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ABSTRACT

Calculations have been made which can be compared with the

(1)

of Wilkie and Fisherﬁz). The simplifying assumption of two-

previous experimental results of Ralph and Roberts and
dimensional flow has been made for the calculation. There
is no significant difference between this calculation and

the previous experimental results considered.
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ILLUSTRAT IONS
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9 Calculated time variation of the mean temperature for the case of
Wilkie and Fisher.
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SYMBOLS AND NOMENCLATURE

Physical Quantities in MKS Units

b

Temperature coefficient for volume change of
liquid.

Specific heat at constant pressure of liquid.
Acceleration due to gravity vector.
Acceleration due to gravity (absolute value).

Rate of generation of heat per unit volume of
liquid.

Thermal conductivity of liquid.

Length characteristic of a configuration.

Pressure in liquid.

Time

Temperature of liquid.
Velocity vector of liquid.
Cartesian coordinates.
Viscosity of liquid.

Difference between pressure and equilibrium
hydrostatic pressure in liquid.

Density of liquid.

Density of liquid at 0°C
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Vector gradient operator
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Physical Quantities in the Normalised Units of this Report

The quantities,

t, T, u, X, y, 2,

written primed above are now written unprimed.

u

|E

x- component of velocity vector.
v- component of velocity vector.
Vorticity vector.

z- component of vorticity vector.
Stream function vector.

z- component of stream function vector.

Dimensionless Quantities

Ra

Pr

Mg

Rayleigh number.
Prandtl number.

Heat transfer parameter.

Nomenclature for Computation

AX

At

Mesh spacing )
Time-step length ) Normalised Units

Values for the quantities T, w, ¥ at the mesh point
XEd e =g

Values of Ti,J’ wj,j at a stage numbered n in the
calculation.

nth approximation in the calculation of ¢i,j'
Identity tensor.

Tensor as defined by equation (14).

Tensor as defined by equation (15).
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C Tensor as defined by equation (16).

Ap Root mean square change in T meaned over the
channel cross section.

CWwg Root mean square change in w meaned over the cross
section.
Ewg Root mean square error in » meaned over the cross
' section.
(WT)i i Relative error in calculation of T at mesh point i,j.
b
(Wn)i y Relative error in calculation of w at mesh point i,j.
{ bl
Max (Ar) The maximum value of an array Ar.
i3 The mean value of I taken over the channel cross
section.
n
Jdas Surface integral.
r
Jav Volume integral.
R A quantity defined in the condition (18) which sets the
accuracy of the solution by the relaxation method.
S Initial value of random vorticity at the mesh points.
X, XC Quantities controlling the accuracy of calculation.

o B p,Q, (b ) As defined in the text.
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INTRODUCTION

Natural convection in a liquid, where there is a uniform generation of
heat throughout the volume, has been considered. The calculation is two-
dimensional, but the fundamental equations of physics are solved. One
purpose is to compare calculated results with the previously obtained
experimental results of Ralph and Roberts(i) and those of Wilkie and

(2)

Fisher

The method used here is basically the same as that used by Jahn and
Reineke(a). These authors have used a method previocusly used by-Crowley(4)
to calculate the changes produced by convective motion. The accuracy of
the calculation has been checked and a method for improving this accuracy
for points in the neighbourhood of the boundary has been introduced.
Automatic adjustment of the calculation time-step length has been tried, to

run the program to a prescribed accuracy. The extent to which this program

succeeded has been indicated.

FUNDAMENTAL EQUATIONS

rd ’ ’ ’

’, ’, ’ ’ v
Quantities x , vy, 2, t ,u, T, w, U and V' in MKS units are here

written primed, in order that the quantities in the normalised units which are

to be used, may be written unprimed.
The equations which have to be solved are the equation of motion for a liquid.

’ .
p<2 + 2’.V'E'> = -Vp+ @)t pg (1)
ot -

and the heat cohductioﬁiéqﬁation for a liquid,

!

pCp@Eﬁ .V T'} k (YV)? T +H ' (2)
i
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H is here the rate of generation of heat per unit volume, which is taken
as uniform throughout the liquid. The liquid is assumed incompressible

with temperature coefficient for volume change b; so that
= - !
p=rp,1-DbT ).

Further write

I
p(a_‘-’ +u! Y u'>= - Vm+ W@ -bge T . (3)

X X’ ’
t! _ T _T
E=3 o Y}z y:}”‘ s og=u .. Tog
z Z

where L is some dimension in a configuration

2
- - L - HL
and VT s i ¥ v o L

Neglecting P-P , compared with g, equations (8) and (2) become respectively
o

equations (4) and (5)

2
a_g_l_ u.Vu =v2u - R—a i - Yﬂ (4)
3t i - P -g ViR,
oT L @® : (5)
—— = e— T +— .
ot - 2T Pr P



Ra (the Rayleigh nunber) and Pr (the Prandtl number) are given by

&
Ca bgHL" p,C b o MC
a e 3 k ’

and i is the unit vector in the direction of gravity. Since the liquid

ig incompressible there is the further equation,

div(u) = o. (6)

An appropriate solution of equation (6) is,

u = Curl E
Further write ® = Cuerl 4 where ® is called the vorticity.

Then performing the curl operation on both sides of equation (4)

Bw

si - curl(uaw) = - curl curl(w)- %% curl(Tig) (7)

and equation (6) becomes
® = curl curl ¥ . (8)
This calculation is concerned only with the two-dimensional case with

Cartesian coordinates,

u = u(xny) i+ v (ny). iy
o= 0 (xy). i

i o= i,

=g =5

Equations (7) and (8) then bhecome respectively the equations (9) and (10),

2 7 T
3w v w . o oW  Raol. (9)
St + 52 + v 3y  ox° ayg Pr ox



2
axa aye

Further equation (5) becomes,

sar  ar T _ 1 [@8°T , o°T }
e hels, oL _ +rt{Z 4 =2
e T U TV P {axe 52 + 1 (11)

Time Advancing of the Vorticity Qn) and the Temperature;ﬁl)

w
Equation (9) of the previous section may be transposed so that %E
d 0 .
is equal to the sum of a convective term (—115$ -v g?) a diffusive
2 2 oT
term ( gw + o > and a temperature gradient term = %% Bx
dx”° dy2
" Sim:tarly equation (11) may be transposed so that oT
3t
is the sum of a convective term < oT aT> a diffusive term
! —us— -V 3
1 (BBT 5 aefr) ox oy
Pr 32 aya 1

and a heat generatica term py . The quantities w(x,y) and T(X,y) are
calculated on a rectangular mesh of pointsmi,a and Ti,j‘over the cross

section considered.

