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A Langevin model for real-time Brownian dynamics of interacting nano-defects in
irradiated metals.
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In-situ real-time electron microscope observations of metals irradiated with ultra-high-energy
electrons or energetic ions show that the dynamics of microstructural evolution in these materials is
strongly influenced by long-range elastic interactions between mobile nano-scale radiation defects.
Treating long-range interactions is also necessary for modelling microstructures formed in ex-situ
high-dose-rate ion-beam irradiation experiments, and for interpolating the ion-beam irradiation data
to the low-dose-rate limit characterizing the neutron irradiation environments of fission or fusion
power plants. We show that simulations, performed using an algorithm where nano-scale radiation
defects are treated as interacting Langevin particles, are able to match and explain the real-time
dynamics of nano-defects observed in in-situ electron microscope experiments.

PACS numbers: 61.72.-y, 61.80.-x, 61.82.Bg

I. INTRODUCTION

Recent in-situ electron microscope observations, pro-
viding real-time visualization of dynamics of defects pro-
duced by ultra-high-energy electron irradiation1–3, or
showing microstructural evolution occurring under ion
beam4–6 irradiation, have revolutionized our understand-
ing of how properties of metals and alloys change in
the extreme radiation and thermal environments of a
fission or a fusion power plant. The key feature of in-
situ electron microscopy is its ability to exhibit the time-
dependent dynamics of migration, interaction, and trans-
formation of radiation defects, and to visualize the en-
tire complexity of evolving defect and dislocation net-
works. For example, in-situ electron microscope obser-
vations provided evidence of violation of the Burgers
vector conservation law for dislocations on the nano-
scale1. This gave a vital clue needed for modelling mi-
croscopic processes responsible for the formation of un-
usual high-temperature dislocation structures in iron7,8,
and for explaining the origin of the loss of strength of
ferritic-martensitic steels9 at high temperatures exceed-
ing 500◦C.

The development of in-situ electron microscope tech-
niques was partially stimulated by the application of
large-scale molecular dynamics (MD) simulations to
modelling mobile defects and clusters of defects (for
example nano-dislocation loops) in iron and other
metals10,11,14–17. A hypothesis stating that clusters of
point defects play a significant part in microstructural
evolution of irradiated materials was proposed in the

1990s within the framework of the ‘production bias’ radi-
ation damage model18. However, it is only recently that
in-situ electron microscope observations1–6 confirmed the
fact that mobile and immobile clusters of point defects
form an integral part of the microstructure of an irradi-
ated material.

Somewhat surprisingly, interpreting in-situ real-time
electron microscope observations remains genuinely prob-
lematic. The ten orders of magnitude mismatch be-
tween the nanosecond (10−9s) timescale accessible to
an MD simulation10,11,14–17, and the 10 to 1000 sec-
onds timescale of a typical in-situ electron microscope
observation1–6, impedes meaningful quantitative analy-
sis. The need to develop a model, with which real-time
observations could be simulated and interpreted, does
not only stem from the fact that electron microscopy
per se is a highly quantitative technique for character-
izing materials19,20. Recently the question about how to
model, in real time, the evolution of an ensemble of mo-
bile interacting radiation defects has been brought into
focus by the rapidly growing applications of ion-beam
sources to simulating neutron irradiation damage effects
in fission and fusion materials.

In-situ electron microscope observations visualize the
dynamics of microstructure corresponding to the limit
of high irradiation dose rates, approaching 10−3 dpa·s−1

(∼ 80 dpa per 24 hours) for the ultra-high-voltage elec-
tron irradiation case1–3, and 6×10−4 dpa·s−1 to 8×10−4

dpa·s−1 (∼ 50 to 70 dpa per 24h) for the in-situ ion-
beam irradiation case4–6. These dose rates are similar
to the 10 dpa per 24h to 100 dpa per 24h range of dose
rates characterizing irradiation conditions in ex-situ ion-
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beam facilities21. In-situ electron microscopy, and ex-
situ ion-beam irradiation experiments generate similar
microstructures, corresponding to a similar range of high
irradiation dose rates. These dose rates are several or-
ders of magnitude higher than the rates associated with
the irradiation environment of a fission nuclear reactor22,
an accelerator-driven system like the International Fu-
sion Materials Irradiation Facility (IFMIF)23, or a fusion
power plant24.

Is there a fundamental difference between microstruc-
tures formed in the limits of low and high dose rates?
The density of defects generated by irradiation in a unit
volume of the material per unit time is the main quantity
distinguishing defect production under intense high-dose-
rate ion-beam or ultra-high-voltage-electron irradiation,
and under low-dose-rate neutron irradiation. This quan-
tity is much higher for high-energy electron or ion beam
irradiation than for neutron irradiation. Since the fre-
quency of interaction events in an ensemble of moving
particles is proportional to the square of the density of
particles, one should expect that various phenomena as-
sociated with the presence of interaction between radia-
tion defects should be more pronounced in the limit of
high irradiation dose rate, and should be readily seen in
in-situ electron microscope experiments. Indeed, there
is experimental evidence for the effect of dose rate on
microstructural evolution of irradiated materials25–27.

In-situ electron microscope observations show that si-
multaneous, as opposed to sequential, production of mo-
bile defects at high irradiation dose rates results in mi-
crostructural evolution that is influenced by the ‘collec-
tive’ dynamical events involving correlated motion of sev-
eral defects, leading to the formation of defect rafts, coa-
lescence of defects, and the eventual self-organization and
spatial ordering of defects. All these phenomena are rou-
tinely seen in in-situ electron microscope experiments1–6,
suggesting that interaction between radiation defects
does play a significant part in the dynamics of microstruc-
tural evolution in the limit of high irradiation dose rates.

The fact that elastic interactions between defects
might affect microstructural evolution of a material un-
der irradiation was noted by Hudson et al.28,29 who in-
vestigated, using kinetic Monte Carlo simulations, the
evolution of ensembles of interacting defects. The kinetic
Monte Carlo model developed by Hudson et al.29 treated
the effect of elastic forces through the use of hopping
probabilities biased by the spatially-dependent elastic
fields. The study showed that while the effect of elastic
forces on the evolution of ensembles of one-dimensionally
migrating dislocation loops was indeed significant28, in
agreement with earlier MD predictions showing that va-
cancies pin the motion of glissile dislocation loops30,31,
the elastic interactions between three-dimensionally mi-
grating defects do not appear to have an appreciable ef-
fect on microstructural evolution29. For the treatment
of a general case of long-term microstructural evolution,
further work is clearly needed to elucidate the role of elas-
tic interactions between the defects. Recent implemen-

tations of accelerated kinetic Monte Carlo algorithms for
simulating the accumulation of radiation damage32,33 are
however based on the assumption that defects perform
unbiased (by internal elastic fields) three-dimensional mi-
gration in the material, and interactions between de-
fects are described as short-range inelastic ‘collisions’.
These simulations do not include the treatment of long-
range elastic forces acting between the defects, and be-
tween defects and dislocations, and moreover do not
take into account the effects of one-dimensional Brown-
ian motion of prismatic dislocation loops often observed
experimentally1–6.

In this paper we describe a possible alternative (to
kinetic Monte Carlo) approach to simulating the long
timescale evolution of radiation-induced microstructures.
The development of this approach has been stimulated
by the fact that understanding the microscopic mecha-
nisms driving microstructural evolution, and matching
simulations to experiment, requires modelling particu-
lar microscopic realizations of evolving defect structures,
like those observed by in-situ electron microscopy. In-
deed, certain properties of an irradiated material, for
example its fracture toughness or thermal conductivity,
depend on the statistical characteristics of irradiation-
induced microstructure involving many defects and dis-
locations, and hence represent self-averaging quantities.
At the same time, validating a microstructural evolution
model requires understanding the dynamics of interac-
tion between radiation defects, and comparing the results
of simulations with local experimental observations, often
involving only a few (e.g. two or three) defects, where no
statistical ensemble averaging is possible.

