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ABSTRACT

In ‘the simple theory of ‘the stabilized pinch it is assumed that ‘the plasma has
isotropic pressure. In practice this may well not be true and it is lmown that new
Anstabilities may arise when the pressure is anisotropic. In particular, in the

simple theory, the uniform magnetic field in the plasma always exerts a stabilizing
influence whereas plane waves propagating in a uniform magnetic field may be

unstable if the pressure is anisotropic.

This lecture is divided into two main parts. In the first the qualitative
effect of anisotropic pressure is demonstrated by supposing the plasma to be
governed by the double adiabatic hydromagnetic equations of Chew, Goldberger and Low.
These equations neglect heat flow along field lines and they underestimate the

.instability.

In the second part a more accurate dispersion relation, given by Chandrasekhar,
Kaufman and Watson, .is solved for several values of the ratio of parallel and
perpendicular components of pressure. In this case both ion and electron distribu—
tion functions are assumed to be Gaussian in both parallel and perpendicular
-components of velocity and the ratio of parallel to perpendicular pressure is taken
to be the same for each species. It is shown that the domain of instability
increases if the ratio of pressures is either very large or very small but that the
greatest stability ocbhrs when the parallel pressure slightly exceeds the perpendicu—
lar pressure. '
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1.  INTRODUCTION

Recently the stability of a cylindrical plasma obeying the idealised hydro-
magnetic equatims has become rather well understood. In particular, following the
papers of Newcomb(9) and Suydam(11), complete necessary and sufficient conditions
for the stability of such a system are available. In practice the situation is not
quite so clear;, application of these criteria requires a discussion of the presence
or absence of zeros of solutions of a second order differential equation. Calcula—

tions based on these criteria have recently been performed by Whiteman and Copley(14)

Parallel with the progress in the theory of plasma stability there has been the
experimental occurrence of instabilities in situations which ideal hydromagnetics
would describe as stable. The most serious discrepancy is in the case of the hard core
pinch; this configuration,which has been mentioned in passing in (12), is one in
which the plasma column is hollow and an axial current in a conducting rod through
its centre exceeds the axial current flowing in the opposite dir;ction through the
plasma. Such a configuration is definitely stable according to hydromagnetics but
instabilities have been observed by both Aitken, Burcham and Reynolds(1) and
Birdsall, Colgate and Furth(2). One possibility is that end effects in a finite
cylindrical tube introduce perturbations leading to instability but another more
serious possibility is that the idealised hydromagnetic equations are not an
adequate representation of the true equations.

The possibility to be considered in this lecture is that the particle
distribution functions and hence the plasma pressure tensor are anisotropic. This
is likely in a low density plasma in a strong magnetic field. 1In a high density
plasma, frequent collisions keep the distribution functions isotropic and ensure a
truly localised hydrodynamics. When collisions are infrequent this is no longer
the case. If the magnetic field is strong, the particles gyrate in tight orbits
around the lines of force but they are more or less free to move along the field

lines; this situation is discussed in the present lecture.

A first attempt to obtain a set of equations in this case was made by Chew,

Goldberger and Low(6). They obtained, instead of the single adiabatic law for
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pressure and density variations, two equations governing the behavibur-of the
components of the pressure tensor along and across the field lines. These double
adiabatic equations take account of the anisotropy caused by the introduction of a
strong magnetic field but they are still local equations and they do not take full

account of the possibility of heat flow along the mggnetic field.

A more complete system of equations was considered by Chandrasekhar, Kaufman
and Watson(3,4) and they also studied the stability problem discussed in this
lecture in (5). Rosenbluth and Rostoker(10) and Kruskal and Oberman(?7) subsequentl}
considered the stability of arbitrary equilibrium configurations in the case in
which the heat flow along field lines is included and they showed that an energy
principle could be formulated to deal with this problem. As usual the system is
stable if and only if a certain integral, 6W, is positive for all perturbations.
Energy principles also apply for the idealised hydromagnetic and double adiabatic

equations; the corresponding integrals are 6Wy and 8Wp,.
When the equilibrium configuration is isotropic it can be shown that-

GWH £ 6W « 6WDA. (1-1)

The second inequality also applies when the equilibrium is anisotropic. The
inequalities (1.1) sﬁow that, for problems in which the initial configuration is
isotropic, the idealised hydromagnetic equations give the worst result; thus if
they predict stability there is no need to study the more refined equations. How—
ever the more refined equations enable equilibria with anisotropic distributions to

be studied and this can lead to the prediction of further instabilities.

