± 1

dξrm±1
dr

+
η0GN1

γ

d 2

dr 2
(
√
g B̃ϑ)m .

Thanks to (17.1), (17.3) and (17.33), ordering (17.2) then follows.
Them±ℓ harmonics are expected to become progressively smaller
as ℓ increases.

17.3.2 Vorticity equation

We first isolate the leading orders in δ in (13.10), so that the vorticity
equation may be written as

γ2

ω2
A

B2
0

R2
0 f
′
0

d
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(gN ξϑ)m = i (mµ − n)(

√
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)
m

− im〈
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∂

∂ϑ

( 1

Bφ
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)
p̃ ′NR〉 + i

∑
m′,0

[
m ′

( J φ0
Bφ
0

)
m′
(
√
g B̃ϑ)m−m′

]
.

(17.37)

When performing the expansion in the inverse aspect ratio, we only need
to compute corrections which appear up to order ε3. Each of the terms
in the equation above is analysed separately.

It is immediate to see that thanks to (17.33) (see also (17.13)), the
term with the equilibrium current yields66 This is because J φ0 /B

φ
0 is symmetric in

ϑ, so that ( J φ0 /B
φ
0 )1 = ( J

φ
0 /B

φ
0 )−1. No-

tice that these two quantities are of order
ε2/r .

∑
m′,0

m ′
( J φ0
Bφ
0

)
m′
(
√
g B̃ϑ)′m−m′ ≈

[( J φ0
Bφ
0

)
1
−

( J φ0
Bφ
0

)
−1

]
Y ′ = 0. (17.38)

Exploiting the smallness of the sidebands’ toroidal field, one has (cf.
(7.54) and (7.55))(

√
g J0 · ∇

B̃φ

Bφ
0

)
m
≈ im

R0p ′0
rB2

0

(
√
g B̃φ)m,

having approximated f ′0 ≈ rB0. The toroidal current density, which is



The resistive layer equations 243

computed to the leading order in ε from (17.11) by taking ℓ = 0, reads

(
√
g J̃ φ)m ≈

d
dr

[
〈N 〉(
√
g B̃ϑ)m + 2N1Y

]
= −

d
dr

[
〈N 〉

( (
√
g B̃ r )′m

im(1 + µ2r 2/R2
0)
− µ

r p ′0
B0

ξrm

)
− 2N1Y

]
,

where we used the expression of the toroidal field perturbation given by
(17.14) and exploited the smallness of the mth projection of the com-
pressible contribution to the perturbed pressure (cf. (17.30)). Thus,
by putting these results together, equation (17.37) can be cast in the
following form
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R2
0

(gN ξϑ)′m = −i f
′
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− im
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(
√
g B̃φ)m + imrB0p ′0〈

1

Bφ
0

〉′ξrm − 〈
√
g
∂p̃ ′NR
∂ϑ
〉.

(17.39)

Now, upon defining P = R0p ′0/B0 (cf. (7.55)) and using (17.14) in
conjunction with (17.30) and (17.35), we obtain the following relation

− f ′0 (mµ − n)〈N 〉µ
r p ′0
B0

dξrm
dr
+m

R0p ′0
B0
(
√
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+mrR0
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)
p ′0ξ

r
m − i p

′
0
µr 2

R0B0

ηR
γ
(
√
g B̃ r )′′′m .

Again, only the leading order contributions in ε have been retained.
From equations (17.19), (17.22) and (17.36) a quick calculation shows
that to the required accuracy one has
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)
d 2ξrm
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.

By means of (17.26), another easy manipulation shows that the term
proportional to the non-resonant part of the perturbed pressure reads

d
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〈
√
g
∂p̃ ′NR
∂ϑ
〉 ≈

d
dr

[
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d 2ξrm
dr 2

]
.

(17.40)

Thus, when all these quantities that we have just computed are in-
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serted into (17.39) we obtain the following equation

−
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R2
0
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r 3R0
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(
1 + 2q 2 + . . .

) d 2ξrm
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ξrm + 2mq

r p ′0
B0
Y + Θ, (17.41)

where the dots on the left-hand-side indicate small corrections of order
ε2 and Θ is a constant which accounts for those originating from (17.38)
and (17.40). By using equations (17.33) and (17.34), we find that

〈N 〉(
√
g B̃ r )′′m

im(1 + µ2r 2/R2
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− 2N1Y ′ ≈ −ic0
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〈N 〉
m

( 1
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2N 2

1

〈N 〉2

)
.

Dividing (17.41) by c0 and explicitly writing the factor 〈1/Bφ
0 〉
′ through

(7.15) with F ′ and 〈R2〉′ given by (4.31) and (5.21) respectively (cf. (11.4)),
the resistive-layer vorticity equation is finally given by

γ2

ω2
A
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0
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Λi
d 2ξrm
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= i f ′0 (mµ − n)
[
(
√
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+ iH p ′0(
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2R0p ′0

[
r
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(
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1
q 2

)
+ s∆′

]
ξrm + Θ, (17.42)

where Λi = r 2R2
0(1 + 2q

2 + . . .) with an obvious rescaling of Θ.

In summary, the linear dynamics in the resistive layer which takes
into account curvature e�ects, for both m ∼ 1 and m � 1 instabili-
ties, is fully determined by equations (17.35) and (17.42) where use of
(17.30) and (17.34) has been made. These are equivalent to theGlasser-
Greene-Johnson (GGJ) equations (Glasser et al. (1975)) evaluated for
of large aspect ratio circular tokamak. Obtaining the eigensolution of
these equations is the aim of the next section.

17.4 The eigensolution

The following analysis closely follows that of §13.4. We start by ap-
proximating mµ − n ∼ −nsx where the variable x is defined in (17.1).
Written in terms of x , equations (17.35) and (17.42) become respectively
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(qs = m/n)[
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r 2s γ
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In both of the two equations above it is implicitly assumed that equilib-
rium quantities which do not depend on x must be evaluated at rs .

We now introduce the variable

y =
x
εR
,

where 0 < εR � 1 is a smallness parameter which will be conveniently
defined later. If εR is su�ciently small, moving away from the resistive
layer we allow y to vary from −∞ to +∞. Thus, we define the Fourier
transform of the magnetic perturbation and the fluid displacement as

ψ∗ =

∫ ∞

−∞

(
√
g B̃ r )me−ikydy, ξ∗ =
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ξrme
−ikydy,

so that the induction and vorticity equations transformed to k -space then
read (we use the same conventions of sidenote 15 of §13.4)(
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k2

ε2R

)
ψ∗ = AεR

dξ∗

dk
+ EV

k
εR
ξ∗,

−
γ2

ω2
A

B2
0

R2
0

Λi
k2

ε2R
ξ∗ = AεR

d
dk

(
−
k2

ε2R
ψ∗ + E

k
εR
ξ∗

)
− E

k
εR
ψ∗ +U ξ∗ + 2πΘδ(k ),

(17.43)

having defined the following quantities

V =
ηR

r 2s γ
, A = f ′0 ns, E = rsH p ′0,

U = −2m2r 2s R0p ′0

[
rs
R0

(
1 −

1

q 2s

)
+ s∆′

]
.

Let us outline the solution approach: as in §13.4, equations (17.43) are
combined into a single one for ξ∗, which is found to be singular at k = 0
regardless of the value of Θ. Subsequently even and odd solutions are
obtained by extending appropriately to negative values of k the eigen-
function defined for k > 0.

Therefore, let Θ → 0 for the moment (the Θ , 0 case is briefly
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discussed at the end of this section) and define

H = −
E
A
≈ −2q 2s

R0p ′0
sB2

0

∆
′ + . . . ,

DR = H 2 −H −
αrs
s 2R0

(
1 −

1

q 2s

)
,

Q̂ =
γ2

ω2
A

B2
0

R2
0

Λi

A2
≈
γ2

ω2
A

(
1 + 2q 2s
n2s 2

+ . . .

)
,

where α is the ballooning parameter given by (4.41) and the dots denote
corrections of order ε2 compared to the leading contribution.

Do not confuse the symbol H with the
Heaviside step function. Although the
magnitude of H 2 is ε2 times smaller
compared to other contributions, we re-
tained it for ease of comparison with the
results found in the literature.

Combin-
ing Eqs. (17.43) thus yields

d
dk

(
k2

1 +V k2/ε2R

dξ∗

dk

)
+

[
H
d
dk

(
k

1 +V k2/ε2R

)
−

H 2

1 +V k2/ε2R
+DR − Q̂

k2

ε2R

]
ξ∗ = 0.

By taking the smallness parameter εR to be defined as in (13.33) with
the Lundquist number S given by (13.34) with the substitution η0 → ηR ,
the equation above then becomes

d
dk

(
k2

1 +Vek2
dξ∗

dk

)
+

[
H
d
dk

(
k

1 +Vek2

)
−

H 2

1 +Vek2
+DR −Qk2

]
ξ∗ = 0,

(17.44)
having specified (cf. (13.36) and (13.38))

Ve =
m2

γ/ωA
S −1/3, Q =

γ2

s 2ω2
A

q 2s (1 + 2q
2
s )S

2/3 Mt =

√
Q
Ve
.

The solution of (17.44) is sought by basically following the same proce-
dure outlined in section 16.3.2.

We start by introducing the quantity (see (16.27))

τ = −
1
2
+

√
1
4
+H 2 −H −DR = −

1
2
+ ν,

where ν =
√
Û + 1/4 (cf. (11.20)) with the definition of Û given in

(16.13). As in the previous chapter, we assume that −1/2 < τ < 1/2.7 If7 It is expected that no instability can be
constructed for τ > 1/2. we write ξ∗ = ζ τ/2e−ζ/2Y (ζ) with ζ = MtVek2, some algebra shows that

(17.44) transforms into

ζ
d 2Y
dζ2
+

(
1
2
+ τ − ζ +

1
1 + ζ/Mt

)
dY
dζ
−

(
ĥ +

1 + (τ +H )/Mt

2(1 + ζ/Mt )

)
Y = 0,

where the quantity ĥ is given by

ĥ =
1
4

(
Mt + 2τ + 1 −

DR
Mt

)
.
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Employing the tricks discussed at the end of chapter 16, after some
straightforward manipulations, one then finds that (cf. (16.31))

ξ∗ = ζ τ/2e−ζ/2
U

(
ĥ + 1, τ +

3
2
, ζ

)
+
2U

(
ĥ, τ + 1

2, ζ
)

Mt + τ +H

 ,
where U is the con�uent hypergeometric function which decays for
ζ → ∞. Thus, for small k , the behaviour of the eigensolution is of the
form

ξ∗ ∝ |k |τ
[
1 + ∆∗R |k |

−1−2τ
]
, (17.45)

∆
∗
R = (MtVe )−1/2−τ

Γ

(
1
2 + τ

)
Γ

(
− 1
2 − τ

)×
×

Γ

(
1
4 (Mt + 3 − 2τ −DR/Mt )

)
(Mt + τ +H )

Γ

(
1
4 (Mt + 5 + 2τ −DR/Mt )

)
(Mt − 1 − τ +H )

. (17.46)

Transforming to real y space is an easy task,8 8 Employing Lighthill’s notation of side-
note 15 of §13.4, we have[

|x̂ |α
]∗
=

2 cos[ π2 (α + 1)]

(2π |k̂ |)α+1
α!,

[
|x̂ |α sgn(x̂)

]∗
= −

2i sin[ π2 (α + 1)]

(2π |k̂ |)α+1
α! sgn(k̂ ),

with α any real number where α! = Γ(α+
1). In the notation used this report we
identify x̂ = k/(2π) and k̂ = −y . Note
that the higher order terms that would
appear in (17.45) lead to small correc-
tions in the y →∞ limit.

so that the layer solu-
tion written in terms of the variable x reads (recall that εR is defined by
(13.33))

ξrm ∝
1
|x |1+τ

(
1 +

ce∆∗e + co∆
∗
o

ce + co

��� x
εR

���1+2τ) , r > rs ,

∝
1
|x |1+τ

(
1 +

ce∆∗e − co∆
∗
o

ce − co

��� x
εR

���1+2τ) , r < rs ,
(17.47)

where ce and co are some constants multiplying the even and odd solu-
tions respectively, and we defined the coe�cients

∆
∗
e = − cot

(
π
2 τ

) Γ(−τ)

Γ(1 + τ)
∆
∗
R =

π csc2
(
π
2 τ

)
2Γ2(1 + τ)

∆
∗
R,

∆
∗
o = − tan

(
π
2 τ

) Γ(−τ)

Γ(1 + τ)
∆
∗
R =

π sec2
(
π
2 τ

)
2Γ2(1 + τ)

∆
∗
R .

(17.48)

Equations (17.46) and (17.47) give the resistive layer response includ-
ing e�ects arising from toroidal curvature. It should be emphasised that
these results apply to the case of an almost circular up-down symmetric
tokamak, while the generalisation to a more complex, yet axisymmetric,
geometry is discussed in appendix F.

To get the dispersion relation, the resistive-layer eigenfunction has to
be matched with the outer solution. The latter is obtained from (17.35)
and (17.42) in which inertial and resistive e�ects are dropped. If Θ = 0
this eventually leads to (f ′0 ≈ rsB0)

d
dx

(
x2
dξrm
dx

)
=
rsα
s 2R0

(
1 −

1
q 2

)
ξrm ≡ Û ξ

r
m, (17.49)
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where, as usual, equilibrium quantities must be evaluated at rs . The
asymptotic behaviour of the ideal solution when the resonance is ap-
proached then reads

ξrm ∝ |x |
− 1
2−ν + A1 |x |−

1
2+ν, r < rs ,

∝ |x |−
1
2−ν + A2 |x |−

1
2+ν, r > rs ,

(17.50)

with A1 and A2 two constants.

When dealing with tearing modes one
defines rs∆′ = A2 + A1 which reduces to
(14.4) in the zero β limit. Indeed, for
x > 0 one has xε = e ε ln x ≈ 1 + ε ln x
when ε → 0.

This shows that (17.47) and (17.50) can
be matched asymptotically.

If Θ is allowed to be di�erent from zero, it is easy to see that ξ∗(k ) ∝
2πΘδ(k )/A2

H −H 2+DR
is a solution of (17.44). According to Glasser (1975), this

represents the exact solution ξrm ∝ const . and (
√
g B̃ rm) ∝ x which is

independent of the resistivity and Q , and thus it would correspond to a
non-local ideal instability. We do not consider this case, hence hereafter
we set Θ = 0.