Bearing this in mind, in the approach described be-
low we treat defects as interacting objects satisfying a
set of linked Langevin equations of motion. It is known
that in terms of ensemble averaged quantities, solutions
of linked Langevin equations in the strong friction (over-
damped) limit are equivalent to the solutions of a multi-
dimensional diffusion equation34,35, and hence they are
equivalent to solutions found using kinetic Monte Carlo
simulations29. The advantage offered by the Langevin
equations-based treatment is that integrating stochastic
differential equations for an ensemble of interacting ob-
jects is computationally no more difficult than integrat-
ing them for an ensemble of non-interacting particles.

There are further obvious computational advantages
offered by the similarity between the Langevin and the
MD integration algorithms, like the ease of paralleliz-
ing the method. Also, by solving the Langevin equa-
tions we explicitly follow the trajectories of migrat-
ing defects36,37 corresponding to the initial conditions
defined by experimental observations, whereas kinetic
Monte Carlo algorithm29,33 operates on the logarithmic
timescale, which speeds up calculations but makes it
more difficult to compare simulations with observations.
Hence, the modes of microstructural evolution predicted
by the Langevin dynamics model can be matched and
verified explicitly against real-time in-situ electron mi-
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croscope experiments. Furthermore, the speed of the
integration algorithm for Langevin dynamics is entirely
independent of whether the defects migrate three- or one-
dimensionally. One can easily apply the method to the
treatment of either limit, with the potential for gener-
alization to modeling reactions between the defects and
between dislocations and the defects.

The paper is organized as follows. We start from giv-
ing a brief summary of in-situ electron microscope ob-
servations, which show evidence of the significant part
played by the interaction between mobile radiation ef-
fects. We then introduce the simulation method, describe
how to treat long-range interactions between defects (the
‘Langevin particles’), and compare the simulated trajec-
tories of defects with experimental observations. Finally,
we discuss effects of interaction between mobile radia-
tion defects and pinning centres (for example vacancy
clusters), and show that the presence of pinning centres
explains the unusual trajectories of migration of defects
observed in in-situ electron microscope experiments on
ion-irradiated materials4–6.

II. BROWNIAN MOTION OF INTERACTING
NANO-DISLOCATION LOOPS: IN-SITU

ELECTRON MICROSCOPE OBSERVATIONS

In-situ electron microscope observations show two dis-
tinctly different modes of microstructural evolution, and
two different types of defect dynamics, the occurrence of
which depends on the type of particles irradiating the
material. The ultra-high-energy electron irradiation1–3

produces individual Frenkel pairs of vacancies and self-
interstitial atoms, and the resulting supersaturation of
defects gives rise to the nucleation and growth of small
self-interstitial dislocation loops and vacancy clusters.
Ion-beam irradiation4–6 generates collision cascades, in
which self-interstitial and vacancy defects form clusters
as cascades cool down and re-solidify11,18,38.

In the case of ultra-high-energy electron irradiation,
99.998 wt.% pure bcc Fe (the metal most extensively
studied by in-situ microscopy so far) was used for mak-
ing specimens. The impurity content characterizing the
specimens is fully described in the supporting on-line ma-
terial for Ref.2. The specimens were rolled into 0.08mm-
thick sheets, which were pre-annealed at 1073K for 2
hours in a hydrogen atmosphere, and electrochemically
polished. The orientation of the specimen surfaces was
set close to (110) to minimize the image force acting on
loops whose Burgers vectors b, defining the directions in
which the loops migrate, were 1/2[111] or 1/2[111]. High-
energy electron irradiation was performed in an ultra-
high-voltage electron microscope H-3000(Hitachi) oper-
ated at an acceleration voltage of 2000 kV. The dynam-
ics of formation and migration of small dislocation loops
was observed under electron irradiation. In another set
of experiments, the dynamics of thermal Brownian mo-
tion of nano-scale dislocation loops initially produced by

FIG. 1: A sequence of in-situ electron microscope snapshots
recorded for g = 002 diffraction conditions at a 200 kV ac-
celerating voltage, and showing the evolution of an ensemble
of three prismatic a/2[111] dislocation loops formed in nomi-
nally pure iron by ultra-high voltage electron irradiation prior
to the in-situ experiment. The loops perform one-dimensional
Brownian motion in the direction parallel to their Burgers vec-
tor at T = 673K. The loop diameters, from left to right, are
6nm, 6.5nm, and 6nm. The projected separation between the
glide cylinders for the loops on the left (L) and in the centre
(C) is 23nm, and the projected separation between the glide
cylinders for the loops in the centre (C) and on the right (R),
is 41nm.

electron irradiation was observed using sample heating in
an analytical H-800 (Hitachi) microscope operated at a
relatively low acceleration voltage of 200 kV, at which no
further radiation damage is produced. We note here that
observing the migration of dislocation loops in an elec-
tron microscope inevitably gives rise to the electron beam
itself affecting the observed mobility of the loops12,13.
This electron beam effect does not significantly affect ex-
perimental observations described in this paper, making
it possible to attribute the observed mobility of disloca-
tion loops to thermal activation.

Specimen heating was performed following ultra-high-
energy electron irradiation at temperatures ranging from
110K to 200K. The specimens were heated to tempera-
tures in the range between 290K and 850K. Bright-field
imaging was used for areas of the specimen where thick-
ness varied between 100nm to 300nm. The observation
axis was approximately [110] for diffraction g-vectors 110
and 002, with the deviation parameter from the exact
Bragg condition s ranging from 0.02 to 0.06 nm−1. Im-
ages were recorded using a silicon intensifier target cam-
era with the time resolution of 1/30 s. It was possible to
observe dislocation loops with diameters greater than a
few nanometers.

In-situ electron microscope observations show that the
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FIG. 2: Trajectories of motion for two interacting d = 16nm
and d = 15nm prismatic a/2〈111〉 dislocation loops migrating
in pure iron foil at T = 650K. The thickness of the foil is
approximately 250nm and the glide cylinders of the loops are
37 nm apart, as measured using stereo microscopy. The loops
were formed by ultra-high energy electron irradiation followed
by specimen annealing.

dynamics of motion of loops is visibly affected by elas-
tic interactions between the loops. For example, Fig-
ure 1 shows that three mobile prismatic dislocation loops
formed in pure iron under ultra-high voltage electron ir-
radiation, and initially separated by large distances, per-
form Brownian motion along their glide cylinders, and
eventually approach each other closely enough so that
the dynamics of loops becomes correlated due to elas-
tic interaction between the loops. The loops eventually
form a raft that migrates as a single entity, then grows
and gradually coalesces into a single loop.

Other examples found by in-situ electron microscope
examination of specimens irradiated by ultra-high-energy
electrons show processes of capture of a mobile loop by
the elastic field of another loop, followed by the coales-
cence of the loops. In general, the trend seen in in-situ
electron microscope observations of defects migrating in
high purity iron, and illustrated in Figure 2, is that the
motion of the defects is highly correlated, and the typi-
cal Brownian trajectories of defects follow each other on
a ∼ 0.1 s timescale.

