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ABSTRACT

The effect of shaped plasma cross-sections on the stability of the
ideal internal kink (m = 1) mode in a Tokamak is studied. Whereas
elliptic shaping has a weak destabilising effect it is found that
triangular and higher harmonics can significantly increase the maximum
poloidal @ for stability, above the value obtained for a circular cross-

section torus.






AUTHORS NOTE

The present report reproduces the contents of an internal note issued
in 1977 whose primary purpose was to understand and combine existing
results in the literature. At that time we felt it inappropriate to
publish but the note contained material that has proved to be of
considerable value to others over the years. A publication in the present

format would therefore appear to serve a useful purpose.






I. INTRODUCTION

The effect on the stability of the ideal internal kink mode, i.e. the
m =1, n = 1 mode, of toroidicity and shaping of the plasma cross-section
in a tokamak has been analysed by a number of authors [1-7] with

conclusions which are not always in complete agreement.

In ref.[1] Laval examined the effect of elliptic shaping in a
particular straight equilibrium, found it to be destabilising and
concluded that internal kink modes with growth rates comparable to free
boundary kink modes should be possible. Sykes and Wesson [2], comparing
circular and elliptic cross-section equilibria (different from that in
ref. [1]} found a negligible difference in internal kink growth rates, but
found a toroidal stabilising effect [3]. This was confirmed analytically
by Bussac et al. [4] who obtained detailed stability results for various
current profiles and values of BP, expressing these results as a
limiting BP (typically ~ 0.1) for stability. Meanwhile Edery et al.
[5] found that triangular and guadrupolar shaping of a straight system had
a stabilising effect which considerably outweighed the destabilising
effect of ellipticity, but repeated the claim of ref.[1] that rapidly
growing internal kink modes may occur in elliptic plasmas if g on axis
falls below unity. In ref. [6], Young Ping-pao re-examined the question
of toroidal stabilisation concluding that, contrary to the results of
Bussac et al., toroidal effects destabilise this mode. Finally in ref [7]
Berger et al., examined a special toroidal eguilibrium numerically and
found toroidal stabilisation but also obtained a considerable increase

in growth rates for elliptic plasma.



Using the energy principle and following similar lines to papers [4}
and [5] we reconsider these points, investigating in particular the effect
of plasma shaping on the critical Bp for stability of the internal kink

mode in a tokamak torus.

The stabilisation of the internal mode by toroidal effects is only
possible when B < £2 where € = a/R is the inverse aspect ratio, with a
and R the plasma minor and major radii. In this case magnetic surfaces
are displaced circles where the displacement of their centres A~ ea [8].
If the surfaces are distorted by external windings or a shaped conducting
shell, so that they are no longer circular but are modulated with
amplitude S ~ €a, one can expect additional competing contributions to
the stability criterion for the internal kink. We consider the
equilibrium chracteristics of such shaped cross-sections in Section II,
specifying the equilibria by the amplitudes S(n) of the nth harmonic
distortion of the plasma surface. In Section III we utilise this
information to discuss the stability of the internal kink in terms of the
MHD energy principle, investigating, along the lines of refs. [4,5], the

coupling of the basic m = 1 mode with all the harmonics in the

equilibrium.

As far as toroidal effects are concerned we recover the result of
ref.[4] rather than those of ref.[s]. The effect of shaping is 1in
agreement with that found in ref. [5], but comparing these effects with
toroidal effects, we find that whereas ellipticity is in practice an

insignificant destabilising mechanism triangularity can significantly

increase the critical value of BP for stability. The discrepancy



between references [1] and [2] is discussed.