17.5 Stability criteria modi�ed by curvature

The aim of this final section is to analyse how the stability of some of
the resistive perturbations studied in the previous chapters is a�ected by
curvature e�ects. Let us assume, for the sake of simplicity, that H � 1
meaning that the magnetic shear does not get as small as ε2.

According to (17.50), the behaviour of the solution in the ideal region
when the resonance is approached is of the form

ξrm ∝ |x |
−1−τ

(
1 + A1 |x |1+2τ

)
, r > rs ,

∝ |x |−1−τ
(
1 + A2 |x |1+2τ

)
, r < rs .

Matching this expression with (17.47) requires

ce∆∗e + co∆
∗
o

ce + co
= ε1+2τR A1,

ce∆∗e − co∆
∗
o

ce − co
= ε1+2τR A2.

From the second relation we obtain an expression for the ratio co/ce
which this is then plugged into the first one to finally yield the dispersion
relation (Glasser (1984))

ε−2−4τR ∆
∗
e∆
∗
o + A1A2 −

1
2
ε−1−2τR (∆∗e + ∆

∗
o )(A1 + A2) = 0. (17.51)

Bearing in mind (17.48), given A1 and A2, the equation above can be
viewed as a quadratic expression for ∆∗R which, after some straightfor-
ward rearrangements, can eventually be cast as(

πε−1−2τR ∆∗R

Γ2(1 + τ)

)2
+

A1A2

csc2(πτ)
− (A1 + A2)

πε−1−2τR ∆∗R

Γ2(1 + τ)
= 0. (17.52)

Thence in the following we shall show how this dispersion relation can
be used to extract the growth rate of them = 1 resistive kink, interchange
and tearing modes.
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17.5.1 m = 1 resistive kink

When m = n = 1 we set A1 = 0 and A2 = −π/λH with τ = 0.9 Equation 9 Notice than (17.45) reduces to (13.41)
with the replacement ∆R → ∆∗R .(17.51) then leads to (cf. (15.6))

M 1/6
t

Mt − 1 +H
Mt +H

Γ

(
1
4 (Mt + 5 −DR/Mt )

)
Γ

(
1
4 (Mt + 3 −DR/Mt )

) = λ̂H
2
,

where λ̂H is given by (15.5). For a monotonically decreasing pressure
profile and s > 0, in a neighbourhood of the marginal boundary of the
ideal kink mode (λ̂H ≈ 0) the growth rate takes the form10 10 Note that in this case H > 0 with

H 2 � H , meaning that DR < 0.

Mt = 1 −H +
λ̂H
√
π
.

Toroidal curvature has a stabilising role by reducing the growth rate
through the factor H . Cases with large and negative λ̂H are addressed
in the discussion of tearing modes.

17.5.2 Resistive interchange modes

High-m modes generally have definite parity, so that we take A1 = A2 = A
where the exact expression of A is not required. It follows that (17.51)
can be written as

(ε−1−2τR ∆
∗
e − A)(ε

−1−2τ
R ∆

∗
o − A) = 0.

The growth rate for even and odd modes is obtained by setting to zero
one of the two terms on the left-hand-side at a time.11 11 The dispersion relation (16.32) is re-

covered from (17.51) by letting A1 =
A2 = (m/2)2νΓ(−ν)Γ(ν) and matching
(16.26) with (17.45), where in the former
we must replace k → kS 1/3. Notice in-
deed, that the Fourier transform defined
in §16.2 with the substitution k → kS 1/3

becomes the same as the one defined
in §17.4

Using the identity

DR = H 2 −H − τ(τ + 1),

the dispersion relation for interchange perturbations can be recast in a
form similar to (16.32), that is

4Mt (MtVe )−
1
2−τ

M 2
t − (1 + τ −H )2

Γ

(
1
4 (Mt + 3 − 2τ −DR/Mt )

)
Γ

(
1
4 (Mt + 1 + 2τ −DR/Mt )

) ∝ S −2ν/3, (17.53)

where information about mode parity is contained in the terms we omit-
ted to write on the right-hand-side.

Similar to the calculations of section 16.3.3, we assume to be sta-
ble against Mercier modes (−1/2 < τ) and thanks to the fact that
the Lundquist number is large we postulate that the right-hand-side of
(17.53) is small (this requires ν being not too small). Hence, the roots
of this equation are expected to be close to the poles of the Gamma
function in the denominator so that the growth rate is given by12 12 The large Mt solution is discarded

since it corresponds to ideal instability.

Mt = −
(
1
2 + τ + 2ℓ

)
+

[(
1
2 + τ + 2ℓ

)2
+DR

]1/2
, ℓ = 0, 1, . . . .
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From this relation and exploiting the smallness of H , we infer that inter-
change modes are unstable when

0 < DR ≈ −
α∆′

s
−

αrs
s 2R0

(
1 −

1
q 2

)
,

with the largest growth rate attained for ℓ = 0. According to the expres-
sion above, configurations with a monotonically decreasing pressure
pro�le and a reversed magnetic shear, i.e. exhibiting regions where
s < 0, may be prone to developing resistive interchange instabilities (Fu-
rukawa (1999)). Notice that in the derivation above we did not impose
any ordering on the magnetic shear.

17.5.3 Tearing modes

Let us assume 0 < |τ | � 1 and DR < 0.This typically holds in configurations
with positive shear and monotonically
decreasing pressure profile.

The second term on the
left-hand-side of (17.51) is of order τ2 so that it can be dropped if τ is
su�ciently small. Hence, by means of (17.46), the dispersion relation
becomes

(MtVe )−1/2−τ
Γ

(
1
4 (Mt + 3 − 2τ −DR/Mt )

)
(Mt + τ +H )

Γ

(
1
4 (Mt + 5 + 2τ −DR/Mt )

)
(Mt − 1 − τ +H )

= ε1+2τR Γ
2(1 + τ)

Γ(− 1
2 − τ)

πΓ( 12 + τ)
rs∆′ ≡ −∆ext, (17.54)

where we defined rs∆′ = A1 + A2 which is assumed to be a quantity of
the order of unity.Note that (14.20) is recovered for τ =

H = DR = 0. Further simplification can be achieved by assuming

ε ∼ τ ∼ H ∼ DR � Mt � 1,

where ε is some smallness parameter. Expanding the left-hand-side of
(17.54) to first order in ε and then taking the Mt � 1 limit eventually
yields1313 Here one has DR ≈ −H − τ. Terms

of the form ln(MtVe ) are neglected com-
pared to those which have a dependence
of the type M −1t .

√
Mt

Ve

Γ(3/4)
Γ(5/4)

(
1 −

πDR
4Mt

)
= ∆ext . (17.55)

Although we took DR � Mt , later we let these two quantities to have
comparable magnitude. The equation above can be conveniently rear-
ranged in the form

f ≡ aγ5/4∗ + bγ
−1/4
∗ − ∆ext = 0, (17.56)

where γ∗ = γ/ωA with a and b given by

a =
Γ(3/4)
Γ(5/4)

S 5/12

m

√√√
qs

√
1 + 2q 2s

sm
,

b =
Γ(3/4)
Γ(5/4)

S −1/12

m

√√ sm

qs
√
1 + 2q 2s

π |DR |
4

.



Stability criteria modified by curvature 251

We want to determine if equation (17.56) has some complex solutions
with Re (γ/ωA) > 0. This problem is best tackled by employing Nyquist
techniques.

-R

-d

d

R

Re(γ*)

Im(γ*)

C1

C2

C3

C4

(0,0)

Figure 17.1: Contour C in the complex
γ∗ plane. We let R → ∞ and d → 0
so that all points with Re (γ∗) > 0 are
enclosed by C . Note that this contour
avoids the origin which is the pole of the
functions f and g .

Let’s consider in the complex γ∗-plane the contour C obtained by
joining together the paths Ci (i = 1, . . . , 4) as shown in figure 17.1. No
poles of f are within the interior of C . Furthermore, allowing R → ∞
and d → 0 permits the whole half-plane with γ∗ > 0 to be encircled by
C . We now define the function g as

g = aγ5/4∗ + bγ
−1/4
∗ ,

and denote with f (C ) and g (C ) the image of C through the mappings f
and g respectively. Adding a constant factor to g moves g (C ) horizon-
tally in the Re (g ) − I m(g ) plane: therefore the shape of f (C ) is obtained
from g (C ) translating it by the amount ∆ext (forwards if ∆ext < 0 or
inwards ∆ext > 0).

In the limit of R → ∞, the image of C1 is obtained by setting γ∗ =
Re it with − π2 < t <

π
2 so that

g (C1) = aR5/4e i5t/4.

Conversely, letting γ∗ = de−it with d → 0 we obtain

g (C3) = bd−1/4e it/4.

The paths C2 and C4 are parametrised by γ∗ = ze±iπ/2 (plus sign for
C2 and minus sign for C4) with z varying between d and R following the
orientation shown in Fig. 17.1. This yields

g (C2) =
(
−az 5/4 sin π

8 + bz
−1/4 cos π8

)
+ i

(
az 5/4 cos π8 − bz

−1/4 sin π
8

)
,

g (C4) =
(
−az 5/4 sin π

8 + bz
−1/4 cos π8

)
− i

(
az 5/4 cos π8 − bz

−1/4 sin π
8

)
.

It is immediate to see that g (C4) = g (C2). Recall that the overbar denotes complex
conjugation.

We find that g (C2) crosses the
real axis in the Re (g ) − I m(g ) plane at

Re (g ) =
cos π4
cos π8

(
ab5 cot π8

)1/6
≡ z1 > 0,

and intersects the imaginary axis in

I m(g ) =
cos π4
sin π

8

(
ab5 tan π

8

)1/6
≡ z2 > 0.

A qualitative behaviour of g (C ) is shown in figure 17.2.
With the contour C given above, the Cauchy’s argument principle

states that if f (C ) encircles (counterclockwise) the origin in the Re (f ) −
I m(f ) plane N times, with N a positive integer, then there exist N roots
of the equation f = 0 with positive γ∗. In order for this to happen, one
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Re(g)

Im(g)

(0,0)

Figure 17.2: Qualitative example of the mapping of the contour C in the Re (g )− I m(g )
plane. In drawing this figure we took d > (b/a)4R−5, which ensures that the radius of
the arc associated with the path C3 is smaller than the one associated with C2. If we
shift the plot by a finite amount such that the origin is encircled by g (C ), one sees that
Indg (C )(0) = 2 when R →∞.

must have ∆ext > z1. Letting τ → 0 in the expression of ∆ext , it follows
that instability can occur only if (Glasser (1975))14

14 In the notation of Glasser (1976) one
has

rsVs
X0
=
(nsS )1/3

(1 + 2q 2s )1/6
,

and ∆′ in this report corresponds to ∆ in
Glasser (1975). Notice also that

2
cos π4
cos π8

(
cot π8

)1/6
=

√
2

sin π
8

(
tan π

8

)5/6
.

rs∆′ > 2π
Γ(3/4)
Γ(1/4)

(nsS )1/3

(1 + 2q 2s )1/6

(π
4
|DR |

)5/6 cos π4
cos π8

(
cot π8

)1/6
, (17.57)

having used the fact that m/qs = n. This is the modi�ed instabil-
ity criterion for tearing modes. Numerical analyses (Hender (1987))
confirmed the validity of this result. Larger values of rs∆′ are needed for
the instability to happen as S is increased. At very large S the resistive
marginal boundary is very close to the ideal one.

It is worth mentioning that a dispersion relation similar to (17.57)
can also be obtained for resistive ballooning modes (Strauss (1981),
Correa-Restrepo (1982)).
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A plane closed curve with no self-
intersections (simple) is said to be coun-
terclockwise oriented if the curve interior
is always on the left when travelling along
the curve itself.

Cauchy’s argument principle

Nyquist graphical analysis is based on the following theorem of
complex analysis. Let C be a closed contour (oriented counter-
clockwise) in the complex plane without intersections and take a
function f which is holomorphic on C and its interior except for
a set of isolated points (the poles of the function). If f does not
have zeroes or poles on C then the following holds

IndΓ(0) =
1
2πi

∫
C

f ′(z )
f (z )

dz = N − P,

where N and P are the number of zeros and poles of f in the
interior of C respectively counted according to their multiplicity.
The winding number IndΓ(0) is an integer which gives the total
number of times the curve Γ = f ◦ C , which is the image of
C through the function f , winds counterclockwise around the
origin in the Re (f ) − I m(f ) plane. The curve Γ is also called
f (C ). Hence, letting C to be a contour which encloses points on
the right half-plane, if P = 0 and IndF (0) , 0 the theorem above
guarantees that f = 0 for some points inside C . i.e. with positive
real part (these roots may have a non-vanishing imaginary part).
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Part V

APPENDICES





A
Particle motion in a tokamak-like

magnetic �eld

In this appendix we discuss the importance of a helical field for particle
confinement, thus showing why a toroidal current is needed. This is ac-
complished by analysing particle trajectories in a tokamak-like magnetic
field.

Let us assume that a helical field winds around toroidally concentric
nested surfaces (magnetic surfaces) of circular cross section. We em-
ploy the right-handed orthogonal coordinate system (r, θ, φ) introduced
in section 3.1.2. In this coordinates the velocity vector has components
v = (dr /dt, r dθ/dt,Rdφ/dt ) where R = R0 + r cos θ. We assume that the
radial magnetic field is vanishing (Brad ≡ Br = 0), while the toroidal and
poloidal components are (B0 > 0)

Btor ≡ Bφ =
R0B0

R
, Bpol ≡ Bθ =

rB0

Rq (r )
.

The latter expression, with q a generic function of r ,1 follows from the 1 This corresponds to the safety factor
parameter discussed in §4.1.divergence-free condition of the magnetic field. The function q is as-

sumed to be positive definite. To leading order one has B ≈ Btor with
the magnetic field stronger for θ = π and weaker at θ = 0.

Neglecting the electric field, the particle kinetic energy and magnetic
moment are conserved (cf. (1.1)), and the trajectory of the guiding
centre is described by the projections of (1.4) along the radial, poloidal
and toroidal directions. This yields for a particle with charge es and
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mass ms

dr
dt
≈ −

ms (v2⊥ + 2v
2
| |
)

2esB0R0
sin θ ≡ −vb sin θ,

r
dθ
dt
≈
rv | |
R0q
−
ms (v2⊥ + 2v

2
| |
)

2esB0R0
cos θ ≡

rv | |
R0q
− vb cos θ,

R
dφ
dt
≈ v | |,

(A.1)

having ordered q ∼ 1, ε = r /R0 � 1 and vb/(εv | |) ∼ ε � 1.The particle Larmor radius is assumed
to be small compared to the characteris-
tic length of the system.