For ion-beam irradiation experiments, we used high
purity Fe (containing ∼1 ppm carbon, <5 ppm nitro-
gen, <10 ppm silicon, and very small quantities of other
impurities, which is not dissimilar to the impurity con-
tent of the specimens used for ultra-high-energy electron
irradiation experiments). The cold-rolled as-received ma-
terial was annealed in vacuum at 1073K for an hour fol-
lowed by slow cooling. After this treatment all specimens
had a simple ferritic microstructure with a low disloca-
tion density. Thin foils were prepared by electropolishing
and irradiated with 100 or 150 keV Fe+ and Xe+ ions at
room temperature (RT), and at 573K and 773K in the
Argonne IVEM-Tandem Facility39. The microscope was

0 5 10 15 20

Time (seconds)
0

20

40

60

80

D
is

pl
ac

em
en

t (
na

no
m

et
re

s)
 

displacement of loop 1
displacement of loop 2 (+50nm)

FIG. 3: Experimentally observed trajectories of migration for
two prismatic b = a/2[111] dislocation loops, both of similar
size d ≈ 4nm, performing thermally activated Brownian mo-
tion in pure iron after the specimen was irradiated with 150
keV Fe+ ions to a dose of ∼0.65 dpa. The projected distance
between the glide cylinders of the loops is 12nm. The tem-
perature of the specimen is 673K. Note the significant degree
of correlation between the trajectories of motion of the loops
shown in this figure.

operated at 200 keV, below the threshold for knock-on
radiation damage in Fe. Dynamic observations followed
the evolution of damage over doses up to 13 dpa, accord-
ing to a SRIM calculation with a displacement energy
of 24 eV. Irradiations were paused from time to time to
allow detailed characterization of microstructures using
a number of diffraction-contrast techniques4–6. Similar
detailed characterization was performed at the end of
the irradiation, after the specimens irradiated at elevated
temperatures had cooled to room temperature.

The pattern of migration of nano-dislocation loops in
ion-irradiated UHP iron is surprisingly different from
that of loops migrating in UHP iron irradiated with ultra-
high-energy electrons (see Figure 2). This fact was high-
lighted in Ref.40 (see Figure 3 of Ref.40, which shows
how different are the observed and simulated trajectories
of defect migration), and was noted in Refs.4,6.

Figure 3 shows trajectories of migration for two nano-
dislocation loops in ion-irradiated iron. The trajectories
exhibit a significant degree of correlation, similarly to
the case of three migrating loops illustrated in Figure 1.
However, as opposed to the case of electron-irradiated
iron, the trajectories of loops migrating in ion-irradiated
iron do not look like the characteristic ‘fractal’ Brown-
ian trajectories shown in Figure 2 and predicted by MD
simulations17,37. The trajectories showed in Figure 3
demonstrate that the motion of loops consists of a series
of relatively infrequent long-range ‘instantaneous’ jumps,
separated by extended intervals of time, during which the
loops are pinned at certain points in the specimen and
remain effectively immobile. Here we draw the atten-
tion of the reader again to the large difference between



5

0 1 2 3
time (nanoseconds)

0

50

100

150

C
oo

rd
in

at
es

 o
f l

oo
ps

 (
A

ng
st

ro
m

)

FIG. 4: Trajectories of motion, simulated using molecular
dynamics, for two interacting b = a/2[111] 61-atom (d ≈
1.8nm) prismatic dislocation loops migrating in iron at T =
500K. The centres of loops are separated in the [11̄0] direction
by the distance l ≈ 40.5Å.

the timescales characterizing experimental observations
(∼ 20 s for the examples shown in Figs. 2 and 3) and
MD simulations (∼ 10−9 s for the cases investigated in
Refs.17,37).

In subsequent sections of the paper we show that the
occurrence of correlated motion of loops, and the unusual
shape of the trajectories of loops observed in experiments
on ion-irradiated materials, can be explained if we as-
sume that individual loops interact with other loops, and
that they also interact with the ‘invisible’ elements of mi-
crostructure, for example small vacancy clusters formed
in collision cascades generated by ion irradiation41.

We first investigate effects of migration of interact-
ing loops using MD simulations, and then generalize the
treatment to the case of Langevin dynamics of interacting
defects. Using the latter method, we are able to match
the timescales of experimental observations and simula-
tions over intervals of time many orders of magnitude
longer than those accessible to MD simulations. By as-
suming that loops interact via long-range elastic forces,
we simulate the trajectories of correlated Brownian mo-
tion of the loops, and show that those also match exper-
imental observations. Finally, using the isotropic elastic-
ity expressions for the energy of interaction between the
self-interstitial atom loops and vacancy clusters, we are
able to simulate the unusual ‘pinned’ Brownian trajecto-
ries of loops found experimentally in ion-irradiated iron
and shown in Figure 3.

III. A MOLECULAR DYNAMICS MODEL FOR
INTERACTING NANO-DISLOCATION LOOPS.

We start our analysis with an MD investigation of
how two small prismatic dislocation loops migrate if the
glide cylinders of the loops are in close proximity to
each other. Simulations were performed using the re-
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FIG. 5: Trajectories of motion for interacting loops simulated
using molecular dynamics and shown in Figure 4 but plotted
for a shorter interval of time. Initially the loops are 5nm
apart in the direction of their Burgers vector. Elastic inter-
action brings the loops together at t ≈ 0.17ns. After this
moment Brownian motion of the two loops becomes strongly
correlated, the loops form a raft and migrate almost as a sin-
gle entity.

cent ‘magnetic’ interatomic potential42 for α-Fe. Two
61-SIA (self interstitial atom) 1

2 〈111〉 dislocation loops
were inserted into a regular 30 × 20 × 60 cell (in the
(x, y, z) = ([11̄0], [112̄], [111]) coordinate system) con-
taining 216000 atoms with periodic boundary conditions
in all coordinate directions. These two 18.7 Å diame-
ter loops were inserted with their centres separated by
l ≈ 40.5 Å in the [11̄0] direction, but with the same po-
sition (y1 − y2 ≈ 0) along the [112̄] direction. This [11̄0]
separation is comparable with the size of the loops them-
selves, but is still large enough to ensure that there is no
overlap between the core regions of the edge dislocations
forming the loops, so that all the interaction effects found
in simulations are attributable to the long-range elastic
fields of the loops. Note that this ∼ 4 nm interaction dis-
tance in x = [11̄0] is smaller than the separation between
the loops through the x-direction periodic boundary (≈ 8
nm), which means that the ‘internal’ 4 nm elastic inter-
actions dominate. Each loop was given a random initial
position along its respective z = [111] glide cylinder.

After relaxing (quenching to 0K) the simulation cell,
a sequence of 5 ps finite temperature simulations were
performed at 100K intervals to bring the system up to
the 500K temperature corresponding to the result pre-
sented here. The evolution of the two-loop system was
simulated for a 3 ns interval at 500K, during which the
positions of the loops were measured every 1 ps. The re-
sulting 1-dimensional [111] trajectories of the loops gen-
erated during this simulation are shown in Figures 4 and
5. Following a method similar to that described in36,37,
we calculate separate diffusion coefficients D for the mo-
tion of the loops, and find a value of approximately 5×109

nm2s−1 for both loops.
There are two aspects of MD simulations described
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here that are difficult to relate to experimental observa-
tions (see Figures 1 and 3). The difference between the
timescales of MD simulations and experimental observa-
tions is of the order of 109. Also, the diffusion coefficients
for the loops derived from MD simulations are many or-
ders of magnitude larger than those found experimen-
tally2. Hence, we do not attempt to directly compare
MD simulations and experimental observations, and in-
stead focus on the qualitative aspects of simulations that
offer some insight into the origin of the effects observed
experimentally.

