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1. INTRODUCTION

Investigation of the ion cyclotron resonancé instability(f) in mirror machines such
as PHOENIX(Z) is made difficult by the profusion of physical processes which arise. Burt
and Harris(3) have studied unstable cyclotron oscillations for a model in which the plasma
forms a cylindrical shell with its axis parallel to a uniform magnetic field, In the
equilibrium of this model the ions move in concentric Larmor orbits centred on the axis
of the cylinder, and the electrons are taken to be cold, It may be possible however, to
isolate the cyclotron phenomenon from the other processes and hence make a detailed experi-
mental study of this. instability by means of a small - scale experimgnt based on a model
similar to that of Buft and Harris(s). Because of the expertise which exists in building
and operating‘electron guns, it is planned to study(4) the cyclotron instability which is
expected to arise through electrons orbiting in a cold plasma. Thus electrons are to be
injected from a gun so as to spiral aboyt an axis along a field in a mercury plasma. It is
expected that under suitable conditions a cyclotron instability will arise through the inter-
action between the spiralling electrons and the.cold background electrons. In the present

work we set up and examine a model which we hope will describe some of the features of the

envisaged experiment,

In section 2 we consider an annulus of plasma in which there are two groups of elec—
trons. The electrons of the first group orbit about the axis of the annulus with the same
angular frequency, while the electrons of the second group have only axial motion in equi-
- librium, Charge neutrality in equilibrium is provided by ions which also have only axial
motions, Using Maxwell's equations and the fluid equations, the method of Harris(S), leads
to a dispersion equation in ® which involves general distribution functions for the

spread of axial velocities,

The special case of cold ions and electrons is considered in section 3. The dispersion
equation is still complicated and it is necessary to consider a number of limiting cases.

For k, « Kk, we obtain the instability criterion,

0% wf <t [65+ (1= p+ w5)e, )

where p 1is the fraction of the total number of electrons in thé orbital group, We is
the plasma frequency, £ is the azimuthal wave number, and p is the ratio of electron
to ion mass. Simple expressions for the growth rate of the instability are given for the
limiting situations @ « 1 and B~ 1, These instabilities are analogous to those des-

cribed by Harris for the ion-cyclotron problem.



For k, «k we neglect the ions, it being shown that these particles are not important in
the instabilities considered here. It is shown that for ¢ =1 and 2 the situation is
stable, whereas for £ > 3 there are certainly values of ube for which instability will
set in. We deri#e definite results only for the limiting case f « 1 (which is probably
the one of practical interest), and show that there is a narrow band of wpe for which

instability will occur. For the particular plasma frequency

1
- 2
B = [e (& - 2)]% ws aan (1aZ)
a wave propagated with frequency
wR=(6-1)wce+0{E:) s e Shad)
and growth rate
(e - 2)w |
wp =t gt B +0 (p) . oo (1.4)
2(e - 1)?

In section 4 we examine the physics of the instability which arises when Kk, <« k. The
ions are ignored and B is taken to be small compared with 1. The resulting dispersion
equation is identical in form with that obtained for the conventional two—-stream electron—
ion plasma. The quantities EEE and P are equivalent to the velocity difference v
and u respectively in the conventional problem. The electron—-electron two-stream prob-

lem is discussed and the physical picture obtained is used to describe the electron-

cyclotron instability.

The section ends with a discussion of the energetics of the instability. It is shown
that the unperturbed azimuthal motion of the orbital electrons feed energy into their long-

itudinal motion and the longitudinal motion of the main body of the electrons in equal

amounts,

2. DERIVATION OF THE DISPERSION RELATION

Our model consists of a cylindrical shell of plasma whose axis is parallel to a uniform
magnetic field. In the unperturbed state the ions (density Ni) are assumed to have no
perpendicular velocity component and hence move independently of the field. The electrons
are divided into two groups with densities N, and Ng respectively. It is assumed that
in equilibrium the electrons of the former group move in concentric Larmor orbits with
their centres on the axis of the cylinder. As with the ions, the second group of electrons
does not interact with the field in the equilibrium state, We now use the fluid equations

and Maxwell's equations, and extend the method of Harris(s) to describe our three-fluid model.
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The equation of motion for group 1 electronsis

ov v x B

3§+(_\_'-V)g=—§1-(§+ =}

Cc

where

B = (0, 0, - B) .

