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Abstract

Although the fuel cycle of a fusion reactor does not involve input of
radioactive material (except the short-lived tritium isotope of hydrogen) or
generate radioactive waste products, the neutron flux in the core of the
reactor will generate parasitic radioactivity. Consequently fusion reactors
will generate radioactive waste during operation from routine replacement of
irradiated components and following decommissioning. By surveying six D-T
conceptual reactor designs (three tokamaks, two reversed-field pinches and a
tandem mirror) the volume of this waste has been estimated. In the survey
the reactors are broken down into their major components ie. first wall,
blanket, shield, magnets etc, and auxiliary equipment has been added where
appropriate. [Externals such as reactor buildings and heat exchangers have
not been included at this stage. The radioactivity present in the different
components of the waste varies by many orders of magnitude and the volume
requiring disposal in a nuclear waste repository can be minimised by
separating out those low activity components which either qualify as
non-active waste or can be recycled.

The estimated volumes of packaged waste for direct disposal from these
fusion reactors, resulting from the replacement of highly irradiated
components and decommissioning, vary from 5000 to 43000 m3/GWe. The reasons
for this wide variation are discussed.
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1. Introduction

Fusion reactors will, if successfully developed, generate useful energy
from the fusing together of light atoms - typically deuterium and tritium
(DT), which are isotopes of hydrogen. By heating these atoms to very high
temperatures, where conditions are favourable for fusion, they become ionised
- that is the electrons are stripped away from their parent nuclei - and the
resulting plasma can be contained using magnetic fields. Several geometries
of magnetic confinement have been considered as routes to commercial fusion
reactors, although the tokamak is judged most likely to be successful.
Although the fusion fuel cycle does not create significant radioactive
material some radioactivity will be created - mainly from neutrons emanating
from the D-T reaction causing transmutations in the reactor blanket, shield
and mechanical structure. Radioactive waste will arise as these materials
are replaced during operation and following decommissioning. In this report,
the quantities of this radicactive waste have been estimated, as a
preliminary stage to a later assessment of the environmental impact of such

waste.

The approach has been to examine several conceptual designs for fusion
reactors and estimate the total quantity of material reduced to waste over
the life of the reactor. From this the normalised waste generated related to
the nominal reactor power output, in the form tonne/GWe or m3/GWe has been
calculated for each reactor. This assessment only considers the materials of
the reactor core comprising first wall, divertor/limiters, blanket (including
multiplier and breeder material), shield, magnet coils and auxiliary heating
and fuelling systems. It is possible that other external components, such as
heat exchangers, may add to the radioactive waste due to contamination, but
lack of sufficient design data prevents compilation of a full inventory at
this stage. ~Where suitable information exists, the waste has been
categorised into non-radioactive and radioactive material (or, more strictly,
non-repository and repository material), and the latter sub-divided into
radioactive categories. A delay of 50 years after shutdown is assumed,
unless stated otherwise, before disposal of the waste.

The reactor systems studied are three tokamaks, two reversed field
pinches and a tandem mirror. All six are based on magnetically confined D-T
plasmas, five being in toroidal geometry and one a linear system. All six
represent early stages of fusion power development, one being a demonstration
reactor, one a first-of-a-kind power reactor and the remainder commercial
reactors. They provide a range of waste estimates so that the conclusions
are not confined to one concept.

2. General Description of Reactors

Tokamak reactors require high toroidal magnetic fields (5 to 8 T) to
confine the plasma, utilizing superconducting coils at liquid helium
temperature. Substantial shielding is required to protect these coils from
the neutron flux and to limit the heat deposition at cryogenic temperatures.
Since tokamaks operate with low values of the plasma pressure ratio f (5 to



10%) the level of the power loading of the first wall and blanket is usually
limited (2 to 5 MW/m2).

The following tokamak reactors were considered in this study -

STARFIRE This comprehensive study was completed in 1980, and is described
in reference L1). It is a continuously operating commercial tokamak fusion
power plant. The main structure is AISI 316 stainless steel which becomes .
highly activated as does the ZrPb multiplier. The design of the bulk shield
was optimised by selecting a construction made from layers of steel (Fel422),
titanium hydride (TiH,) tungsten (W), boron carbide (B,C) and a titanium
alloy (Ti6AldV). The optimisation is based on maintaining adequate shielding
for “the superconducting magnets whilst reducing the activity in the shield
itself to facilitate subsequent recycling.