The most notable feature seen in the simulations is the
correlated nature of the migration of the loops. Figures
4 and 5 show that although initially the loops were sep-
arated, in the direction parallel to their Burgers vector
(which is the direction of one-dimensional Brownian mo-
tion of the loops), by a distance of approximately 5nm,
after just 170ps the random Brownian motion of the loops
became strongly correlated (see Figure 5), and the tra-
jectories of the loops during the rest of the time interval
spanned by the simulation closely followed each other.
The strongly correlated nature of Brownian motion of
the loops found in MD simulations may appear exag-
gerated in comparison with experimental observations,
where loops would occasionally drift apart and separate.
However we note that the distance between the glide
cylinders set up in MD simulations is almost an order
of magnitude smaller in comparison with the distances
between the glide cylinders for the loops seen in Figure
1, and hence the strength of elastic interaction between
the loops in the MD simulations is much larger than in
observations illustrated in Figure 1.

The main conclusion that we derive from these simu-
lations, which illustrate the effect of interaction between
the loops on their Brownian motion, is the emergence of
a ‘collective’ mode of motion, where trajectories of mi-
gration of loops, while exhibiting a considerable degree
of randomness, follow each other over an extended pe-
riod of time. We now show how this conclusion can be
generalized and extended to the case of many interacting
loops and much longer timescales through the use of the
Langevin treatment of dynamics of loops.

IV. RANDOM THERMAL FORCE ACTING ON
A DISLOCATION LOOP

The fact that migration of individual self-interstitial
crowdion defects and small dislocation loops could be
rationalized using a Langevin equation-based treatment
was discussed in Refs.12,36,37,43. In this section we prove,
using the multi-string Frenkel-Kontorova model44, that
the centre of mass of a loop moves under the action of
random thermal force resulting from thermal vibrations
of atoms at the perimeter of the loop, or, in other words,
that a small dislocation loop can be treated as a particle,
the coordinate of which satisfies the Langevin equation
of motion. Figure 6 shows the structure of a 37-self-

FIG. 6: The equilibrium structure of a small dislocation loop
formed by the agglomeration of 37 self-interstitial atoms on a
(111) habit plane in bcc iron41,46. The Burgers vector of the
loop is b = a/2[111], where a is the lattice constant. Only
those atoms are shown, the potential energy of which exceeds
by 0.05 eV the potential energy of an atom in a perfect lattice.
The viewing direction is slightly off the 〈111〉 axis, which is
parallel to the Burgers vector of the loop.

interstitial-atom dislocation loop formed in bcc iron by
the agglomeration of self-interstitial atoms on the (111)
habit plane. The Burgers vector of the loop, the direc-
tion of which is parallel to the atomic strings shown in
Figure 6, is b = a/2[111]. Each atomic string, depend-
ing on its position in the loop, is described by the profile
of atomic displacements in the direction parallel to the
Burgers vector Uj (n−Zj(t)/b), where n is the index of
an atom in a string, and j is the two-dimensional index of
a string in the plane normal to the plane of the loop36,44.
Zj(t) is the time-dependent position of the centre of the
j−th atomic displacement profile, which in the case of
a single self-interstitial atom defect (a crowdion) can be
identified with the position of the defect in the crystal
lattice.

By following the method described in Refs.12,36,37, we
find a set of coupled equations of motion for the coordi-
nates of centres of displacement profiles associated with
atomic strings running in a 〈111〉-type direction:

m
d2Zj(t)

dt2
= 4mω2

∑

n,h

[Φn,j(t)− Φn,j+h(t)]

× sin2
{π

a
(Uj[n−Zj(t)/a]− Uj+h[n−Zj+h(t)/a])

}
.

(1)

Here Φj,n(t) denotes the field of random (thermal) dis-
placements of atoms in the strings, as opposed to the
regular field of time-dependent coordinate Zj(t), which
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describes migration of the centre of an atomic displace-
ment profile as a whole. The number of equations in
the set (1) equals the number of interstitial atoms in the
loop. The strings forming the lattice surrounding the
loop are assumed to be unaffected by the elastic field
of the loop (in other words, for the strings surrounding
the loop, Zj(t) = 0). However, atoms in the lattice sur-
rounding the loop still undergo random thermal motion
and interact with atoms in the strings on the perimeter
of the loop.

The position of the centre of mass of the loop is given
by

Z(t) =
1

Ns

∑

j

Zj(t), (2)

where Ns is the number of atomic strings in the loop
(for example, for the case shown in Figure 6, Ns = 37).
Performing the summation over all the strings j forming
the loop, and noting that random forces acting on the
neighbouring strings enter the sum with opposite signs,
and hence fully compensate each other, we find that the
equation of motion for the centre of mass of a loop only
contains terms describing thermal forces acting on strings
situated at the perimeter of the loop,

m
d2Z(t)

dt2
= 4mω2

∑

n,P

∑

h′
[Φn,P(t)− Φn,P+h′(t)]

× sin2
{π

a
UP[n−ZP(t)/a]

}
.

(3)

Here the summation over P is performed over strings
situated at the perimeter of the loop, where fluctuating
phonon forces are not compensated, and summation over
h′ is performed over strings in the lattice around the dis-
location loop. The right-hand side of equation (3) equals
the projection (on the direction of the Burgers vector of
the loop) of the total time-dependent random phonon
force f(t) acting on the loop. It is known that a random
force acting on a particle results in the particle perform-
ing Brownian motion. At the same time, according to
the fluctuation-dissipation theorem, the presence of ran-
domly fluctuating forces give rise to thermal friction45.

Applying the Einstein model for thermal vibrations of
atoms to equation (3)36, we find that the correlation func-
tion of random force acting on a loop is proportional to
the length L of the perimeter of the loop

f(t)f(t′) = f2δ(t− t′) ∼ Lδ(t− t′). (4)

Using the fluctuation-dissipation theorem, we find the
coefficient of thermal friction for the loop36

γ =
f2

2kBT
. (5)

The diffusion coefficient D is related to the friction coef-
ficient γ via D = kBT/γ. This equation shows that the

diffusion coefficient for a loop treated as a function of its
size varies approximately as

D ∼ L−1, (6)

where L is the perimeter of the loop. In what follows,
we use this relation to evaluate the diffusion coefficients
for loops of various sizes by extrapolating the experi-
mentally measured values for diffusion coefficients found
for a loop of a certain size2,3. We note that the depen-
dence of the diffusion coefficient for the centre of mass of
the loop on the length of the perimeter of the loop pre-
dicted by the Frenkel-Kontorova model described above
agrees well with results of MD simulations17, where it
was found that the diffusion coefficient depends on the
total number of self-interstitial atoms forming the loop
Ns as D ∼ N−0.64

s , which is close to D ∼ N
−1/2
s expected

from equation (6) in the limit of large loop size. Exper-
imental observations are also broadly in agreement with
the above D ∼ L−1 law2,3.

We note that even in a pure material the diffusion co-
efficient for a loop is strongly influenced by the presence
of impurities, which form a mobile ‘cloud’ around the
loop. The presence of this mobile atmosphere of impuri-
ties renormalizes the mobility a loop, strongly increasing
the effective activation energy for migration in compari-
son with the estimates derived from MD simulations2,3.

V. A LANGEVIN DYNAMICS MODEL FOR
BROWNIAN MOTION OF INTERACTING

NANO-DISLOCATION LOOPS

In the previous section we showed that the centre of
mass of a dislocation loop moves under the action of an ef-
fective random force associated with the thermal motion
of atoms in the material. This effective fluctuating ther-
mal force induces stochastic Brownian motion of loops
observed in in-situ electron microscope experiments1–6
and in MD simulations10,11,14–17. Similarly, two nano-
dislocation loops formed in close proximity of each other,
and interacting via long-range elastic forces, perform cor-
related Brownian motion, as illustrated in Figure 4 and
Figure 5.

