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THE EQUATIONS OF MAGNETOHYDRODYNAMICS USING MAGNETIC
FIELD COORDINATES AND CURVATURE COEFFICIENTS

by

A.A, WARE

ABSTRACT

The equations of magnetohydrodynamics (perfect conductivity, isotropic
pressure and zero Larmmor radius approximation) for general equilibrium and
linear stability theory are written in component form for the three ortho-
gonal directions, B, Vp and B A Vp. Use is also made of the curvatures and
torsions of the surfaces containing pairs of these vectors. A large reduc-
tion in the numbers of terms in the equations results and the remaining terms
generally have a simple character, which is an aid to the understanding of
their physical content for complex configurations. The equations lead to a
general and simple form for the requirement of current parallel to the magne-
tic field for toroidal equilibrium, and also to a simple general definition

for the local magnetic shear,
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1. INTRODUCTION

In problems dealing with complex spatial configurations, it is normal to look for apro-
priate coordinate systems which will simplify the equations involved, In general magneto-
hydrodynamic equilibria, where no axes of symmetry occur or where no simple shape is
specified for a containing vessel, one of the few remaining natural directions is that of
the equilibrium magnetic field (g) and several workers(]) have found it advantageous to
use B to define one coordinate direction, In the case of isotropic pressure another
natural direction is that of the equilibrium pressure gradient (VYp) and since p is a
scalar, the surfaces of constant pressure (i.e. the magnetic surfaces) form natural co-

(2)

ordinate surfaces .

In this paper both these natural directions and the third orthogonal direction, that
of B A ¥p are used as coordinate directions. A large reduction in the number of terms
in the various equations results. Since the coordinate directions are curved the differ-
ential vector functions introduce terms involving the curvature and torsion of the magnetic

surface and the surfaces containing B and Jp, and B A Up and Jp. Some of these are

of fundamental importance to stability(s); most of the others are related to simple grad-

ients of equilibrium quantities,

Not least of the advantages of using theée natural coordinates is that the simplicity
and low number of the terms in the equétions greatly facilitates the understanding of their
physical content, The equations lead immediately to a general and simple form for the
requirement of current parallel to the magnetic field for equilibrium, In addition a gen-

eral definition for local magnetic shear becomes obvious from the equations.

2, NOTATION

The unit vector normal to the equilibrium magnetic surface in the outward direction is
denoted by én’ the unit vector parallel to the equilibrium magnetic field (B) by pAT
and i, dis defined as iy A»in' The set én %L, Ay is right-handed and vector components

in these directions will be denoted by the subscripts n, ,, ;, respectively,
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A component of the gradient operator ij"g will be written as == . The various
J

curvature terms which appear will be denoted by the radii of curvature Rjk where
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The torsions which occur are denoted by
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(The i/RJ-k and '/Tjk are of course closely related to the more general Christoffel

symbols, )

Because ‘En 1s always perpendicular to the surface containing ,g_l_, AL, the two geo=

desic torsions of the magnetic surface are r‘elated(4)
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but there is no corresponding relation with Tij.

In those cases where coordinates are required for integration the three coordinates

which can be used are

X

X1
I, @ =f TS_‘I’I dx, and o =] Bdx

o] o
where 1V labels the magnetic surface and is the flux going the short way round within the
magnetic surf‘ace(s). For a given magnetic surface, x; is the length measured along a

magnetic line of force from a particular , 1line which defines the zero of x;. Similarly

X, 1is the distance along a ; line from the zero magnetic line of force. The Jacobian is

g, _

= ]/(lvwlax 5X|| E"E' ’ ne [4)

The coordinates 1V, a are line labelling coordinates corresponding to the a, f coordi-

nates of Taylor (see reference 1).

Rationalised electromagnetic units are used throughout.

