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1. Introduction

In this lecture a brief survey is given of recent progress in the theory of
hydromagnetic stability. By hydromagnetic-instabilities are understood those
which are described by closed hydrodynamic type equations and which do not depend
on the detailed structure of the particle distribution functions in the equilibrium
state. This means that all high frequency behaviour of the system is being
neglected.

For most of the lecture the system will be supposed to be described by the
idealised hydromagnetic equations:
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The principal approximations in these equations are the substitution of a
scalar pressure for the pressure tensor in equation (1), the neglect of several
terms including those due to resistivity and the Hall effect in equation (4) and
the assumption of the adiabatic law equation (8). Displacement currents are also
neglected but this approximation is normally justified and - in-any case the intro-—
duction of these terms does not essentially complicate the problem.

In the next section the stability of a system obeying the idealised:hydro—
magnetic equations is discussed. In the final section the influence of some of
the terms omitted from these equations is described. Only in one case, where
low frequency behaviour is affected, are instabilities involving the detailed
structure of the velocity distribution functions mentioned.



2. Idealised hydromagnetics

(a) Static equilibria

Before 1058 relatively few hydromagnetic stability problems had been solved
exactly by a normal mode analysis; such a method is only simple when the system
has a high degree of symmetry and the resulting differential equations can only be
solved for very simple equilibria. One such equilibrium is the so—called stabilized
pinch (Rosenbluth (1), Shafranov (2), Tayler (8)). In cases when the normal mode
equations could not be solved exactly, information about the sign or reality of the
disturbance growth rate could sometimes be obtained by forming volume integrals of
the perturbed equations (see for example Chandrasekhar (4)). '

A more powerful technique for the study of the stability of static equilibria
was introduced by Bernstein, Frieman, Kruskal and Kulsrud (5) and Hain, Lust and
Schluter (6). (This followed earlier work by lundquist (7)). The hydromagnetic
equations have an energy integral

= [ pv? dT*—J i + o drt.
Because the energy remains constant, a static equilibrium can only become unstable
if there exists a neighbouring state of lower potential energy. Bernstein et al.
gave an expression for this change of potential energy which was suitable for
calculation and they showed that the displacements considered need not satisfy all of
the normal boundary conditions.

This energy principle was first applied to systems with a high degree of
symmetry. For problems with cylindrical symmetry, two of the Euler-Lagrange equa-—
tions of the energy integral are algebraic and minimising and only the minimisation
with respect to the radial component of the perturbation presents any difficulty.
In terms of this radial perturbation (fr), the perturbation in the energy (OW)

oW = J{A§2+B< > }dr

where A and B depend on the equilibrium conditions and the shape of perturbation
chosen. The simple form of this expression for 6W enables general stability
conditions to be obtained.

takes the form

By use of well chosen trial functions for the radial perturbation, Rosenbluth (8)
was able to show that there exist configurations arbitrarily close to the stabilized
pinch configurations which are unstable.  From the above form of the energy integral
several authors including Laing (9) and Suydam (10) were able to obtain sufficient
conditions for plasma stability. Thus obviously stable configurations were



discovered. One sufficient condition is obtained very simply; since B is
positive, it is sufficient for stability that A 1is positive everywhere for all
perturbations.  One such condition can be written

d
ng;(r‘Be).ﬁO.

This can only be satisfied in the hard—core or inverse pinch in which a solid rod
carrying a current passes through the centre of the plasma and the plasma current,
flows in the opposite direction to that in the core.