The diffusion equation for a system of N interacting
particles has the form47

∂P

∂t
=

N∑

i=1

Dαβ
i

(
∂2P

∂rα
i ∂rβ

i

+
1

kBT

[
∂U

∂rα
i

][
∂P

∂rβ
i

])
, (7)

where α, β = (x, y, z), P = P (r1, r2, ..., rN ) is a N -
dimensional probability distribution function, Dαβ

i is the
diffusion matrix for particle i, and T is the absolute tem-
perature. The function U = U(r1, r2, ..., rN ) describes
the interaction between the particles, and the gradient of
this function Fα

i = −∂U/∂rα
i gives the α component of

the force acting on particle i.
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In the limit of strongly anisotropic one-dimensional dif-
fusion, describing random thermal glide of glissile nano-
dislocation loops, equation (7) can be simplified as

∂P

∂t
=

N∑

i=1

Di

(
∂2P

∂z2
i

+
1

kBT

[
∂U

∂zi

] [
∂P

∂zi

])
. (8)

Here Di is the diffusion coefficient for loop i, and zi is
the projection of the centre of mass of the loop on the
direction of its Brownian motion. We assume that all
the loops have the same Burgers vector, which defines
the orientation of the glide cylinders and the direction of
Brownian motion for the loops.

Equation (8) describes a relatively simple model for
an ensemble of interacting Brownian particles, which is
even simpler than models considered previously in the
context of Brownian dynamics of particles suspended in
a fluid and interacting via hydrodynamic forces48,49. In
principle, the evolution of this model could be investi-
gated using kinetic Monte Carlo simulations, following
the method developed by Hudson et al.29 who introduced
hopping probabilities biased by long-range elastic fields.
However, since implementing this approach requires syn-
chronizing the Monte Carlo events, which presents a po-
tentially difficult issue for parallelizing the kinetic Monte
Carlo algorithm33, here we adopt a different strategy and
instead focus on a set of differential equations for the co-
ordinates of the loops. To achieve this, we map equation
(8) onto a set of N coupled overdamped Langevin equa-
tions of the form

dzi

dt
= − Di

kBT

∂U

∂zi
+

√
2Diξi(t), i = 1, 2, ...N. (9)

where ξi(t) are random variables satisfying the condition
ξi(t)ξi(t′) = δ(t−t′), and U(z1, z2, ..., zN ) is the energy of
interaction between the loops. The energy of interaction
between the loops is, of course, also a function of the
position of the loops in the (x, y) plane. However, since
the loops do not change their x and y coordinates, we
omit explicit reference to these degrees of freedom.

The mathematical equivalence between the over-
damped Langevin equations (9) and the many-body dif-
fusion equation (8) exists independently of the micro-
scopic nature of processes responsible for the diffusion of
loops50,51, since the only parameters entering both equa-
tions are the diffusion coefficients Di for the particles.
Hence statistical simulations of trajectories of loops by
means of the Langevin equations (9) are fully equivalent
to finding a time-dependent ensemble-averaged solution
of a many-body diffusion equation (8). The significant
advantage offered by the Langevin equation simulation
approach is that by solving these equations we could fol-
low the trajectories of the defects, and compare them
with the trajectories observed by in-situ electron mi-
croscopy. This contrasts with the solutions of the many-
body diffusion equation, which describe the evolving mi-
crostructure in the statistical ensemble sense. For exam-
ple, solutions of a many-body diffusion equation cannot

be directly compared with the trajectories of migrating
loops observed in in-situ experiments.

A. Interaction between an interstitial loop and a
vacancy cluster

To investigate the role played by the long-range in-
teraction between an interstitial loop and an immobile
pinning centre (a vacancy cluster or an impurity), we
use expressions derived from the theory of elasticity. In
the isotropic approximation of the theory of elasticity
the energy of interaction between a loop and a spherical
inclusion is52

U(z) =
∆V

3π
bµ

1 + ν

1− ν

1√
z2 + (R + r)2

×
[

R2 − r2 − z2

(R− r)2 + z2
E

(√
4rR

z2 + (R + r)2

)

+K

(√
4rR

z2 + (R + r)2

)]
. (10)

Here R is the radius of the loop, functions K(k) and
E(k) are, respectively, the complete elliptic integrals of
the first and second kind, and r and z are the cylindrical
coordinates, the origin of which corresponds to the cen-
tre of the dislocation loop. ∆V is the relaxation volume
(a quantity which has negative sign in the case of a va-
cancy or a vacancy cluster), b is the Burgers vector of
the loop, b = |b|, and µ and ν are the shear modulus of
the material and the Poisson ratio.

Although in principle equation (10) applies equally to
an interstitial and a vacancy loop (where in the latter
case the energy of interaction has the opposite sign), the
fact that a vacancy loop is a metastable configuration
that has higher energy than a spherical vacancy cluster
(a void)46 leads to interstitial loops dominating the ob-
served microstructure of an irradiated material6. In what
follows we only consider the case of an interstitial dislo-
cation loop that is attracted to a vacancy cluster situated
at the axis of the glide cylinder for the loop. In the limit
of large separation between the loop and the inclusion
r À R, z À R, functions K(k) and E(k) can be ex-
panded in the Taylor series as (note that the definition
of the argument of these functions differs from that given
in Abramovitz and Stegun’s handbook53)

K(k) ≈ π

2

(
1 +

k2

4
+

9k4

64
− ...

)

E(k) ≈ π

2

(
1− k2

4
− 3k4

64
− ...

)
, (11)

resulting in the far field form of equation (10):

U(z) = −∆V

6
bµ

1 + ν

1− ν
R2 1− 3 cos2 θ

l3
, (12)
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FIG. 7: Energy of interaction between a 313-atom (R =
2.2nm) self-interstitial b = a/2〈111〉 dislocation loop and a
vacancy shown as a function of separation z between the cen-
tre of the loop and the vacancy. The vacancy is situated at
the axis of the glide cylinder r = 0. The solid line follows
equation (10) for ∆V = −5Å3 , ν = 0.29 and µ = 82 · 109 Pa.

where z/l = cos θ, r/l = sin θ, and l =
√

r2 + z2.
Equation (10) acquires a particularly simple form for

r = 0, corresponding to the case where the inclusion is
situated at the axis of the glide cylinder for the loop

U(z) =
∆V

3π
µ

1 + ν

1− ν

πR2b

(z2 + R2)3/2
. (13)

This equation shows that the range of the force field de-
scribing elastic interaction between a dislocation loop and
an inclusion is of the same order of magnitude as the loop
radius R.

Figures 7 and 8 show examples of the potential energy
curves describing elastic interactions between a disloca-
tion loop and a single vacancy, or a vacancy cluster. The
discrete points are evaluated using atomistic total energy
conjugate gradient minimization for a 313-self-interstitial
atom loop interacting with a single vacancy situated at
the centre of the glide cylinder, or a 10-vacancy cluster
situated at the centre of the glide cylinder. The solid
curves were calculated using equation (10) and isotropic
elastic parameters for pure iron. The effective formation
volumes ∆V for a single vacancy and a vacancy cluster
were chosen to fit the MD simulation data. These values
are broadly in agreement with the literature data on for-
mation volumes of vacancy defects54,55, which themselves
are subject to considerable uncertainty and fluctuations.
We see that, depending on the formation volume of a
vacancy defect, the magnitude of interaction between a
self-interstitial loop and a vacancy defect U(z) varies be-
tween 0.2 eV and 1 eV. The width of the potential wells
shown in Figures 7 and 8 are comparable with the diam-
eter of the dislocation loop.
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FIG. 8: Energy of interaction between a 313-atom (R =
2.2nm) self-interstitial b = a/2〈111〉 dislocation loop and a
10 vacancy-cluster shown as a function of separation z be-
tween the centre of the loop and the cluster. The vacancy
cluster is situated at the axis of the glide cylinder r = 0. The
solid line follows equation (10) for ∆V = −25Å3 , ν = 0.29
and µ = 82 · 109 Pa.