Considering both the vorticity @ and the temperature T, for all points except
those close £D the boundary the convective terms are larger than the other two;
consequently errors in the convective terms have most eflect on the accuracy of
the calculation. The fourth order method described by Crowley was used to
calculate the changes produced by the convective term. Crowley has shown that
for the case where there is only a convective term (the colour equation) this

method was much more accurate than a second order method. The diffusive term

was calculated by a second-order method, as has been described by Jahn and

Reineke, who also used Crowleys fourth order method for calculating the

; 0
convective term. The calculation is carried out in three stages, with fi,j



used to represent the initial value of either Wi 4 or Ti 1° Then
] s

£ = ((I-A) f°}. .
i,j L i,]j
£ = [(I-B) fl}. . (12)
i,j i,j
£ = ((I-C) fz]. ]
1,] L 1,]

which can be written

£3 [(I—C)(I—B)(I-A)fo}ij _ (13) |

i,] s

I is here the identity tensor, and A,B and C are tensors which calculate the
changes produced in the three stages. The change produced by A is due to

convection in the x-direction, that produced by B is due to convection in the

y-direction, and that produced by C is due to the other terms of equation (9)

and (11).
To calculate the change due to convection in the x-direction, a fourth-order

, £, f , I

curve is drawn through the points fi—2,3 v 31,3 i, i+l,] i+2,]

and the value of f on this curve corresponding to an x value of (i p x + uat)

is calculated. Reduced to algebraicform this gives

-
- - (£, .- £, .
(Af); 4 12 | ¥4 ,5 = Tier,g? ™ Biaa,s l-B:J)]
2 [ ( £+ (s +E D)
s - . + o ¢ § i
+ 24 =0 fi,j 15 fi+l,j + i-1,] itz,] 1=-2,]




where 3 ui,j . At

o
: iV
Similarly
@), . =2l8c, . -f . )-(£, . £ . )
L, 12 L i,1m1 1,11 i,j+z i,j-2
B= T
+ —|30f. ,-16(f. ., +£. . - ..
24 3 i,j (1,_-|+1 f1,3-1)+(f1,_-|+g+f1,_]-z)]
a [ ‘
+ - P -£. . + . . - f.
%5 -_2(f1,3+1 fl,]-l) (f1,3+2 fl,j~2i}
B* [,
- =6 £, .- . =, TF - .
24 1, 4(fl:J+1 i,j—1)+(fl:.]+2+flsj'2
(15)
Voo At
where B = Dx (Ax = Ay)
The tensor C can be written
At
(c£), . = P £, .+ f +
1,] (AX)E 1+1,_] i_lsj fi,j+l+fi,j—1 - 4fl,_]
+ Q . (16)

“When f is w in the above expression,

When f is T in the above expression

1 At

Popr 97 B

As has been noted by Crowley, even with

|Al<<1, rB|<<1, ‘Cl < 1



the approximate form of equation (13)

a3 0
= I-A-—B-C)f}. :
fisj [( 1,]

leads to serious error.

The case considered in Crowléys paper and the case considered here have two
points in common.
(1) The spacial vériatibn of the components of velocity (u,v) is slow.
(2) The spacial variation of the quantity being convected (¥ for Crowley's
paper, T and w for the present paper) is very rapid.
This fourth order method is most appropriate under these conditions.

4, Relaxation Method

To solve eqguation (10) (Poisson's equation), a relaxation method known as
Liebmann's method was used. This method has been considered by Lance (5)
and by Fromm (6). The method is now described.
. . 1 2 n
A series of approximations ¢i’J ’ wi,J y: R $i,j - was obtained for the

stream function at all mesh points. The approximation numbered (n + 1) was

obtained from the approximation numbered n using the equation

¥ i,j & ['ih,j i-1,] qJi,j+1 i,j—1

nt1 _ 1 {ﬁ n + oy oty 10 2 n+l + (Ax)? w, j] Can
3
Equation (17) was applied to all mesh points starting from i = 1, J = 1 and
sweeping through the mesh with increasing i and J. As the sweep continued the
nth approximation was replaced by the (n + 1)th. In the calculation the first
approximation was taken as the solution from the previous time step. A series

of approximations was calculated until a required degree of accuracy was obtained.

This reguired degree of accuracy was defined by the condition

n+i n ' 1 I) :
- < . - (18)
- (l‘]’i,j ¢i’j|> i Max( L '
The value of RL was for most calculations 0.0002, thus equation (19) is similar
to equation (3-2) of Fromm's report. The calculation was arranged so that

condition (18) was tested once every n_ sweeps of the mesh points and the

relaxation stopped when the condition was satisfied. For the most rapid



calculation it was found that n_ should have a value of about 3.
For all calculations there is the boundary condition that the component of

velocity normal to the boundary is Z®T0, The equation

u = curl §
gives
Ty 0 T T T (19)

The above boundary condition can be satisfied by making U Zero at all
boundary mesh points. Initially ¥ was made Zero at all boundary mesh points.
The relaxation equation (17) was then applied to all the mesh points except
those on the boundary, which remained Zero throughout the calculation.