That this does lead to new instabilities can be demonstrated by consideration
of a very simple problem. In the case of idealised hydromagnetics it is well known
that, if there is only an axial magnetic field, the worst that can happen is that
the system is marginally stable. However in the case of either the double adiabatic
equations or the Chandrasekhar, Kaufman, Watson equations¥®, it is easy to show that

plane hydromagnetic waves can become unstable if the anisotropy is large enough.

*These will be referred to as C.K.W. equations in what follows.
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Thus Llst(8) has shown, using the double adiabatic equations, that instability of

plane waves in infinite space with a uniform magnetic field occurs if either
Py > P, * B/4n (1.2)

or
p?/p, > 6(p, + B2/8n), (1.3)
where B,p ~ and p, are the equilibrium values of the magnetic field and the
components of the pressure tensor along and across the field lines. Similarly,
using the C.K.W. equations and making some further assumptions about the symmetry
of the problem, it has been shown (5) that plane waves are unstable if either

inequality (1.2) is satisfied or

pi/p" > P, + B2 /8n. (1.4)

It can be seen that, in agreement with what has been stated above, the C.K.W.-

criterion is violated more readily than the double adiabatic criterion.

It is immediately apparent that this result can be expected to have an adverse
effect on the gross stability of the stabiligzed pinch; its possible influence on
localised instabilities is not discussed here*. The gross stgbility of the stabil-
ized pinch is largely due to the inherent stability of an axial magnetic field. It
has been seen above that this property may be lost when the equilibrium is anisotro—
pic.

Both the double adiabatic equations and the C.K.W. equations predict instabil—
ities of the stabilized pinch caused by the anisotropy of the equilibria. Because
the C.K.W. equations are non—local and are much more complicated than the double
adlabatic equations, detailed derivation of stability criteria is given for the
double adiabatic case. This enables the qualitative effects of anisotropic pressure

to be seen without unduly complicated algebra. Numerical results are however given

*Strictly speaking the structure of the plasma surface should be considered becauge
the equations are only valid if the surface region is not too narrow. However this
criticism applies equally to the original discussion of the stabilized pinch and the
difference between the gross properties should be found by the present treatment.



for the case discussed by Chandrasekhar, Kaufman and Watson(5). It seems likely that
these results are more valid than the corresponding double adiabatic results. For
example, in the case of an isotropic equilibrium, the C.K.W. equations predict the
game results as idealised hydromagnetics but the double adiabatic equations predict

much greater stability.:

2. DERIVATION OF STABILITY CRITERIA.

The double adiabatic equations for a plasma are:,

d
-E% = —div p + curl B x B/4r, (2.1)

%

3 " Avev, (2.2)

a—'B' 1(v x B) :
3t curl(v x B), (2.3)

d
= (,B2/0°) = 0 o (2.4)

d .
and d—t- (pL/Bp) - 0, | (2.5)

where the plasma has density p, pressure tensor p and velocity v and carries a

magnetic field B.  The pressure tensor has the form

R =
(2.8)

o © '”g

o 9 O
=
3 O O

x
referred to local cartesian coordinates at any point in the plasma with the 1 axis
along the field line.

An equilibrium configuration is considered in which a cylinder of plasma of
radius r, has density p,, pressure p,, and Po, and contains a magnetic field
(o, 0, Bybj). The plasma is surrounded by a ‘vacuum containing a magnetic field
(o, Boro/r, Bybe) and this in turn is surrounded by a cylindrical conducting wall

of radius Ar,. Pressure balance across the plasma—vacuum interface requires that
1 # be2 a bi.:! - Bﬂpt')-,“/Bo2 . (2.7)
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The stability of this system is to be studied.

In a cylindrical polar coordinate system the pressure tensor can be written

Prr
Pgg =
Pzz
Prg =
Pgz ~

Pzr

p,B#/B2 + p (Bg + Bg)/Bz, )
p,B3/B> + p (Bg + B%)/Bz,
p,B3/B2 + p,(B

(p, — p,)BBg/B2,

+ Bg)/Bz,

R

Por
Pzo = (pu - PL) BGBZ/BE'

(pn _pL) BZBI‘/BE' J

]

Prg

Also the divergence of the pressure tensor has components

(divE)P :

(di‘fg)e

(divp),

. %rr , 1 9ppg + 9Prz , Prr—Pop
or r a8 oz g

9por , 1 %Pgo , OPgz , 2prg
or r 9o "z r i

?..EZI‘ + 3 '.a_pze + ?EZZ + E
or ‘T 08 0z i

4

1

(2.8)

(2.9)

Perturbations about the equilibrium are considered in which any variable q has the

form

i(mB+kz)+wt
q = g5+ qur) e "

The linearised forms of equations (2.1) to (2.5) are

and

Powvy = —div p, + curl B, X B,/4r,

wpy = = pgdiv vy,
By, = curl(v, x Bs)s

piu/pOH + ZBlz/Bobi - 391/00 = ()

pi_!_/po_l__ - BIZ/Bobj_ '_ Dn/Po = 0.