B. Interaction between two dislocation loops

The energy of interaction between two circular dislo-
cation loops with parallel Burgers vectors b1 and b2 is
given by (see equation (4-40) of Hirth and Lothe56)

U =
µb1b2

4π(1− ν)

2π∫

0

dφ1

2π∫

0

dφ2

[
(ρ(φ1) · ρ(φ2))

r

− (r · ρ(φ1))(r · ρ(φ2))
r3

]
. (14)

Here r = l + ρ(φ1)− ρ(φ2) is a vector connecting points
situated on the perimeter of the two loops, as shown in
Figure 9, and ρ(φ1) and ρ(φ2) are two radial vectors in
the habit planes of the loops.

In the far field region, where |ρ(φ1)− ρ(φ2)| ¿ |l|, we
find

1
r3

=
1

|l + ρ|3 =
1
l3
− 3(ρ · l)

l5
− 3ρ2

2l5
+

15(ρ · l)
2l7

+ ..., (15)

where ρ = ρ(φ1)−ρ(φ2), and the equation for the energy
acquires the form

U =
µb1b2

4π(1− ν)

2π∫

0

dφ1

2π∫

0

dφ2

[
(l2 + 2l · ρ + ρ2)(ρ1 · ρ2)

−([l + ρ] · ρ1)([l + ρ] · ρ2)]

×
[

1
l3
− 3(ρ · l)

l5
− 3ρ2

2l5
+

15(ρ · l)
2l7

+ ...

]
. (16)
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FIG. 9: Diagram illustrating the notations used in equation
(14) and equation (19).

Noting that

2π∫

0

dφ1

2π∫

0

dφ2(ρ1 · ρ2)(ρ1 · l)(ρ2 · l) = A1A2l
2 sin2 θ

2π∫

0

dφ1

2π∫

0

dφ2(ρ1 · l)2(ρ2 · l)2 = A1A2l
2 sin4 θ

2π∫

0

dφ1

2π∫

0

dφ2(ρ1 · ρ2)2 = 2A1A2, (17)

where A1 = πρ2
1 and A2 = πρ2

2 are the respective areas
of the loops, we find

U =
µb1b2

4π(1− ν)
A1A2

l3
(8− 24 sin2 θ + 15 sin4 θ)

= − µb1b2

4π(1− ν)
A1A2

l3
(1 + 6 cos2 θ − 15 cos4 θ).(18)

The expression for the energy of interaction between two
circular loops (18) was derived by Foreman and Eshelby57

using the isotropic elasticity approximation, and reported
in the literature by Barnes58. The form of this equation
is similar to that of equation (12). In both cases the en-
ergy varies as a function of distance between the defects
as U ∼ l−3. We also see that the product of the Burgers
vector and the area of the loop plays the part of the effec-
tive formation volume. Unsurprisingly, the characteristic
scale of interaction energies (a fraction of an electronvolt)
is similar in both cases. For practical calculations, it is
convenient to express formula (18) in terms of two vari-
ables, the distance d between the glide cylinders of the
loops, and the distance z between the habit planes of the
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FIG. 10: Energy of interaction between two circular (R =
9.4Å) self-interstitial b = a/2〈111〉 dislocation loops in iron
evaluated using the ‘exact’ isotropic elasticity expression (14),
the Foreman-Eshelby expression (18), and the ‘low barrier
model’ (20), where the curve describing interaction between
the loops as a function z exhibits low potential barriers for
reaction between the loops. The elasticity calculations were
performed assuming ν = 0.29 and µ = 82 · 109 Pa.

loops. In terms of these variables, equation (18) can be
written in the form

U(z, d) = − µb1b2

4π(1− ν)
A1A2

(z2 + d2)3/2

×
[
1 +

6z2

(z2 + d2)
− 15z4

(z2 + d2)2

]
. (19)

Our analysis of experimental data on the statistics of mi-
gration of dislocation loops suggests that the Foreman-
Eshelby expression (18) overestimates, at least for the
case of the b = a/2〈111〉 loops considered here, the height
of potential barriers for reaction between the loops. The
fact that equations (14) and (18) for the energy of inter-
action between the loops may not be accurate is not sur-
prising since, for example, it is known that even at room
temperature iron is elastically anisotropic7–9. Hence the
isotropic elasticity formulae (14), (18) should be treated
as estimates for the strength of interaction as well as for
the functional form for the law of interaction between
the loops. The use of the isotropic elasticity approxima-
tion (where the energy of interaction between the loops
depends only on the relative orientation of the Burg-
ers vectors of the loops and the relative positions of the
loops, and is independent of the orientation of the Burg-
ers vector of the loop relative to the crystal lattice) has
the advantage that the functional form for the energy
of interaction between the loops is sufficiently simple, to
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enable fast evaluation of terms in the right-hand side of
equations (9). The elastic anisotropy approximation does
not change the general functional form for the energy of
interaction between the loops, which at large distances
between the loops varies as (distance)−3, but it intro-
duces an element of complexity in the angular depen-
dence of the energy of interaction, as was shown for the
full anisotropic elasticity case by Willis59.

In this study, together with the original Foreman-
Eshelby expression (18), we also use an alternative form,
motivated by experiment, for the energy of interaction
(the ‘low-barrier model’), which we derive from equation
(18) by modifying some of its numerical coefficients

U(z, d) = − µb1b2

4π(1− ν)
A1A2

(z2 + d2)3/2

× 13
10

[
1 +

1
4

6z2

(z2 + d2)
− 1

4
15z4

(z2 + d2)2

]
.(20)

A curve calculated using equation (20) is shown in Fig-
ure 10 together with the curves evaluated using equations
(14) and (18). Equation (20), where the energy of inter-
action between the loops is independent of the orientation
of their Burgers vectors with respect to the crystal lat-
tice, still refers to the isotropic elasticity approximation.

We note that the inclusion of anisotropic elasticity ef-
fects does not alter the general functional form of the
laws describing interaction between the defects. Since in
this work we focus on the generic new features of Brown-
ian motion of defects associated with the fact that defects
interact, we do not specifically investigate the role played
by the anisotropic elasticity effects.

In the next two sections of the paper we apply the
Langevin dynamics method to the treatment of migration
of two and three interacting loops, and also investigate
Brownian motion of an individual loop interacting with
statistically distributed vacancy clusters.

VI. CORRELATED BROWNIAN MOTION OF
NANO-DISLOCATION LOOPS

In this section we focus attention on solving equations
(9) and on investigating the part played by the inter-
action between migrating nano-dislocation loops. We
find that the interaction between migrating loops, and
between loops and vacancy clusters, acting as pinning
centres for the loops, gives rise to striking deviations
in the statistics of motion of loops from the statistics
of ‘free’ Brownian motion investigated in the past by
MD simulations10,11,14–17 and analyzed using interaction-
free Langevin dynamics equations12,36,37,43. Also, the
Langevin dynamics simulations described below use the
effective values of diffusion coefficients, derived from ex-
perimental observations for freely migrating loops, which
take into account the presence of intrinsic impurities.