5. Boundary Conditions for Temperature (T), Vorticity (m) and Stream Function (W)

The boundary conditions which may have to be satisfied are:

(1) Normal component of velocity Zero,

(2) Tangential component of velocity Zero,

(8) Temperature Zero,

(4) Normal component of temperature gradient Zero.
Condition (1) applies to all surfaces. Condition (2) applies to all surfaces where
there is a solid in contact with the liquid, but does not apply to any free
surfaces in the configuration. For any surface conditions (3) and (4) are
mutually exclusivé. Condition (3) applies to a heat conducting surface and
condition (4) applies to a heat insulating surface. Condition (1) was satisfied
by making ¥ =0 at all boundary points, and this has been explained in the
previous section. Condition (3) was satisfied in a similar manner; T was
initially made Zero on the surfaces in question and remained zero throughout
the calculation. To satisfy condition (4) the temperature at all mesh points
except at the boundary was time advanced as described in section 3, then the
temperature at the boundary mesh points was set to make the normal component
of temperature gradient Zero. The temperature at the mesh point adjacent

to the boundary (i=2) and two away from the boundary (i=3) were considered.



These values of Ti , are plotted as points B and C in Fig 1. The boundary
9 o

condition is now set by drawing a parabola through the points B and C to have

zZero slope at the boundary (i=1). This procedure leads to the equation

4 1
T =3T3 %,; . (20)

In the rest of this section the boundary condition (2) is discussed. This
boundary condition is not only the most difficult to satisfy, but considerably
complicates the task of running the complete program to a prescribed accuracy.
From equation (19) condition (2) makes the gradient of the stream function
normal to the boundary Zero at the boundary. Thus from conditions (1) and (2),
in the neighbourhood of the boundary U = Cd2, where d is the distance from
the boundary. Considering the boundary i = 1, this conditioﬁ is satisfied

by making

AP R _ (21)

This change is now made. However for equation (10) to be satisfied

Thus:ua’. must be given the value of equation (22). For all other surfaces

where condition (2) is satisfied, U and w at points adjacent to the boundary
must be altered to satisfy equations smilar to (21) and (22). The relaxation
process described in section 4 must be repeated with the new values of ® at points
adjacent to the boundary. This further relaxation usually took fewer sweeps.

w must now be specified at points on the boundary. Following Fromm the normal
component of the gradient of i was made Zero at the boundary. The values of

w on the boundary were then given by equations similar to equation (20):



wil &~

1
a3 73%,5 . (23)

This boundary condition can not be deduced. However it can be shown from the
basic equations that the average value of the normal gradient of , at the boundary
is zero. These values of  at the boundary have only a small effect on the rest
of the calculation.

6. Initial Conditions

For the initial conditions the temperature T, the vorticity , and the stream
function | must be specified at all mesh points, and the boundary conditions
given in section 5 must be satisfied. Further equation (10) relating
and [, must be satisfied.
For all the cases so far computed, ,, has been specified and y calculated to
satisfy equation (10) using the relaxation method of section 4. The values of
w at the mesh points have been generated by a random number program so that
values of -5, 0 and +S occurred with equal probability. To satisfy the
boundary conditions it was necessary to use an iterative method- The following
three steps were repeated in sequence:

(1) solve -equation (10) by the relaxation method,

(2) use an equation similar to equation (21)
to recalculate | at all mesh points adjacent to the boundary,

(3) use an equation similar to equation (22) to recalculate w at all

mesh points adjacent to the boundary.
The sequence of these three steps must be repeated 10 or 20 times for the
values of  and | adjacent to the boundary to converge. Finally ® at mesh
points on the boundary must be calculated using equations similarlto equation (23).
For the initial values of the temﬁerature T the first computer calculation took
oT _

the steady state conduction solution. Taking === D and u = 0 in
t

equation (5) gives

- 10 -



ABT =" . (24)

The solution of equation (24), with the correct boundary cenditions, can be
ohtained by a relaxation method, bﬁt for the cases considered it was a simple
parabolic function. It was found that this gave an initial value of mean temperature
T which was too large, and the computing time to reach the value of T for
thermal equilibrium was very large. For subsequent computer calculations the
initial temperature distribution was sCaled down by a factor fT to give an
initial mean temperature T which was approximately correct.

7. A Method for Improving the Accuracy of the Calculation

The accuracy of the method of calculation described in section 3 to section 6
was estimated by a method now to be described. A solution for temperature,

vorticity and stream function obtained from a previous calculation was taken.

o] 0

Write this solution T, = T y = . The calculation was then

i,J i g 0 Wi,y T i,
time advanced by a single time-step length At and the solution Ti ; = T; 3
y H
i, g = w;  was saved. The process was then repeated starting with the solution
L) ]
T. . = 77 oy ws 5 = w?  but now time advancing the solution by four time
1,) 1,] 1,] 1,]

At . ; B 2 _ 2
steps of length - to give a solution Ti,j = Ti,j »owg§ T 05,3 The
change produced at each mesh point for the calculated gquantities

o 2 o
AT, .=T2,-T, ., ,0w . =w . -o
1,] 1,] 1,9 ° 1,] 1,] 1,7

was calculated and printed out. Also the error produced at each mesh point for
the calculated guantities
2 1 = @B 0l

e T .=T° -T.,,¢ew ., =Ww . -0 .
1JJ l’J l!J l!J l’J l,J

was calculated and printed out. Then meaning over the cross section write

_ 2 _ ! .
N e T O

Then a measure of the relative error at each mesh point is given by the equﬁtinns

Tf .—T; . wf .-w;.
w\l - _L,J 1,3 <W>i'= ) 5] )
i, A " A
< T/ 5.3 TS wa,j ws

Here high accuracy leads to small values of (W,). .» (w ).. . It was found
T7i,3 w Lsd

that for all mesh points (WT)i j was of the order of 0.01. If mesh points on
H

5



the boundary, adjacent to thé boundary and two away from the boundary were
excluded (Wn)i{' was also of the order of 0.01. For points on or adjacent to

the boundary (Wu)i’j was as much as 0.5 and for points two away from the
boundary'it was as much as 0.1. The quantity BL of equation (19), which controls
the accuracy to which the relaxation solution of equation (10) is carried out, was

given a value 0.0002. Larger values of RL made the values (W ) greater and

m 13.]

hence the accuracy poorer. Smaller values of BL did not much change the values

The method for the improvement of the accuracy, to be described, attempts to improve
the accuracy at points two away from the boundary, which will be called the C-points.
For these points the velocity of the liquid was small and thus the convection term
of equation (9) was small, but the diffusion term was often larger than average.
Thus it can no longer be assumed that the comvective term is larger than the

diffusive term. For the diffusive term

dw
(w) = (w) +<—-> . At . (25)
t+At t ot A At

For the C-points the calculation of the change produced by the diffusive term
was made using equation (25). The calculation for a single time step is now as
follows;
(1) Time advance the vorticity ® for all mesh points as described
in section 3.
(2) Save the change produced in the last stage of equation (12), that is:
3 2

Aw =£", - f£° .
c 1,] 1,]

for the C-points only. This change is stored in a special array.