(2.10)

(2.11)

(2.12)
(2.13)
(2.14)

(2.15)



The linearised forms of equations (2.8) are

Pipr = Pagg = Pag
Pagz = Piy o

Pior = O, (2.16)
Pagz = (Pou - Por)B1o/Bob;,

Pizr = (Po, - poL)Bir/BobiQ

while equations (2.9) hold with all components of the pressure tensor replaced by
first order quantities and 9/90 and 9/dz replaced by im and ik.

All the perturbed quantities except v, can now be eliminated from equations
(2.11) to (2.16) and (2.9). It is shown in Appendix 1 that an equation for v,,

is obtained in the form

oD vy, = (m2 +a2r2)v,,, (2.17)

where D means d/dr and

@z = {pye? *+ k2[B2b2/4n + Pay; = po, )} {poe? + 8k2p,,}
{p0w9[ng§/4n+2pol]+k2[3ng§po"/4n+6polp0";pgi]}

(2.18)

Equation (2.17) is a modified Bessel Equation and it can be solved immediately
to give

vy = 4 Iglar). (2.19)

Expressions can then be found for the other perturbed quantities. Thus

Yip = —ikhaﬁlﬁ(ar)/[pdn2+k2(B5b§/4n+p0,%p0"}] (2.20)
Vig = mkh@lm(ar)/r[pdvz+k2(Babf/4“+Poi‘po“)]. (2.21)
Bip = keBob;MOIy(ar) folpqwr+ke (Bgb2 /anvpy,—py, )], (2.22)

Big = imk?ABob;0In(ar)/wlpqw?+k2(B2b2/dntp, —p, .) 1, (2.23)

o
"
H

7 — Bobj (p o«2+8py, k2 )Gy (ar) /ikp, @, (2.24)
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Py = — po[pom2+(3p0“fpoL)k9]GIm(ar)/ikpolw, (2.25)

Pa, = — (80,62 +(Bpy,~py, k2 1GI(ar)/ike (2.26)
and Pa, = - pO"[pom2+3(p0"¥pol)k2]aIm(ar)/ikpolm, (2.27)
where A= {p0w2(ngf/4n+2pol)+k2(SngfpO"/4n+6polpo"4poi)}/polk’-
| (2.28)
The perturbed magnetic field in the vacuum has the well known form
B,y = BKy(kr) + CI,(kr), (2.29)
Bay = —iBKgp(kr) - iCI!(kr) : (2.80)
and  By§ = (m/kr)[BK,(kr)+CI,(kr)]. (2.81)

Boundary .conditions have now to be applied on the perturbed plasma surface and
on the conducting wall. The perturbed plasma surface has the equation

r o rgHivaalis) o O AL ¥k - (2.32)

The boundary conditions are that the normal component of the magnetic field and
the total pressure p, + B2/8n are continuous across the interface and the normal
component of the magnetic field vanishes at the conducting wall. The unit normal

to the plasma—~vacuum interface is

/m)ei(m9+kz)+mt
r .

n = (-1,0,0) + (0,imvy,/ur,, ikv, (2.83)

When these boundary conditions are applied an equation is obtained for .w in terms
of m,k and the equilibrium quantities. This dispersion relation is derived in

Appendix 2 and it has the form
(m+bokr,)2 ¢ (krg,A) + kry

2p w2+ (6p,, ~p,, , k2 .
- Gk[‘g [bﬁ . 4T];pol (0] (o]] oL .]Im(d-l"-o-) s (2.34)

= pow? + 3p,, ke Inlary)

K (krg) I (Akr)=I, (kr, )K! (Akr,)
where ( (krg,A) = e = _ e il (2.85)
K (krg )1 (Akry )1 (ke )K7 (Akrg)
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In the derivation of this equation m and k have been supposed to be positive; because

of this positive and negative values of b, must be considered simultaneously.