Because
Bpol/Btor ∼ ε � 1, it follows at once that corrections of the order of
the Larmor radius entering the expression for dφ/dt can be neglected
(they are ε times smaller than those appearing in dr /dt and r dθ/dt).
For obtaining the particle trajectory projected onto the poloidal plane
we just need the first two of (A.1). From the equation for dr /dt , we infer
that the departure of the orbit from the surface of radius r is expected
to be small, so that the analysis may be carried out on a single magnetic
surface at a time.

Let us ignore, for the moment, Larmor radius corrections to dθ/dt .
A particle experiences the poloidal non-uniformities of the magnetic
field during its motion, and it may undergo mirror e�ects moving into
regions of stronger field, similar to what discussed in section 1.2.1 for
the case of open configurations. This means that an angle θ∗ for which
v | | = 0, and the particle is re�ected, can exist. Reflection occurs if (see
(1.3) with Bmax = B0(1 + ε ))

E

µB0
< 1 + ε .

Particles fulfilling this condition which bounce poloidally back and forth
between −θ∗ and θ∗ are called trapped, otherwise they are said to be
passing.2 From (1.1), we may now express the parallel velocity as2 A passing particle is still ”caged” by the

magnetic field.

v | | = ±

√
2µB0

ms
ε
(
2κ2 − 1 + cos θ

)
, with κ

2 =
E − µB0(1 − ε )

2µB0ε
. (A.2)

Passing particles have κ2 > 1, whereas if 0 < κ2 < 1 the particle will be
reflected when the angle θ∗ (or −θ∗) is approached.3 Since 1 − cos θ =3 Since E

µB0
|min ≈ 1 − ε , it follows that

0 < κ2 < ∞. 2 sin2 θ
2 , it is easy to see that sin θ∗/2 = κ.

Hence, taking the ratio of dr /dt over dθ/dt in (A.1) gives

dr
dθ
≈ ∓

q
2Ωs

v2⊥ + 2v
2
| |√

2µB0
ms

ε

sin θ
√
2κ2 − 1 + cos θ

, (A.3)

having defined the cyclotron frequency Ωs = esB0/ms . Noticing that

ms (v2⊥ + 2v
2
| |
)

2
= µB0

[
1 + 2ε

(
2κ2 − 1 + 1

2 cos θ
)]

(A.4)
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Figure A.1: Trapped (a) and passing (b) ion orbits for a deuteron of energy E = 10keV
with ε = 0.1, B0 = 3T and q = 2. In this case r∗ = r0 = 0.3a where a = 1m is the minor
radius of the device with R0 = 3.3m. The associated transit time ∆T as a function of
the parameter κ is shown in (c). Note that the transit time diverges when κ approaches
unity.

is approximately constant if ε is su�ciently small, and assuming that q
and ε do not change significantly to the relevant order, equation (A.3)
can be readily integrated giving

r = ±
q
Ωs

v2⊥ + 2v
2
| |√

2µB0
ms

ε

√
2κ2 − 1 + cos θ + const . (A.5)

This provides a functional relation between r and θ.
For passing particles we expand (A.5) for κ � 1, and obtain in the

ε � 1 limit

r − r0 ≈
q
2Ωs

v2⊥ + 2v
2
| |

v | |
(cos θ − 1)

= ±
q
2Ωs

√
E

ms ε

(
1 + 4εκ2

κ

√
1 + 2εκ2

)
(cos θ − 1) ,

with r0 denoting the radial position of the particle at θ = 0. Here we
exploited (A.2) to express µB0 as a function of E and κ.

Assuming that θ = 0 at t = 0, the time ∆t required for the particle
to complete a poloidal turn, which we call transit time, is calculated
by integrating the second expression in (A.1), that is dθ/dt ≈ v | |/(R0q ),
with the parallel velocity given by (A.2). This yields

κ

R0q

√
µB0ε

ms
∆t =

∫ π

0

dθ√
1 − κ−2 sin2 θ

2

= 2K
(
1
κ

)
,

where K is the complete elliptic integral of the first kind (for the defini-
tion of the elliptic integrals see sidenote 24 in section 4.4.1).

For a trapped particle (κ2 < 1) let r∗ be the radius of the circular
surface on which the reflection point with angle θ∗ lies. After setting
ε � 1 in (A.4), equation (A.5) becomes

r − r∗ ≈ ±
q
Ωs

√
2µB0

ms ε

(
2κ2 − 1 + cos θ

)
. (A.6)
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Figure A.2: Example of the trajectory of
a trapped particle showing toroidal pre-
cession.

φ

Trapped particle orbits are called banana orbits. The largest radial
excursion is attained by marginally trapped particles with κ2 = 1−δ and
δ � 1; since 2µB0/ms ≈ v2⊥ it follows that r − r∗ ∼ qrL,s/

√
ε where rL,s

is the particle Larmor radius defined in section 1.2.1. Note the radial
departure of deeply passing particles with κ → ∞ is

√
ε times smaller

(in order of magnitude) than the one of trapped ones. Finally, as we did
for passing particles, we assume that θ = 0 at t = 0 and integrate dθ/dt
to get the oscillation period ∆t along the closed trajectory:

Exploiting the properties of the complete
and incomplete elliptic integrals of the
first kind we have∫ θ∗/2

0

dy√
1 − κ−2 sin2 y

=

∫ sin θ∗
2

0
du[(1 − u2)(1 − κ−2u2)]−1/2 =

κ

∫ 1

0
dz [(1 − z2)(1 − κ2z2)]−1/2 =

κ

∫ π/2

0

dy√
1 − κ2 sin2 y

≡ κK (κ).
κ

4R0q

√
µB0ε

ms
∆t =

∫ θ∗/2

0

dy√
1 − κ−2 sin2 y

= κK (κ). (A.7)

Typical poloidal plane orbit projections and transit time of trapped and
passing particles are shown in figure A.1.

We shall now focus on the motion in the toroidal direction. Taking
the ratio of the third over the second equation in (A.1) gives

dφ
dθ
=
R0q
R

(
1 +

vbq
ε cos θ

v | | −
vbq
ε cos θ

)
.

For well passing particles the parallel velocity is large compared with
vb and never vanishes, so that the toroidal angular position steadily in-
creases in time and the associated trajectory is a helix that wraps around
the magnetic surface.

For trapped particles the situation requires a more careful analysis.

Notice that the integral over a closed par-
ticle orbit is∮

Adθ =
∫ θ∗

−θ∗

Adθ +
∫ −θ∗
θ∗

Adθ,

where the second integral on the right-
hand-side is performed after the reflec-
tion. If A = 1 or A = cos θ the total inte-
gral is zero. while if A = ±f (cos θ), i.e. it
changes sign after the reflection point θ∗
along the orbit, one has∮

Adθ = 4
∫ θ∗

0
f (cos θ)dθ

having exploited the fact that f is an
even function of θ.

Letting κ < 1 with ε � 1, from (A.4) we may approximate vb ≈
µB0

msΩsR0
≈

const . Thus, expanding both q andR around r∗ we have to leading order

dφ
dθ
≈ q∗

(
1 − ε∗ cos θ + s∗

r − r∗
r∗
+
q∗vb
ε∗v | |

cos θ
)
, (A.8)

where q∗ = q (r∗), s∗ = [(r dq/dr )/q ]r∗ and ε∗ = r∗/R0. In the equation
above v | | has to be evaluated at r∗ as well. By means of (A.2) and (A.6),
this equation can be easily integrated and the result expressed in terms of
the elliptic integrals of the first and second kind. Let ∆φ =

∮
(dφ/dθ)dθ

denote the increase of the toroidal angle after a trapped particle closed
orbit period. From (A.6) we have r − r∗ ∼ [R0/(Ωs ε )]

1/2√vb , hence if
vb → 0 in (A.8) then ∆φ = 0, i.e. the particle bounces back and forth in
the toroidal direction with a zero average toroidal drift.
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However, with vb , 0 one finds ∫ θ∗
2

0

√
κ2 − sin2 θdθ = κ

∫
κ

0

√
1 − κ−2t2
√
1 − t2

dt =

κ
2
∫ 1

0

√
1 − z2

√
1 − κ2z2

dz = κ2
∫ π/2

0

cos2 θdθ
√
1 − κ2 sin θ2

= E(κ) + (κ2 − 1)K (κ).

In the last equality one uses cos2 θ = 1 −
sin2 θ.

∆φ =
4q 2∗
r∗Ωs

√
µB0

2ε∗ms
×

×

[∫ θ∗

0

cos θ
√
2κ2 − 1 + cos θ

dθ + 2s∗

∫ θ∗

0

√
2κ2 − 1 + cos θdθ

]
=

8q 2∗
r∗Ωs

√
µB0

ε∗ms
K (κ)

[
E(κ)
K (κ)

−
1
2
+ 2s∗

(
E(κ)
K (κ)

− 1 + κ2
)]
,

where E(κ) is the complete elliptic integral of the second kind. This
shows that there is an average precession in the toroidal direction
(see figure A.2). The associated mean velocity is obtained by evaluating
∆φ/∆t with ∆t from (A.7).

Notice that particle trajectories will be modified by the inclusion of
electric fields and collisions.
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B
Tokamak GCP equilibrium

Here we discuss tokamak equilibrium within the anisotropic GCP model
presented in chapter 2 (see §2.4). Although the problem of plasma
anisotropy is not addressed in this report, we nevertheless think that it is
useful to summarise clearly and simply some of the techniques involved
in its analysis.

We start with (2.15) which can be cast as

d
dt
f̄s (x,v | |, µ, t ) =

∂ f̄s
∂t
+
dx
dt
·
∂ f̄s
∂x
+
dv | |
dt

∂ f̄s
∂v | |
= 0,

having defined b = B/B and

dx
dt
=u⊥ + v | |b,

dv | |
dt
=v | |u⊥ · (b · ∇b) − b · ∇

(
µB +

es
ms
ΦE −

u2⊥
2

)
.

Here µ = v2⊥/2B . We change coordinates from v | | to ε s (x,v | |, µ, t ), to be
defined later, yielding

d
dt
f̄s (x, ε s , µ, t ) =

∂ f̄s
∂t
+
dx
dt
·
∂ f̄s
∂x
+

(
∂ε s
∂t
+
dx
dt
·
∂ε s
∂x
+
dv | |
dt

∂ε s
∂v | |

)
∂ f̄s
∂ε s
= 0,

(B.1)
having exploited the conservation of the magnetic moment Eq. (2.16).
We choose

ε s =
1
2
v2
| |
+ µB0, (B.2)

where B0 is the equilibrium magnetic field. As a matter of notation,
equilibrium quantities are indicated by the subscript 0.

We stress the fact that the choice of ε s is not unique. With this
definition of ε s , it immediately follows that (recall that x , v | | and µ are
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independent variables)

∂ε s
∂t
= 0, ∇ε s = µ∇B0,

∂ε s
∂v | |
= v | | .

Using the expressions above into (B.1) gives

∂ f̄s
∂t
+ (u⊥ + v | |b) · ∇ f̄s +

[
(u⊥ + v | |b) · ∇µB0+

v | |
(
v | |u⊥ · (b · ∇b) − b · ∇Es

)] ∂ f̄s
∂ε s
= 0, (B.3)

where Es = µB + es
ms
ΦE −

u2⊥
2 . For an equilibrium with no flows we take

∂/∂t = 0, u⊥ = 0 and ΦE0 = 01 so that equation (B.3) dictates1 If equilibrium flows are allowed, then
ΦE0 , 0. This is because the parallel and
perpendicular components of the electric
field decouple as they appear at di�erent
orders in ms /es .

b0 · ∇ f̄s0 = 0, (B.4)

that is f̄s0 = f̄s0(ψ, ε s , µ) where ψ is the equilibrium poloidal flux. Let
us introduce the parallel gradient operator ∇ | | = b0 · ∇. Hereafter we
consider a globally neutral static plasma consisting of electrons with
charge −e and ions with charge +e .

To determine the expressions for p | |0 and p⊥0 it is more convenient
to transform the integrals in Eqs. (2.18) into integrals in dµ and dε s . In
doing so, we invert (B.2) to obtain

v | | = ±
√
2 (ε s − µB0), (B.5)

where µ is allowed to vary from 0 to ∞. Hence, at fixed µ, one has
v | |dv | | = dε s and since v2

| |
ranges from 0 to ∞ then ε s varies from its

minimum value ε s,min = µB0 to ∞. This yields∫
d 3v = 2π

∫ ∞

0
dv⊥v⊥

∫ ∞

−∞

dv | |v | | =
∑
σ

2π
∫ ∞

0
dµ

∫ ∞

ε s,min

dε s
B0

|v | | |
,

where σ = +1 for v | | > 0 and σ = −1 for v | | < 0. It follows that the
parallel and perpendicular pressure can be written as

p | |0 =
∑
σ,s

2πms

∫ ∞

0
dµ

∫ ∞

ε s,min

dε sB0 |v | | | f̄s0,

p⊥0 =
∑
σ,s

2πms

∫ ∞

0
dµ

∫ ∞

ε s,min

dε s
µB2

0

|v | | |
f̄s0.

Because ∇ | | f̄s0 = 0, it is easy to see that

∇ | |p | |0 =
(
p | |0 − p⊥0

) ∇ | |B0

B0
, (B.6)

having used (cf. (B.5))

∇ | |(B0 |v | | |) = |v | | |∇ | |B0 −
B0

|v | | |
∇ | |(µB0).
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In order to make the action of the parallel gradient operator on 1/|v | | |
analytically manageable, we first note that∫ ∞

ε s,min

dε s
f̄s0
|v | | |
= |v | | | f̄s0

���∞
εmin
−

∫ ∞

ε s,min

dε s |v | | |
∂ f̄s0
∂ε s

.

If f̄s0 decreases faster than 1/|v | | | for ε s → ∞,2
2 This has to be the case for an inte-
grable distribution function in the do-
main −∞ < v | | < ∞.

the first term on the
right-hand-side of the equation above vanishes since |v | | |(ε s,min) = 0.
Therefore we may recast the perpendicular pressure as

p⊥0 = −
∑
σ,s

2πms

∫ ∞

0
dµ

∫ ∞

ε s,min

dε s |v | | |µB
2
0
∂ f̄s0
∂ε s

.