The third Euler-Lagrange equation is not obviously a minimising equation but,
by considering perturbations which were solutions of this equation, Suydam (11)
was able to obtain a necessary condition for the stability of a cylindrical plasma.
The condition which must be satisfied at all points has the form

EE')ﬂ 38r rpY o
m B

where p = E;e/rBZ and the prime denotes differentiation with respect to r. More
recently Newcomb (12) and Suydam (10) have found necessary and sufficient conditions
for stability. These conditions depend on the existence or non-existence of zeros
of the third Euler-Lagrange equation within the plasma. K. Schwartz (52) has
extended Newcomb's necessary and sufficient condition to the case in which the
plasma has anisotropic pressure by using the energy principle of Kruskal and
Oberman (38). With the discovery of the necessary and sufficient conditions, the
study of the stability of a cylindrical system is reduced to computation and there
is no difficultyin principle. The computation is quite laborious but results
using the criterion have recently been obtained by Whiteman and Copley (13).

Any contained hydromagnetic equilibrium is topologically toroidal and some of
the results obtained for cylindrical systems have now been extended to toroidal
systems.  One difficulty is that few explicit forms for toroidal equilibria are
known as they can only be obtained by the solution of non—linear partial differential
equations. The general properties of toroidal equilibria have been discussed by
Kruskal and Kulsrud (14) and Grad and Rubin (15). Special toroidal equilibria have
been derived by Shafranov (18), Laing, Roberts and Whipple (17), Whipple (18) and
Whiteman (19) amongst others.**

Kadomtsev (20) has shown how to obtain an analogue of Suydam's necessary
condition for stability which is applicable to general toroidal configurations.

**See also Kadomtsev (49).



He considered a particular perturbation which was confined to the neighbourhood of
one magnetic surface and which followed the magnetic field lines on that surface;

on intuitive prounds Suydam (11) had suggested that these perturbations which move
magnetic field lines without stretching them would be amongst the least stable.
Mercier (21) has obtained another analogue of Suydam's criterion which is a necessary
condition for the stability of an axisymmetric torus. This criterion is more
stringent than Kadomtsev's which can of course also be applied in the special case

of axial symmetry.

It seems likely that a toroidal analogue of Newcomb's necessary and sufficient
conditions also exists; this would depend on whether there exist solutions of the
Euler-Lagrange equation which leave an entire magnetic surface unperturbed.  Such
a result in the special case of axial symmetry has been given by Bineau (unpublished
as yet). Sufficient conditions for the stability of toroidal configurations have
been given by Mercier (21) and Suydam (22).

Few detailed applications of toroidal stability criteria have been given because
of the lack of simple expressions for the equilibria. Mercier has, however, shown
that one particular equilibrium (a hydromagnetic analogue of the Hill's vortex) is
unstable and he has shown that criteria can be simplified in the neighbourhood of the
magnetic axis. Bernstein et al. (b) have shown how to find necessary and sufficient
conditions when the plasma does not contain an axial magnetic field and Tayler
(unpublished as yet) has shown that all configurations without an axial field, except
possibly those of an inverse pinch type, are unstable. Many calculations on rather
complicated equilibria have been made by the Princeton group (see for example (23)).
Their results have been obtained by treating many complicating factors as small
perturbations and by expanding about a simple equilibrium. The stability of a
particular toroidal analogue of the Stabilized Pinch has been studied by List, Suydam,
Richtmeyer, Rotenberg and Levy (physics of fluids, to be published). They show that
the toroidal results are similar to the cylindrical results if the aspect ratio is not
too small.

(b) Stationary Equilibria

If a hydromagnetic configuration is considered in which the fluid has a steady
velocity, the stability of the system cannot be studied by means of the energy
principle.  As the system possesses kinetic energy in its undisturbed state, there
is no necessity for the potential energy to decrease for the system to become unstable;
the instability can be fed by the steady kinetic energy. Several simple problems
have been solved by means of a normal mode analysis [Trehan (24), Gerjuoy and
Rosenbluth (25) Pytte (28), Zabusky (27)].  More recently Frieman and Rotenberg (28)
have shown that a variational principle does exist for this problem. They have



" been able to show that, provided the fluid velocities are small compared to the
sound velocity and the Alfven velocity, steady motions cannot make a previously
stable system unstable.

(c) Large Amplitude Disturbances

If a system is unstable against small perturbations, it is nevertheless
possible that the amplitude of the instabilities might be limited by non-linear
effects; conversely a system executing large stable oscillations might become
unstable against further perturbations.