It can be seen that there is a general similarity between equation (2.84) and
the dispersion relation for the stabilized pinch with isotropic pressure governed
by the idealised hydromagnetic equations. Marginal stability occurs for values of
m and k such that equation (2.34) is satisfied with » = oj. that is
4mp,,, BPou—Po Imﬁﬁoro)

By 8poy  “If(agry)

(m+bgkry )20 + kry = agkrg [Fi # 1+ (2.38)

where ¢, is the value of o with ¥ put equal to zero. The behaviour of equation
(2.36) depends on whether o2 is positive or negative. If a2 is negative, the
argument of the Bessel functions on the right hand side of equation (2.36) is
imaginary and, as k varies, aoIm(aoro)/Iﬁ(aoro) takes all real values infinitely many
times. Thus there are certainly wavenumbers of marginal stability and the system
is definitely unstable. The condition that o, is imaginary is just that one of
equations (1.2) and (1.3) is satisfied. Thus the stabilized pinch is .certainly

unstable whenever the plane waves are unstable.

If %o is real and m 1is not equal to zero, the right hand.side of equation
(2.88) exceeds the left hand side both for large values and small values of k.
The condition for stability is that the right hand side always exceeds the left
hand side. The same condition can be shown to be true when m is zero;. in this
.case 1if the right hand side is larger for small k it can be shown to be larger

for all k. Thus for real oy the stability criterion is

4TCPOL (2 . pOi)] .Im,(_ﬂ'-O.I'O)

¢, kr2 bz + _— —_—— > (m+b 2 ()4}
offo | P1 T TBZT po, Tr(aory) (m+bgkry ) 2P+kr,.

(2.37)

Although the above criterion is generally similar to the well known stabilized
pinch criterion (13), it does not reduce to it if the pressure is isotropic. Thus
if po, = Po,» equation (2.37) becomes

_2_07[p0 1 IITI ( Clol"o)

o krz {b% + ]
o™ o "Ml 3B3 T, T

> (m+bgkry)2 @ + kry, (2.88)



where in this case a2 k2/(1+20npoL/8B

Criterion (2.38) can thus be written

bik*rz I, la.r,)

%o In(egrg)

> (m+bgkry)2 § + kr, (2.39)

where a, < k. The corresponding stabilized pinch eriterion is
bgk2r2I (kr,)/Ix(kr,) > (m+bekr0)2®-+ kr,. (2.40)

Since I (X)/XI;(X) is a monotonically decreasing function of X ‘the double
adiabatic criterion is more easily satisfied than criterion (2.40). This is in
agreement with the result expressed in inequality(1.1)

Chandrasekhar, Kaufman and Watson(5) have obtained an alternative stability
criterion which is valid when the C.K.W. equations are satisfied. With the
additional assumptions that the distributions of parallel and perpendicular velo—
.cities are both Gaussian but that they have different dispersions ('temperatures"®)

and that the ions and electrons have the same 'temperatures!, their criterion is

“okrg [b2 ' %L A= P :[fm(_ihl_bl > (mbekry )2 9 +kry,
on o] O (2-41)
where here T
4; 8np. . . b
03 = ke [bp + T2 —-p—o")] /[bf + R —pO'-)]. (2.42)
BO Po;. 0 Pou

This criterion holds when @y 1s real;. when Gy 1is imaginary the system is
unstable and this corresponds to criteria (1.2) and (1.4). Criterion (2.41) does
reduce to (2.40) when Po,. 1s put equal to p,,.

Solutions of criterion (2.41) will be discuésed in the next section. The full
derivation of the criterion can be found in (5) and its form when distributions are

not Gaussian or when ion and electron 'temperatures' are different is given there.

3.  RESULTS

First consider the restrictions placed on possible values of the equilibrium

magnetic fields by inequalities (1.2) and (1.4) and the condition of pressure

9.



balance. Define, following Chandrasekhar, Kaufman and Watson

B = d4npy,/B3 (8.1)
and N = Do,/Poye (8.2)
Equation (2.7) shows that
28 = 1+ b2 - b2 (8.8)
i

and, as P cannot be negative, b, and b; must satisfy

b2 ¢ 1+ b2. (8.4)

Inequality (1.2) must never be satisfied. Thus if n 1s less than unity
b2 > Blnl -1l
When equation (3.3) is used this becomes

bz > {(1 —n)/(1 +n)} (1 + b2). (8.5)

Similarly if n 1is greater than unpity
bz > {(n —1)/n} (1 + b2). ' (3.6)

For any giﬁen value of n, (8.4) and one of (3.5) and (3.6) define a region' in ‘the
(be,bi) plane outside which thgre can be no stability. The critical regions are
shown for a set of values of n in Figure 1.- Also shown is the actual region of
stability for one value of the ratio of wall radius to plasma radius for n = 1; as
mentioned in Section 2, the results in this case are exactly the well known stabil—

ized pinch results.