The DEMO R254 study [2], completed in 1985, considered the technical
feasibility of INTOR-type tokamak reactors and concentrated on the design of
the nuclear blanket. Two versions were considered; one in which the breeder
is a lithium ceramic, lithium metasilicate, and one with liquid lithium-lead
breeder. In both versions the neutron multiplier was beryllium and the main
structural material a ferritic/martensitic  stainless steel. The coolant,
helium at high pressure, was also used as the main tritium carrier. The
first version is considered in this report.

PCSR-E (Prototype Commercial-Sized Reactor-E) is a 1250 MWe reactor based
on The design of the Next European Torus and a direct extrapolation of
present experimental physics results [3]. It was completed in 1986. A
water-cooled lithium-lead ~breeding blanket is included, with the lithium 90%
enriched.

Reversed field pinch reactors, in contrast to tokamak reactors, can
operate with higher values of the plasma pressure ratio B (20 to 30%) and
with relatively low values of the toroidal magnetic field. As a consequence
the toroidal field coils may be superconducting or of normal conductors such
as copper, and in the latter case substantially less shielding is required.
The higher values of P also open the possibility of more compact reactors,
with increased levels of the power loading of the first wall and blanket (10
to 20 MW/m2).

The following RFP reactors were considered in this study -

CRFPR (Compact Reversed Field Pinch Reactors) [4], completed in 1985, are
compact reactors with a high power density. For the purposes of this study
the highest power density case (CRFPR (20)) was taken which has a LiPb -
cooled blanket with pressurised water used as coolant for the first-wall,
pumped-limiter and structural shield systems. Copper magnets are used
throughout thus reducing the amount of shielding required. This, together
with a high wall loading, gives a reactor in which the fusion power core has
a volume which is 6% of STARFIRE for a similar electrical output.



TITAN, [5], was completed in 1987 and is a study to determine the
technical feasibility of an RFP reactor, at high power density. The TITAN-I
option considered here uses an integrated blanket and toroidal field coil
concept of liquid lithium breeder and conductor inside a vanadium alloy
structure. These are relatively low activation materials. The equilibrium
field coils are superconducting and impurity control is by means of a toroidal
divertor. Other features (eg high wall loading and overall compactness) are
similar to those of CRFPR.

Mirror reactors are linear systems, with enhanced magnetic fields at the
ends to reflect the contained particles. They have the advantage of very
high values of the plasma pressure ratio p (40% to 80%), and do not depend
upon induced currents in the plasma.

The following mirror reactor was considered in this study -

WITAMIR-], [6], completed in 1980, is a study of a D-T Tandem Mirror to
minimise the recirculating power requirements. It is a power plant operating
in the steady state with both radio-frequency and neutral beams used to
create thermal barriers. The study emphased reliability rather than low
environmental impact. Superconducting magnets provide the confining field
and the breeder/multiplier/coolant is liquid Li;; Pbg,.

The main characteristics of the above reactors are listed in Table Al of
the Appendix.

3. Waste Categories and Disposal

In most countries, radioactive waste is divided into categories which
determine its disposal route. In general higher categories of waste are
stored at their site of origin until heat generation levels are low enough
for disposal, and are then buried in deep repositories. Less active waste
may, in some countries, be disposed of in near-surface repositories. Material
with very low levels of activity may be suitable for recycling or for local
disposal.

The UK classification [7,8] is based on the total activity per unit mass
(A) irrespective of the isotopes present. The categories are:

Non-Active Waste A <04 MBq/te

LLW (Low Level Waste) 0.4 MBq/te< A < 4 GBg/te (o activity)
0.4 MBq/te < A < 12 GBq/te (B + y activity)

ILW (Intermediate A > 4 GBq/te (o activity)
Level Waste) A > 12 GBq/te (B + y activity)
HLW (High Level Waste) waste requires active cooling.



Non-active waste, because of its low activity, can be treated for disposal
purposes as non-nuclear waste. The other categories require special
repositories for disposal and in future repository waste will, according to
current government policy, require deep geological burial although the
options for shallow land burial and deep ocean disposal are being retained
for bulky decommissioning waste [9].