Following a procedure similar to the one used above for p | |0, We use the fact that ε s is an indepen-
dent variable, so that the parallel gradi-
ent commutes with the symbol of deriva-
tion with respect to ε s .

we get

∇ | |p⊥0 =
(
2p⊥0 +C

) ∇ | |B0

B0
, (B.7)

where C is defined by

C =
∑
σ,s

2πms

∫ ∞

0
dµ

∫ ∞

ε s,min

dε s
µ2B3

0

|v | | |
∂ f̄s0
∂ε s

.

Given the expressions for p | |0 and p⊥0, the macroscopic MHD equi-
librium is then determined by (2.17). A quick computation shows that
(cf. section 2.4.2)

0 = −∇p⊥0 +
(
1 − ∆̂

)
J0 × B0 − ∆̂∇B2

0/2 − B0

(
B0 · ∇∆̂

)
, (B.8)

with ∆̂ = (p | |0 − p⊥0)/B2
0 . Let use introduce a toroidal coordinate system

(r, θ, φ) as the one used in §4.3 with r a flux variable with the dimen-
sions of a length, θ a generic poloidal angle and φ the toroidal angle.
The system is axisymmetric so that ∂/∂φ = 0 for any equilibrium scalar
quantity. With a magnetic field of the form (cf. (4.4))3 3 Notice that we require Br0 = 0.

B = Bφ0(r, θ)∇φ − ∇ψ(r ) × ∇φ

with ψ denoting the equilibrium poloidal flux, the covariant projection
of (B.8) along φ gives

(1 − ∆̂)
√
g J r0 = Bφ0

∂∆̂

∂θ
,

from which we infer J r0 , 0. This equation yields

1
Bφ0

∂Bφ0
∂θ
=

1

1 − ∆̂

∂∆̂

∂θ
,

which can be easily integrated showing that (1− ∆̂)Bφ0 is a flux function.
The projection of (B.8) along er can be regarded as a generalisation of
the Grad-Shafranov equation (4.14) to anisotropic systems.
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As an explicit example, we choose f̄s0 to be a bi-Maxwellian distri-
bution function,4

4 Other forms for f̄s0 can be used, de-
pending on the nature of the problem un-
der consideration.

that is

f̄s0 =
m3/2
s ns0

(2πkB )
3/2T⊥s

√
T | |s

exp

[
−
ms
2kB

(
v2
| |

T | |s
+
v2⊥
T⊥s

)]
.

where ms is the particle mass, kB the Boltzmann constant, ns0 the equi-
librium number density withT | |s andT⊥s the parallel and perpendicular
temperatures of the species s (both taking their respective equilibrium
values with the subscript zero omitted for simplicity). It is usually as-
sumed that T | |s is a flux function due to the strong parallel heat conduc-
tion. We further assume T | |i = T | |e = T | | and T⊥i = T⊥e = T⊥. It is easy
to see that the equation above can be recast in the formWe can use either ψ or r as a flux label.

f̄s0 = Fs (ψ) exp
[
−
ms
kB

(
µ

µ̂s (ψ)
+

ε s
ε̂ s (ψ)

)]
,

thus fulfilling (B.4) where ε s is given by (B.2) with the following identi-
fications:

ε̂ s = T | |,
1

B0 µ̂s
=

1
T⊥
−

1
T | |
,

m3/2
s ns

(2πkB )
3/2T⊥s

√
T | |s
= Fs . (B.9)

It is evident that both ns0 and T⊥ must depend upon the poloidal angle,
with ns0/T⊥ a flux function. Using this form of the distribution function,
a little algebra shows that

C = −2p⊥0
T⊥
T | |

.

Quasineutrality
∑
s esns = 0 implies that ni = ne = n0. Moreover, p | |0 =

2n0T | | and p⊥0 = 2n0T⊥. Thus, multiplying (B.6) by T⊥ and plugging
the result into (B.7) shows that n0 ∝ T⊥, so that

n0
n̂0(ψ)

=
T⊥
T | |(ψ)

, (B.10)

as expected from (B.9). Using this result into (B.7) gives55 Here we exploit the fact that

∇ | |p⊥0 = 4n̂0
T⊥
T | |(ψ)

∇ | |T⊥0. T⊥ =
B0T | |

B0 − Θ(ψ)
, (B.11)

whereΘ(ψ) is an arbitrary function which measures the degree of anisotropy.
Thus, a GCP tokamak equilibrium with a bi-Maxwellian distribution
function is fully determined by equations (B.6)-(B.8) and (B.10)-(B.11).
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C
General proof of the self-adjointness of

the ideal MHD force operator

An explicit proof of the self-adjointness of the force operator for an ideal
isotropic plasma, also including a vacuum region separating the plasma
from an ideal metallic wall is presented. Instead of exploiting the energy
conservation in ideal MHD, as it has been done in chapter 6, we proceed
with a direct, although rather tedious, algebraic method. We try to keep all the relevant mathemat-

ical steps in order to make the derivation
more transparent.We start by dotting (6.5) with η (a generic fluid perturbation), and

integrate it over the plasma volume V . After a little algebra we obtain

∫
V
η · F (ξ)dV = −

∫
V

(
Γp0(∇ · ξ)(∇ · η) +

1
µ0
Q (ξ) ·Q (η)

+ (ξ · ∇p0)(∇ · η) − η · J0 ×Q (ξ)
)
dV

−

∫
Σ

(η · n0)
(
p̃ +

B0 ·Q (ξ)
µ0

)
dΣ (C.1)

where Q (ξ) = ∇× (ξ ×B ) and n0 is the unit vector normal to the unper-
turbed plasma-vacuum surface Σ. In obtaining the surface integral we
used the fact that

n0 · B0 = 0. (C.2)

Here p̃ = p̃(ξ) as given by Eqs. (6.3) in section 6.1. We recast (C.1) as

−

∫
V
η · F (ξ)dV = δWP + δWV ,
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where

δWP =

∫
V

(
Γp0(∇ · ξ)(∇ · η) +

1
µ0
Q (ξ) ·Q (η)

+ (ξ · ∇p0)(∇ · η) − η · J0 ×Q (ξ)
)
dV, (C.3)

δWV =

∫
Σ

(η · n0)
(
p̃ +

B0 ·Q (ξ)
µ0

)
dΣ. (C.4)

We now show that both δWP and δWV are symmetric by swapping ξ

and η. This will prove that F is self-adjoint.

Symmetric form for δWP

The parallel component of the vector η does not appear in the last two
term of δWP . In fact, by writing η = η⊥ + η | |B0 we immediately have

ξ · ∇p0(∇ · η | |B0) − η | |B0 · J0 ×Q (ξ)

= (ξ · ∇p0)B0 · ∇η | | + η | |Q (ξ) · J0 × B0 = B0 · ∇(η | |ξ · ∇p0)

which vanishes when integrated over the plasma volume thanks to (C.2).
Using the equilibrium force balance equation (4.1) we writeHere we list some useful relations:

∇
(
µ0p0 +

B2
0
2

)
= B2

0κ + b(b · ∇
B2
0
2
),

η⊥ =
B0 × (η⊥ × B0)

B2
0

,

∇ · J0 = B0 · ∇σ − 2
B0

B2
0

· (∇p0 × κ).

J0 = σB0 +
B0 × ∇p0
B2
0

, (C.5)

where σ = J0 · B0/B2
0 so that

−η⊥ · J0 ×Q (ξ) = −σQ (ξ) · η⊥ × B0 − (η⊥ · ∇p0)
B0 ·Q (ξ)

B2
0

. (C.6)

Let us introduce the curvature vector κ defined as

κ = b · ∇b = −b × ∇ × b,

with b = B0/|B0 |. The last equality holds due to the fact that b · b = 1.
We notice that

∇ · η⊥ = −
1

B2
0

[
B0 ·Q (η) + η⊥ · ∇

(
µ0p0 + B2

0

)]
= −

1

B2
0

[
B0 ·Q (η) − η⊥ · ∇µ0p0

]
− 2η⊥ · κ. (C.7)

Thus, plugging (C.6) and (C.7) into (C.3) yields

δWP =

∫
V

(
Γp0(∇ · ξ)(∇ · η) +

1
µ0
Q (ξ) ·Q (η)

−
1

B2
0

[
(ξ · ∇p0)(B0 ·Q (η)) + (η · ∇p0)(B0 ·Q (ξ))

]
+
µ0

B2
0

(ξ · ∇p0)(η · ∇p0)

− σQ (ξ) · η × B0 − 2(ξ · ∇p0)(η · κ)
)
dV, (C.8)
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where we dropped the subscript ⊥ in η since the projections automati-
cally pick out its perpendicular component. Now we introduce the quan-
tity This has not to be confused with the

same symbol used in App. B.

∆̂ = − σQ (ξ) · η × B0 − 2(ξ · ∇p0)(η · κ)
+ σQ (η) · ξ × B0 + 2(η · ∇p0)(ξ · κ).

If we show that the integral of ∆̂ over the volumeV is vanishing, it neces-
sarily follows the last two terms in (C.8) are symmetric by interchanging
ξ and η. A short computation shows that

∆̂ =∇ · [σ(η × B0) × (ξ × B0)] − ∇σ · (η × B0) × (ξ × B0)

− 2(ξ × η) · (∇p0 × κ) =
∇ · [ση · (ξ × B0)B0] + ξ × η ·

[
B0(B0 · ∇σ) − 2(∇p0 × κ)

]
.

We now split the last term of the equation above into its parallel and
perpendicular components, yielding

∆̂ =∇ · [ση · (ξ × B0)B0] + ξ × η · B0

[
B0 · ∇σ − 2

B0

B2
0

· (∇p0 × κ)
]

− 2(ξ × η) × B0 ·
(∇p0 × κ) × B0

B2
0

. (C.9)

When integrated over the plasma volume, the first term of (C.9) vanishes
due to (C.2). The second term is proportional to ∇ · J0 and thence is
zero. The last term vanishes too since ∇p0 and κ are both perpendicular
to B0. Therefore, δWP is symmetric in exchanging ξ with η.

Symmetric form for δWV

As in section 6.1.1, we assume that the displaced surface moves with
a normal velocity n · u , and we set the analysis in a reference frame
moving with the plasma surface. Let the subscript M denote quantities
in the moving frame. By applying the appropriate Galilean transforma-
tions one transforms these quantities back in the original fixed reference
frame.

Let the subscript v indicate a vacuum quantity. In the vacuum there
are no sources so that we use the Coulomb gauge in which ˜Ev = −∂A/∂t
with ˜Bv = ∇ ×A. Since in the plasma ˜EM = ˜E + u × B0 = 0, we must
have ˜EvM = 0 as well, so that Eq. (6.9) gives

0 = n0 × ˜EvM = n0 ×
(
˜Ev + u × Bv0

)
,

where this condition can be supposed to be fulfilled at the unperturbed
boundary because ˜EvM is a first-order perturbed quantity. Therefore,
we obtain

n0 ×A = −(n0 · ξ)Bv0. (C.10)
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We now use the jump condition of the total pressure at the plasma-
vacuum boundary. Hence, we perturb (6.10) and evaluate it at position
rp = req + ξ . This yields

p̃ + ξ · ∇
(
p0 +

B2
0

2µ0

)
+
B0 · ˜B
µ0

= ξ · ∇
(
B2
v0

2µ0

)
+
Bv0 · ˜Bv
µ0

,

and the following expression is produced:

δWV =

∫
Σ

(η · n0)ξ ·
[
∇

(
B2
v0

2µ0

)
− ∇

(
p0 +

B2
0

2µ0

) ]
dΣ+∫

Σ

(η · n0)
Bv0 · ˜Bv
µ0

dΣ.

Thanks to (6.10), the tangential jump of the total pressure is continuous,
i.e. n0 × J∇(p0 + B2

0/2µ0)K = 0.1 This allows us to write1 This is because µ0p0+B2
0/2−B

2
v0/2 = 0

everywhere on Σ, so that n0 × ∇(µ0p0 +
B2
0/2 − B

2
v0/2) = 0.

δWV =

∫
Σ

(η · n0)(ξ · n0)n0 ·
[
∇

(
B2
v0

2µ0

)
− ∇

(
p0 +

B2
0

2µ0

) ]
dΣ+∫

Σ

(η · n0)
Bv0 · ˜Bv
µ0

dΣ.

The final step consists in considering ˜Bv as a function of η and
ξ thanks to the boundary condition at the displaced plasma surface.
Hence, we write ˜Bv (ξ) = ∇ ×A(ξ) with ∇ × [∇ ×A(ξ)] = 0. The same
applies to ˜Bv (η) with the obvious substitutions. Using the interface con-
ditions (C.10) yields∫

Vac

˜Bv (ξ)·˜Bv (η)dV =
∫
Vac

∇ · [A(η) × ∇ ×A(ξ)]dV =

−

∫
Σ

n0 ·
[
A(η) × ˜Bv (ξ)

]
dΣ =

∫
Σ

(n0 · η)Bv0 · ˜Bv (ξ)dΣ

where the subscript Vac means that the integration is carried out over the
vacuum region, and the minus sign appearing after the second equality
is because the volume of the vacuum region is outside the plasma surface
Σ. This shows that also δWV is symmetric in exchanging ξ and η.
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D
The screw-pinch eigenmode equation

Let us first present the derivation of the eigenmode equation for the
radial fluid displacement in a straight screw-pinch at marginal stability
(γ → 0) following the procedure outlined in §7.5. The procedure we follow here is not

necessarily the simplest for deriving the
eigenmode equation, but it is useful for
comparison with the calculations em-
ployed in the previous chapters.

This is known as
the Newcomb equation (see section 7.5.1). Each symbol associated with
physical quantities appearing here has the same meaning as in chapter 7.