Criterion (2.41) must now be applied‘in the region of the (bg,b;) plane which
is not ruled out by (8.4), (3,5) and (3.6). As usual the cases m = o and m > 1
must be considered separately and from the results of Chandrasekhar, Kaufman and
Watson it appears that m = 1 perturbations are less stable than those with m > 1.
When m = o the criterion is even in b, but when m = 1 negative values of b, are less
stable than positive values. Thus results are obtained for m = o and m = 1 and
negative bg.

The m = o criterion can be solved quite simply. It can be seen that, if it is

satisfied for k close to zero, it is satisfied for all larger k. When k-is small

10.



the criterion has the limiting form

2lnbz + (1-n)(1+b3)] > 1 — 2bz/(A2—1)
or 2nbi > (2n-1) - 8ba[(1n) + 1/(A2-1)]. (3.7)

Criterion (3.7) is the equation of another curve in the (bg,b;) plane below which
there can be no stability. This curve depends on A as well as on n. It .can be
seen that it places no restriction on possible values of b; when n < 0.5; in this

case the right hand side of criterion (8.7) can never be positive.:

The solution of the m = 1 criterion is more difficult. Values of n and A are
first chosen;. then a curve of marginal stability is obtained as follows. If a value
of be is chosen, the right hand side of criterion (2.41) can be plotted as a
function of kry. The left hand side of the criterion is now a function of bﬁland
kro. For one value of b? the curve of the left hand side as a function of Kty
touches the curve of the right hand side. This is the value of b2 for marginal

stability and no stability can occur for b? less than this value.  The procedure
can then be followed for further values of bg -

The Mercury computer has been used to obtain the solution of the m = 1 criter—
ion. The method of solution is briefly as follows. Figure 2 shows the general
behaviour of the right hand side of ecriterion (2.41). Tor small values of kry, the
function is negative and it has the maximum value of + 1 at Clkry = 1/fbej). The
function first becomes positive at A and the tangent from the origin touches it at
B. Since the left hand side of the criterion is everywhere_concave upwards, the
touching point of the two curves must be between A and B. The right hand side is
first calculated and the range (A,B) is identified. The lef't hand side now need
only be calculated for values of kry between the points A ang B. The left hand
side is first calculated for bg = 1« bZ;. if this curve cutg the curve AB, the
system is unstable for all allowable values of bf.  Otherwise the left hand side is
next calculated for b2 half way between the limits given by (3.4) and elther (8.5)
or (3.6). An iteration procedure is now used in which the alteration in the value
of bf is halved in each step, the values being increased if the curves cut and
lecreased if they do not. The iteration stops when the difference between

11



successive values of b% is less than some prearranged amount. The actual results

of the computation for one set of values of (n, A, bg,) are shown in figure 8.

Results have been obtained for eight values of n(5.0, 2.0, 1.5, 1.0, 0.75, 0.5,
0.2, 0.1) and three values of A(3.0, 2.0, 1.5). The full results obtained for
m=o, m=1and from (3.4) to (3.8) are shown in figures 4 — 11; one figure for each

each value of n.

A quantity which is of interest experimentally is the proportion of the energy,
which is within the conducting walls, which is in the form of plasma thermal energy.
This has been calculated for one value of the ratio of wall radius to discharge
radius for values of (be'bi) for which the system is marginally stable.” The results
are shown in the table. The fraction of energy in the plasma is given by the

formula
ep = (1+b2-b2) (1+1/2n)/{(1+b2-b3 ) (1+1/2n)+b2+(A2-1)bZ+21nA}. (3.8)

It can be seen that both the region of stability and the plasma thermal energy

have a maximum value when the parallel pressure is somewhat larger than the

perpendicular pressure.:

4, DISCUSSION

The aim of this lecture has now been achieved. It has been shown that the intro—
duction of anisotropic equilibrium distribution functions can lead to new
instabilities and, for one particular form of the zero order distribution function,
the révised stabilized pinch stability diagrams have been calculated. However
these numerical results do depend on the assumptions made and it is perhaps worth—
while to demonstrate that there are certainly equilibrium distribution functions

for which the stability requirements are more stringent.