In the USA, waste disposal is governed [10] by the code 10CFRé1, which
defines the concentration limits for individual isotopes for several classes
of disposal. These classes are:

Class A  Segregated waste, which decays to acceptable levels during site
occupancy.

ClassB  Stable waste, which decays to levels that do not pose a danger to
public health and safety in 100 years.

ClassC  Intruder waste, which decays to an acceptably safe level in 500
years.

The above classes of waste may be disposed of by near surface burial; in
the case of Class C, at a depth of more than 5m and with natural and
engineered barriers. Waste with higher levels of activity than are allowed
in Class C must be disposed of in a geological repository.

In the studies considered in this report, the STARFIRE, CRFPR and TITAN
wastes are classified according to the US regulations. However, the STARFIRE
waste has been recalculated on the basis of UK regulations.

In this study the waste masses and volumes for each reactor have been
calculated in the following categories:-

(a) Non-active waste. In the UK. this can be disposed of without
special precautions. However, non-active waste is still defined as a
radioactive substance [7] and cannot be re-used without
restrictions.

(b) Repository Waste for Direct Disposal (net). This is simply the total
waste less (a) above.

() Repository Waste for Direct Disposal (packaged). The increase in
repository waste volume due to packaging has been included.

4. Reactor Components and Waste Generated

Fusion reactors will yield operational waste by the routine replacement
of first and second walls, divertor/limiters, blanket structure, reflector
and in some cases parts of the shield. The total volume of this operational
waste due to component relacement is estimated on the basis of the component
lives quoted in, or deduced from, the individual studies. The breeder,
multiplier ~and  reflector ~materials may be reprocessed to  give



effectively longer replacement periods. Thus in STARFIRE it is deduced from
Reference 1 that these materials effectively last for 20 years. For the other
studies it is assumed that these materials last for the reactor lifetime.
Since little information is available on any secondary wastes resulting from
reprocessing, this is excluded from the study. The operational waste,
together with the decommissioning waste, will be stored on site after the
reactor shutdown and before disposal, and therefore no distinction is made in
this report between the two.

The waste has been normalised to masses or volumes per GWe, calculated on
the basis of the nominal full power rating of the reactor, and the volumes are
summarized in Table 1. As some of the waste quantities relate to replacement
operations during the life of the reactor, there will be some sensitivity to
the assumptions on load factor. However, more than 60% of the repository
waste arises from components which last for the whole life of the reactor and
therefore normalisation to the nominal power rating is more representative of
each reactor than normalisation to the energy generated, which depends on
arbitary assumptions about the reactor life and availability.

NON-ACTIVE REPOSITORY

WASTE WASTE
REACTOR SYSTEM m3/GWe m3/GWe m3/GWe

(net) (net) (packaged)
STARFIRE 1720 1940 10400
DEMO R254 2840 1990 10700
PCSR-E 1940 8050 43400
CRFPR 0 906 4870
TITAN 0 1120 6030
WITAMIR 480 3900 21000

Table 1 SUMMARY OF WASTE VOLUMES

Details of the breakdown of the fusion power core of each reactor system
together with the appropriate masses, volumes and replacement times based on
the published data are given in Tables A2 to A7 of the Appendix. The waste
categories of each component after a suitable period for the decay of activity
are also included where data is available. Since there is no activation data
for the DEMO study the division between non-active and repository waste was
scaled from the STARFIRE figure. For a large part of each reactor, the
components should not need replacement and the lifetimes quoted are the design
lives of the reactors. In the case of the remaining components, the times are
quoted in calendar years and are calculated assuming that the reactors operate
at the limits of their availability - for lower load factors the lifetimes of
these components would increase.

-5-



Most of the reactor studies give the assumed first-wall lifetimes, and
these are quoted in Table Al in terms of the neutron fluence to which the
first walls are exposed before replacement; in the case of the DEMO R254
reactor the figure quoted is not known to better than a factor of two. In
all cases the lifetime of the blanket structure was assumed to be the same as
for the first wall.

An important characteristic of RFP reactors for present purposes is the
relative thickness of the magnet shield. In tokamaks and mirror reactors
there is a massive shield to protect the superconducting field coils; this
also serves to shield effectively most of the external components from
neutron irradiation. In RFPs operating with toroidal field coils constructed
from normal conductors the coil shielding is relatively light so that
external components become activated, even those outside the fusion power
core such as the biological shield. A full assessment of the radioactive
inventory would need to take account of this.