We start by recalling that in a cylinder the metric coe�cients read
(cf section 3.1.1) gr r = 1, gθθ = r 2, gr θ = gr φ = 0,

√
g = rR0, where

R0, the major radius, is a constant. The equilibrium relation may be
written as

rR0p ′0/f
′
0 = −F

′ − µ
√
g J φ0 ,

where f ′0 = rF /R0 (cf. (7.14)) and F is given by (4.4) with µ = 1/q . The
toroidal current takes the form

J φ0
Bφ
0

=
R0

mf ′0

[
r 2

R2
0

(k̂ | | + n
f ′0
r
)

] ′
,

with k̂ | | =
f ′0
r k | | and k | | = mµ − n. We assume that the plasma is an

ideal conductor so that (cf. 7.7)

√
g B̃ r =

√
gB0 · ∇ξr = f ′0

(
µ
∂

∂θ
+

∂

∂φ

)
ξr . (D.1)

With a perturbation depending on θ and φ as e i (mθ−nφ),1 in analogy 1 Recall that in cylindrical geometry
poloidal and toroidal Fourier modes
behave independently. Moreover, at
marginal stability p̃ = −p ′0ξ

r (cf. (7.9)
and (7.10)).

with the derivation of (7.35), we find that

(
√
g B̃φ)m =

r /R0

1 + h

[rR0

f ′0
p ′0ξ

r
m +

J φ0
Bφ
0

(
√
g B̃ r )m
im

+
n
m2

r
R0

(
√
g B̃ r )′m
i

]
,

with h = n2

m2
r 2

R2
0
. Contrary to (7.35), the expression above is exact. Since

equilibrium quantities in cylindrical geometry do not depend upon the
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angular variable θ, we drop the symbol of poloidal average (the compar-
ison with the expressions derived in chapter 7 is straightforward).

Following the same steps presented in §7.5, the eigenmode equation
is obtained from the vorticity equation (7.13). First, we get

(√
g J̃ φ

)
m = −

1
im

[ (
r
R0

(
√
g B̃ r )′m
1 + h

) ′
−
m2

rR0
(
√
g B̃ r )m

]
+
n
m

[
r 2/R2

0

1 + h

(
rR0

f ′0
p ′0ξm +

J φ0
Bφ
0

(
√
g B̃ r )m
im

) ] ′
,

and, in analogy with (7.54), we have(
√
g J0 · ∇

B̃φ

Bφ
0

)
m

=
im
f ′0

(
rR0

f ′0
p ′0 +

k | |
m
√
g J φ0

)
(
√
g B̃φ)m =

imPc
f ′0
(
√
g B̃φ)m,

where Pc is the cylindrical analogue of (7.55) and is defined as

Pc =
√
g

f ′0
p ′0 + (µ − n/m)

√
g J φ0 .

Combining these two expressions and exploiting the independence
upon θ of the equilibrium gives

√
g

(
B0 · ∇

J̃ φ

Bφ
0

− J0 · ∇
B̃φ

Bφ
0

)
m

= −
k | |
m

[ (
r
R0

(
√
g B̃ r )′m
1 + h

) ′
−
m2

rR0
(
√
g B̃ r )m

]
+
n
m

(
r 2/R2

0

f ′0 (1 + h)
Pc

) ′
(
√
g B̃ r )m − i

r /R0

1 + h

(
nµ′

rPc
R0
+
mP 2

c

f ′0

)
ξrm .

Finally, we easily obtain(
√
g ˜B · ∇

J φ0
Bφ
0

)
m

= i

(
J φ0
Bφ
0

) ′
r k̂ | |ξ

r
m,(

√
g∇φ · ∇ 1

Bφ
0

× ∇p̃
)
m

= imp ′0
R2
0F
′

F 2
ξrm .

We stress the fact that these expressions are exact.
By means of (7.58) with N = r /R0 and using (D.1), at marginal

stability the eigenmode equation for a mode of helicity (m, n) in a screw-
pinch readsThis equation is easily compared with

(7.65).

1
r
d
dr

(
r 3k̂2
| |

1 + h
dξrm
dr

)
+

[(
r (r k̂ | |)′

1 + h

) ′
−m2k̂ | |

]
k̂ | |ξ

r
m

−m
R0 f ′0
r

[(
J φ0
Bφ
0

) ′
+
n
m

(
r 3p ′0/R0

(f ′0 )
2(1 + h)

) ′
+
nk | |
m2

(
r 2/R2

0

1 + h

J φ0
Bφ
0

) ′]
r k̂ | |ξ

r
m

+

[
m

1 + h

(
nµ′r 2p ′0 +mP

2
c

)
+m2p ′0

f ′0
r

R3
0F
′

F 2

]
ξrm = 0. (D.2)
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It is easily shown that the following relations hold f ′0 /r = R0B
φ
0 = F /R0.(

J φ0
Bφ
0

) ′
+
m
n

(
hrR0p ′0
(f ′0 )

2(1 + h)

) ′
+
k | |
n

(
h J φ0 /B

φ
0

1 + h

) ′
=

(
J φ0 /B

φ
0

1 + h

) ′
−
m
n

(
h

1 + h
F ′

f ′0

) ′
−
m
n

µ′h
1 + h

J φ0
Bφ
0

,

f ′0
r

(
J φ0 /B

φ
0

1 + h

) ′
=
mR0

n

[
(hk̂ | |)′

nr (1 + h)
+
(hF /R0)

′

r (1 + h)

] ′
−
F ′

R0

J φ0 /B
φ
0

1 + h
.

When these are plugged into (D.2) some simple grouping yields

1
r
d
dr

(
rhk̂2

| |

1 + h
dξrm
dr

)
+ G ξrm = 0, (D.3)

where G =
∑4
i=1Ai having defined

A1 =

{
n2

m2R2
0

[(
r (r k̂ | |)′

1 + h

) ′
−m2k̂ | |

]
− r

(
(hk̂ | |)′

r (1 + h)

) ′ }
k̂ | |,

A2 = −
n
R0

[ (
(hF )′

r (1 + h)

) ′
− F

(
hF ′

r (1 + h)F

) ′ ]
r k̂ | |,

A3 =
n2F ′

R2
0

(
rR0

f ′0
p ′0 +

k | |
m

√
g J φ0

1 + h

)
=
n2F ′

R2
0

(
Pc −

k | |
m

h
√
g J φ0

1 + h

)
,

A4 =
µ′h
1 + h

nm

R2
0

FPc +
n2

R2
0

P 2
c

1 + h
.

A simplified expression for G can be found. Let us first write the
toroidal field as Bz = F /R0 and introduce the poloidal field Bp such that
µ = R0Bp/(rBz ) and k̂ | | = Bz (mµ − n).2 It is possible to prove that 2 By means of the equilibrium relation,

the following relations prove to be ex-
tremely useful in the manipulation of the
coe�cients Ai :

√
g J φ0 =

m2R2
0

n2
(hBp/r )′,

µ′ = R0

(
B ′p
rBz
−

Bp

r 2Bz
−
BpB ′z
rB2

z

)
,

Pc = −
[
R0B

′
z +

n
m
(rBp )′

]
.

A4 =
n3/R2

0

mBz (1 + h)

[
R0B ′z +

n
m
(rBp )′

] [ (
2Bz + rB ′z

)
Bp +

m
n
R0BzB ′z

]
,

and using this result, after some little algebra, one gets

A3 + A4 =
2n3

m2

Bp/R2
0

1 + h
[mR0B ′z + n(rBp )

′] +
nh
1 + h

(B ′z )
2(mµ − n).

Proceeding further, we have

A2 =

[
−
n3/m2

1 + h

(
2
rB ′z
R2
0

+
r 2

R2
0

(B ′z )
2

Bz

)
+
4n5

m4

r 2

R4
0

Bz
(1 + h)2

]
Bz (mµ − n),

which eventually leads to

A2 + A3 + A4 =
2n2

r 2
Bp (rBp )′ −

n2

r

[
m2B2

p − n
2B2

z r
2/R2

0

m2(1 + h)

] ′
+

2n4

R2
0m

2

hB2
z − B

2
p

(1 + h)2
−

2n2

r 2(1 + h)
[B2
p + hB

2
z ] +

4n3hB2
z (mµ − n)

m2R2
0(1 + h)

2
. (D.4)
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Finally, a quick calculation shows that

A1 =

(
n2

m2R2
0

1 + 3h
(1 + h)2

−
n2

R2
0

)
k̂2
| |
. (D.5)

Hence, grouping together the terms proportional to 1/(1 + h)2 in (D.4)
and (D.5) and expressing µ in terms of Bp and Bz , a bit tedious calcula-
tion finally gives33 This is the result given in Newcomb

(1960).

G = −
n2

R2
0

k̂2
| |
+
2n2

r 2
Bp (rBp )′ −

n2

r

[
m2B2

p − n
2B2

z r
2/R2

0

m2(1 + h)

] ′
−
n2(mR0Bp + nrBz )2

m2r 2R2
0(1 + h)

. (D.6)

We can write G in a more convenient form by using the equilibrium

relation BpB ′p = −p
′
0 −

B2
p

r − BzB
′
z . Distributing the derivative on the

numerator and denominator of the third term in (D.6) yields

G = −
n2

R2
0

k̂2
| |
−
2n2

r

hp ′0
1 + h

+
2n2

r 2
B2
p + hB

2
z

1 + h

+
n2

r

[
m2B2

p − n
2B2

z r
2/R2

0

m2(1 + h)2

]
h ′ −

n2(mR0Bp + nrBz )2

m2r 2R2
0(1 + h)

.

If we now combine the first, third and fifth terms of the expression above,
the function G in equation (D.3) can be finally written as

G = −h
m2 − 1 +m2h
r 2(1 + h)

k̂2
| |
−
2n2

r

hp ′0
1 + h

+
n2

r

(
m2B2

p − n
2B2

z r
2/R2

0

m2(1 + h)2

)
h ′. (D.7)

One notes that r 2G /B2
z is expressed as a sum of ε2 and ε4 terms.

For the case of the m = 1 mode, the dominant contribution of order
ε2 cancels out, so that to leading order G is given by

G ≈ −
n4B2

z

R2
0

[
2r p ′0
B2
z
−
B2
p

B2
z

(
1 − nq

) (
1 + 3nq

) ]
, (D.8)

with q = rBz/(R0Bp ). This result is used in the discussion of the stability
properties of the m = 1 internal kink mode in toroidal geometry (cf.
chapter 8).

The Hain-Lüst equation

We shalll now obtain the Hain-Lüst equation, which is the screw-pinch
eigenmode equation extended to the case of non-vanishing inertia. This
is more easily accomplished by following a di�erent procedure compared
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to the one used in the section above. Let us start by writing the following
equilibrium relations for a straight screw-pinch

√
g J θ0 = −R

2
0(B

φ
0 )
′,
√
g J φ0 = (r

2B θ0 )
′,

p ′0 = R
2
0B

φ
0 (B

φ
0 )
′ − B θ0 (r

2B θ0 )
′,

B2 = r 2(B θ0 )
2 +R2

0(B
φ
0 )

2.

(D.9)

Furthermore, it is convenient to define (do not misinterpret this F with
the covariant φ component of the magnetic field)

F | | = mB
θ
0 − nB

φ
0 , D = mR2

0B
φ
0 + nr

2B θ0, H = m2R2
0 + n

2r 2.

As before, the fluid displacement is expanded as ξ(r, θ, φ) = ξ(r )e i (mθ−nφ),
and the same applies to other perturbed quantities. For the sake of simplicity, we omit to

write the subscript m when referring to
the harmonic of helicity (m, n).

Our starting point
are the linearised radial and toroidal covariant components of the mo-
mentum equation, and its projection along the total B field. They read
(cf. (7.1) and (7.10))

ρ0γ
2ξr = −p̃ ′ −R2

0B
φ
0 (B̃

φ)′ − B θ0 (r
2B̃ θ)′

+ iF | |B̃
r −R2

0(B
φ
0 )
′B̃φ − (r 2B θ0 )

′B̃ θ, (D.10)

ρ0γ
2R2

0ξ
φ = inp̃ + iB θ0 (mR

2
0B̃

φ + nr 2B̃ θ) +R2
0(B

φ
0 )
′B̃ r , (D.11)

ρ0γ
2(r 2B θ0ξ

θ +R2
0B

φ
0 ξ

φ) = iF | |(Γp0∇ · ξ), (D.12)

where p̃ = −p ′0ξ
r − Γp0∇ · ξ . We now introduce the variables X = ξr ,

Y = Bφ
0 ξ

θ − B θ0ξ
φ and Z = Γp0∇ · ξ . The perturbed pressure and the

components of the magnetic field are thus written as

p̃ = −p ′0X − Z, B̃ r = iF | |X

B̃ θ = −
1
r
(B θ0rX )

′ − inY, B̃φ = −
1
r
(Bφ

0 rX )
′ − imY,

whereas the divergence of ξ explicitly reads
∇ · ξ = 1

r
(r ξr )′ + imξθ − inξφ,

Z
Γp0
=
1
r
(rX )′ +

i

Bφ
0

(
mY + F | |ξ

φ
)
. (D.13)

When equations (D.11) and (D.12) are written in terms of X ,Y and
Z they become

ρ0γ
2R2

0ξ
φ = 2inr (B θ0 )

2X − iB θ0D
(rX )′

r
+ B θ0HY − inZ,

ρ0γ
2

Bφ
0

(
r 2B θ0Y + B

2ξφ
)
= iF | |Z .

An easy calculation shows that by employing (D.13) to eliminate ξφ, the
two equations above take the following form

DZ = −B2D
(rX )′

r
+ 2nrB2B θ0X − i

(
B2H + r 2R2

0ρ0γ
2
)
Y, (D.14)(

F 2
| |
+
ρ0γ

2B2

Γp0

)
Z = ρ0γ2

(
B2 (rX )

′

r
+ iDY

)
. (D.15)
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If one multiplies equation (D.15) by D and uses (D.14), it is possible to
obtain an expression forY just involving X that is

i∆Y = 2nrB θ0ΦX −DΩ
(rX )′

r
, (D.16)

having conveniently defined

Ω = F 2
| |
+ ρ0γ

2
(
1 +

B2

Γp0

)
, Φ = F 2

| |
+
ρ0γ

2B2

Γp0
,

∆ =
ρ20γ

4r 2R2
0

Γp0
+H

[
F 2
| |
+ ρ0γ

2
(
1 +

B2

Γp0

)]
.

We finally recast (D.10) in terms of the variables X ,Y and Z to get

ρ0γ
2X =

(
Z + B2 (rX )

′

r
+ iDY

) ′
−

(
F 2
| |
+ 2rB θ0 (B

θ
0 )
′
)
X + 2inrB θ0Y.

Hence, using (D.15) and (D.16), after little algebra we eventually obtain
the Hain-Lüst eigenmode equationIn cylindrical geometry the physical

poloidal field Bp is related to B θ through
the relation

Bp =
B · ∇θ
|∇θ | .