II. EQUILIBRIUM PROPERTIES OF SHAPED CROSS-SECTIONS

In this section the equilibrium properties necessary for a study of
the stability of the internal kink mode in a large aspect ratio tokamak
with B ~ €2 are obtained, suitably modifying the procedure of ref.[B] to
account for shaping. In that paper the eguilibrium magnetic surfaces were
sought in the form of displaced circles in leading order with elliptic
modifications induced by the plasma pressure only appearing in the next
order. In the present case however we allow for externally produced
elliptic, triangular and indeed all higher harmonic moduiations of the

Stn)(a) ~ ga, where n denotes the

plasma surface with amplitude
harmonic of the modulation, i.e. comparable with the displacement A of

the basic circular surfaces.

Following ref.[a] we transform from the cylindrical co-ordinate
system (R,$,Z) based on the axis of toroidal symmetry to a system (p,w,¢)
where magnetic surfaces have constant p and w is a poloidal angle.

The transformation
R = R(p,w) Z = Z{p,w) (1)

which conveys all the information about the equilibrium that we require,

leads to a metric tensor gij defined by the element of length



(an? = gpp(dp)2 + 29, dodw + g, (dw)? + R2(ap) 2. (2)

Thus
OR 02 OR dZ
Jop [ap)2 * (6p)2 T (aw)z * (aw)z

_ OR BR _ 2Z 0%

pw  0p Ow = dp dw (21

g9

and the Jacobian J = ¥ det gij is given by

_OR 0Z _ OR 02

(4)

In discussing stability we shall require IVp ' |Vm| and Vp.Vw which

; . . ij
are obtained from the inverse of the metric tensor, g J, through

|02 = ¢, |ve|2 = o™ Vp-Vw = g (5)

The magnetic field B is represented in the form

B =RB_ (£(p) 7o x Vp + g(p) V0) (6)

where Ro and Bo are constants, essentially the major axis of the torus
and the toroidal magnetic field, introduced to make f and g

dimensionless. The safety factor g is then given by



27
_ glp) dw J
qlp) = 25E ) ) = (7)

and the equilibrium eguation reads

£ rd (Cuwy _ 3 pw p'_ -
JR[Bp(JR) 6w(JR J]+Rési+5§7_0 ke

where the pressure p, f and g are all functions of p only, primes

denoting derivatives with respect to p.

Employing the standard tokamak ordering p/Bg ~ €2, f ~€ and g~1,
equation (8) implies that g = 1 + 5292 where the subscript denotes the

order in &. We seek a solution for the equilibrium surfaces in the form

R=R_ - gp cos w - €2A(p) + €2 ¢ S(n)(p) cos(n=-1)w + €3 P cos w +..

o .
n

(n)

Z = Ep sin w +e?21s (p) sin(n-1)w - €3 P sin w +..

n

(9)
where we shall find that we only require information on the cos w
harmonic in €3 order in discussing stability, although other harmonics
are necessary to achieve pressure balance in that Qrder. Substitution of
these expressions into the equilibrium eguaticn (8) yields equations for
A the shift of the centres of the almost circular magnetic surfaces,

S(n) the imposed shaping of these surfaces and P which corresponds to a



relabelling of the surfaces. Thus with the aid of expressions (3) and

(4) we obtain from the coefficients of different harmonics of w in each

order:-
1
2, '+5-(pf )t =0 (10)
370 92 ) 1
2(pf )" Y 2(pfl)' 1 2p g2'
A" +( -2 - -= = =5 =10 (11)
pfl o] R0 fl Ro Rb fl
2(pf )" 1 (n)
(n)" 1 (n)' 2 s
s H—f — 3 S = - 1)og— = 12
2(pf )" 1 1 Py 1 2
B #( = & E)P' Y P+ 'f—l'z[(; t gt g9, t e (pef £4)" +
0
2 ' ! " 2 w (n) 2
3 24g, 3p A v A4 3ATA nr.(n)' _\5_
+ Eﬁzﬂz * R ] L 2R2 ¥ 2R R 2p ¥ 2 + p[s Sl 1)p
o (o] o] o o]
(PE)', 2 : v 2 24(n)?
. 1@@__.% +3a02 4 28 _ 3 MY +(n_.”sﬂ_]=0 (13)
pfl RO RO Ro p