The six systems have not been developed to the same level. In particular,
none of the studies considered material outside the fusion power core which
may become radioactive. However, where possible, the waste arising from
refuelling, additional heating and current drive equipment has been estimated
and included in the results. These components add less than 2% to the waste
totals. The RFPs (CRFPR and TITAN) do not require auxiliary heating, whilst
their oscillating field current drives use the main field coils and are,
therefore, included implicitly in the waste inventory.

Some of the waste, whilst active enough to require repository disposal,
may be suitable for recycling into future fusion reactors - thus reducing the
disposal requirements. ~ This recycling is discussed in the following
section.

5. Recycling of low activation materials

The variation in neutron induced activity among the reactor components is
large and whilst most material inside the shield must necessarily be
consigned to a nuclear waste repository, some of the low-level material could
be recycled. However, the recycled material must eventually undergo
disposal, so that its volume for n cycles of use will be 1/n times the figure
obtained without recycling. The limit for n will depend on a number of
factors, in particular the permissible operator dose. ~Moreover, the
long-lived activation associated with this material will not be reduced by
recycling, but may increase since for multi-stage reactions the activation is
more than linearly proportional to neutron fluence.

Economic and resource considerations may also influence decisions on
recycling, particularly for breeders and multipliers. It has been assumed
that all breeder and multiplier materials will be reprocessed to give long
effective replacement times (20 years in the case of STARFIRE, the reactor
lifetime for the other reactors). In addition, a simplified recycling option
may be considered in which the breeder, multiplier and some shield materials
are recycled for five reactor lifetimes (n=5). For STARFIRE, however, this



further recycling of breeder and multiplier has been excluded since these
materials contain zirconium and aluminium which give rise to long lived
activity and may limit recycling [11].

In the STARFIRE study the possibility of recycling some of the shield and
magnet material, which would otherwise be repository waste, was considered in
detail. A criterion for recycling was based on the more restricive of two
requirements:-

(i)
(i)
after a 50 year post-irradiation cooling period. The first requirement
corresponds to the "hands on" limit for radiation workers (50 mSv for a full
working year). On the basis of these requirements the shield and magnets

yielded a substantially smaller residual waste volume, since 45% was
non-repository waste and of the remainder about two-thirds could be recycled.

a contact dose eQuivalent rate <25 uSv/hr, and

a specific activity < 3.7 GBq/m3

The effect of recycling on the volumes of repository waste for three of
the reactors considered in this study is shown in Table 2. Where material is
both non-active and recycleable it has been placed in the former category.
Since (1/n) times the recycleable material, where n is the number of cycles,
is included in the totals, the volume with recycling represents a steady
state level for a continuous sequence of fusion reactors. The volumes of
waste for disposal are reduced by 30 to 50% by recycling.

DIRECT DISPOSAL | WITH RECYCLING

REACTOR SYSTEM | m3 GWe | m3/GWe [m3/GWe | m3/GWe

net packaged | net packaged
STARFIRE 1940 10400 1210 6500
CRFPR 906 4870 478 2570
TITAN 1120 6030 800 4300

Table 2 EFFECTS OF RECYCLING ON VOLUMES OF WASTE

6. Comparison of Waste from Different Fusion Reactors

The volumes of packaged waste shown in Table 1 range from 4870 to 43400
m3/GWe. The two reversed field pinches give the lowest volumes, and the
PCSR-E tokamak reactor gives the highest volume.

The lower volumes of waste from the reversed field pinches are a direct

reflection of the fact that they are more compact reactors than the tokamaks
or the mirror, the fusion power cores of the reversed field pinches being a

- .



factor 5 to 8 smaller than the tokamaks by volume, for equivalent electrical
outputs. The " differences in repository waste generated are, however, much
less since the components of the RFPs require more frequent replacement.
Furthermore, all the waste in the fusion power core of the reversed field
pinches is likely to be repository waste, even after a 50 year cooling
period, whereas in the tokamaks a portion becomes non-repository waste after
this period. The advantage of the RFPs, in waste terms, may also be further
eroded, or even eliminated, when material outside the fusion power core is
included, since the lighter shielding of the RFPs may result in more
activation of external material such as buildings and auxiliary equipment than
in tokamaks.