We linearise by writing

v=V e +Vye +vli=V4y?
-_— zZ —Z :l_e - - i 3
where
eB
Vy=w P=s—=—rp¢m
1 ce mc

and the perturbations are proportional to exp [i (kz zZ - £0 + wt

(2.1) we are led to the following forms for the perturbed velocit,

_ie pa - _ & 1
= EP (w+szz awce) ~E o

evi £241)

eee (2.2)

eee (2.3)
)]. Linearising equation

y components:-—

i 6 “ce
r w? - (w+k V —gw )2
ce zZ z ce
€ 1 le o4 Vo=
,i_ m B, Bo= =SB (w+ K, .~ ¢ wce) | .41
e -— 2 - _ 2 -ew -
“ce (o + l(z Y, = ¢ wce)
_ & g1
vi= n “g
z 1(m+kZVz—6mce) )

For the electrons of group 2 we put Vz = 0 in the linearised ve

I

(2.1). [This amounts to putting &£ ®.e = 0 and replacing «_,

(2.4) ]. We obtain,

_die 4 € p1
m Er' (m"'kzvz)"'mEE)"u

vi ce
E w? = (w+k_V)?
ce zZ Z
e ie
—_= 1 _ 1€ pa
w2 a2 m “ce Er‘ m Ee (w + kz Vz)
0 w?® - (w+k V)2
ce Z Z

E:l.

=
z ilw + k, Vz)

EXle]

locity terms of equation

by =~ W,o 1IN equations

.ee (2.5)

ees (2,86)

(2;7)

The perturbed velocity components for the ions are the same in form as those given by

(2.5) - (2.7) with the quantities m, - e, - Weg? replaced by M

The equation of continuity for each type of particle is .

y By wci respectively.



an
-C.;EJ-+(y_-V)n=--nV-x, eee (2.8)

and is linearised by taking

n=NJ+n; j=1i,1,2. vee (2.9)

The densities Nj are taken to be uniform throughout the cylindrical plasma shell. We
introduce the electrostatic potential ¢. (E! = - V ¢). The above equation gives the

following expressions for the perturbed densities:-

k2

2 ¢

i = i 1 2 ( Kk lv )4 l é; (r gr) iQ @} * (w+ k zv -2 w )2
w w+zz—6w @ z g e

n
ce ce c
sor £2,10)
e 1 (12 (20 _ &2 kz o
S SRR LI
2 m =z 2 _ 2 |r 3r or r (w+k_ V)
Wl = (w+ Kk, V) z z

wee (2,11)

For n; we replace N_, — e, m, “ﬁe by Ni’ e, M, wgi respectively in equation (2.11).

Substitution of these perturbed quantities in Poisson's equation leads to the disper-

sion equation,

13 (20 _ &% 2 ., _
e (r ar) s ¢ kz 1+wlp—0, ees (2.12)
where
4re? 1 4me ®N, 1
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electrons 2
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electrons 2



Thus our dispersion equation has the same form as that given by Harrists), but G and
W have now become suitably modified., The summation signs are over the electron and ion
velocity groups. These will now be replaced by integrals over distribution functions, and

we obtain,

1= F—% [wz rj (Vy) av, ro? j oy (V) v, f Tep V) @V, }
Tk i 2 el - 2 e2 2
p (0 + k, V,) p (UJ+kZVz 5wce) “p (w+k, V,)
2
+ EJ; [ 2 rl (VZ) dvz + (,02 rel (VZ) dvz
2 3_ o el - 2 -
k (w + kz Vz) Wl p (w + kz Vz wce) mqe

+

2 f‘e2 (Vz) de
W — s .e. (2.15)
pez | (4 + k, V,)? = 2

where k-l_ is given by applying the appropriate boundary conditions to the solution

¢ (r) =AJ-5 (ky r). + B N& (ky 1) vou (2416)

of equation (2.12), and

k? = k? + k2, siwns 0 217)
AL z ‘

3. EXAMINATION OF THE DISPERSION RELATION

For cold ions and electrons fi(vz) = fel(Vz) = fez(vz) = B(Vz), ‘and equation (2.15)

becomes,
_1___2[35+ B }-:-E;[ m : B o L= }
2 = ’
pe K (@ (w‘a‘”ce)z K lo® - wdi (0= 2wge)® -ofe o - ule
LU ) (3.])
where
. 4re®N m % \
wpi = M M wpe = wpe
2 _ 4rne® _ 2
Bogi ® o PN, =p Be > ees (3.2)
w0, = EE (1 _p) N, = (1-p)a?
pe2 m i pe ]

and B 1is that fraction of the total number of electrons which are in group 1.

We shall now investigate the dispersion equation (3,1) for real k and complex w.