Note that equation (12), unlike the others which have appeared previously
is not driven by the plasma pressure and requires an external origin.
Thus it describes how shaping at the plasma surface propagates into the
plasma. Clearly if g is constant, i.e. a flat current, a case

considered previously [9], £, ~ p and we obtain



n-1
s = @ s (14)

However, if the current is not flat, g' > 0 and S(n) decreases more
rapidly than in equation (14). In Fig.1 we show some examples for n = 2,

the ellipse, n = 3, the triangle, and n = 4, the gquadrupole, for g

profiles
pg v+ 1
p?[1 - (1 - =) ]
alp) = (15)

P
2 _ _ v + 1
2 - B

with v = 1, 2 and 4, together with the flat current case for comparison.

p? |
~ 3 (1 = =) and correspond to alp) = 1

These profiles result from
2
a

)
of course equation (12) is independent of the normalisation of gq. It is

clear from Fig. 1 that the result (14) is gqualitatively correct, only

being modified by factors of order unity.

In discussing stability it is convenient to use the coordinates (r,8)

rather than (p, w) where [4]

P Iy
2 - dwg R
re = 2RD£ apJ R 0 21 —— (16)

It follows on using expression (4) and (9) that we can identify r with

p by choosing



(n)2

_1r3 _rA (n-1)S
P=gRZE™ R 2 r L¥7)
(o] (]
and that

S(n)

r

0= w +(A" + EE) sin w - % (S(n)'— (n - 1)
o)

) sin nw + ... (18)

From equations (5) and (9) we obtain, with the aid of results (17) and

(18),
2 2 '

2 _ _ (n)!' At 3r é_ 1. [ay® 2

|Vr| = 1 2A'cosB+25S cos nb + = + T g Bg 2(3
o [e]
(n)2 o
+ 2 2 (n 1)+...
2r

2.1 e Lo - pg(m)! 3 i Ll A A
‘ve‘ 7 {1+ 2(a+ Ro)cose 280 gosnbE S (ATw o] spoge D

v 1 eamanrs Byiears Dy Les™ ") 4 L™ 6™ n2oni )

7 LE R R 2 2 " L
' 2
(302+1) (n)'2, (n2-1) gt e o gy 5P .
2 2 r 2 2 0
2n n 2n r
.- £ 1 (), g 5P
Vr.V0 = —{(rA" + A' + =) sin® - — (xS +5 ' +(n?-1)=— )sin n@ +...}
r Ro n r
2r 24 rA' 1 r?
RZ = R§{1 “Rr cos@ - R "R "2 Rr? + eeen } (19)



where in second order we do not quote harmonic contributions since these,
we shall see, do not contribute in the stability theory of the internal

kink. Also we note that equation (7) relates fl to q which we prefer

to use:
1 R £ £
L 3
_=i [1 - g2+_ +_.._] (20)
q r 1

III STABILITY OF THE INTERNAL KINK

The mhd energy integral is 6wmhd = &W + OW where

1 2 * *
sw=—[av {|8]" - 368" x g + & .vpv.E)
5 = il N

~

; fd‘EYP'V.E'Z (21)

o
=1
]

Here J is the equilibrium current, Yy the ratio of specific heats and
dt the volume element, while the perturbed magnetic field 6B is related
to the displacement E by 6B =V x (f x B); wusing the variables r and

i

1 mode. Since &W 1is

©, & has the form E = &(r, O)e- for the n

£
independent of E.B it is convenient to let g Ep + nB with n = —g—

0 and it remains

so that §P¢ = 0; 7 can then be chosen to make &

to minimise OW with respect to QP . Introducing 5: =g QP.VI and

Ee =gr EP.VG , 8W can be written [4}.
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The procedure is to insert the large aspect ratio expansion of the

equilibrium given in the previous section together with an expansion
g = éo + Eél + EZQZ Faeons
where

-i0

éo = go(r)e .

into this form of the energy integral and then to minimise it order by

order. Clearly the leading order term 6Wo is minimised to zero by

choosing
o _i =
dr Iz &, ) r %00 ¢ (23)

o

and similarly the contribution of §; to W, is minimised when

- 10 =



> 13 _
oc'" & )" 736 %o, 7 0 (24)

As is well known the remainder of 6w2 is minimised to zero by choosing
£ = constant for r < r where g(r ) =1 and § =0 for r >r ;
o o o (e}

here we write Ero = 50 . The stability is then determined in &W, when

the toroidal and shaping effects enter.