We start by considering the case of two interacting
b = (a/2)〈111〉 loops of diameters d1 = 16nm and d2 =

15nm migrating in nominally pure iron at T0 = 650K.
The diffusion coefficients for the loops, derived from the
values measured for a single loop, and scaled using the in-
verse perimeter length law (6) are D1 = 296 nm2s−1 and
D2 = 315 nm2s−1. The glide cylinders of the loop are
separated by the distance l = 37nm. Using the Foreman-
Eshelby expression (18), we see that the scale of elastic
interaction between the loops in this case (the depth of
the potential well similar to that shown in Figure 10) is
of the order of −3 eV. After taking into account the pos-
sible weakening of interaction due to elastic anisotropy
effects, we conclude that the binding energy, holding the
two loops together, is of the order of Eb ∼ 2 eV. Given
that exp(−Eb/kBT0) ∼ 3 · 10−16, it is not surprising to
see that in experiment the loops stay together, migrating
as two bound entities over a long period of time, exceed-
ing the entire duration of experimental observation ∼80s.
Figure 11 illustrates this behaviour, showing the trajec-
tories of the loops simulated by integrating the coupled
Langevin equations, and comparing them with trajecto-
ries observed experimentally using in-situ electron mi-
croscopy. In simulations and in observations we find a
fairly similar scale of fluctuations for the position of the
centre of mass of the loops. Simulations also confirm that
the strength of elastic interaction is sufficient for holding
the loops together as bound entities over the entire in-
terval of time spanned by the simulation (∼ 20s). Figure
12 shows simulated trajectories of loops whose size and
initial positions are similar to that observed using in-situ
electron microscopy and shown in Figure 1. This case
is more interesting and complex. The loop seen on the
right (R) is sufficiently far apart from the loop in the cen-
tre (C), and the binding energy between these two loops,
evaluated using the Foreman-Eshelby formula (18), is of
the order of 0.06 eV. Simulations show, in agreement with
experiment, that this loop (R) is very weakly bound to
the other two, and is able to move almost freely. We
clearly see this trend already in the series of snapshots in
Figure 1, and now this observation is confirmed directly
by simulation. We see that the trajectory of loop R re-
mains in the vicinity of the other two loops for no longer
that 50 s, and then loop R gets detached from the other
two, and continues performing effectively free Brownian
motion until the end of the time interval spanned by the
simulation.

On the other hand, the scale of elastic interactions
binding loops L and C together is of the order of 0.3 eV,
which is significantly greater than the energy of binding
for loops C and R. Figure 12 shows that not only is this
energy sufficient for capturing loop L, which comes in the
field of view of the microscope from a distant part of the
specimen, and appears only in the third snapshot shown
in Figure 1, but it is also sufficiently strong for binding
the loops together over the entire interval of simulation
spanning 200s. It may appear surprising that a binding
energy as low as 0.3 eV can actually hold the two mi-
grating loops together over such a long interval of time.
Indeed the Arrhenius exponential factor for T0 = 675K
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FIG. 11: Comparison of trajectories of motion for two in-
teracting d = 16nm and d = 15nm prismatic b = a/2〈111〉
dislocation loops migrating in pure iron at T = 650K. The
glide cylinders of the loops are 37 nm apart. The top figure
shows the trajectories of the two loops simulated using the
Foreman-Eshelby expression (18) for the energy of interac-
tion between the loops. The trajectories shown in the middle
were simulated using equation (20). The figure at the bottom
shows the trajectories of the loops observed experimentally
using in-situ electron microscopy.

and Eb = 0.3 eV is just exp(−Eb/kBT ) ≈ 10−3, and the
transition state theory60,61 would predict that the two
loops should break apart on the nano-second timescale.
However, in the present case the pre-factor derived from
a transition state theory treatment60,61 does not apply,
and instead the rate of escape by diffusion from a poten-
tial well is given by62

ṙ ∼ D

W 2
exp(−Eb/kBT ), (21)

where D is the effective diffusion coefficient, and W is the
width of the potential well, which in the case of elastic
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FIG. 12: Simulated trajectories of Brownian motion for the
three interacting dislocation loops shown in Figure 1. Indexes
L, C and R refer to the loops seen in Figure 1 on the left, in
the centre, and on the right. The trajectories were simulated
using the coupled Langevin equations of motion for the loops
(9) assuming that the energy of interaction between the loops
is given by formula (20). Simulations were performed for T0 =
675K.

interaction is of the same order of magnitude as the ef-
fective size of interacting dislocation loops. For D ∼ 103

nm2s−1 and W ∼10 nm, we find that the probability of
the system of two bound loops falling apart per unit time
equals ṙ ∼ 5.7 · 10−2 s−1. In other words, the two loops
bound by the relatively weak elastic forces are able to
stay together as a single entity for up to ∼ 100 s. A di-
rect simulation extending over a much longer interval of
time shows that for the case of three interacting loops il-
lustrated in Figure 12 the bound state of the two loops L
and C remains stable on the timescale of ∼ 1000 s, after
which the loops separate. This relatively long timescale
of stability does not contradict our initial estimate based
on equation (21), since a direct Langevin simulation takes
into account the effect of the shape of the potential well
on the escape probability, not taken into account in for-
mula (21) derived for the case of a square well62.

To quantify the argument given above we consider a
set of coupled Langevin equations for the two migrating
and interacting loops

dz1

dt
= − D1

kBT

∂U(|z1 − z2|)
∂z1

+
√

2D1ξ1(t),

dz2

dt
= − D2

kBT

∂U(|z1 − z2|)
∂z2

+
√

2D2ξ2(t). (22)

Introducing new independent variables z = z1 − z2 and
Z = (D2z1 + D1z2)/(D2 + D1), we transform equations
(22) as

dz

dt
= − (D1 + D2)

kBT

∂U(|z|)
∂z

+
√

2(D1 + D2)ξz(t),

dZ

dt
=

√
2

D1D2

D1 + D2
ξZ(t), (23)
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where both ξz(t) and ξZ(t) are random δ−correlated
functions of time t, i.e. ξz(t)ξz(t′) = δ(t − t′) and
ξZ(t)ξZ(t′) = δ(t − t′). According to the second of the
two equations (23), the motion of the effective diffusion-
weighted ‘centre of mass’ of the loops Z(t) can be sep-
arated from the relative motion of the loops, described
by their relative coordinate z(t). This shows that the
correlated motion of loops seen in Figs. 11 and 12 is the
effect of trapping of loops by the attractive elastic in-
teraction between the loops, which occurs in the moving
frame of the effective diffusion-weighted centre of mass
for the system of two loops.

The position Z(t) of the effective diffusion-weighted
centre of mass of the system of two loops, on the other
hand, performs free Brownian motion entirely unaffected
by the interaction between the loops. The diffusion coef-
ficient for the position of the diffusion-weighted centre of
mass Z(t), according to the second of the two equations
(23), is D1D2/(D1 + D2). We note an interesting fact
that this diffusion coefficient, in the limit where one of
the diffusion coefficients D1 or D2 is significantly smaller
than the other, equals the smaller of the two, irrespec-
tive of the strength of interaction between the loops. This
conclusion appears to be general, for example Brownian
motion of a large ensemble of interacting defects is con-
trolled by the slowest moving particle in the ensemble.

The loops can eventually separate from each other ac-
cording to equation (21), but the timescale on which this
separation occurs is fairly macroscopic. This conclusion
agrees with experimental observations shown in Figure
1, and many other observations of similar kind, which all
exhibit extended intervals of correlated motion of loops.
The fact that the loops become trapped and remain ef-
fectively immobile with respect to each other over long
periods of time, is significant, since this facilitates reac-
tions between the loops, for example the coalescence of
loops, or the formation of extended rafts of loops, also
observed experimentally1–6.