Similar relations can be obtained for Bθ
and the toroidal projections.

d
dr

(
r 2R2

0
Ω

∆
(F 2
| |
+ ρ0γ

2)
(rX )′

r

)
−

[
F 2
| |
+ ρ0γ

2 + 2rB θ0 (B
θ
0 )
′

− 2nr
(
Ω

∆
DB θ0

) ′
− 4n2r 2(B θ0 )

2Φ

∆

]
X = 0.

With some e�orts, it can be shown that in the γ → 0 limit this expression
reduces to the Newcomb equation (see (D.6)).
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E
External kinks in a cylinder

with a resistive wall

From the analysis of external kink modes presented in chapter 10, we
saw that stability can be improved by surrounding the plasma with an
ideally conducting wall. Better stability properties are indeed achieved
because magnetic di�usion in the vacuum is avoided, and flux compres-
sion prevents the development of the instability. If the wall has a finite
amount of resistivity, however, the magnetic field can di�use through the
wall, and an external instability can develop.

We shall now discuss briefly the dynamics of external kink modes
allowing for wall resistivity. Let us consider a cylindrical plasma col-
umn of radius a surrounded by a resistive wall at distance b > a. We
employ cylindrical coordinates (r, ϑ, φ) with associated metric tensor co-
e�cients gr r = 1, gϑϑ = r 2, gφφ = R2

0, grϑ = gr φ = 0 and
√
g = rR0. As

in chapter 10, the vacuum magnetic perturbation is written as ˜B = ∇χ,
with χ obeying (10.3). Similar to Eq. (10.1), we expand χ in a Fourier
series to give for the mth harmonic

(
r χ ′m

) ′
−
m2

r

(
1 +

n2r 2

m2R2
0

)
χm = 0,

where m ∼ 1 and the prime denotes, as usual, the radial derivative.
Imposing the radial component of the magnetic field to vanish at infinity,
the solution of the equation above is written as We use the relations

I ′m (r ) =
1
2
(Im+1(r ) + Im−1(r )) ,

K ′m (r ) = −
1
2
(Km+1(r ) + Km−1(r )) ,

noticing that for large r one has Im (r ) ∼
e r /
√
r and Km (r ) ∼ e−r /

√
r .

χm =


c1Km

(
nr
R0

)
+ c2Im

(
nr
R0

)
, a < r < b,

c3Km

(
nr
R0

)
, r > b,

(E.1)
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where Im andKm are the modified Bessel functions of the first and second
kind, and ci (i = 1, 2, 3) some constants.

Inside the wall one has E = ηw J where ηw , the characteristic wall
resistivity, is constant. Using Faraday’s law one obtains ∂B/∂t = −ηw∇×
J . It is customary to neglect the toroidal component of the perturbed
magnetic field,1 so that from the divergence-free condition of B one has1 That is B̃φ → 0. In fact, the toroidal

projection of the vacuum field ˜B = ∇χ
is ε2 smaller compared to the radial and
poloidal ones. This ordering is assumed
to hold within the wall as well.

B̃ϑm = −
1
imr (r B̃

r
m)
′. Hence, we obtain

∂
√
g B̃ r

∂t
= −ηw

(
∂R2

0 J̃
φ

∂ϑ
−
∂r 2 J̃ ϑ

∂φ

)
= η

[
1
r
d
dr

(
r
d (
√
g B̃ rm)

dr

)
−
m2

r 2
√
g B̃ rm

]
.

(E.2)
We now deploy the thin wall approximation: the wall is assumed

to have thickness d � b such that r (B̃ rm)
′ ∼ B̃ rmb/d � B̃ rm . Now, taking

the time dependence of the perturbation of the form exp(γt ), equation
(E.2) can be simplified as follows:

γτw B̃ rm = b
2(B̃ rm)

′′,

with τw =
b2µ0
ηw

denoting a characteristic di�usion time. By integrating

this equation across the wall, one getsIt is easy to see that
√
g B̃rm must be con-

tinuous across the wall (cf. 8.2.3).

γτwdB̃ rm(b) = b
2J(B̃ rm)

′Kb,

where J(·)Kb = (·)b+ε − (·)b−ε with ε → 0. Using this result and the fact
that B̃ rm = χ ′m , from (E.1) we have

B̃ rm = C ×



K ′m
(
nr
R0

)
+ c2/c1I ′m

(
nr
R0

)
K ′m

(
nb
R0

)
+ c2/c1I ′m

(
nb
R0

) , a < r < b,

K ′m
(
nr
R0

)
K ′m

(
nb
R0

) , r > b,

(E.3)

where C is a generic constant and

c2
c1
=

[K ′m(z )]
2γτwd/b2

I ′m(z )K ′′m (z ) − K ′m(z )I ′′m (z ) − K ′m(z )I ′m(z )γτwd/b2
,

with z = nb/R0 (recall that the radial derivative is with respect to the
variable r not z).
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a
)γ
/ω

A

Figure E.1: Growth rate of the m = 2 =
n = 1 mode vs ideal (solid line) and re-
sistive (dashed line) wall position for a
current profile of the form R2

0 J
φ/B0 =

2
q0
(1 − (r /a)2) with q (a) = 1.8 (q (0) =

q (a)/2). We used the parameters ηw =
5 × 10−7Ωm (of the order of the elec-
trical resistivity of stainless steel) with
ωA = 106s−1, a = 1m and d/a = 0.01.

For z � 1 and m integer, one has Km(z ) ≈
(m−1)!

2 (z/2)
−m and Im(z ) ≈

1
m! (z/2)

m , so that

I ′m(z )K
′′
m (z ) − K

′
m(z )I

′′
m (z ) ≈ m

2/b3, K ′m(z )I
′
m(z ) ≈ −m/(2b

2).

Therefore, it follows that

c2
c1
≈
[2m−1(m − 1)!z−m]2γτwd/b

1 + γτwd/(2mb)
.
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Plugging this into (E.3) gives

B̃ rm ∼ r
−m−1

[
1 −

γτwd/(2mb)
1 + γτwd/(2mb)

( r
b

)2m ]
,

which reduces to (10.5) for τw →∞ (ideal wall). One can introduce a typical wall di�u-
sion time defined as τ̂w = µ0db/ηw .

Let us call

D =
γτwd/(2mb)

1 + γτwd/(2mb)
. (E.4)

Note that D < 1 for γ > 0. We consider cases with γ real. Hence,
introducing the fictitious vacuum displacement ξv as in §10.1 (the same
notation is used), it easily follows that (cf. (10.12))

r ξ ′v
ξv

���
a+ε
=

2m
m − nq (a)

−
m + 1 + (m − 1)D(a/b)2m

1 −D(a/b)2m
. (E.5)

The last term on the right-hand-side of (E.5) is always negative forD < 1,
so that by comparing it with (10.11) we infer that also in the case of a
resistive wall surrounding the plasma the equilibrium can be unstable to
an external kink perturbation of helicity (m, n) only if q (a) < m/n, that
is if (10.13) is ful�lled.

Solving (10.9) yields the stability boundary and the growth rates,
the former obtained by setting D = 0 (i.e. γ → 0). From (E.5), it is
immediate to verify that the marginal boundary is independent of
b . In fact, this stability boundary coincides with the one obtained for
a cylinder surrounded by an ideally conducting wall in the limit a/b →
0, i.e. wall far from the plasma (no-wall limit). This means that if
the plasma is no-wall external-kink unstable, a resistive wall does not
suppress the instability, though it can reduce considerably the growth
rate (see Fig. E.1).

The growth rate can be computed analytically for flat current and
mass density profiles both vanishing for a < r < b . Following the proce-

dure outlined in §10.1, and using a dξ
r
m/dr
ξrm

���
a−ε
= m−1, by means of (10.9)

we obtain a cubic equation for γ

γ2

ω2
A

= 2
(
m
q (a)

− n
)2 [

1
m − nq (a)

−
1

1 −D(a/b)2m

]
, (E.6)

where D depends upon the growth rate according to (E.4). The numer-
ical solution of the dispersion relation Eq. (10.9) with (10.12) replaced
by (E.5) is show in figure E.2, and confirms the necessity of condition
(10.13) to be fulfilled for stability.
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Figure E.2: Growth rate of the m = 2 =
n = 1 mode for an ideal (thick solid line)
and resistive (thin dashed line) wall at
position b/a = 1.2. The current profile
and other parameters are as in Fig. E.1.
The mode is stable in the limit of a/b →
0 (no wall) for q (a) ≈ 1.482.References

• M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Func-
tions, Dover Publications (New York, US), 1964.



284 External kinks in a cylinder with a resistive wall

• C. G. Gimblett, Nucl. Fusion 26, 617 (1986).

• C. N. Lashmore-Davies, Phys. Plasmas 8, 151 (2001).

• K. Miyamoto, Plasma Physics for Controlled Fusion, Science and Culture
Publishing (Tokyo, JP), 2012.

• L. E. Zakharov and S. V. Putvinskii, Fiz. Plazmy 13, 118 (1987) [Sov. J. Plasma
Phys. 13, 68 (1987)].



F
A more general derivation of
the resistive layer equations

In chapter 17 we carried out the resistive layer analysis for a circular toka-
mak through a double expansion in two smallness parameters retaining
toroidicity e�ects to second order in the inverse aspect ratio. Here, the
derivation of the resistive layer equations is generalised for the case of a
generic axisymmetric configuration fully retaining curvature e�ects.

Our starting point is the set of equations (13.1)-(13.5) and (13.8).
Next, we deploy the following orderings (cf. (17.1), (17.3) and (17.4))

p̃
p0
∼
ξr

r
,

γ

ωA
∼ δ, r

∂A0

∂r
∼ A0, r

∂Ã
∂r
∼
Ã
δ
,

r − rs
rs
= x ∼ δ,

η0

r 2s γ
∼ δ2, ξϑ ∼ ξφ ∼

ξr

r δ
,
√
g B̃ϑ ∼

√
g B̃φ ∼

√
g B̃ r

r δ
∼ B0ξ

r ,

(F.1)

where the subscript 0 and a tilde denote equilibrium and perturbed quan-
tities respectively, and δ is a small parameter. As usual, rs denotes the
radius at which q (rs ) = m/n. Contrary to the analysis of chapter 17,

here just a single expansion in the layer
parameter δ will be performed. We also
recall that this is a local analysis, hence
equilibrium quantities are assumed to be
evaluated at the resonance position, i.e.
at rs .

As in §17.1, perturbations are decomposed into a resonant and non-
resonant part so that the action of the parallel gradient is given by (17.9).
Recalling that p̃ = −p ′0ξ

r + ∆p, equation (13.8) yields

ρ0γ
2√gB0 · ξ = −

√
g B̃ r p ′0 − f

′
0

[
i (mµ − n)p̃ + e imϑ−inφµ

∂p̃NR
∂ϑ

]
.

Since (mµ − n) ≈ −nsx ∼ δ, we immediately have p̃NR ∼ δp̃m . From this,
similar to (17.10), the leading order contribution to (13.4) is

µ
∂

∂ϑ
(
√
g J̃ φ)NR + p̃ ′m

∂

∂ϑ

( 1

Bφ
0

)
= 0.
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The equation above can be easily integrated to giveRecall that 〈ANR〉 = 0.

(
√
g J̃ φ)NR = −q

( 1

Bφ
0

− 〈
1

Bφ
0

〉

)
p̃ ′m . (F.2)

Let us now write the perturbed toroidal current as

√
g J̃ φ =

∂

∂r

(
N e imϑ−inφ[(

√
g B̃ϑ)m + (

√
g B̃ϑ)NR]

)
, (F.3)

from which (note that to dominant orders radial derivatives actually act
on the perturbation)

(
√
g J̃ φ)m = 〈N 〉(

√
g B̃ϑ)′m + 〈N (

√
g B̃ϑ)′NR〉.

Therefore, by means of (F.2), one can write

N [(
√
g B̃ϑ)′m + (

√
g B̃ϑ)′NR]

= 〈N 〉(
√
g B̃ϑ)′m + 〈N (

√
g B̃ϑ)′NR〉 − q

( 1

Bφ
0

− 〈
1

Bφ
0

〉

)
p̃ ′m .

If we divide by N and average in ϑ, an equation for 〈N (
√
g B̃ϑ)′NR〉 is

obtained. Eventually, this leads to

√
g J̃ φ =

e imϑ−inφ

〈1/N 〉

[
(
√
g B̃ϑ)′m + q

(
〈

1

N Bφ
0

〉 − 〈
1
N
〉
1

Bφ
0

)
p̃ ′m

]
. (F.4)

A comparison with (F.3) easily yields

(
√
g B̃ϑ)NR =

( 1/N
〈1/N 〉

− 1
)
(
√
g B̃ϑ)m

+ q
1/N
〈1/N 〉

(
〈

1

N Bφ
0

〉 − 〈
1
N
〉
1

Bφ
0

)
p̃m +C (ϑ), (F.5)

where C (ϑ) is a periodic function of ϑ with vanishing poloidal average.
The divergence-free condition of B im-
plies (cf. (7.25))

(
√
g B̃ϑ)m = −

1
im
(
√
g B̃r )′m +

n
m
(
√
g B̃φ)m,

∂

∂r
(
√
g B̃r )NR +

(
im +

∂

∂ϑ

)
(
√
g B̃ϑ)NR

− in(
√
g B̃φ)NR = 0. (F)

Furthermore, because of the smallness of p̃NR, from (13.3) we find
that

G
∂

∂ϑ
(
√
g B̃φ) = −e imϑ−inφ

(
im

Bφ
0

p̃m + inN [(
√
g B̃ϑ)m + (

√
g B̃ϑ)NR]

)
.

Plugging (F.5) into the expression above produces(
G +

µ2

〈1/N 〉

)
(
√
g B̃φ)m =

µ(
√
g B̃ r )′m

im〈1/N 〉
−
〈1/(N Bφ

0 )〉

〈1/N 〉
p̃m − µ〈NC (ϑ)〉, (F.6)

where the last term on the right-hand-side has to be considered as a
constant. One then has

(
√
g B̃ϑ)m + (

√
g B̃ϑ)NR =

G/N
〈G/N 〉 + µ2

[
−

1
im
(
√
g B̃ r )′m

+ q
(
〈

1

N Bφ
0

〉 − 〈
1
N
〉
1

Bφ
0

−
µ2

GBφ
0

)
p̃m +

〈G/N 〉 + µ2

G/N
C (ϑ) − µ2

〈NC (ϑ)〉
G

]
.