(3) Calculate the average of the initial and final values of  at each

- 12 -



mesh point and store in a special arrav

_ 1
(wav>. "2 (wt 0 4 At),
1,]

i,]
(4) Solve equation (10) fer U with @ = w,, using the relaxation method

of section 4.

(5) Recalculate w and U at points adjacent to the boundary to suit
boundary conditions using equations (21) and (22) and similar
equations.

(6) Solve equation (10) for U by the relaxation method with the new
values of ® adjacent to the boundary.

(7) For the C-points subtract the A w, previously calculated and add a
recalculated value of gnc obtained using equation (16) and the ¢ of
stage (5) above.

(8) Calculate new values of w for points adjacent to the boundary
assuming a linear rate of change of w with time using the eacuation

<%t-FA€) . (}Eé). T <%av"w€) .
1,] 1,1 1,]

(9) Solve equation (10) for { by the relazation method with = Wit as
calculated in stages (1), (7) and (8).

(10) Recalculate ® and U at points adjacent to the boundary using equations
(21) and (22) and similar equatioms.

(11) Solve equation (10) for U by the relaxation method with the new
values of w adjacent to the boundary.

(12) Time advance the temperature T for all mesh points except points on
the boundary as described in section 3.

(13) For mesh points on the boundary of heat-insulating surfaces use

equation (20) and similar equations to calculate the temperature T.
When the proceedure of stages (1) to (13) above was used, (wﬁ)i,J at points on
the boundary and adjacent to the boundary was at the most 0.05, a decrease by
a factor of 10. (wn)i,J for the C-points was at the most 0.01. When this
improvement in accuracy was noted, the method was used for all subsequent

calculation. It has been used in all the numerical results given in this report.

- 13 —



8. Egtimation of Accuracy and Adjustment of Time-step Length

0 1 2 : , .
and W, are as defined in section 7, and
Pi g 7 Pi,g 7 Py £ ’
r 2
€ w ijiﬁ(e w, )
s 1,]
It is required to run a program so that X = ¢ ws/&ns is less than some

predetermined value. Over a certain range of time-step length At, X varied
approximately linearly with At. However there was a minimum value of X which
could be obtained and further reduction of At did not reduce X, which was found
to vary in an irregular manner under these conditions. This minimum value of X
varied with time as the program was run. This made it difficult to run a program
with automatic adjustment of the time-step length. It was found convenient to

define a corrected value of X by the equation

€ w

x = s
c A ws+-fq.max(1w|)

The error €wg and hence Xc can be decreased indefinitely by decreasing the

time-step length At. Two numbers A and A . were set and the program was
max min

arranged so that when XE > Amax the time-step length At was halved, and when

XC'< Amin the time-step length At was doubled. In order to prevent frequent

changes in time-step length Amax/ﬁmin = 2.5.

Jahn and Reineke considered the stability of the numerical procedure and

calculated a maximum time-step length for stability. The program was then

run with the time-step length a certain fraction of the critical time-step length.

This makes the time-step length greater by at least a factor of two than the time-

step length for cases with the present program.

9. Organisation of the Program

Appendix 1 gives a key to all the symbols used in the computer program, and
Appendix 2 gives a list of all the subroutines used with an explanation
of their purpose. Appendix 3 gives a listing of a shortened version of the

MAIN computer program and Appendix 4 gives a listing of the subroutine FSTEP

o Pl o



which calculates stages (1) to (18) of section 7.

In the MAIN program, at the beginning the quantities T,

s W= - ]
% 1,]

Qi ~, t and various constants of the problem were read in from a data set 2,

which is a disc file. The program was then run for NMAX cycles. In each cycle
NSTEP time steps were taken, and at the end of the cycle the solution obtained
(T

. a tape. At the end of the program the quantities Ti
L]

i,5 0 05,5 wi g0 t) was written to a data set 3, which for long runs was

j Wi, 0 wi,J , t and
various constants of the problem were written to a data set 4, which was a disc
file. This disc file was used as the data set 2 for the input to the next run
of the program. Graphical output or further calculation on the solution must
be obtained by running a separate program reading from the tape.

The automatic adjustment of time-step length takes place after the first time
step in a cycle has been made. The method is as described in sectioﬁ 8. The
number of sweeps in the relaxing subroutine varied in an unpredictable manner,
and consequently the computing time was unpredictable. In order to insure that
there was a file to start the next run the following procedure was adopted. .
The central processor time was called at the end of each cycle and if this
exceeded a time TIMAX the program ended with the solution being written to data
set 4. The time TIMAX was sufficiently less than the time limit for the program

to prevent this time being reached. In order to estimate the accuracy in the main

and

program it was necessary to duplicate the arrays for Ti i 1.3
? ?

Further in the subroutine FSTEP in order to calculate from equation (12) it was

W =
1,]

necessary to introduce two extra arrays AT1(I,J) and AT2(I,J). These extra
arrays increased the sizes of the program. The space required to run a pfogram
with arrays of 81 x 41 mesh points is 220 K bytes.