The three tokamak reactors produce volumes of waste which differ by a
factor of four. The PCSR-E gives the largest volume for several reasons,
including the fact that all material from the shield is assumed fto be
repository waste whereas for STARFIRE and DEMO a substantial proportion of the
shield is non-repository waste. This emphasises the point that the shield
contributes the largest component of the waste, and suggests that the use of
low-activation steels and suitable design may have a substantial influence on
the levels of waste produced. It should also be noted that extensions of the
shielding around pentrations for divertors, vacuum pumping, auxiliary heating
systems, etc, are often not well quantified in present studies, but could
contribute significantly to the waste produced. The quantity of waste in DEMO
is certainly underestimated for this reason.

_In the UK, bulky LLW waste with a specific activity in the range 0.4 to 4
MBq/te may, subject to approval, be disposed of in near-surface landfill.
For STARFIRE, for which detailed activities are given, about 960 te/GWe of
material (mostly from the magnet helium vessel) fall within this range. The
corresponding reduction in packaged repository waste would be about 650
m3/GWe or 6% of the total.

In calculating the volumes of packaged waste, a specific NIREX container
has been assumed together with a packing factor of 30%. These assumptions
give values of the ratio of packaged volume to mass of waste in the range 0.6
to 1.25 m3/te, which is consistent with the rough guide of 1 m3/te often used
in estimating quantities of fission waste. It is interesting to compare these
values with specific calculations [11] for the disposal of waste from NET in
German and Swedish repositories, yielding values of 0.34 to 0.52 m3/te which
appear optimistic, but which may be appropriate to waste from NET.

In the USA a Senior Committee on Environmental, Safety and Economic
Aspects of Magnetic Fusion Energy, ESECOM, [12] have estimated the
radioactive waste produced by ten tokamak and reversed field pinch reactors,
incdluding D-T and D-He fuelled reactors and hybrid fission-fusion reactors.
These cases were developed and analysed with the assistance of a computer
model and were chosen to permit exploration of a wide range of materials,
power densities, etc. These reactors all produced net electric powers of 1200
MWe, and were assumed to have a 30 year life time and to operate with a
capacity factor of 0.65. The unpackaged waste volumes quoted for six of these



reactors using D-T fuel and conventional electrical generation plant are shown
in Table 3, and fall within the range 400 to 2600 m3/GWe, the lowest value
corresponding to a compact reversed field pinch and most of the high values to
tokamaks.

NEUTRON | REPLACEMENT | TOTAL
WALL PERIOD FOR WASTE
LOADING BLANKET VOLUME

REACTOR MW/m2 years m3/GWe
1 V-Litokamak 3.2 6 1320
2 RAF-He tokamak 3.2 6 2010
3 RAF-LiPbreversed field pinch 16.6 1 400
4 Vi-Lireversed field pinch 14.6 1 2010
5 SiC-He tokamak 2.5 6 2600
6 V-FLiBe tokamak Bi.7 6 530

Table3 WASTE VOLUMES (UNPACKAGED) ESTIMATED IN THE ESECOM STUDY

The volumes of unpackaged waste deduced in this study and the volumes quoted
in the ESECOM study are plotted in Figure 1 as a function of the mass power
density, defined as the power output per unit mass of the fusion core. (The
volume for ESECOM Case 4 has been adjusted since in this case it was
originally assumed that the whole of the 043" m thick shield would be replaced
each year, whereas the shield is not replaced in the other cases. Assuming
only 20% of the shield is replaced each year gives a waste volume of 550
m3/GWe.) The two sets of volumes are comparable, and the trend to lower waste
volumes for designs with a high mass power density is noticeable.

Since the shield of a reactor is a major component of the waste volume
and is also a major component of the mass of the fusion power core, it is
possible to make a simple comparison between the waste volumes from different
reactors. In Figure 1 the dashed line corresponds to the volume of fully
compacted waste from the core of a reactor, assuming that all components are
constructed from steel (p = 7.9) and last the whole life of the reactor. In
practice the actual volumes of waste requiring disposal in a repository may
fall above or below this line.
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Reasons for higher waste volumes are -
components are replaced several times during the life of the reactor,

- components are included from outside the fusion power core, e.g. the
lithium breeder in external pipework of TITAN,

components are constructed from materials of significantly lower density -
that steel e.g. the graphite reflector in STARFIRE or

components contain larger voids or uncompacted volumes are quoted e.g.
the blanket structure in PCSR-E.