Friedrichs (29) has investigated the first possibility for the case of the
pinched discharge with surface currents. He has used a classical bifurcation
analysis, similar to that used in the study of the stability of rotating liquid
masses, in the hope that he would be able to show that a series of stable
distorted equilibria comes into existence when the cylindrical equilibria become
unstable.  However what he has shown is that distorted equilibria only exist in
the neighbourhood of undistorted equilibria when the latter are stable; in this
case the distorted equilibria are unstable. This suggests that the initially
stable configurations may be unstable at large amplitudes.

If a plasma is oscillating about a steady state, there are times when it is
acted on by accelerating forces which, to a first approximatioh, make the problem
of stability against further small perturbations resemble the Rayleigh-Taylor
stability problem of a plasma supported against gravity by a magnetic field.
Because of this there has been much interest in the Rayleigh-Taylor stability
problem.  Early results were obtained by Kruskal and Schwarzschild (30) and
Meyer (31). General stability criteria for plane and cylindrical systems have
been given by Newcomb (32)* and Tayler (33). One simple dynamical problem, in
which a small perturbation is superimposed upon a steady motion, has been discussed
by Tayler (34). He has shown that the small perturbation can grow but it is not
clear that this is a true instability rather than a transfer of energy from cne
steady oscillation to another.

*Criteria for plane systems have also been obtained by Cowley (51).



3. Non-idealised hydromagnetics

(a) Double adiabatic hydromagnetics

If the collision frequency in a plasma is not sufficiently high, motions along
and across the magnetic field lines are not closely coupled. If the flow of heat
along the field lines is neglected, closed hydromagnetic equations can be obtained
in which the single adiabatic law relating pressure and density variations is
replaced by two governing the parallel and perpendicular components of the pressure
tensor. These equations are

d
a—t'(Pn B%/p®) = 0
d

and — (p./Bp) = 0.
dt Pe

These equations were derived by Chew, Goldberger and Low (35). It was subsequently
shown by Kruskal and Oberman (36) and Rosenbluth and Rostoker (87) that a modified

energy principle applies in this case. Furthermore, if the equilibrium has
isotropic pressure, the double adiabatic equations predict greater stability than

the idealised hydromagnetic equations.

(b) Small Larmor radius

In deriving their equations, Chew, Goldberger and Low assumed that the particle
Larmor radii were small. Chandrasekhar, Kaufman and Watson (38, 39) considered
the form of these equations when heat flow along the field lines was not neglected.
Kruskal and Oberman (36) and Rosenbluth and Rostoker (37) also obtained energy
principles for this problem and showed that, for isotropic equilibrium, the stability
predicted by these equations is intermediate between that predicted by the double
adiabatic and idealised hydromagnetic equations. Thus

GWDA > OW 2 6wH ;

(c) Anisotropic instabilitles

If the plasma equilibrium has anisotropic pressure, both the Chew, Goldberger
and Low and the Chandrasekhar, Kaufman and Watson equations predict the occurrence
of new types of instabilities. Thus, for example, List (40) and Chandrasekhar,
Kaufman and Watson (41) have shown that plane waves in an infinite homogeneous
medium with a uniform magnetic field become unstable if either the parallel or the
perpendicular component of pressure becomes too large. The latter instabilities
are commonly called mirror instabilities because they are to be expected in a



magnetic mirror machine. The criteria for instability obtained from the Chew,
Goldberger, Low equations are

Pu > pl + 82/4":

and pi/P" > 8(p, * B?/8n).

The first criterion is also obtained from the treatment of Chandrasekhar,Kaufman
and Watson but the second criterion depends on the precise form of the equilibrium
distribution functions. If electrons and ions both have Gaussian distributions
in both components of velocity and the same ratio of parallel and perpendicular
pressures, it becomes

pi/p" > (p, + B*/8n).