The contributions to 6W1+ fall into three main categories:=-

1. The expansions of p, £ and g and of R2, ‘Vr|2, |VG|2 and Vr.ve
given in equation (19) couple in second significant order with Iio'z
terms. It is now clear why we ignored harmonic contributions to the

equilibrium quantities in second order and further that the

contributions from different S(n) are decoupled.

2. Contributions from £7: a quadratic term from the first term in
6W and linear terms arising from the zero order egquilibrium. These
terms are thus entirely cylindrical in character with no toroidal or

shaping contributions.

3. Quadratic terms in g1 (which satisfies equation (24)) arising
from the zero order equilibrium, and linear terms in £] arising
from the coupling with the first order harmonics in the equilibrium.

we find that the harmonic S(n) is

Writing 5r % gl(m)e_lme

1
coupled to m

n + 1, so that the effects of different S(n) are

]
1+



again decoupled.

Whereas the contributions from group 1 merely need collecting, those
in group 2 require an algebraic minimisation which is achieved by

setting [4]

2 2 '
5 — - (1 +.1+i?.._gi)ae (25)
2 Eg a r o~0

This leads to further term in &W, of the form of those in group 1.

The terms of group 3 for n # 1 lead to a contribution

(m) 2 2
~ a rdg (m)
_ 9. =2 (m)2 1 2 -
6w, = 27 ROBOEZ [ rar{a (| = | + (m ”1‘51 | )
n m=1in o
ac*
+0™eg (M—=2 4 alMg Wiy e ) (26)
where
1 1
(m} _ _ _ _
a =( =)
(m) _ (m)[s(n)' S ) B g yaplB2)g o ] )an_)]
D = (m_1 a q q m m_] q L
A(m) S(n)' a (5)'+ (m=-2) SLE)[E (E)' = m+1 + 1] (27)
m g r2 9 9q a



The case n = 1, treated in ref.[4], is special in that we get a

contribution of the form (26) for m = 2 with

+

(2) (2) 71 A (2) o ] 1 r
D = a [A ra +A(E+E) —]

(2) 1 1 2 .Y 3.4
A =xr A"(= = —=9) = A'(—= (=) + =(= - 1)+ =)
4" q? a9 q
r 1 2. " 1 3 3
+ = |= + =n = — 4 = 28
R 5 &) * = geg] (28)
but for m = 0 equation (24) implies 5&0) = 0 and we obtain a quadratic
form in géo) which i1s minimised by
(o) L =
N — " L] -— -
ge S(xA" + 34" + ¢ (1 2q))£0 (29)

thus leading to more terms like those in groups 1 and 2.

Minimisation of expression (26) results in the driven Euler equations

) dgl(m)
a ., 3 (m)s _~1 (m)_» 2 (m)_ (m) _
dr(r a = + D r Eo) (m 1) 5 rgo 0 (30)
which have solutions E(m) (m)+ n(m) where &tm) satisfies the

homogeneous form of eguation (30) and



L)
e s 2w s m=1en, ne
(2) _ _ 0 b e =
== E (A + =) m= 2 (31)
Q
(m)
The discontinuity in 71 at g = 1 requires a compensating
(m)

discontinuity in g since 6Br must be continuous.