It will be necessary to consider a number of limiting cases. Thus consider

(a) k, «k

In this situation we can neglect the second bracket and put k = k. Equation (3.1) be-
comes
' £ o cee (3.3)

—— + .
2 — 2 2
whe (0= ¢ wce) w

It is simple to show that the condition for instability is

! ]
et <@l [ e (1-pr ], e (34).

Now consider the limit f « 1. Since p « 1, it is straight forward to derive

wrde Fo=——————— ene (3.5)

from equation (3.3). We observe that the condition for instability is aﬁuﬁe < “ﬁe' and

1
that the growth rate is proportional to Bé.

Similarly for the limit 1 - 8 « 1, we obtain
54 )
. (1 = p+p)°e Wee
r b
\/[ﬂewée ]
—— -1
wpe

1
Thus the stability condition is the same but the growth rate is proportional to (1- p+ p)é.

w . vow: (B8]

(b) kz «k

In this situation we can neglect the first bracket in equation (3.1) and put k, = k. Thus

we have
1w B 1=
"(;5-'.-.(”2 —wg- { 2 )2 _wz + wz —wg - e (-3.7)
pe ci W - ¢ Wee ce ce
Since u is very small it is simple to show that there are two roots w = * W and

that the corresponding modes are stable. Thus if we assume that the other roots of (3.7)
are never close to w_; then we can ignore the first term on the right hand side of (3.7).
To analyse (3.7) it is necessary to consider ¢ =1, & =2 and & 2> 3 as separate

cases:~

=l o



(i) 2=1

For this case equation (3.7) can be written as

5 R
w (0= 2w,.) w? - wle wﬁe

Flw) = -
e

A plot of this function is shown in Fig.1. For any ube’ the line - 1/q§e always
intersects F(w) at four real values of . Hence for £ = 1 the physical situa-

tion is always stable,

(ii) ¢=2
We have
Flo) = - . L= = -4
(w—3%w)(w—-%e) (w-c%e)(w+c%; w&

Again we plot F(w), but the precise form of the curves depends on whether or not
B> or <X%. (See Fig,2) We observe that - l/hﬁe always intersects F(w) at

three real points, and since the equation
F(w) = - 1/‘1);6

is a cubic the situation is stable,

(iii) ¢ >3
We have
g 1 - 1
Flw) = - _ -
) [w= (e + 1) “Ee] [w- (& - Duwge] ©? - mze “ﬁe

We give a plot of this function in Fig,3. It is straightforward to show that

F(w) = O when

w=2 . (1-p) o V[1-£2p(1-p)]. .. (3.8)

Ir

2 (1 -p)s1, ees (3,9)

then F(w) does not cross the ¢ - axis. It follows that this situation is unstable
for large values of “ge since there are 2 real and 2 complex roots. Note that for
any given p (apart from p=0, B= 1), we can always find an ¢ for which (3.9)
is satisfied, so that the system is always unstable for some values of ¢ at large

“pe”

If ¢2B (1 - B) <1, then one of the curves 1 and 2 drops below the ¢ axis,



but not both, Thus there is some finite range of ube for which the situation is

unstable,

In order to make further progress we examine the case where B « 1. It is simple

to show that the stationary values of F(w) occur near w=0 and o= W TE £ 4],

F(0) is a minimum and in fact is positive so that curve 1 does not cross the w

axis for small g,

We can show that F(w) has a maximum at the point

5
w=w_ [¢=V(1+ 7],
and a minimum at the point

w=w _ [£=/(1 ~24)], > ... (3,10)

ce
where
1 = 2 _
A=F34(3 1)61 J
(e - 1)
Substitution of these values gives
% % ‘
F . = - 1 + 2[3 ({’,—l)
2 2
min wie [(& = 1)2-1] Wi, [e~12%-1]
\ ion E8GTT)
| 1
P 1 2% (g 1)?
max g2 [(e-1)2-1] o2 [(e-12=1]

From Fig.4 we see that as - O these two turning points approach and the region

of instability appears.

It follows that for g « 1, £ B < 1, the system is unstable if

_ 2
Fmax < pre < Fmin % eee (3.12)

We now wish to estimate the growth rate of an unstable wave when the plasma frequency
is given by

w;e= wZ, [(e =1)2=1] . eee (3.13)

The dispersion equation is then

g 1-8 1
(UJ"(E""])U,Jce) (w_ (3_1)03':3)+w2_utge“w§e{(€u1)2_1) P (3.14)

1
We assume that the growth rate is of order gé and demonstrate that there is indeed

an  wp of this order,



1
Expanding @ and w as series in p’é it is straightforward to show that

wp = (6= 1) w, +0 (p) wen e 16)
and that
ele - 2) ﬁz
= e
=+ +0 (B) . eo. (3.186)
‘I 206 - 1)% g