10. Comparison of Calculated Results with the Experimental Results of

Ralph and Roberts

In the experiments of Ralphand Roberts there was uniform generation of heat

- 15 -



per unit volume in a liquid éontained in a tank of rectangular cross-

section. The top surface of the tank was cooled to a constant temperature,
but the other surfaces were heat insulating. Measurements were made of the
temperature within the liquid under conditions of thermal equilibrium. The
measurements were made for a range of Rayleigh number from 105 to 109 for very
dilute hydrochloric acid at 30°C which corresponds to a Prandtl number of 5.39.
For the calculation the tank cross section was taken to have a width to depth
ratio of two; that is a depth of one normalised unit and a width of two
normalised units. The calculation was made for Rayleigh numbers of 5.0x105,
5.0x106 and 5.0x107 and for a Prandtl number of 5.39. Initially the mesh size
was 51 x 26 which was adequate for Rayleigh numbers of 5.0x105 and 5.0x106 but
not for 5.0x107. For the case with a Rayleigh number of 5.0x107 the mesh size
was changed to 81 x 41 later in the calculation.

The initial conditions were set as described in section 6 with S = 100.0. Fig 2
shows the time variation of ,JE;ETIGEY the root mean square velocity in
normalised units,meaned over the channel cross section. The peak at the beginning
of this curve corresponds to the movement of hot liguid, initially at the bottom
of the chammel, towards the top of the channel. Fig 3 shows isothermals for the
liquid temperature and stream lines for the liquid flow at this time. Fig 4
shows the time variation of the mean temperature of the liquid T, The initial
part of this curvé, where there is a high rate of rise of temperature, corresponds
to the condition where the rate of generation of heat within the liquid was not
balanced by a flow of heat tothe top surface. The curve peaks and there is then |
for a time a fall in mean temperature. This corresponds to the establishment

of a high temperature gradient in the liquid near the top surface and hence a
large flow of heat out of the liquid. This large temperature gradient is
produced by the initial surge of liquid. This is followed by a slowly rising
temperature with superimposed oscillations as conditions for thermal

equilibrium are approached. The curves of figs 2 and 4 are for a Rayleigh

number of 5.0x106, but similar curves were obtained for the other Rayleigh
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numbers.

If the curve of fig 4 was continued long enough thermal equilibrium would be |
reached where the instantangous mean temperature T oscillated about a time -
averaged mean temperature -?: The oscillation in mean temperature was produced
by a continual change of the fiow pattern within the liquid. That is the motion
of the liquid was turbulent. This calculated turbulent flow condition corresponds
to the turbulent flow inferred from temperature measurements in the experiment.
The frequency and amplitude of the temperature oscillations at a point on the
cross section obtained from the calculation correspond to the measured values.
The calculation run times have so far been too short forlquantitative

compar ison. Fig 5 shows isothermals within the liquid for a series of
different times. For the last of these times contour plots for the vorticity
and stream function are included. This clearly illustrates that the vorticity
is obtained approximately by integrating the horizontal gradient of the
temperature over time. The intermittent jet of cool liquid flowing down from
the top surface of fig 5 resembles the photographs of Jahn and Reineke (7) who
used a holographic technique.

Write TL’ and TC’ for the temperature in degress Celsius., TL' is the average
temperature at the heat-insulating bottom surface and TC’ is the temperature of
the top surface. Then equation (10) of the report by Ralph and Roberts is

| 2

HL
r I
k(T " -T ")

ML =

In the normalised units of this report

_ ; 5 i 5 HER
Tr = (TL -Tc)/—k
T A

2 T

Fig 6 shows three values of ML obtained from this calculation plotted on a graph

of ML against Ra. The experimental points from the report of Ralph and Roberts

are included for comparison.
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The method of section 8 where the time-step length was adjusted to obtain

a required accuracy was used for the earlier part of the calculatién. It was
possible to run the program with a value of about 0.1 for X. As the condition
for thermal equilibrium was approached this program was changed, and a program
was used where the time-step length was constant. The value of Ay was then
small and varied as the flow pattern changed, whereas the value of ¢y was more
nearly constant. The range of variation of X for different Rayleigh numbers is
shown in table 1. For the case with a Rayleigh number of 5.0x105 X 1is large.
A possible reason for this is that the number of sweeps taken per call of the
relaxation routine is now approximately two. When the method of section 7

was used to estimate the accuracy on reducing at to At/d a single sweep of the
relaxation routine per call would keep the accuracy better than the limit set
by equation (18).

For the case with a ﬁayleigh number of 5.0x107 the mesh size of 51 x 26 was too
coarse. This became apparent when contour plots of the liquid temperature were
examined. Large temperature gradients were produced and the change in
temperature in a single mesh space became an appreciable fraction of the
haximum temperature. Under these conditions the solution for the temperature
shows oscillations in space on either side of this large change. Fig 7 shows
contour plots of the temperature for the same conditions using (a) a mesh of

51 x 26 and (b) a mesh of 81 x 41.

The improvement on changing to the finer mesh is apparent. However if the time-
step length At remains unchanged the accuracy defined by X remains almost

unchanged.

From an examination of contour plots, it was apparent that the value of two for
the ratio of chamnel width to channel height was too small. The jets of cooled
liquid from the top surface were frequently close to the end boundary walls,

which effected the flow pattern. In their latest results Jahn and Reineke (7)
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have used a width to height ratio of about four.

11. Comparison of Calculated Results with the Experimental Results of

Wilkie and Fisher

The experiment of Wilkie and Fisher was also made with a liquid in which there
was a uniform generation of heat; the liquid in this case was 20% aqueous
.zinc chloride. The liquid was enclosed in a rectangular region bounded by
two vertical cooled walls, whose height and width were greater than their
separation. The other boundary surfaces were heat insulating. The actual_
size of the apparatus was 100 cm (high) x 10 cm x 4 cm. The temperature
variations within the liquid was measured using a Mach-Zehnder interferometer,
and by a thermocouple. The liquid velocity was also measured by timing the
motion of 'Perspex' particles. If the liquid was assumed to have the same
physical properties as water, the range of values for the Rayleigh number
would be 5.0x10° - 5.0x10°. The motion of the liquid was nearly laminar

but some small eddies were obhserved.