Chandrasekhar, Kaufman and Watson (41) have also considered the problem of
the stabilized pinch with anisotropic pressure and have shown how new instabilities
: 'S
arise.

(d) Finite transport processes

If the plasma has high density or low temperature, the normal transport effects
described by Chapman and Cowling (42) become important. This is also true in a
conducting liquid. Hare (43) has shown that viscosity can never increase the
instability of a static equilibrium of an incompressible fluid. Tayler (44) has
also shown that the same thing is true for one particular problem involving a
compressible fluid and he has shown how growth rates at short wavelengths are

reduced by viscosity.

Tayler (45) has also considered a special problem involving a viscous fluid
of finite conductivity. He has shown that the presence of a finite conductivity
can lead to greater instability. This can be explained because the conductivity
plays a dual role in stability problems: although Joule heating may be expected
to damp instabilities, the finite conductivity encourages field diffusion and
allows plasma to move across field lines. Similarly finite viscosity may lead
to greater instability of a stationary equilibrium. This is well known from
hydrodynamics.

*Mercier and Cotsaftis (50) have recently obtained a stability criterion for a
toroidal plasma with anisotropic pressure.



(e) Hall effect

Ware (48) has recently stressed that, although the ideal hydromagnetic equa—
tions assume that the fluid and magnetic field move together, the truth is that when
the Hall current is included the magnetic field is more closely tied to the motion
of the electrons. This suggests that instability will be replaced by instability
waves (overstability). Tayler (unpublished as yet) has solved one problem including
the Hall effect exactly; instability wavesdo occur but stability conditions are
virtually unaltered unless the ion gyration frequency is small compared to typical
hydromagnetic frequencies and the growth rates are,if anything, reduced. Other
stability problems including the Hall effect have been studied by Tserkovnikov, (47)

and Kadomtsev (48).
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1. Introduction

In this lecture a brief survey is given of recent progress in the theory of
hydromagnetic stability. By hydromagnetic-instabilities are understood those
which are described by closed hydrodynamic type equations and which do not depend
on the detailed structure of the particle distribution functions in the equilibrium
state.  This means that all high frequency behaviour of the system is being
neglected.

For most of the lecture the system will be supposed to be described by the
idealised hydromagnetic equations:

dv J xB
i g e = 1
By grad p + Sl (1)
X divpy -0, (2)
ot
1dp Y dp
e SR 3
pdt e dt -
vXxB
E'F .—-O, (4)
c
4m;j
curl B = = : (5)
c
div B =0 (8)
oB
and curl E = —E-;. (7)
c ot

The principal approximations in these equations are the substitution of a
scalar pressure for the pressure tensor in equation (1), the neglect of several
terms including those due to resistivity and the Hall effect in equation (4) and
the assumption of the adiabatic law equation (8). Displacement currents are also
neglected but this approximation is normally justified and 'in any case ‘the intro—
duction of these terms does not essentially complicate the problem.

In the next section the stability of a system obeying the idealised: hydro—
magnetic equations is discussed. In the final section the influence of some of
the terms omitted from these equations is described. Only in one case, where
low frequency behaviour is affected, are instabilities involving the detailed
structure of the velocity distribution functions mentioned.



2. Idealised hydromagnetics

(a) Static equilibria

Before 1958 relatively few hydromagnetic stability problems had been solved
exactly by a normal mode analysis; such a method is only simple when the system
has a high degree of symmetry and the resulting differential equations can only be
solved for very simple equilibria. One such equilibrium is the so—called stabilized
pinch (Rosenbluth (1), Shafranov (2), Tayler (8)). In cases when the normal mode
equations could not be solved exactly, information about the sign or reality of the
disturbance growth rate could sometimes be obtained by forming volume integrals of
the perturbed equations (see for example Chandrasekhar (4)).