The simplest thing to do is to consider criteria (1.2) and (1.4). Criterion
(1.2) is not affected by different assumptions about the zero order distribution
function but Chandrasekhar, Kaufman and Watson(5) show that the general form of

criterion (1.4) is

(S + R)p, + B2/4n < o, (4.1)

12,



In this inequality

gp_'_ Sip_'_]_ * Sep_Le ' (4.2)

and | Rp_L = RipLi + Reple,
where the suffices i and e refer to ions and electrons. For either species

of . of

m 2
SP_L = ZI_'I. J[ s4 (5&2 - Eg) dqds?2 (4.8)

e of ; e of ]
= — L 2 =y I e 2
and RP; '3 JI s 6q2dqu iﬁerf 52 aqquds?, (4.4)

> 32

of
e 52
ie m I oq? A

where ‘the distribution ‘functions ‘f are -functions of q? and s? where q and s are

‘the parallel and perpendicular components of the velocity. The 'sums are over the
two species of particles.
When ‘the distribution functions are Gaussian in both velocity .components ‘so
that .7
g SR (4.6)
the expressions (4.4) and (4.5) simplify considerably. In fact it is possible to

show "that

n

Sp, = 2p,(1-n) (4.7)

and Rp en 2 en/ 2 (e2n/p,), : (4.8)
i,e i,e L

¥,
where now there is a separate value of n,(p,/p"L for each type of particle. If

Nj = Ne, then R = o0 since €j = —€o; in addition 5 satisfies equation (4.7) with
P, being the total pressure. This is. the case for which calculations have been
done.

If the values of nj and ng are different, then

(S+R)p, = 2p,;(1-n;) + 2p . (1on,)

+ (nj=ng)?/[n;/p,1+ne/p o 1. (4.9)

13.



This expression can be rearranged to give
(§+§)pl - 2PL(1HH) ;(plipne_pLepui)2/pnipne(pui+pne)' (4'10)
The criterion for instability (4.1) then becomes

B2 ; (p_l_ipne_p_Lepll i )2

+ - - (4.11)
BEPL 2(Pli+Plé)(Pui+Pne)puiPne

n>1

In this form it can be seen that the critical value of n, at which instability
‘first occurs, is reduced if the energy is rearranged so that nifne. The complete
criterion clearly imposes restrictions on the individual n's ‘for the two species
of particles as well as on the total n. Thus if p . = o so that ne = @, the

last term in (4,11) becomes infinite so that .criterion (4.11) is always satisfied.

If the distribution functions are not Gaussian.it is not so .easy to give
general results and .expressions . (4.4) and (4.5) would have to be evaluated for each
species of particle. .It should also be mentioned that the Chandrégékhar, Kaufman,
Watson treatment rests on a solution of the Boltzmann.equation which assumes that
the particle Larmor .radii are'small;_if this.is not valid there may be other

.instabilities not derived here.
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APPENDIX I

REDUCTION OF THE PERTURBED PLASMA EQUATIONS

Equations (2.12) to (2.15) enable p,, Pa and §1 to be expressed in terms of

vy. Thus
wpy = —pudiv vy, (A1.1)
WByp = ikByDiVip, (A1.2)
WByg = ikBJDiV.g» (A1.3)
wB,, = ikBgbjvay — Bobidiv vy, (A1.4)
Wps, /Doy, = — div vy — Rikv,, (A1.5)
and WPy, /P, = — 2 div vy * ikvy,. (A1.6)

Equations (2.9), (2.16), (A1.5) and (A1.6) then combine to give

~(divpy)p = = 2pg, Ddiv vy + ikpy,Dva,~k2(pg,—pg, ) Vars  (AL.7)
w(divp,)g = ¥(2im/r)p0LdivE1 —(mk/r)pOLvlz;kQ(pO";pOL)vig (A1.8)

and  w(divp,), = — ikp,,div fl + k2 (3pg,~Po, ) Vazs (A1.9)
where D means d/dr.
The third component of equation (2.11) can then be written
PoW?Vag = 1kpg,div v, + (py, ~ 3P, K2V,
or div vy = [pou2 + (Spo"épol)kQ]vlz/iprL. (A1.10)

The first component of equation (2.12) becomes

PoWVar = 2P, D div v, — ikpy Dvy, + k2(py By WVap

- RQngivlrfén - ikB;bi Dv,,/4n + Bébi Ddiv ii/4n’

or [pu? + k2(B2b2/4n + py ~py,)1vyp = = 1kdDvy,, (A1.11)
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where A = [pga? (B2b2/4n+2py, ) +k? (3B2b2p,, /48D, by, ~Po’ ) 1By, k2. (A1.12)

Similarly the second component of equation (2.12) yields

(pge? + k2 (B2b% /4n + Po; Poy,?] Vyg = mkhv,./r. - (41.13)

Equations (A1.10), (A1.11) and (A1.13) can now be combined to give an
equation for v,,. Thus

— (ikMr)DrDv,, + (imk/r2)Mv,, + ik(pga? + k2 (BYb/4n+ Poy “Dou) V1g

= [pga? + (3p"04plo)k2][poaﬁ+k2(ngf/4n-+ polfib")]viz/ikpol..