1
(c) k2~ g?k3

For ¢ = 1 we have shown from the dispersion equation (3.1) that for k,; « k (retain-
ing only the first bracket) there can be instability, whilst for kz « k (retaining only
the second bracket) the situation is stable. In this section we ask whether under condi-
tion of instability one of the terms in the 'stable bracket' can be of the same order as
the terms in the 'unstable bracket' and so modify the instability. For small B and assum-

k.-L 1
ing w~ @, the ordering (w= o ) ~ (E-)2 ~ 1:-3"é with B « 1 is such that the terms in

k
1 8 1 L 1
—_— = + = + =8 . = ’ sae (5.17)
wf)e G = wce)2 ‘”ée k 2wce (w wce)

are of the same order.

It follows that the condition for instability is

g AT o Y (3.18
wcec( _16B<k>>wpe' .18)

Thus we observe that the condition for instability p:eviously obtained for & = 1 has been

made slightly more difficult to satisfy.

4, PHYSICS OF THE INSTABILITY

In this section we attempt to set up a 'physical picture' of the electron-electron

Harris instability as described by the dispersion equation

1 1 B
T = T ees (401)
whe (w=-2 we)? ’

where we have taken k; « kz, B « 1 and have ignored the motion of the ions. This is

identical in form with the dispersion equation

1 1 !
—— e o vee (4.2
whe w? (w- kv)?* {2

for the conventional two-stream electron-ion problem.
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The stationary (in the unperturbed system) electrons behave like the electrons in the

conventional two-stream problem.

The behaviour of the orbiting electrons is analogous to

that of the ions in the electron-ion problem. This is because the orbital electrons in the

first problem and the ions in the second problem have low characteristic response frequen—

cies compared with the stationary electrons.

In the case of the orbiting electrons it is

low because their small number density is comparatively ineffective in producing electric

fields, whereas in the case of the ions it is low because of their large mass,

We consider the two-stream problem for two parallel streams of electrons.

sion equation is

1 1-8 + B

;%;'_ (w-kvy)? (w- kva)?

w

It follows that when B « 1, e &Yy and for instability

For the very unstable situation

-
w:k\flilﬁ k(Vg—vi).
We now move to the rest frame of group 1 electrons (small group) i.e. v, = O.

physical role of particles 1 is to select the wave-frame.
For particles 1 we have
s mud o &
iapNg =2 E,

and for particles 2,

ikvy,vi=-eE/Mm,
We also have the continuity equations
n; kv, =-n kv
wn!=-n_Kk v
and Poisson's equation
ikE=-4ne (n]+ni).

From equations (4.6) - (4.9) we have the phase diagram shown in Fig.5.

The disper-—

(4.3)

(4.4)

(4.5)

The main

e (4.86)

coe (4.7)

(4.8)

coe (4.9)

It is seen from the diagram that the unstable perturbation is one in which there is a

local increase (say) in the density of electrons of type 2 and a smaller decrease in the

= 10 s



density of electrons of type 1 resulting in a negative charge concentration, As the type
2 electrons pass through this charge their velocity is reduced by the resulting electric
field. This leads to a further increase in their density. The particles of type 1 which
are at rest with respect to the wave, are expelled from the region of negative charge and

their density is further reduced,

These ideas can be carried over to the cyclotron instability. In this case we have a
small group of electrons (group 1) orbiting in the magnetic field while group 2 (the large
group) is stationary. A wave now propagates through the system such that its direction of
propagation is almost along the field. If we consider the motions of t he particles rela-
tive to the wave-frame, then a particle of group 1 will trace a helix such that it will
remain in phase with the wave, Type 2 electrons flow through the wave with a relative vel—
ocity “he/k' Thus in the wave-frame the instability is physically similar to the usual
two-stream situation., We end this section by making an examination of the energetics in-
volved in this instability. Assuming ¢=1, p« 1, B« 1, and mze « m;e (i.e. very

1 1 . ’1§ [
w= w - B il | ﬁ . LI ( I- IO)

We consider our plasma to consist of cold ions (these are not e#pected to play any
important role in the physics), cold electrons, and a group of orbiting cold electrons,
with densities N,B N, and (1 - B) N respectively. Their densities are taken to be uni-
form through the annular plasma, Wave propagation is essentially along the magnetic field.
The perturbed radial and azimuthal velocity components are neglected, it being expected that

only the perturbed longitudinal velocity is significant in determining the perturbed den-

sities,

Assuming the real part of the frequency and certain features of the model, we aim to
deduce, using an energy balance, the growth rate which is given by (4.10). This consistency

will indicate that our basic ideas concerning the model and the energy exchange are correct.