The calculation was unfortunately made before the paper by Wilkie and Fisher had

been read. A _tank with a height to width ratio of five was taken; that is

a height of five normalised units and a width of one normalised unit. The

mesh size taken was 21 x 101, the Rayleigh number was 5.OX1O6 and the Prandtl

number was 5.39. The initial conditions were set as described in section 6

with S = 10.0. With no previous experience fT was given a value of 0.1; this

gave an initial value for the mean temperature too small by at least a factor of

four. Fig 8 shows the time variation of the root mean square velocity
VE:E::;;; in normalised units, and fig 9 shows the time

variation of the mean temperature Ty Fig 10 shows contour plots for the

temperature, vorticity and stream function for the time at which the calculation

was stopped. From the contour plots of fig 10 the variation of temperature
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and velocity across the middle of the channel may be obtained which closely
resemble the experimental curves of fig € and fig 7 in the paper by Wilkie

and Fisher.

The calculation,if continued, would clearly produce a time - invariant
solution at thermal equilibrium. So rumning the calculation with a pre-
determined value of X is not important. At the start of the calculation the
time-step length was adjusted to run the program with X « 0.1. This however
had to be abandoned and the program run with a constant value of the time-
step length pAt. The value of pw soon became small and X of the order of

unity.

An examination of fig 10 shows that the vorticity at the vertical boundary

is greater than the vorticity elsewhere by a factor of 2.5. Further the
vorticity rises to this value from zero in approximately two mesh spaces. A
consideration of the method of calculation used, suggests that the approach to
the final laminar solution should be made with the mesh spacing at least

‘halved. That is with a mesh of 41 x 201.

12. Further Checks on the Accuracy of Calculation

Bars over a symbol are used to denote the average value over the cross section.

J
length of the channel and J das denotes integration over the surface

The integra: dv . denotes integration over the volume in unit

enclosing unit length of the channel.

Gauss's theorem gives

Jv2¢dv=J%ds

But from the boundary conditions of section 5
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and from equation (10)

that is w = 0

Green's theorem for the stream function | may be written
ogtes (8 (@) - Sy
J Uy IS =y [KBe) Thlpf JV =] AN L a¥

From the boundary conditions of section 5

H‘J

From equation (10)

r .
_awv2¢dv=J ¥ w av

Then, using equation (19), equation (27) becomes

] W®+v?) av d yw v ,
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that is

i (28)

Under the conditions of the calculation, it was found that

W e
] ~ 0_0
C1 0l

and NP Voo o 2L
— 2 #

The value of 02 depends on the value of BL taken in equation (18) which defines
the accuracy to which the relaxation calculation is taken. For BLj> 0.0002,

02 ~ 0.01, but for RL < 0.0002, C2sw 0.01. The above value of C2 is for a

mesh of 51 x 26 points. On changing to a mesh of 81 x 41 points the value of

02 decreased to 0.005.

Integrating both sides of equation (5)

" dT 1 "oe
J I av = e J(V T+ 1) dav

Using Gauss's theorem, and writing the cross-sectional area of the channel AC

afT _ _1 3T 1 ;
dc ~ Pr A_ + on A% + o (29)

- 29 _



Considering a conducting surface i = 1,

then to a first approximation

(E’J}.) _ Dy
Bnl Ax

and to a second approximation

When the above approximations are substituted into equation (29) two

approximations are obtained for Qi s say (Q_I, and (ﬂ)
dt dt dt

1 2

Let two values of T, Ta and Tb be calculated at two not very different times

ta and t’b « Then a third approximation for gl can be obtained from
t

dT
After the initial transient (:i? was found to lie between the values
3 ;

2_9 atid (jl) + Agreement was better at low Rayleigh number.
t
1 2

13. Conclusion

From the calculation made so far there is no significant discrepancy between
calculation and the results of previous experiments. This shows that, for the

configurations considered, the assumption of two-dimensional flow is a good one.
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The calculation has the disadvantage that it requires long computing times.

For the cases considered in section 10 the time was 40 minutes on the Harwell
computer (1BM System/BﬁO, model 75). This time would increase with the

number of mesh points used, varying roughly linearly. So calculations at

higher Rayleigh numbers where a finer mesh is required would require more

computer time.

A number of changes in the program have been considered which might give a shorter
computing time, but it does not appear possible to shorten the computing time

by more than 30%.

Table 1
Rayleigh Number X Time-step Length
Ra = ewg/Awg At (Normalised Units)
5.0.10° 03 — 0.5 8.0.107
5.0.10° 0.05-0.3 4.0.107
5.0._107 0.05 -0.1 2.0.10°°
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APPENDIX 1

Computer Symbols used in MAIN program and in Subroutine FSTEP

Computer Symbol
TEMP(I,J), TEMPA(I,J)

OMEGA(I,J), OMEGAA(I,J)
PSI(I,J),PSIA(T,J)

AT1(I,J),AT2(I,d)

G(1)
AMAG
CRAT
DELT
DELTLM
DELX
ERRAT/2.0

ERRAT/5.0

FT

IP

IR

IRUN
NMAX
NS
NSTEP

NSR

ORAT

L,
1,]

AX

max

min

Mathematical Symbol

_26_

Temporary arrays used in the
solution of equation (12)

Array used for the C-points

Smallest value of At allowed

A switch used to print out the
pumber of sweeps in the relaxation
routine

Parameter used to control the
random number routine used to
determine initial values ofw .

Run number

Number of c¢yclesin run

Number of time steps in c¢ycle
Series number

Mesh Size



Computer Symbol

PR

RELRAT

Mathematical Symbol

d.
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APPENDIX 2

Computer Subroutinesused in MAIN program and in Subroutine FSTEP

SUBROUTINE RRIAX (PSI, OMEGA, PLIM, NS, MM)

Calculatesrstages (4), (5) and (6) or stages (9), (10) and (11) of the proceedure
in section 7. PSI, OMEGA and NS are as in the MAIN routine. PLIM is equal to the
right hand side of equation (18) and controls the relaxation solution. MM(2)

is an array which returns the number of sweeps in the first and second call of the

relaxation subroutine.

SUBROUTINE ACAI1 (A1, A2, P, RAT, IW)
Solves the first part of equation (12)
L i _ oi
£ =1 (-0
with A2(I,J) for fi ; ond A1(I,d) for £} # P is the stream function § from
b ?
which the velocity u is obtained using equation (19). RAT = ET%ETE

IW is a switch set to —1 when the stability condition for the calculation is

violated.