Integrating expression (24) for éﬁq by parts in each of the two

regions r > ro and r < ro separately, with the aid of the Euler

equation (30), and then introducing El(m) = E(m) * n(m) we obtain

~ x (m) 2 2
Z o2 2 _ o (m)2,|_ 4 2 (m)
o, =212 R B2 ] | {- [ rar a (Ird—j | +(m Uln | )
nm o
2 gq(m 2
¥ # (m)rz (ZD(m) + 57 (m)“ dn ' = c(m)a(m_) (m))
o o o dr ro_ [e] (o]
(m)
2, (m) (m) _ (m)2_ (m) (m) (m)2dn
® & roE (ro-)(Do @ o no € + roao dr ro_)(32)
2 2
PRS(c 2 A0S (b(m)_ c(m)) g(m) (r )}
o o] o=
(n) a (m) (m) q (m
where b'™ =& g, and c'™ = X 2k,  the suffix
(m)dr r (m) ar Ir
g o= g o+

zero refers to values at r = rO and we have used continuity of Egm) to

- 14 =



(m)(ro_) to g(er )« Finally, we minimise with‘respect to the

relate E St

amplitudes E(m)(ro_) as in refs.[4,5]. Summing all contributions to 6WH

from groups (1) to (3) we obtain, with the aid of the equilibrium

equations (10)=-(13) and some integrations by parts in r, the result
4
r (n)
= 2 2 2 o (T) (33)
SW, = 21 ROBo|gO| ZF W+ ] W)
o n>1
where the toroidal contribution 6WT is given by ref.[4]:
(1) 8s(B22E2}u2 (8211) (1826 ($211) (£3d3) (p_+s)-a(EPha) ($7d3) (p_+s)
w = TR T :
16(b -c )
(34)
with
r 3
d
s=/ & (z-n
o o o

o]
= gp, r_
3P —~ e [ ar( =) ()
P O o o

and the higher harmonic contributions by ref.[S]:

(n)
y S 2
R2 (5(2) - (m=2) %- ) (k140 ™y (me 140 ™y
6W(n) __1 Z o
- £
% m=1%n ro (b(m) - c(m))

(35)
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(m) (m)

The quantities b and c must be obtained from a solution of the
homogeneous form of equation (30). Thus b(m) is calculated from the

. o . (m) _ . (m) .
selution within r<rO for which ¢ (o) = 0, while ¢ is calculated

(m)
from the solution in r > r, which has boundary condition E%——— =0 at
the singular point g(r) = m, if such a point exists in the plasma, or

m ; : .
( )=0 at the plasma surface if not. Thus in general numerical

£
computation is required for specified q profiles. We consider the
profiles (15) with v =1, 2 and 4 as an example and calculate the
b(m) and c(m) for the cases n = 1 (toroidal effects), n = 2
(elliptical shaping), n = 3 (triangular shaping) and n = 4 (quadrupole

shaping). Combining these results with corresponding solutions of the

equilibrium equation(12) we calculate éw(n). Table 1 shows results for

(n)

n= 2, 3 and 4 as rO varies, where each S is normalised so that
S(n)(a) = az/R. The toroidal contribution can be expressed as

T .
6W( )_ Ys + YlBP + Yzﬁé and we tabulate Yo' Yy, and Y, in Table 2. 1In

all cases wall stabilisation is evident as rO + a when there are no

surfaces with g = n + 1 within the plasma

For the situation in which r << a it is possible to obtain some

analytic results [4]. We take

r A
gq=1=Aq (1 - (;—) ) (36)
o
as a representation of g near the axis so that gf(o) = 1 - Ag with
Ag << 1. In this case we can solve for 5‘“’ as an expansion in Ag as



m=1 -m-1

long as r << a, the leading order solution behaving as «r or r .
In the region r < r,=we must take the solution r and calculate the
Agq correction from which b(m) can be calculated to sufficient

)