(F.7)
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Hence, allowing for (F.3) the relation above yields

(
√
g J̃ φ)m = −

G
〈G/N 〉 + µ2

(
√
g B̃ r )′′m
im

+ q

( G 〈 1
N Bφ0
〉

〈G /N 〉 + µ2
− 〈

1

Bφ
0

〉

)
p̃ ′m . (F.8)

Finally, if we use (17.10) and (17.11) into (17.15) we see that The result is exact to leading order in δ.
For (
√
g B̃φ)0 we use the same arguments

discussed at the end of section 17.2.1.

(
√
g B̃φ)′m±ℓ =

0, thus suggesting
(
√
g B̃φ)NR = D(ϑ), (F.9)

having used (17.7) with D some function of the poloidal angle.
Now, we want to express (

√
g B̃ r )m as a function of ξrm and p̃m . To

achieve our purpose, we shall take the contravariant radial projection of
the induction equation which is (17.31).1 If one considers the dominant 1 Notice that

√
g J̃ φ = (N

√
g B̃ϑ)′.

contributions, it is easy to see that ξrNR ∼ δξrm . Therefore, we employ
(F.8) to work out the resonant component of (17.31) giving[

1−
η0G 〈N 〉

γ

(G/〈N 〉 + µ2
〈G/N 〉 + µ2

) d 2
dr 2

]
(
√
g B̃ r )m = i f ′0 (mµ − n)ξ

r
m

− imq
η0G 〈N 〉

γ

(
〈

1

N Bφ
0

〉
G/〈N 〉 + µ2

〈G/N 〉 + µ2
−

1
〈N 〉
〈
1

Bφ
0

〉

)
p̃ ′m . (F.10)

To close the system, it is now necessary to determine the equations for
the resonant radial fluid displacement and perturbed pressure.

Staring with the expressions for the poloidal and toroidal fluid dis-
placements, these are obtained from the contravariant poloidal and
toroidal projections of the induction equation (13.5) which, to the ac-
curacy we need, read (i = ϑ, φ)(

1 −
η0GN
γ

∂2

∂r 2

)
(
√
g B̃ i ) =

√
gB0 · ∇ξ i −

√
g∇ · (ξB i0). (F.11)

Because of the ordering of the perturbed pressure (see (F.1)) it follows
that ∇ · ξ ∼ 1,2 2 Recall that ∆p = −Γp0∇ · ξ .therefore to leading order equations (F.11) give

µ∂ϑξ
φ
NR = ∂ϑξ

ϑ
NR =

√
g
(
ξϑm + ξ

ϑ
NR

)
∂ϑ(1/

√
g ),

whose solution is given by Eq. (17.22) that is

µξ
φ
NR = ξ

ϑ
NR =

(
1/
√
g

1/
√
g
− 1

)
ξϑm . (F.12)

One also finds that Eq. (F.11) with i = φ, can be written as (13.19)
showing that to leading order in δ we have (cf. (17.19))

ξϑm = µξ
φ
m −

1
im

dξrm
dr

. (F.13)

Repeating the calculations of section 17.2.2 shows that ξφm is given by
equation (17.24), thus determining completely ξϑm which is

ξϑm = −
〈1/
√
g 〉

G + µ2〈N 〉
×

[
〈R2〉

im
dξrm
dr
+ µ

R2
0/B

2
0

γ2/ω2
A

(
i (mµ− n)p̃m +

p ′0
f ′0
(
√
g B̃ r )m

)]
.

(F.14)
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We now seek the equation for ξrm . In analogy with section 17.3.2, the
resonant part of the vorticity equation reads

ρ0γ
2

f ′0

〈
gN (ξϑm + ξ

ϑ
NR)

〉′
= i (mµ − n)(

√
g J̃ φ)m +

〈
(
√
g B̃ϑ)NR

∂

∂ϑ

( J φ0
Bφ
0

)〉
−

[√g
f ′0

(
J ϑ0

∂

∂ϑ
+ J φ0

∂

∂φ

)
(
√
g B̃φ)

]
m
− im

〈 1

Bφ
0

〉′
p̃m +

〈
p̃ ′NR

∂

∂ϑ

( 1

Bφ
0

)〉
.

(F.15)

Using (F.6) and (F.9), one can verify that the term proportional to the
toroidal magnetic field gives to leading order in δThe following equilibrium relations

prove to be very useful

〈
1

Bφ0
〉p ′0 = 〈

√
g J ϑ0

〉
− µ〈
√
g J φ0 〉,

∂

∂ϑ

( J φ0
Bφ0

)
= −q

p ′0
f ′0

∂

∂ϑ

( 1

Bφ0

)
.

[
√
g
(
J ϑ0

∂

∂ϑ
+ J φ0

∂

∂φ

)
(
√
g B̃φ)

] ′
m
=

µp ′0〈1/B
φ
0 〉

〈G/N 〉 + µ2

(
(
√
g B̃ r )′m−imq 〈

1

N Bφ
0

〉p̃m
) ′
.

(F.16)
It is easily recognised that the second term on the right-hand-side of
(F.15) can be recast as〈

(
√
g B̃ϑ)NR

∂

∂ϑ

( J φ0
Bφ
0

)〉
= q

p ′0
f ′0

〈 1

Bφ
0

∂

∂ϑ
(
√
g B̃ϑ)NR

〉
. (F.17)

Thanks to (17.25), the contribution due to the non-resonant perturbed
pressure becomes (use (F))〈

p̃ ′NR
∂

∂ϑ

( 1

Bφ
0

)〉′
= q

ρ0γ
2

f ′0

〈 1

Bφ
0

(
√
gB0 · ξ)

′
NR

〉′
− q

p ′0
f ′0

〈 1

Bφ
0

(
im(
√
g B̃ϑ)NR +

∂

∂ϑ
(
√
g B̃ϑ)NR

)〉′
, (F.18)

where in the last averaged term it is only necessary to compute the first
contribution which, by means of (F.7), reads〈 (√g B̃ϑ)NR

Bφ
0

〉′
= −

G
〈G /N 〉 + µ2

(
〈

1

N Bφ
0

〉 − 〈
1

Bφ
0

〉〈
1
N
〉

) (√g B̃ r )′′m
im

+q
( 〈G/(N Bφ

0 )〉 + µ
2〈1/Bφ

0 〉

〈G/N 〉 + µ2
〈

1

N Bφ
0

〉 − 〈
1

N (Bφ
0 )

2
〉

)
p̃ ′m . (F.19)

Now, making use of (17.23) and (F.13) shows that

1
f ′0
(
√
gB0 · ξ)NR =

q
im

(
R2 − 〈R2〉

) dξrm
dr
+ µ

N − 〈N 〉
〈1/
√
g 〉

ξϑm,

which then allows us to simplify the inertial contributions appearing in
(F.15) as follows

〈
gN (ξϑm + ξ

ϑ
NR)

〉
=
〈
√
gN 〉

〈1/
√
g 〉 ξ

ϑ
m .

ρ0γ
2

f ′0

[ 〈√gN 〉
〈1/
√
g 〉
ξϑm −

〈 (√gB0 · ξ)NR

µBφ
0

〉] ′
= q 2

ρ0γ
2

im f ′0

[
〈R2〉2

G + µ2〈N 〉
−
〈R4〉

G

] d 2ξrm
dr 2

−
µ〈1/Bφ

0 〉

G/〈N 〉 + µ2

(
i (mµ − n)p̃m +

p ′0
f ′0
(
√
g B̃ r )m

) ′
. (F.20)
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Thence, by collating (F.8) and (F.16)-(F.20), the vorticity equation (F.15)
can be eventually rearranged in the following form

q 2
ρ0γ

2

im f ′0

[
〈R2〉2

G + µ2〈N 〉
−
〈R4〉

G

] d 2ξrm
dr 2

= −
G (mµ − n)/m
G/〈N 〉 + µ2

×

×

[G/〈N 〉 + µ2
〈G /N 〉 + µ2

(
√
g B̃ r )′′m − imq

(
〈

1

N Bφ
0

〉
G/〈N 〉 + µ2

〈G/N 〉 + µ2
−

1
〈N 〉
〈
1

Bφ
0

〉

)
p̃ ′m

]
+ q

p ′0
f ′0

G
G/〈N 〉 + µ2

(
〈

1

N Bφ
0

〉
G/〈N 〉 + µ2

〈G/N 〉 + µ2
−

1
〈N 〉
〈
1

Bφ
0

〉

)
(
√
g B̃ r )′m

+ im

(
µµ′〈1/Bφ

0 〉

G/〈N 〉 + µ2
−

〈 1

Bφ
0

〉′
− q 2

p ′0
f ′0

( G 〈 1
N Bφ0
〉2

〈G/N 〉 + µ2
− 〈

1

N (Bφ
0 )

2
〉

))
p̃m + Θ,

(F.21)

where Θ is some constant.
It only remains to provide an expression for the resonant perturbed

pressure. Let us write (F.11) as (cf. (13.19))

Π
ϑ ≡

(
1 −

η0GN
γ

∂2

∂r 2

) √
g B̃ϑ

ψ ′0
= −

(
1
ψ ′0

∂(ψ ′0ξ
r )

∂r
− q

∂

∂φ

(
ξϑ − µξφ

))
,

(F.22)

Π
φ ≡

(
1 −

η0GN
γ

∂2

∂r 2

) √
g B̃φ

f ′0
= −

(
1
f ′0

∂(f ′0 ξ
r )

∂r
+

∂

∂ϑ

(
ξϑ − µξφ

))
.

(F.23)

From (F.12), i.e. (17.22), it is obvious that (ξϑ − µξφ)NR ∼ ξrm/r , hence if
we subtract the non-resonant parts of (F.22) and (F.23) it easily follows
that to the relevant orders

∂

∂ϑ
(ξϑNR − µξ

φ
NR) = Π

ϑ
NR − Π

φ
NR. (F.24)

When the non-resonant contribution of (F.23) is plugged into (17.21),3 3 Explicitly, (F.23) yields

∂ξrm
∂r
+ im(ξϑm − µξ

φ
m )

+
f ′′0
f ′0

ξrm = −Π
φ
m,

∂ξrNR
∂r
+ im(ξϑNR − µξ

φ
NR)

+
∂

∂ϑ
(ξϑNR − µξ

φ
NR) = −Π

φ
NR.

Equation (F.22) can be arranged simi-
larly.

by multiplying by
√
g and averaging in ϑ, we immediately obtain (cf.

(17.28) and (17.29))

〈
√
gΠφ

NR〉 =i (mµ − n)〈
√
g ξφNR〉 +

(
〈
∂
√
g

∂r
〉 − 〈
√
g 〉〈

1
√
g

∂
√
g

∂r
〉

)
ξrm

− 〈
√
g
∂

∂ϑ

(
ξϑNR − µξ

φ
NR

)
〉 − 〈
√
g 〉〈

∂
√
g

∂ϑ

ξϑNR
√
g
〉.

It therefore follows that by making use of (F.24) one has

〈
∂
√
g

∂ϑ

ξϑNR
√
g
〉 = i (mµ− n)

〈
√
g ξφNR〉

〈
√
g 〉

+

(
〈
√
g 〉′

〈
√
g 〉
− 〈

1
√
g

∂
√
g

∂r
〉

)
ξrm −

〈
√
gΠϑ

NR〉

〈
√
g 〉

.

Thus, if we plug the quantity above into (17.27) and deploy the def-
inition of perturbed pressure, by means of the resonant contribution of
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(F.23) we eventually obtain

−
p̃m + p ′0ξ

r
m

Γp0
= (∇ · ξ)m =

( 〈√g 〉′
〈
√
g 〉
−
f ′′0
f ′0

)
ξrm

+ i (mµ − n)
(
ξ
φ
m +
〈
√
g ξφNR〉

〈
√
g 〉

)
−

(
Π
φ
m +
〈
√
gΠϑ

NR〉

〈
√
g 〉

)
.

Using (F.10) to express [(mµ − n)ξrm]
′, by means of (F.2), (F.6), (F.13),

(F.14) and (F.19), after some manipulations it can be shown that the
equation above can be finally arranged as

Here we list some useful relations:

Π
ϑ
NR =

(
√
g B̃ϑ)NR
ψ′0

−
η0G
γψ′0

∂

∂r
(
√
g J̃ φ)NR,

Π
φ
m =

(
1 −

η0G 〈N 〉
γ

d2

dr 2

) (√g B̃φ)m
f ′0

,

f ′′0
f ′0
=
〈
√
g 〉′

〈
√
g 〉
−
〈1/Bφ0 〉

′

〈1/Bφ0 〉
,

〈
1

(Bφ0 )
2
〉 =

〈R4〉

(G f ′0 )
2
, 〈

1

Bφ0
〉2 =

〈R2〉2

(G f ′0 )
2
,

R2
0/B

2
0

γ2/ω2
A

=
1

ρ0γ2
.

−
p̃m + p ′0ξ

r
m

Γp0
=
qG/〈1/Bφ

0 〉

G/〈N 〉 + µ2

[
〈

1

N Bφ
0

〉
G/〈N 〉 + µ2

〈G/N 〉 + µ2
−

1
〈N 〉
〈
1

Bφ
0

〉

] (√g B̃ r )′m
im f ′0

−

(
q
f ′0

)2
η0G
γ〈R2〉

[
〈R4〉

G
−

〈R2〉2

G + µ2〈N 〉

]
p̃ ′′m −

i p ′0
f ′0 ρ0γ

2

(mµ − n)(
√
g B̃ r )m

〈
√
g 〉(G + µ2〈N 〉)

+
(mµ − n)2

〈
√
g 〉(G + µ2〈N 〉)

R2
0/B

2
0

γ2/ω2
A

p̃m +
[ 〈1/Bφ

0 〉
′

〈1/Bφ
0 〉
−

µµ′〈N 〉
G + µ2〈N 〉

]
ξrm

−
q 2

〈
√
g 〉

(G 〈1/(N Bφ
0 )〉

2

〈G/N 〉 + µ2
− 〈

1

N (Bφ
0 )

2
〉

)
p̃m + Σ, (F.25)

where Σ is another constant whose value is not important.
In conclusion, the resistive layer dynamics is determined by the closed

system of equations represented by (F.10), (F.21) and (F.25). These re-
duce to (17.30), (17.35) and (17.42) in the limit of a thin tokamak (see
next section).