We take the perturbed z - component of the electric field to be given by

Yt
i _ ==
El = E _ cos (kz - 8 + “G t) e cee (4011)

0Z

The other perturbed quantities will have both in - phase and out - of phase components, e.g.

s t
3 . Sin (k2 -8+ g t) et .. (4.12)

1 4 _ Yt
EB = E i Cos (k z B + W t) e'” + Ee

s “F Y o



PV;i ] rvia
V;es ve51
s Ves
n f ) Ny,
n:s Nest

Lné N _Ne:t

iz
es2
ez
(cos (kz - & + wRF) 5 Yt) .

iz

esa

where s denotes the orbital group.

(Sin (kz - 6 + th) eYt),

eee (4.13)

Linearising the equations of motion and continuity for the three groups of particles,

substituting (4,13) and carrying out certain eliminations, we obtain the following expres—

sions for the amplitudes:—

From VvV x E = 0,

The rate of transfer of energy between the groups of particles and the field is

where the bar denotes an average over one wavelength of the wave.

azimuthal electric fields as compared with the longitudinal components, we get

e |:" Vi Nogy Eg, * N'Vi: Boz =B N Voss Boz = B g, Eoz:| #

N
es1

‘\
- BN (o - ) Voo, * BNK Y Ve,

- - 2
(g = sge) +
e
_ MYEOZ
- 2 2
44 wp+ Y
e
Y Eop

we have

E1=-Eoz/kr,E2=0.

jt«E 9 (E1)® _
N - *at(E) = By
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Ignoring the

X g2 _
4»7:Eoz_

ees (4.14)
eee (4.15)
given by

eee (4.18)

radial and

ee. (4.17)



where V, 1is the unperturbed azimuthal velocity of the electrons, Substituting (4.14)

and (4.15) this can be written,

2ﬁ%e<wa—%e’+ g R S SN [ e (4.18)
[(‘”Rche)a""YBJz log = 0%+ ¥~ wf 4 1° “p

Now we assume ¥2 « mg_z u@e’ and from (4.10) we have

_ 2282 4,2 .
(wp uEe) CRT

Since p « 1 the motion of the ions can be neglected. Then equation (4.18) becomes

2
wee
4 —= 2 y2_2p%w! =0. vos (4
¥ [1+Gua J+B w2, ¥ B® wl, (4.19)
pe
Now we have assumed our model to be very unstable and hence “ge « “ﬁe' Thus we may neglect
the second term in the bracket and this amounts to assuming that the rate of change of

energy stored in the field is negligible. Solving equation (4.19) leads to
Jﬁ ¥ .
Y=g w _, «oo (4.20)

which is the result obtained in (4,10) by the usual method of solving the dispersion equa=~
tion, The last term in equation (4.19) represents the rate of energy transfer from the
unperturbed orbital motion to the longitudinal oscillations of both the orbital and non-
orbital electrons. The rates of energy absorption by these two groups are given by the

second and first terms in (4.19) respectively and these are equal in magnitude,

We now summarise the'physics of our model. A small group of electrons is orbiting
about the magnetic field, The ions in the main-body of the plasma play no part because of
their large mass. For a very unstable situation the change of energy stored in the field
is negligible. Only the perturbed longitudinal velocity components are important in deter-—
mining the‘perturbed densities. The unperturbed azimuthal motion of the orbiting electrons
feeds energy into their longitudinal motion and into the longitudinal motion of the main-

body of the electrons in equal amounts.,

The energetics of the more familiary non-homogeneous electron-ion Harris instability
1,
can be discussed in exactly the same way. The growth rate wp=* pé w,; 15 obtained and
it is found that energy is distributed to the longitudinal motion of the ions and electrons

in equal amounts,

w15 =
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Fig. 1 (CLM-M 44)
Plot of the dispersion relation for the physical
situation k; « k and £ =1
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Fig. 2 (CLM-M44)
Plot of the dispersion relation for the physical
situation k; « k ?ﬂd &L=12
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Fig.3 (CLM=M 44)
Plot of the dispersion relation for the physical
situation k; « k and €23

Fig. 4 (CLM= M 44)
Plot of the dispersion relation for the physical
situation k; « k, € 2 3and 8 « 1,in
the neighbourhood of w = Lwge
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Fig. 5 (CLM-M44)

Diagram showing the phase relationships between
the perturbed quantities for the two-stream
(electron-electron) instability
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