; (m 5 :
accuracy. In calculating g for r > r, we have some combination of

m=1

the two solutions r and r determined by the boundary conditions

at the point g{r)=m or r = a, both of which are far from ro. However

. : -1 . .. .
the influence of the solution rm at r= rO will be negligible in
. . . -m=-1 )
comparison with that of the solution «r and calculating the Ag
. 1
correction to this latter solution we obtain c(m). Relating S(n) (ro)

to S(n)(ro) through the equilibrium equation (12), we obtain, provided

A > 4,
2
13 382 1202(aq) 2 %2 (r_ ) RZ
&W,=AAq - —L— - a
16(A+4) 4 = A (4+A)2 (6=N) r;
'R2 2
W Z ;g n{n-1)(n-2) S(n)(ro) } (37)

n>2 o (nw1+5)

where we see that the elliptic contribution n=2 1is destabilising and
very small. This is because the m=1-n contribution, which is in general
a strong stabilising term and is responsible for the sum with n>2, has
b=0 exactly in the elliptic n=2 case, leaving only the destabilising

m=n+1 contribution which 1is of order (Aq)3 for all n since

(n+1) (n)* ginl
c = - (n+2) + 0(Ag) and s - (n—1)—;— ~ 0(AqQ) .



Note that in expression (37) we expect S(n)(ro) ~ (ro/a)

(n) (n)

n-1s(n)(a)

n-2
so that (Ro/ro) s (ro)~ (ro/a) (Ro/a) S (a).

IV DISCUSSION

It is clear from the numerical results and the analytic result (25)
that, although the elliptic term n=2 1is destabilising, all the higher

harmonics are stabilising. Moreover, the elliptic term is numerically

S(2)

much smaller than the toroidal terms when (a) ~ a2/R and indeed also

much smaller than the triangular and quadrupole terms when

NED N ) ( n-1g(n) .\

(a) (a) ~ aZ/R even though S

n)

(r) (ro/a) .
The weakness of the elliptic terms is in accord with numerical results of
Sykes and Wesson [2]. They treated a straight elliptic cylinder so that

in comparing with their results, we may take the cylindrical limit of 6WL+

Iob ok
C o= 2 2.2 (c) (<)
8W,, 21 ROBO‘QOI (R ) (6w + 6w )

2
where the elliptic contributions GW( ), are given by equation (23) with

n=2, and the cylindrical contribution 6W(c) is given by [4].

r

o 3
(c) dr r 1 2
&w = - - - (g +=-3
BP(rO) i ro q q )



which is cancelled by toroidal effects in a real torus [4]. The numerical

results were for 6p ~ 1 and it was found that with b/a = 2, corresponding

to 5(2)= 1/3,only 20% changes in growth rate were obtained. The weakness

of elliptic effects helps to reconcile this numerical result with analytic

(2)

work of Lava1[1] who treated finite ellipticity, i.e S (a) ~ a, and
found the possibility of instability in 6W2. However the weakness of the
numerical coefficients means that the BWH contributions can dominate
this 6W2 contribution in practice. In this context we should domment on
the analytic result concerning a current profile which was constant for

r<rc and zero for rc< r <a in ref-[1]. The growth rate was evaluated

in terms of the elliptic deformation of the resonant surface i for the

most unstable case r*O = a/¥3 and was ostensibly comparable with external
; 2 .
kink growth rates when S( )(r;) = a. However for such a current profile
(2) 3
~ +
s '(r) (x/x ) (r_/z)

S(2)

*
with the consequence that (ro)/s(z)(a) ~ 1/3¥3. Thus even if

S(z)(a) = a, the growth rate of this internal kink would be much less

than that of external kink modes.

The numerical results of Berger et al [7] indicated a substantial
effect of ellipticity on the internal mode. However the egquilibrium they
studied corresponds, in a large aspect ratio expansion, to a flat current,
shear of order g2 being generated solely by toroidal effects [8]. Such
an equilibrium could be studied analytically for finite ellipticity but

the stability result would arise in 6W6 because of the vanishing of



2

S

)/r for a flat current. Nevertheless this corresponds to a

growth rate comparable to those arising here from 6Wq [4,6].