Recovering the GGJ equations

For completeness, we shall show that the layer equations that we have
just derived are equivalent to those of Glasser (1975). We first define the
quantities

Λ∗ = q 2
[
〈R4〉

G
−

〈R2〉2

G + µ2〈N 〉

]
, ζ = G 〈N 〉

G /〈N 〉 + µ2

〈G/N 〉 + µ2
, ηR = η0ζ,

Q0 =

[
s 2m2(f ′0 )

2ηR

q 2r 2s (G + µ2〈N 〉)

ζ

ρ0Λ∗

]1/3
, Ψ0 =

q 2r 2s Q
2
0(G + µ

2〈N 〉)1/2

s 2m2(f ′0 )
2ηR

√
ρ0Λ∗
ζ

,

and then we multiply the induction, vorticity and pressure equations by
the following factors:

Ψ0

i
× (F.10),

ir 2s q
2

ζ

(
G + µ2〈N 〉
ms 2 f ′0

)
× (F.21),

(f ′0 )
2ζ 〈
√
g 〉

p ′0Λ∗
× (F.25).

Therefore, upon introducing the variables

Q = γ/Q0, Ξ = ξrm, Ψ =
Ψ0

i
(
√
g B̃ r )m, Υ = −p̃m/p ′0,

X =
f ′0 (mµ − n)

Q0(G + µ2〈N 〉)1/2

√
ζ

ρ0Λ∗
,
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after some tedious algebra the resistive equations can be presented in
the form chosen by Glasser (1975) which is

d 2Ψ
dX 2

−H
dΥ
dX
= Q (Ψ − X Ξ),

Q 2 d
2Ξ

dX 2
−QX 2

Ξ +QXΨ +H
dΨ
dX
+ (E + F )Υ + Θ̂ = 0,

1
Q
d 2Υ
dX 2

−
X 2

Q 2
Υ −G∗Υ + (G∗ − KE)Ξ +

X
Q 2

Ψ − K
(
H
dΨ
dX
+ FΥ

)
+ Σ̂ = 0,

where Θ̂ and Σ̂ are some rescaled constants and the parameters E, F ,
G∗, H and K are defined as4 4 The Mercier criterion for stability is

written as

DI ≡ E + F +H −
1
4 < 0,

whereas resistive interchange modes are
stable if

DR ≡ E + F +H
2 < 0.

These criteria assess stability of each flux
surface against such localised perturba-
tions.

E =
q 2r 2s p

′
0

s 2 f ′0 ζ
(G + µ2〈N 〉)

(
µµ′〈1/Bφ

0 〉

G/〈N 〉 + µ2
−

〈 1

Bφ
0

〉′)
,

F =
q 4r 2s
s 2ζ

(
p ′0
f ′0

)2
(G + µ2〈N 〉)

(
〈

1

N (Bφ
0 )

2
〉 −

G 〈1/(N Bφ
0 )〉

2

〈G/N 〉 + µ2

)
,

G∗ =
(f ′0 )

2ζ 〈
√
g 〉

Γp0Λ∗
, H =

q 2rs p ′0
s f ′0

(
〈

1

N Bφ
0

〉 −
1
〈N 〉
〈
1

Bφ
0

〉
〈G/N 〉 + µ2

G/〈N 〉 + µ2

)
,

K =

(
s ζ(f ′0 )

2

qrs p ′0

)2 [
Λ∗(G + µ2〈N 〉)

]−1
.

Letting V (r ) be the volume enclosed by the surface labelled by r , we
have V (r ) −V (rs ) = V ′(rs )(r − rs ) = 4π2〈

√
g 〉(r − rs ), Notice that (mµ − n) = −nsx and V (r ) =

2π
∫ r
0 dr

∫ 2π
0 dϑ

√
g .

so that our radial
variable X can be written as

X = −
V (r ) −V (rs )

X0
, X0 = 4π2〈

√
g 〉
rsQ0

ns f ′0
(G + µ2〈N 〉)1/2

√
ρ0Λ∗
ζ

.

Thus, compared to Glasser (1975), we have flipped the sign of X and
Ψ. The large aspect ratio limiting expressions of some of the quantities
listed above, upon using the metric coe�cients presented in §5.3, read To facilitate the comparison with Glasser

(1976), we recall that from (4.26) and
(4.34) one has

R0∆
′ r

3

q 2
=

∫ r

0

(
r 3

q 2
− 2

r 2R2
0p
′
0

B2
0

)
dr .

Λ∗ ' r 3s R0(1 + 2q 2), Q0 '

(
(snB0)

2η0

(rsR0)
2ρ0(1 + 2q 2)

)1/3
,

X0 ' 4π2
(R0rs )4/3η

1/3
0

(snB0)
1/3
[ρ0(1 + 2q 2)]1/6,

E '
2q 2rs p ′0
s 2B2

0

[
1 −

1
q 2
+ s

R0

rs
∆
′ −

R2
0p
′
0q

2

rsB2
0

(
1 +

1
2q 2

)]
,

F ' 2
(R0p ′0q

2)2

s 2B4
0

(
1 +

1
2q 2

)
, G∗ '

B2
0

Γp0(1 + 2q 2)
,

H ' −
2q 2R0p ′0
sB2

0

∆
′, K '

s 2B4
0

(qR0p ′0)
2

/
(1 + 2q 2).
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Symbols

Here we provide a list of commonly used symbols. For some of these
quantities, the page where their definition can be found is also indicated.

Physical constants
kB Boltzmann constant
ε0 vacuum permittivity
µ0 vacuum permeability
e proton charge

Special functions
Γ Gamma function
Ψ Digamma function
K complete elliptic integral of first kind
E complete elliptic integral of second kind

2F1 hypergeometric function
U (Kummer’s) confluent hypergeometric function
M (Tricomi’s) confluent hypergeometric function
Iν modified Bessel function of first kind
Kν modified Bessel function of second kind
H Heaviside step function

Geometry
(R,Z, φ) cylindrical coordinate system

(right handed, φ clockwise from above)
(r, θ, φ) toroidal coordinate system (right handed,

θ counterclockwise in the poloidal plane, φ clockwise from above)
(r, ϑ, φ) straightened toroidal coordinate system (right handed,

ϑ counterclockwise in the poloidal plane, φ clockwise from above)
r radial variable, 32
θ generic poloidal angle, 32
ϑ rectified poloidal angle, 55
φ geometric toroidal angle, 32
√
g Jacobian, 24, 38

a minor radius, 38
R0 major radius, 27, 37
ε inverse aspect ratio, 39
∆ Shafranov shift, 38



Operations
(·) complex conjugation
J·K jump across a point, 106
′ ≡ d

dr or
∂
∂r radial derivative, 40

· poloidal average, 61
∼ similar order indicator, 39

Other quantities
ρ mass density
T temperature
p pressure
η resistivity
Ω toroidal rotation
B magnetic field
B modulus of the magnetic field
B0 modulus of the magnetic field on the magnetic axis, 34
F covariant toroidal magnetic field, 32
ψ poloidal flux, 33
Φ toroidal flux, 33
f ′0 radial derivative of the toroidal flux, 82
q safety factor, 34, 56
µ rotational transform, 93
β ratio of kinetc over magnetic pressure, 34, 43
s magnetic shear, 42
α ballooning parameter 45
S Lundquist number, 179
M Mach number, 52
rL Larmor radius, 6
Ωs cyclotron frequency (species s ), 18
ωA Alfvén frequency, 84
γ growth rate, 73
rs (or rm) resonance of the mode (m, n), 76
k | | ”wave vector” of the mode (m, n), 93
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Summary table for internal ideal MHD









Index

∇B drift, 7

adiabatic index, 13
Alfvén

eigenmodes, 79
frequency, 84
speed, 84
time, 179
wave, 179

Alfvénic timescales, 133, 139
anomalous resistivity, 17
asymptotic matching, 102
auxiliary field, 191
average binding energy, 3
averaging method, 165

ballooning
equation, 160
equation in Fourier space, 164
generalised equation, 162
limit, 217
modes, 155
parameter, 45

banana orbits, 260
basis function, 201
Bessel function, 150, 151, 282
Boltzmann

constant, 13, 175, 266
kinetic equation, 12

boundary conditions, 72, 81, 106
Bussac stability criterion, 113

Cartesian coordinate, 24
Cauchy

argument principle, 251
initial value problem, 198

Christo�el symbols, 26
classical tearing modes, 190
closure, 12

fluid, 13
cofactor, 24
collision time, 18
complex conjugation, 73
compressibility, 81
confinement

inertial, 5
magnetic, 5

confluent hypergeometric function,
184, 228, 247

contravariant, 24
basis, 25, 32
components of the metric tensor,

24
convective derivative, 13
convolution, 77

theorem, 209
coordinate lines, 24
coordinates

curvilinear, 23
orthogonal cylindrical, 26
orthogonal toroidal, 27

Coulomb
gauge, 271
logarithm, 175

covariant, 24
basis, 25, 32
components of the metric tensor,

24
crash, 205
current

channel, 137, 194
driven instability, 133
hole, 41
loop, 51

curvature, 36
e�ects, 233
radius, 27, 42
vector, 270

curvature drift, 8
cyclotron frequency, 258

ion, 18
cylindrical

approximation, 27
coordinates, 32, 36
geometry, 27

Debye length, 13
Deuterium, 4
diagonal unit tensor, 16
di�usion

equation, 178
time, 178, 282

Digamma function, 152
Dirac-delta, 106, 125, 138
dispersion relation, 120
disruption, 69, 133, 189
distribution function, 11

bi-Maxwellian, 266
Maxwellian, 18

dominant mode, 83
double tearing mode, 200

E × B drift, 7
Edge Localised Mode, 217
Edge Localised Modes (ELMs), 69,

156, 172
eigenmode equations, 79
eigenvalue, 73, 80
electric permittivity, 175
elliptic integral, 51

first kind, 259
second kind, 261

energy confinement time, 4
energy conservation, 269
energy principle, 74, 176
equilibrium
β limit, 43, 51
stable, 69
static, 31, 70, 80
unstable, 69

error function, 209
Euler’s formula, 164
external kink, 133

fast-growing modes, 84
field line bending, 75, 76, 119
first stability region, 171, 225
FLR model, 19
fluid

displacement, 70, 80
flute instabilities, 143
flux

compression, 48, 281
conservation, 190
freezing, 14, 175
label, 32
surface, 32
tube, 189

flux conserving tokamak, 43
force balance, 31, 39, 41
force operator, 176
Fourier

harmonics, 75
inverse, 183
inversion theorem, 164



projection, 77
series, 75
space, 163, 221
transform, 163

frozen-in theorem, 14, 76, 175
functional, 169
fusion ashes, 69

Galilean transformations, 71, 271
Gamma function, 152, 184, 229
Gaussian pillbox, 71
GGJ equations, 234, 244, 290
global modes, 82
Grad-Shafranov equation, 31, 36
growth rate, 73
guiding centre, 6, 257

GCP model, 20
GCP model, 18

gyro-phase angle, 20
gyro-radius, 6, 18

H-mode, 156, 217
Hain-Lüst equation, 278, 280
heating

neutral beam injection (NBI), 9
radio-frequency (RF), 9

Heaviside step function, 138, 167
helical

coordinate, 191
field, 257
flux, 190

helicity, 75
high-field-side, 7, 155
high-pressure plasma, 114
high-shear region, 119
hollow safety factor, 115
hoop force, 43, 44
hybrid scenarios, 115
hypergeometric

di�erential equation, 150
function, 51, 151

ideal region, 179, 218
ignition, 4
induction equation, 17, 177
inertia, 95

enhancement, 102, 182
inertial

contribution, 95
layer, 88, 101

infernal modes, 119
instability

ideal, 69
resistive, 69

integral approach, 169
interchange

modes, 143
parity, 152

internal inductance, 43
internal kink, 96, 99, 119, 205, 278
internal mode, 99
inverse aspect ratio, 39
iron core, 7
isobars, 32
isothermal flux surface, 52, 70
isotropic plasma, 269

Jacobian, 24

kinetic
energy, 257
pressure, 13, 71

Kruskal-Shafranov criterion, 138
Kummer’s equation, 228

L-H transition, 156
Laplace transform, 72
large aspect ratio, 39
Larmor radius, 6, 258, 260
Lawson criterion, 4
layer ordering, 88, 92
Levi-Civita symbol, 26
linearisation, 70
linearised MHD equations, 80
localised modes, 82
logarithmic jump, 192
Lorentz transformation, 71
low-field-side, 7, 155
low-shear region, 119
lower sideband, 104, 121
Lundquist number, 179, 183, 246

m = 1 reconnecting mode, 209
m = 1 resistive mode, 206
Mach number, 52
magnetic

axis, 32, 189
bottle, 5
di�usion, 175, 281
flux, 8, 190, 209
islands, 17, 175, 189
mirror, 5
moment, 6, 20, 257, 263
pressure, 34, 71
reconnection, 17
separatrix, 191
shear, 76
surface, 31, 32
topology, 175, 189, 209

magnetic islands, 189
magneticshear, 42
main mode, 83
major radius, 27, 37, 275
marginal stability boundary, 18, 73
Mathieu functions, 169
Mercier

contribution, 221
correction, 162, 225
modes, 143
stability criterion, 149

metric coe�cients, 61
metric tensor, 24
MHD

ideal equations, 13
ideal model, 13
conservation laws, 14
drift model, 18, 19
force operator, 71
model, 11
resistive equations, 17
resistive model, 17

minor radius, 38
mirror

criterion, 6
field, 6

mode coupling, 78, 85
mode locking, 189
modified tearing instability criterion,

225, 252
momentum equation, 14, 176
monochromatic, 78, 83
multi-fluid equations, 12

neoclassical tearing modes, 190
Newcomb equation, 95, 275
no-wall limit, 138, 283
non-linearity, 70
non-monotonic, 128
normal mode analysis, 72, 176
Nyquist, 196, 202, 251

Ohm’s law, 17
Ohmic heating, 8
orbit theory, 5
outer region, 218

parallel gradient, 75
parity, 156
particle

confinement, 257
loss cones, 6
passing, 258
trajectory, 257
trapped, 258

pitch
angle, 55
field line, 55

plasma, 4
current, 8
frequency, 13
rotation, 52

plasma β , 34
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Shafranov shift, 31, 38
shaping parameters, 38
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spectrum, 73
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stochastic, 189
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trial function, 169
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vacuum permeability, 13
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Vlasov equation, 12, 20
volume average, 34
vorticity equation, 81, 176

wall
di�usion time, 283
ideal, 43, 71, 133, 193, 198
resistive, 71, 281
resistivity, 282

wave vector, 76
parallel, 93

WKB approximation, 194
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