Reasons for lower waste volumes are -

some materials have a sufficiently low level of activity that they do not
require disposal in a repository or can be recycled, or

not all active components have been identified at this conceptual stage
of the reactor design, e.g. the absence of shielding around ducts in
the DEMO study.

In general the volumes of waste will not fall to very low levels for
compact reactors with a high mass power density because the frequent
replacement of the first wall and blanket structure represents a minimum
volume which is dependent on the blanket design.

The scatter in results suggests that the volume of waste from a fusion
reactor is not known within an accuracy of a factor 3. A mass power density
of greater than 100 kWe/tonne has been proposed as a criterion for the
economic viability of a fusion reactor [13), and if this is accepted the
volume of unpackaged waste should not exceed 1000 to 2000 m3/GWe provided
components with large voids are reasonably compacted and the shield design is
optimised so that a significant proportion of the waste does not require
disposal in a repository. The corresponding maximum level of packaged waste
is 5000 to 10000 m3/GWe.

Two other previous studies have also considered the quantities of waste
generated by tokamak fusion reactors. Miyahara [14] used the STARFIRE design
in his study and estimated a packaged waste volume of 39000 m3/GWe. This is
3.4 times greater than the figure estimated here, based on the same data.
The difference is explained by the fact that no reduction was made for
material qualifying as non-active or recycleable and a large proportion of
the total volume consisted of additional lead shielding around the packaged
waste. Although shielding will be required during interim storage and
transportation it will not be needed for final disposal.

Botts and Powell [15] studied four tokamak designs (UWMAK-I, UWMAK-TI,
BNL and PPPL) and estimated total packaged waste volumes of 240 to 450
m3/GWe-yr. These values are similar to the volumes of packaged repository
waste for direct disposal shown in Table 1.

.



7. Conclusions

1

A survey of six D-T fusion reactors including three tokamaks, two
RFPs and a tandem mirror has provided estimates for the packaged
radioactive waste, normalised to the reactor rating, of 5000 to 43000
m3/GWe.

2) Only the fusion power cores have been considered. Contaminated steam -

3)

4

5)

piping and boilers cannot be included due to the lack of design
information. For the same reason auxiliary equipment or shielding
around penetrations has not always been included, and there are
differences between the reactors as to the consideration of liquid
metal breeder/coolant in external circuits. The inclusion of these
items might significantly increase the waste volumes. Secondary
wastes from fuel processing and general maintenance operations are
also excluded, because at this conceptual stage of fusion reactor
design there is insufficient information on these wastes.

The volumes of waste from the tokamak and mirror reactors are
dominated by the shield, which is required to reduce the neutron
damage and heating in the superconducting coils. By careful design
and the use of low activation materials, a significant fraction of
this component can be disposed of as non-active waste, or partly
recycled, and the active waste significantly reduced.

The volumes of waste from the reversed field pinch reactors are at
least a factor two less than those from tokamaks, partly due to their
compact construction and partly due to the reduced requirement for
neutron shielding for normal magnet coils. However, since the RFP
designs are relatively lightly shielded they may produce further waste
due to irradiation of external components not included in present
assessments.

The estimates in this report are consistent with most previously
published estimates, including those in the ESECOM study. The
normalised volume of waste falls as the mass power density of the
reactor increases, and the volume of packaged waste is therefore
unlikely to exceed 5000 to 10000 m3/GWe for an economic power
reactor. Never-the-less, estimates are uncertain to within a factor
three.
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Appendix

Data for sample reactors

The following tables, with notes, are included in the Appendix -

Al
A2
A3
A4
A5
A6
A7
A8

Main parameters of reactors

Starfire, 1200 MWe tokamak reactor

Culham DEMO (R254) 1070 MWe tokamak reactor
PCSR-E 1250 MWe tokamak reactor

CRFPR 1000 MWe reversed field pinch reactor
TITAN 1000 MWe reversed field pinch reactor
WITAMIR 1530 MWe tandem mirror reactor

Masses and volumes of waste
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