The stabilisation possible from the higher harmonics can be viewed as
an increase in the critical Bp' Thus ignoring the small elliptic
contribution and retaining only the triangular term from the higher
harmonics we find from equation (25), taking A=2, that the stabilaty

criterion becomes

R
o

s; < 0.09 + 1.33 (=7 S
o

2
(3 3y,
(o]

(3)

5(3)(ro) ~ (ro/a)2 S (a), as for a flat current, we have

If

approximately
R0 S(B)ga! 2
5§ < 0.09 + 1.33 (— o

(3)

and thus with S (a) » a2/R0 we have 8 1, as opposed to

P crit<
B .. = 0.3 in the circular case. This result, based on r =+ 0 1is
p crit o

borne out by the more complete numerical results. Following ref.[4] we

can use expression (21) to define 8 g such that &w, = 0 and in

(3) (4)

Figs. 2-3 we consider the effect of S (a) Ro/a2 and S (a) Ro/a2 on

this value as a function of r0 for various values of v. These results

are summarised in Fig.4 where we plot the critical value of BP

*
Bp crit

which ensures stability everywhere to the internal kink. Quadrupolarity

- 20 -



is seen to be less important than comparable triangularity because of its
much weaker penetration into the plasma. After an initial increase in

S(4)(a) the most unstable position for r, is near the axis where the

quadrupolarity is negligible so that BP apik cannot increase further.
Provided the current is not too peaked (i.e. v= 1,2) we can ensure

stability against the internal kink for 59 ~ 1 with values

1 < 5(3)(a) R,O/a2 < 2 while in the peaked current case v = 4 the

extremely low value Bp = 0.02 for the circular case can be increased to
Bp ~ 0.5. It is clear that triangularity in particular shows a
considerable stabilising influence. WNote that g(o) falls below 1/2 when

4 so that these

1l

rD > 0.8 for v =2 and when ro > 0.6 for v

regions would correspond to an unstable m = 1, n

I

2 mode.

(n)(a) ~ a2/R chosen to

The ordering scheme we have used with S
provide maximal ordering, i.e. showing shaping competing with toroidicity,
is indeed in accordance with practical situations; e.g. it is expected

S(Z)

that elliptical plasmas will have b/a < 2 which leads to < a/3

consistent with a/Ro < 1/3.

In practical situations the m = 1 resistive mode may be more
important than the ideal mode considered here [10], but the
characteristics of the resistive mode are likely to be influenced by the
properties of O&W and so these results will also be relevant to a study

of resistive modes.
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CONCLUSIONS

Using the ideal mhd energy principle we have investigated the
influence of plasma shaping in competition with toroidal effects on the
stability of the internal kink (m = 1) in a tokamak. It is found that
ellipticity has an extremely weak destabilising effect, but that all
higher harmonics are stabilising. In particular, the triangular shaping
effectively propagates from the plasma surface to the interior and
provides strong stabilisation leading to the prospect of stability for
ﬁp < BP . with BP . 1. In such a situation the ideal internal
kink modes will remain sta?le as q_. the value of the safety factor on
aixs, is depfessed below unity until g, ™ 1/2 when an m= 1, n = 2

mode would become unstable. In the absence of resistive effects one can

then envisage a mode of tokamak operation with 1 > 4, > 1/2 and q, 21

where q is only limited by the Kruskal-Shafranov value.