SUBROUTINE ACAL2 (A1, A2, P, BAT, IW)
Solves the second part of equation (12)
2 ‘ 1
= I-B)f . .
fi,j 1( ) Jl,]
1
and A1(I,J) for fi,J' P is the stream function from

3 J
which the velocity Vv is obtained using equation (19). RAL = 2(2;:;)9

2
with A2 (I,J) for fj

IW is a switch set to -1 when the stability condition for the calculation is

violated.

SUBROUTINE ACAL3(A1, A2, T, G, CPR, DELT)

Calculates stage (7) of the proceedure in section 7. Al is the W obtained in

stage (5) and A2 is the w fo be used in stage (9). T is the temperature array
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T, _ and G is an array used to store Aw g for the C-points. CFR and DELT are as

b

in the MAIN program.

SUBROUTINE ACALG(A1, A2, G)

Calculates stage (2) of the proceedure in section 7. That is

3 2
= . = o
AWC - 1,] 1,)]
. 3 2
with A2(1,J) for fi i and A1(I,J) for fi,j . The changes AW
b

for the C-points are stored in the array G.

SUBROUTINE ACALT (A1, A2, RPR, DELT)

Solves the third part of equation (12)

3’ ’ 2',.
=< (I-C)E" . .
fi,j L(I ) Ji,i

3 2 £
with A2(I,J) for ‘fi,j and A1(I,J) for fi’_]- and !j jnow representing the

temperature array Ti,j- RFR and DELT are as for the MAIN program.

SUBROUTINE ACALW(A1, A2, T, CPR, DELT)

Solves the third part of equation (12)

5 f - 2y, .
fi,j [ }I,J

g
with A2(I,J) for £ - and A1(I,J) for £, .
: 1,] 1,)]

vorticity array ‘wi,,]' T is the temperature array Ti,J' and CPR and DELT are as for

and fi,j now representing the

the MAIN program.
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SUBROUTINE ARMAX (AR, AMAX, AMIN, IS)
With IS = 1 this subroutine Selects the maxiumum absolute value AMAX of an array.

AR(1,J).
SUBROUTINE DIFRMS (A1, A2, DIF)
Calculates the root mean square value DIF of the difference between the two arrays

A1(1,J) and A2(I,J)

SUBROUTINE ADIF{AR, BR, CR)

Sets the array CR(I,J) equal to the array AR(I,J) minus the array (BR(1,J).

SUBROUTINE AEQ(AR,BR)

Sets the array BR(I,J) equal to the array AR(I,J)
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10

11

12

APPENDIX 3

Listing of MAIN Program

DIMENSION TEMP(51,26), OMEGA (51,26), PSI(51,26), TEMPA(51,26),

(Cond) OMEGAA(51,26), PSIA(51,26)

COMMON NX,NY,DELX

NAMELIST/INPUT1/NSR, IRUN,ERRAT,RELRAT ,DELTIM, TIMAX

(Cond) NSTEP,NMAX,NS,IP,FQ

NREAD = 5

READ(NREAD, INPUT1 )

READ(2) ((TEMP(I,J),J = 1,26), I= 1,51), ((OMEGA(I,J),d = 1,26),I = 51),

(Cond) ((Psi(1,d), J= 1,26),I = 1,51),RA,PR,AMAG,IR,FT,DELT, T,DELX,NX,NY

CPR = RA/FR

RPR = 1.0/PR

IYY = NMAX

CX = 0.25 *DELX*DELX

v =1
CALL AEQ(TEMP, TEMPA )
CALL AEQ(OMEGA ,OMEGAA )
CALL AEQ(PSI,PSIA)

DT = 0.25*DELT

¥ =4
CALL FSTEP(TEMPA,OMEGAA,PSIA,DT,CPR,RPR,RELRAT,0,IP)
IY = I¥-1

IF(IY)12,12,11

CALI, ARMAX(OMEGA ,OMAX, OMIN, 1)

CALL DIFRMS(TEMP, TEMPA , TDIF)

CALL DIFRMS(OMEGA ,OMEGAA ,ODIF)

CALIL, DIFRMS(PSI,PSIA,PDIF)
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13

14

15

16

17

18
20

22

26.

27

28

29

CAIL FSTEP(TEMP,OMEGA,PSI,DELT,CPR,RPR,RELRAT,0,IP)
T = T + DELT

CALL DIFRMS(TEMP,TEMPA , TERR)

CALL DIFRMS(OMEGA ,OMEGAA , OERR)

CALL DIFRMS(PSI,PSIA,PERR)

PRINT 13, TDIF,ODIF,PDIF,TERR,OERR,PERR

FORMAT (-)

CRAT = OERR/(ODIF+FQ*0MAX)
IF(ERRAT-2,0%CRAT) 15,14, 14
IF(5.0*CRAT-ERRAT) 16, 20, 20

DELT = 0.5*DELT

IV = -1

IF (DELT-DELTIM)29,29,10

IF(IV)20,17,17

DELT = 2.0 * DELT

IF(DELT-CX)10,18,18

DELT = 0.5%DELT

IY = NSTEP

CALL FSTEP(TEMP,OMEGA ,PSI,DELT,CFR,RPR,RELRAT,NS,IP)
T = T + DELT

IY = IY - 1

1F(IY)26,26,22

TIME = ZA02AS(DUMMY)

WRITE(3)((TEMP(I,J), J=1,26),I=1,51), ((OMEGA(I,J),J=1,26),I=1,51),
(Cond) ((Ps1(1,J), J=1,26),I=1,51),T

IF(TIMAX-TIME)28, 28,27

" IYY = IYY-1

IF(IYY)28,28,8

WRITE(4) ( (TEMP(I,J),J=1,26),I=1,51), ((OMBGA(I,J),J=1,26),1=51),
(Cond) ((Ps1(1,J),J=1,%),1=1,51) ,RA,PR,AMAG, IR, FT,DELT, T, DELX, NX,NY
STOP