A more powerful technique for the study of the stability of static equilibria
was introduced by Bernstein, Frieman, Kruskal and Kulsrud (5) and Hain, Lust and
Schluter (6). (This followed earlier work by Lundquist (7)). The hydromagnetic
equations have an energy integral

Bz
E='P+W==f0!2d1+j<JL—+—- g
-1 8n
Because the energy remains constant, a static equilibrium can only become unstable
if there exists a neighbouring state of lower potential energy. Bernstein et al.
gave an expression for this change of potential energy which was suitable for

calculation and they showed that the displacements considered need not satisfy all of
the normal boundary conditions.

This energy principle was first applied to systems with a high degree of
symmetry. For problems with cylindrical symmetry, two of the Fuler-Lagrange equa—
tions of the energy integral are algebraic and minimising and only the minimisation
with respect to the radial component of the perturbation presents any difficulty.
In terms of this radial perturbation (fr), the perturbation in the energy (6W)

dfr 2
oW = J-{A §§ + B < p } dr,
r

where A and B depend on the equilibrium conditions and the shape of perturbation
chosen. The simple form of this expression for OW enables general stability

takes the form

conditions to be obtained.

By use of well chosen trial functions for the radial perturbation, Rosenbluth (8)
was able to show that there exist configurations arbitrarily close to the stabilized
pinch configurations which are unstable. From the above form of the energy integral

several authors including Laing (9) and Suydam (10) were able to obtain sufficient
conditions for plasma stability. Thus cbviously stable configurations were

2.



discovered.  One sufficient condition is obtained very simply; since B is
positive, it is sufficient for stability that A is positive everywhere for all

perturbations. One such condition can be written

d
ng;(l‘Be)éO.

This can only be satisfied in the hard-core or inverse pinch in which a solid rod
carrying a current passes through the centre of the plasma and the plasma current
flows in the opposite direction to that in the core.

The third Euler-Lagrange equation is not obviously a minimising equation but,
by considering perturbations which were solutions of this equation, Suydam (11)
was able to obtain a necessary condition for the stability of a cylindrical plasma.
The condition which must be satisfied at all points has the form

SacER

" B

where u = Be/rBz and the prime denotes differentiation with respect to vr. More
recently Newcomb (12) and Suydam (10) have found necessary and sufficient conditions
for stability. These conditions depend on the existence or non—existence of zeros
of the third Euler-Lagrange equation within the plasma. K. Schwartz (52) has
extended Newcomb's necessary and sufficient condition to the case in which the
plasma has anisotropic pressure by using the energy principle of Kruskal and
Oberman (36). With the discovery of the necessary and sufficient conditions, the
study of the stability of a cylindrical system is reduced to computation and there

is no difficultyin principle. The computation is quite laborious but results
using the criterion have recently been obtained by Whiteman and Copley (13).

Any contained hydromagnetic equilibrium is topologically toroidal and some of
the results obtained for cylindrical systems have now been extended to toroidal
systems.  One difficulty is that few explicit forms for toroidal equilibria are
known as they can only be obtained by the solution of non-linear partial differential
equations. The general properties of toroidal equilibria have been discussed by
Kruskal and Kulsrud (14) and Grad and Rubin (15). Special toroidal equilibria have
been derived by Shafranov (16), Laing, Roberts and Whipple (17), Whipple (18) and
Whiteman (19) amongst others.**

Kadomtsev (20) has shown how to obtain an analogue of Suydam's necessary
condition for stability which is applicable to general toroidal configurations.

**See also Kadomtsev (49).



He considered a particular perturbation which was confined to the neighbourhood of
one magnetic surface and which followed the magnetic field lines on that surface;

on intuitive grounds Suydam (11) had suggested that these perturbations which move
magnetic field lines without stretching them would be amongst the least stable.
Mercier (21) has obtained another analogue of Suydam's criterion which is a necessary
condition for the stability of an axisymmetric torus. This ecriterion is mere
stringent than Kadomtsev's which can of course also be applied in the special case

of axial symmetry.