This equation can be rearranged in the form
rDrD v,, = (m2 + a2r2)vlz, : . (A1.14)

{ ge? + k2 B2b2/4n + Do, — Po,)Hpse? + 8k2p }
where a2 B 8 2 (A1.15)
{powP(B2b2/4n+2po )+P2(382b2p0“/4n 6p0lp0“ po')}
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APPENDIX TII

DERIVATION OF DISPERSION RELATION

The continuity of the normal component of the magnetic field across the plasma-
vacuum interface implies that ’

BYy — imByv,p/wrg—ikBybeV, p/w = By ~ikByb;v, 1/ = o, (A2.1)
where this equation now has to be applied on the surface r = ry. The total pressure
is continuous provided that

Pay *+ BobiB,g/4n = BobeBy, /4m + BoByp/4n — Bgv, /dnrgw,  (42.2)
alsoon r = r,. In addition '

BY. = o (A2.8)
onr= Arg.
These three equations can be rewritten

;iBKﬁ(krol—iCIﬁ(kr0)=kAaBo(m+bekro)ﬂIﬁ(aro)/wro[pcw2+k2(ng§/4nfpoL;p0")];

_ (A2.4)
By (m+b kry ) (BE (kry) + CI,(kry)/4nkr,
= ~ikheB2AI,’ (ar, )/ Anwry[pyw2+k2( ng§/4n+pol;po‘l) ]
- [2pouﬁ+(6p0"4pcl)k9]aIm(aro)/ikm
- ngi(pouﬂ + 3p0"k2)ﬁlm(ar0)/4nikpo+w (A2.5)
and B q(Akry) + CIf(Akry) = O. ' (A2.8)

Equation (A2.6) can now be used to eliminate C from equations (A2.4) and (A2.5).

—iBlKp (kr )18 (Akry) — If(krg)K s (Akrg) /) (Akr,)

= khaBy (m+bekry)ALp (arg) /urglpou? +k2 (B3bE /4n + py —po )] (42.7)

and By (m+bkr)BIK  (kr ) Ih(Akro)=I, (kry) K4 (Akry) 1/4nkr 14 (Akr,)

= — ikheB3AI7 (ary) /4nur[py o2 +k2 (BRbE /4 + Po;,; Pon )]



- [2p&12+k2(6p6"4p0l)] GIm(aro)/ikU
- Bgbi (pot?+3pg,k2 )AL, (ary) /4nikp, . (A2.8)

( and B can now be eliminated between equations (A2.7) and (A2.8) to give the

dispersion relation. After some rearrangement this has the form

m(kro)Iﬁ(AkrD)—Im(kro)Ké(Akro)
(m+b_kr.)2 + kr
€07 | klrg) Ty (kg )T (erg ) K (Akrg) 0

dnp,. 2p. w? +(6p‘l? ) k2
- [g? 4+ Boy “Pg on Poy ] In(ar)) ] (42.9)

S e Pow? + 3p,, k2 Iqlery)
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TABLE

Fraction of energy contained in plasma in marginally stable configurations.

A = 2.0

P =

nbe 0.0 0.1 0.2 0.3

0.4  0.25 0.20 0.13  0.07
0.2  0.28 0.22 0.15  0.07
0.5 0.2 0.25 0.17  0.08
0.75 0.85 0.27 0.18  0.09
1.0  0.28 0.27 0.18  0.09
1.5  0.18 0.18  0.17  0.09
2.0  0.13 0.13 0.13  0.08

8.0 0.05 0.05 0.05 0.05
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FIG.I. STABILITY DIAGRAM FOR PLANE WAVES

FOR A GIVEN VALUE OF n, PLANE WAVES ARE STABLE FOR VALUES OF

Ib'tl/ (I + bez) Y2 ABOVE THE STRAIGHT LINE MARKED WITH THE VALUE OFT.