For the circular cross section tokamak our results coincide with

those of Bussac et al [4] rather than those of Young-Ping Pao [6].
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TABLIL 1

&2, ew(® and & (9 as T, varics for v =1, 2 and 4
v T, & (2 s (9 g @
0.1 - 5.25 1g0-10 9.82 107 .59 10-8
0.2 -~ 1.46 10~7 b.53 Lg=° .88 10-°%
0.3 - 4.36 10-°¢ 7.90 1o-4 .88 10-4
0.4 - 5,09 1073 4.84 1073 .06 10°3
1 0.5 - 3.45 104 2,07 10-*° .39 10-%
0.6 ~ 1.52 l0~% 7.18 10-% .99 10-2
0.7 - 3.96 103 2,21 10~ .94 10!
0.8 3.02 1071 6.56 10°% +13
0.9 1.22 107! 2,13 A7
0.1 - 2271 1072 1.10 10-¢® N M i
0.2 - 7.81 10-7 7.43 1g-® .33 1o~%
0.3 - 2.42 10-% 9.29 1lo-4 .07 10-4
0.4 - 2.93 10-4 5.95 10-3 <37 oA
2 0.5 - 2,05 1g=3 2.68 10-2 .70 10-?
0.6 - 9,38 10™3 0.99 10=1 13 10-?
0.7 - 2.80 10-% 3.29 107! 4.16 1o0-1
0.8 - 2.3 10~? 1.08 .75
0.9 3.56 104 4,01 .48
0.1 - 1,07 jore 9.31 1077 7 108
0.2 = 3.0 1o~ 6.55 107° .11 10-¢
0.3 - 1.01 10-¢4 8.68 10-4 .84 10-4
0.4 ~ 1,22 1g™2 5.98 1073 .29 10-3
4 0.5 - 8.50 1073 2.93 10~ .81 10-?
0.6 - 378 107 1.18 10-! .08 10°!
0.7 - 1.05 107! 4,41 1071 .38 107!
0.8 - L84 1O~ 1.65 A2
| 0.9 7.72 10~ 6.34 .78




TABLE II

The coefficients A,, A, and A, where 'GWT = Xy + Alf)’ + A,B2 as
r, varies for w =1, Z and 4 P P
v T, AD A, A,
0.1 1.36 1077 - 6.57 10°° - 1.57 10-¢
0.2 8.85 1076 - 2.14 10-°% - 1.25 10-%4
0.3 1.03 1074 - 6.15 10-° - 1,56 10-3
0.4 5.95 10-4 - 6.22 104 - 8.51 103
1 0.5 2.34 1063 - 3.32 10-3 = 2. 26 1Oo-¢
0.6 7.29 1073 - 1.09 102 - 5.83 10°2
0.7 2.00 10-2 - 2,01 10-2 - 7.26 10-?
0.8 5.3% lg-2 6.20 10-3 1.54 10°¢
0.9 1.56 10-! 2.28 10-! 3.90 10-1!
0.1 2.72 1o - 2.85 1l0-8 - 3.40 1lo0-¢%
0.2 1.77 10-3 - 9.09 10-°6 - 2.66 10-4
0.3 2.03 104 - 2.62 104 - 3.31 10-3
0.4 1.12 In-2 - 2,67 -1073 - 1.82 102
2 0.5 3.97 1lo~? - 1.49 .10°? - 6,18 102
0.6 1.02 1lo~? - 5.64 102 - 1.53 107!
0.7 2.70 10-2 - 1.06 107! - 1.96 107!
0.8 8.51 10-?2 - 6.73 10-?2 - 8.89 10-?2
0.9 3.09 107! 3.91 107! 3.82 10-!
0.1 5.45 1077 - 1.22 1077 - 7.26 10°°%
0.2 3.49 10-° - 3.69 10-° - 5,38 10-4
0.3 3.80 10-¢ - 9.25 10-4 - 5.82 10-3
0.4 1.85 10-3 - 7.80 10-3 - 2.65 10-?
4 0.5 5.27 1lo-3 - 3,57 10-?2 - 7.48 10-?
0.6 9.07 10-3 - 1,13 10-! - 1.59 10-1!
0.7 7.23 1073 - 2,70 10-¢ - 2.73 10-1
0.8 1.02 10-! - 1.87 10-! - 1.45 10-1!
0.9 5.57 1o0-1! 6.21 10! 3.94 10°¢
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