It seems likely that a toroidal analogue of Newcomb's necessary and sufficient
conditions also exists; this would depend on whether there exist solutions of the
Fuler-Lagrange equation which leave an entire magnetic surface unperturbed.  Such
a result in the special case of axial symmetry bas been given by Bineau (unpublished
as yet). Sufficient conditions for the stability of toroidal configurations have
been given by Mercier (21) and Suydam (22).

Few detailed applications of toroidal stability criteria have been given because
of the lack of simple expressions for the equilibria. Mercier has, however, shown
that one particular equilibrium (a hydromagnetic analogue of the Hill's vortex) is
unstable and he has shown that criteria can be simplified in the neighbourhood of the
magnetic axis. Bernstein et al. (5) have shown how to find necessary and sufficient
conditions when the plasma does not contain an axial magnetic field and Tayler
(unpublished as yet) has shown that all configurations without an axial field, except
possibly those of an inverse pinch type, are unstable. Many calculations on rather
complicated equilibria have been made by the Princeton group (see for example (23)).
Their results have been obtained by treating many complicating factors as small
perturbations and by expanding about a simple equilibrium. The stability of a
particular toroidal analogue of the Stabilized Pinch has been studied by Lust, Suydam,
Richtmeyer, Rotenberg and Levy (physics of fluids, to be published). They show that
the toroidal results are similar to the cylindrical results if the aspect ratio is not
too small.

(b) Stationary Equilibria

If a hydromagnetic configuration is considered in which the fluid has a steady
vilocity, the stability of the system cannot be studied by means of the energy
principle. As the system possesses kinetlic energy in its undisturbed state, there
is no necessity for the potential energy to decrease for the system to become unstable;
the instability can be fed by the steady kinetic energy. Several simple problems
have been solved by means of a normal mode analysis [Trehan (24), Gerjuoy and
Rosenbluth (25) Pytte (26), Zabusky (27)]. More recently Frieman and Rotenberg (28)
have shown that a variational principle does exist for this problem.  They have



been able to show that, provided the fiuid velocities are small compared to the
sound velocity and the Alfven velocity, steady motions cannot make a previously
stable system unstable.

(c) Large Amplitude Disturbances

If a system is unstable against small perturbations, it is nevertheless
possible that the amplitude of the instabilities might be limited by non-linear
effects; conversely a system executing large stable oscillations might become
unstable against further perturbations.

Friedrichs (29) has investigated the first possibility for the case of the
pinched discharge with surface currents. He has used a classical bifurcation
analysis, similar to that used in the study of the stability of rotating liquid
masses, 1n the hope that he would be able to show that a series of stable
distorted equilibria comes into existence when the cylindrical equilibria become
unstable.  However what he has shown is that distorted equilibria only exist in
the neighbourhood of undistorted equilibria when the latter are stable; in this
case the distorted equilibria are unstable. This suggests that the initially
stable configurations may be unstable at large amplitudes.

If a plasma is oscillating about a steady state, there are times when it is
acted on by accelerating forces which, to a first approximation, make the problem
of stability against further small perturbations resemble the Rayleigh-Taylor
stability problem of a plasma supported against gravity by a magnetic field.
Because of this there has been much interest in the Rayleigh-Taylor stability
problem.  Early results were obtained by Kruskal and Schwarzschild (30) and
Meyer (31). General stability criteria for plane and cylindrical systems have
been given by Newcomb (32)* and Tayler (33). One simple dynamical problem, in
which a small perturbation is superimposed upon a steady motion, has been discussed
by Tayler (84). He has shown that the small perturbation can grow but it is not
clear that this is a true instability rather than a transfer of energy from cne
steady oscillation to another.

*Criteria for plane systems have also been obtained by Cowley (51).