END
s O e



APPENDIX 4

Listing of Sub routine FSTEP

SUBROUTINE FSTEP(TEMP,OMEGA ,PSI,DELT,CFR,RPR,RELRAT,NS,IP)
DIMENSION PSI(51,26),TEMP(51,26),0MEGA(51,26),AT1,51,26),
(coND)AT2(51,26),G(134) ,MA(2) ,MB(2)

COMMON NX,NY,DELX

NXA = NX-1
NYA = NY-1
NYB = NY-2

CONDEL = 0.5/DELX/DELX

CALL ARMAX(PSI,PMAX,PMIN,1)

PLIM = RELRAT*PMAX

RAT = CONDEL*DELT

CALL ACAL1(OMEGA ,AT1,PSI,RAT,IW)
CALL ACAL2(AT1,AT 2, PSI,RAT,IW)

CALL ACAIW(AT2,ATI ,m, CPR,DELT)
CALL ACALG(AT2,AT1,G)

CALL ADIF(AT1,0MEGA,AT2)

DO 5 I = 2, NXA

DO 4 J = 2,NYA

AT2(I,J) = OMEGA(I,J) +0.5%AT2(I,J)
CONTINUE

CALL RRIAX(PSI,AT2,PLIM,NS,MA)

CALL ACAL3(AT2,AT1,TEMP,G,CPR,DELT)
DO 6 I = 2,NXA
AT1(I,2)=2.0%AT2(1,2)-0MEGA(I,2)

AT1(I,NYA)=2.0*AT2(I,NYA)-OMEGA (I,NYA)
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15

16.

17

D0 7 J = 3,NYB

AT1(2,J) = 2.0%AT2(2,J)-OMEGA(2,J)
AT1(NXA,J)=2.0%AT2(NXA , J) -OMEGA (NXA , J)
CALL RRIAX(PSI,AT1,PLIM,NS,MB)
CALL AEQ(AT1,0MEGA)

CALL ACAL!(TEMP,AT1,PSI,RAT,IW)
CALL ACAL2(AT1,AT2,PSI,RAT,IVW)
CALL ACALT(ATZ2, TEMP,RPR,DELT)
IF(IP)17,17,15

PRINT 16,MA(1),MA(2),MB(1),MB(2)
FORMAT(10 X, 12H FROM,FSTEP, 414)
RETURN

END
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Fig.1 Boundary condition with zero gradient normal to the boundary.
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Fig.2 Calculated time variation of the root mean square velocity for the case
of Ralph and Roberts. Ra=5.0.10%, Pr=5.39, width to height ratio = 2.

:

(a) Isothermals.
Temperature contour heights: 1=0.0, 2=0.02, 3 =0.04, 4 =0.06,
5=0.08, 6=0.10, 7=0.12, 8=0.14, 9=0.16.

/_

—

(b) Stream lines.
Stream function contour heights: 1=-8.0, 2=-7.0, 3=-6.0, 4=-5.0,
=-40, 6=-3.0, 7=-2.0, 8=-1.0, 9=00, 10=1.0, 11=2.0,
12=3.0, 13=4.0, 14=5.0, 15=6.0, 16=7.0, 18=8.0.

Fig.3 Calculated contour plots for the case of Ralph and Roberts showing
the initial surge of liquids. Ra =5.0.10°, Pr=5.39, Time = 0.0652.
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Fig.4 Calculated time variation of the mean temperature for the case of
Ralph and Roberts. Ra=5.0.10%, Pr=5.39, width to height ratio = 2.
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Fig.5(z) Time = 0.1659.
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Fig.5(b) Time =0.1707
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Fig.5(c) Time=0.1755
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Fig.5(d) Time = 0.1803

1

s

Fig.5(e) Time=0.1851

Fig.5(f) Time =0.1899

T1

Fig.5(z) Time = 0.1947

Fig.5(i) Stream lines for Time = 0.1947.

Stream function contour heights: 1=—15.0, 2=—14.0, 3=— 13.0,
4=-120, 5=-11.0, 6=—-10.0, 7=-9.0, 8=—-8.0, 9=--7.0,
10=—6.0, 11=-50, 12=-4.0, 13=-3.0, 14=-20, 15=-1.0,
16=0.0, 17=1.0, 18=2.0, 19=3.0, 20=4.0.

Fig.5 Contour plots from calculation showing an intermittent jet of liquid
from the cooled surface for the case of Ralph and Roberts. Ra= 5.0.10°,
Pr=15.39. Temperature contour heights: 1=0.0,2=0.01,3=0.02,
4=0.03, 5=0.04, 6 =0.05, 7 =0.06, 8 = 0.07.
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Fig.6 Plot of the heat transfer parameter (My ) against the Rayleigh number
(Ra) for the case of Ralph and Roberts showing calculated and measured
values.

Fig.7(a) Mesh size 51 X 26.

£

Fig.5(h) Contour plot of vorticity for Time = 0.1947

Vorticity contour heights: 1 = — 1000.0, 2 = — 800.0, 3 = —600.0,
4=—400.0, 5=—200.0, 6 =0.0, 7=200.0, 8 =400.0, 9=600.0,
10=2800.0, 11 =1000.0.

Fig.7(b) Mesh size 81 X 41.

Fig.7 Contour plots of the temperature for the case of Ralph and Roberts.
Ra=5.0.107, Pr=5.39, Time =0.05655.
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Fig.8 Calculated time variation of the root mean square velocity for the case
of Wilkie and Fisher. Ra=5.0.10°, Pr=5.39, height to width ratio = 5.0.
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Fig.9 Calculated time variation of the mean temperature for the case of
Wilkie and Fisher. Ra=5.0.10%, Pr=5.39, height to width ratio = 5.0,
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Fig.10 Contour plots from calculation for the case of Wilkie and Fisher.
Ra=5.0.10°, Pr=5.39. Temperature contour heights: 1=0.0, 2= 0.01,
3=002, 4=0.03, 5=0.04. Vorticity contour heights: 1= — 800.0,
2=—-400.0, 3=0.0, 4=400.0, 5=800.0. Stream function contour
heights: 1=—-6.0, 2=—4.0, 3=-2.0, 4=0.0, 5=2.0, 6= 4.0, 7=6.0.
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