ALSO SHOWN ARE THE ACTUAL CURVES OF MARGINAL STABILITY FOR THE
STABILIZED PINCH FOR Tl=l, A=I|-5, m=0 AND m=lI.
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F16.2. GRAPH OF RIGHT HAND SIDE OF STABILITY CRITERION,

THE RIGHT HAND SIDE OF THE CRITERION 1S NEGATIVE FOR SMALL kro,
FIRST BECOMES POSITIVE AT A AND REACHES ITS MAXIMUM VALUE OF
+1 AT C. THE TANGENT FROM THE ORIGIN TOUCHES THE CURVE AT B.
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NO CONTAINED PLASMA
m=1, A=10
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FI1G. 4. STABILITY DIAGRAM M =5'0

MARGINAL STABILITY CURVES ARE DRAWN FOR m=0O AND m=I| PERTURBATIONS
FOR GIVEN A, THE SYSTEM IS STABLE FOR VALUES OF Ibg! AND Ibil/(1+b2)/2
ABOVE BOTH THE m=0 AND m=| CURVES AND BELOW

THE UPPER HORIZONTAL LINE,



NO CONTAINED PLASMA

m=0, A=3.0

O-75

025 |~

| | r
O-0 O-5 I-O 1-5 2-0
Ibel .

cLm/ L2
FIG. 5. STABILITY DIAGRAM m=2-0

MARGINAL STABILITY CURVES ARE DRAWN FOR M=O AND m=I PERTURBAT|ONS,
FOR GIVEN A, THE SYSTEM 1S STABLE FOR VALUES OF b, AND Ib{1/(1 + b,zz)Vz
ABOVE BOTH THE m=O AND m=1 CURVES AND

BELOW THE UPPER HORIZONTAL LINE.
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FIG. 6. STABILITY DIAGRAM m=I-5

MARGINAL STABILITY CURVES ARE DRAWN FOR m=O AND m=| PERTURBATIONS.
FOR GIVEN A, THE SYSTEM IS STABLE FOR VALUES OF Ibel AND Ibil/(1+ bg) Va
ABOVE BOTH THE m=0O AND m=l CURVES AND

BELOW THE UPPER HORIZONTAL LINE,
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FIG.7 STABILITY DIAGRAM T =I-0

MARGINAL STABILITY CURVES ARE DRAWN FOR m=0O AND m=| PERTURBATIONS

FOR GIVEN A, THE SYSTEM

IS STABLE FOR VALUES OF 1b,l AND Ibi /(1 + bZ) Y2
e e

ABOVE BOTH THE m=0O AND m=l CURVES AND
BELOW THE UPPER HORIZONTAL LINE,
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FIG.8. STABILITY DIAGRAM Tl=0-75

MARGINAL STABILITY CURVES ARE DRAWN FOR m=0O AND m=I PERTURBATIONS.

FOR GIVEN A, THE SYSTEM IS STABLE FOR VALUES OF Ibgl AND Ibjl/(1+bé)"2
ABOVE BOTH THE mM=0O AND m=| CURVES AND

BELOW THE UPPER HORIZONTAL LINE,
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FIG. 9. STABILITY DIAGRAM m=0-5

MARGINAL STABILITY CURVES ARE DRAWN FOR m=I PERTURBATIONS.
THERE ARE NO mM=O INSTABILITIES. FOR GIVEN A, THE SYSTEM IS STABLE

FOR VALUES OF Ibgl AND Ibil/(1+b3) %2 ABOVE THE m=I CURVE
AND BELOW THE UPPER HORIZONTAL LINE.
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FIG.10. STABILITY DIAGRAM ‘Tl=0-2

MARGINAL STABILITY CURVES ARE DRAWN FOR m=|
THERE ARE NO m=0O INSTABILITIES. FOR GIVEN A, THE
STABLE FOR VALUES OF Ibgl AND 1bil/(I+b3)Va

SYSTEM IS
m={ CURVE AND BELOW THE

ABOVE THE
UPPER HORIZONTAL LINE

PERTURBATIONS.
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FIG. Il. STABILITY DIAGRAM n=0-1

MARGINAL STABILITY CURVES ARE DRAWN FOR m=I PERTURBATIONS.

THERE ARE NO m=0O INSTABILITIES, FOR _GIVEN A, THE SYSTEM IS STABLE
FOR VALUES  OF Ibel AND Ibil/(l+b?% )'/2 ABOVE THE m=I CURVE
AND BELOW THE UPPER HORIZONTAL LIN