3. Non-idealised hydromagnetics

(2) Double adiabatic hydromagnetics

If the collision frequency in a plasma is not sufficiently high, motions along
and across the magnetic field lines are not closely coupled. If the flow of heat
along the field lines is neglected, closed hydromagnetic equations can be obtained
in which the single adiabatic law relating pressure and density variations is
replaced by two governing the parallel and perpendicular components of the pressure
tensor. These equations are

d
= (p, B%/p®) = 0
dt(p fp®)

d

and - /Be) = 0.
o (p,

These equations were derived by Chew, Goldberger and Low (35). It was subsequently
shown by Kruskal and Oberman (36) and Rosenbluth and Rostoker (37) that a modified

energy principle applies in this case. Furthermore, if the equilibrium has
isotropic pressure, the double adiabatic equations predict greater stability than

the idealised hydromagnetic equations.

(b) Small Larmor radius

In deriving their equations, Chew, Goldberger and Low assumed that the particle
Larmor radii were small. Chandrasekhar, Kaufman and Watson (38, 89) considered
the form of these equations when heat flow along the field lines was not neglected.
Kruskal and Oberman (36) and Rosenbluth and Rostoker (37) also obtained energy
principles for this problem and showed that, for isotropic equilibrium, the stability
predicted by these equations is intermediate between that predicted by the double
adiabatic and idealised hydromagnetic equations.  Thus

awDA > W 2 GWH .

(c) Anisotropic instabilities

If the plasma equilibrium has anisotropic pressure, both the Chew, Goldberger
and Low and the Chandrasekhar, Kaufman and Watson equations predict the occurrence
of new tLypes of instabilities. Thus, for example, List (40) and Chandrasekhar,
Kaufman and Watson (41) have shown that plane waves in an infinite homogeneous
medium with a uniform magnetic field become unstable if either the parallel or the
perpendicular component of pressure becomes too large. The latter instabilities
are commonly called mirror instabilities because they are to be expected in a



magnetic mirror machine. The criteria for instability obtained from the Chew,
Goldberger, Low equations are

pn >p, ¥ B?/4n

and pi/P" > Ei(p_L + B?2/8n).

The first criterion is also obtained from the treatment of Chandrasekhar,Kaufman
and Watson but the second criterion depends on the precise form of the equilibrium
distribution functions. If electrons and ions both have Gaussian distributions
in both components of velocity and the same ratio of parallel and perpendicular
pressures, it becomes

pi/p, > (p, + B*/8n).

Chandrasekhar, Kaufman and Watson (41) have also considered the problem of
the stabilized pinch with anisotropic pressure and have shown how new instabilities
: b3
arise.

(d) Finite transport processes

If the plasma has high density or low temperature, the normal transport effects
described by Chapman and Cowling (42) become important. This is also true in a
conducting liquid. Hare (43) has shown that viscosity can never increase the
instability of a static equilibrium of an incompressible fluid. Tayler (44) has
also shown that the same thing is true for one particular problem involving a
compressible fluid and he has shown how growth rates at short wavelengths are
reduced by viscosity.

Tayler (45) has also considered a special problem involving a viscous fluid
of finite conductivity. He has shown that the presence of a finite conductivity
can lead to greater instability. This can be explained because the conductivity
plays a dual role in stability problems: although Joule heating may be expected
to damp instabilities, the finite conductivity encourages field diffusion and
allows plasma to move across field lines. Similarly finite viscosity may lead
to greater instability of a stationary equilibrium. This is well known from
hydrodynamics.

*Mercier and Cotsaftis (50) have recently obtained a stability criterion for a
toroidal plasma with anisotroplc pressure.



(e) Hall effect

Ware (46) has recently stressed that, although the ideal hydromagnetic equa-—
tions assume that the fluid and magnetic field move together, the truth is that when
the Hall current is included the magnetic field is more closely tied to the motion
of the electrons. This suggests that instability will be replaced by instability
waves (overstability). Tayler (unpublished as yet) has solved one problem including
the Hall effect exactly; instability wavesdo occur but stability conditions are
virtually unaltered unless the ion gyration frequency is small compared to typical
hydromagnetic frequencies and the growth rates are,if anything, reduced. Other
stability problems including the Hall effect have been studied by Tserkovnikov, (47)
and Kadomtsev (48).
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