In this section we showed that the relatively weak elas-
tic interactions between migrating nano-dislocation loops
are able to facilitate the formation of bound long-lived
configurations, where loops are trapped together and re-
main effectively stationary in the moving ‘centre of mass’
frame. The formation of these quasi-stable configurations
increases the probability of reaction between the loops
and provides a significant driving force for microstruc-
tural evolution, particularly in the limit of high irradia-
tion dose rate.

VII. TRAPPING OF MIGRATING LOOPS BY
VACANCY CLUSTERS

In the previous sections we investigated the effect of
trapping of two, or several (see Fig. 1), migrating dislo-
cation loops by their mutual elastic fields, which occurs
in the moving frame of the ‘centre of mass’ of the loops.
In this section we investigate a similar effect, observed

for ion-beam irradiation conditions4–6, where migrating
dislocation loops are trapped, in the laboratory frame,
by immobile vacancy clusters.

The assertion that trapping of migrating self-
interstitial loops occurs as a result of interaction between
a loop and vacancy clusters situated in the glide cylin-
der of the loop is at this point a hypothesis, stimulated
by the observation that trajectories of motion of loops
formed in electron- and ion-irradiated iron are very dif-
ferent (see Figures 2 and 3). If a vacancy, or a vacancy
cluster, approaches a self-interstitial loop in the vicinity
of its perimeter, the resulting annihilation reaction gives
rise to the loop changing its shape, and the vacancy clus-
ter disappearing. Similarly, the (repulsive) interaction
between a loop and a vacancy cluster situated outside
the glide cylinder for the loop does not explain trapping,
since the trajectories of migrating loops investigated for
this case by Hudson et al.28 resemble those shown in Fig-
ure 2. The fairly long (up to 10 s) timescales character-
izing trapping of defects found in observations, are dif-
ficult to explain using the conventional transition state
theory argument60,61 that applies to processes occurring
at atomic scale. Indeed, assuming an attempt frequency
of ν∗ ∼ 1013Hz, for T0 = 675K we find that the bind-
ing energy required for trapping a loop at a lattice site
for τ∗ ∼ 10 s is of the order of Eb ∼ kBT0 ln(τ∗ν∗) ≈ 2
eV. This fairly high energy, comparable with the forma-
tion energy for a vacancy in iron, could in principle be
attributed to interaction with complex stable configura-
tions involving carbon or nitrogen impurities63. Even
after noting the slightly different levels of purity of the
electron- and ion-irradiated samples, this still does not
explain why these stable impurity complexes only form
under ion irradiation, and do not form under electron ir-
radiation. It is probably more natural to assume that ion
irradiation, producing small vacancy clusters in the core
of collision cascades, generates fine vacancy cluster mi-
crostructures, interacting with, and trapping, the mobile
self-interstitial dislocation loops.

The potential energy of interaction between a mobile
loop and a vacancy cluster defect is shown in Figure 8.
The energy scale characterizing interaction between the
defects for the case shown in this Figure is less than 0.9
eV. The shape and the energy scale of curves describ-
ing elastic interaction between a dislocation loop and an
immobile vacancy cluster varies, according to equation
(10), as a function of the size of the loop, and the po-
sition of the vacancy cluster within the glide cylinder of
the loop. Hence it is expected that a nano-scale loop
migrating in a crystal containing vacancy defects would
move under the action of a field of randomly distributed
vacancy defects, which themselves may have randomly
varying size. The fact that the location and the size of
vacancy defects fluctuate causes the ‘external’ interac-
tion potential felt by a migrating self-interstitial loop to
be a fluctuating function of the position of the loop. For
example, we can represent the function U(z) for an indi-
vidual loop, described by a single Langevin equation, by
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FIG. 13: Three realizations for trajectories of motion for a
d = 6nm prismatic b = a/2〈111〉 dislocation loop migrating
in pure iron at T = 675K and interacting with statistically
distributed vacancy clusters. The diffusion coefficient for the
migrating loop is D = 1875 nm2s−1. The three realizations
of trajectories correspond to three different realization of the
potential energy landscape, corresponding to three statisti-
cal realizations of the distribution of vacancy clusters in the
material.
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FIG. 14: The effective potential energy U(z) of interaction
between a mobile prismatic dislocation loop and statistically
distributed vacancy clusters. The statistical realization of po-
tential energy shown in this figure corresponds to the trajec-
tory labeled as case 3 in Figure 13.

a set of potential wells of varying depth and width, dis-
tributed along the trajectory of migration for the loop.

Figure 13 shows three examples of trajectories of mi-
gration of a single d = 6nm prismatic dislocation loop
migrating in pure iron and interacting with statistically
distributed vacancy clusters. The effective potential en-
ergy of interaction, corresponding to case 3 shown in Fig-
ure 13, is shown in Figure 14. The simulated trajectories
of migration of the loop closely resemble those shown in
Figures 3 and 15, and other similar trajectories observed
earlier4,6,41. The similarity between the fairly charac-
teristic shape of trajectories found in simulations and
in experimental observations, and the similarity between
the timescales characterizing the trapping events, suggest
that it is the elastic interaction between the loops and
vacancy clusters formed under cascade irradiation that
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FIG. 15: Examples of experimentally observed trajectories of
migration for prismatic a/2〈111〉 dislocation loops of various
size in pure iron irradiated with 150 keV Fe+ ions to a dose
of ∼0.65 dpa. The temperature of the specimen is 673K.

likely gives rise to the unusual statistics of motion (hop-
ping) of loops observed by in-situ electron microscopy
for ion-irradiated materials. Such vacancy clusters re-
main almost invisible in electron microscope images41.
The statistics of trapping and de-trapping events, and
transitions between the trapping sites seen in Figure 13
is in good agreement with the estimated residence times
given by equation (21). We therefore conclude that it
is the combined effect of elastic interaction between the
loops and the vacancy clusters, and Brownian migration
of the loops, that is likely responsible for the unusual fea-
tures of migration of loops in ion-irradiated iron shown
in Figures 3 and 15. Effects associated with elastic long-
range interaction between migrating loops themselves are
responsible for the correlated motion of loops frequently
observed in high-energy electron irradiated iron, which is
shown in Figure 1.

VIII. CONCLUSIONS

In this paper we developed a Langevin dynamics model
and showed that the model is able to match real-time
in-situ electron microscope observations of dynamics of
migration and interaction between mobile nano-scale de-
fects. We find that diffusion of defects combined with
effects of elastic interactions gives rise to the occurrence
of new modes of microstructural evolution, involving de-
fect trapping and correlated motion of defects, which in
turn strongly influence the rates of reaction and coales-
cence between the defects. The Langevin dynamics ap-
proach described above is able to model the dynamics
of of motion of radiation defects on realistic timescales
(10 to 1000 s), matching those of experimental observa-
tions, as opposed to MD simulations that are only able
to address timescales many orders of magnitude shorter.

The Langevin dynamics model appears particularly
suitable for treating the effects of interaction between the
defects, which so far have proved difficult to include in
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kinetic Monte Carlo simulations, while at the same time
offering advantages related to the computational imple-
mentation of the algorithm. The new method will likely
prove effective for interpreting experimental data on mi-
crostructures formed by ion-beam irradiation of mate-
rials, where the high-dose rate effects and various phe-
nomena related to long-range interactions between the
defects have so far proved difficult to address using other
modelling techniques and algorithms.
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