3. THE DIFFERENTIAL VECTOR FUNCTIONS

If F 1is any vector
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and since for example

and

the array making up VF is
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If the particular component of VF containing E;J is denoted by Ajk then
k

and

V-E:Ann + A_L_L + A||||

vaR = i (Aiy - Aun) + 4y (An" - Aun) + iy (A - A“.L)

The components of the

and hence the equilibrium
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4. EQUILIBRIUM EQUATIONS

equilibrium quantities are clearly

B = (0,0, B)

4 = (0, ji, dw)

w= (&, 0,0
n

equations have the following components
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Other Relationships

From (11) and (14)

aju B Ji

axn Ry

and from (8), (12) and (15)

w Ju
veGuk) = 77

1/Ryy is the geodesic curvature of the magnetic surface parallel to B,

same thing as the curvature of B in the plane of the magnetic surface.

form of the well known condition that a j; is required for equilibrium in a torus

the following theorem:-

Theorem
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which is the

Thus the general
(6) is

If in a magnetohydrodynamic equilibrium the magnetic field has any curvature in the

plane of the magnetic surface, a non-zero j; is required for that equilibrium.

The Curvatures and Torsions

From the above equations, five of the six curvatures I/Rjk have simple relationships



with equilibrium quantities, Thus
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where the relations involving Va,

for gradients in the , and

VY follow because

(geodesic curvature of the magnetic
surface in the , direction.)

{(normal curvature of magnetic
surface in the , direction.)

(normal curvature of magnetic
surface in | direction,)

(geodesic curvature of magnetic
surface in | direction,)

|9y |

directions,

J

is proportional to

eee (18)
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Since there are only two independent torsions, the following simpler notation is intro-

duced
T =Ty = Tny =~ Tin == Tin :‘
T, =T == Ty

T, 1is a measure of the geodesic

M

directions. Tn

proceeds along 4”f

measures the. rotation of B

is defined as the local magnetic shear 8.

whence from (10), (19) and (20)
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5. LINEARISED STABILITY EQUATIONS

Assuming an infinitesimal

when linearised are

plasma displacement £,

P 3g7 = OJiB + JuOBu - JubBy - 2P . p

ox n
n

torsion of the magnetic surface in the

the components of the MHD

ves (19)

and
in the plane of the magnetic surface as one

For reasons given in Section 6 below, the sum of these two torsions

... (20)
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Writing out the components of &B with the aid of (5) and the various equilibrium rela-

tions in section 4,
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With the aid of (26), (28), (29) and (30) and the relations of section 4, the following

forms for the components [ can be obtained
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where

Y=08+ird E

This form of F, which has been given previously by Bineau(Y), readily yields one of the

(8)

standard forms of the energy principle
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This is one of the most useful forms of &W for toroidal stability . The last temm in
the square brackets has been used to obtain sufficient conditions for stability against

(3),

Ju - driven and j, - driven modes

6. MAGNETIC SHEAR

From (29) it is seen that S is a measure of &B,/B produced per unit displacement

gn in the negative n-direction. For

8B, = &B (En,_E.L)

the quantity S is defined by

8B,
3

==F B
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n
Apart from a multiplying factor (see below) this is one of the roles played by magnetic
shear as defined for plane or cylindrical magnetic field configurations. For this reason

it is proposed that S be called the local magnetic shear,

For cylindrically symmetric equilibria

g du_ 288, BB, (l a -
~ B rB* B® p dr o

where p =B./rB . Hence S contains the extra factor BgB /B compared with the normal
definition of shear for a cylindrical plasma(g), namely ﬁ %% . The form contained in S
is considered preferable, not only because of its role in determining the 8B, produced
by En’ but also because it measures more accurately the stabilising effect of magnetic
shear for Suydam type perturbatlons, i,e, where E 1is localised in the vicinity of the

~a

s.mgular magnetic surface, For such a perturbation, the stabilising temm is
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and Suydam's necessary stability condition becomes
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where the right hand side is now proportional to the Vp destabilising term, as seen for

the expression for &W in equation (34).

For plane geometry (no field curvature) S reduces to

: dk . B
1 Jn ]( ~~ r\.-)
B i gt vk = F' oes (37)
Tn B B dy }5.'.Q=0
where the coordinates and nomenclature of the last two terms are those of Furth et al(lo).

(The normalising field magnitude B used by Furth et al, has been taken as the local

field magnitude),

In general equilibria, as opposed to cylindrically symmetric and plane systems, the
presence of a non-zero S is not necessarily stabilising, since &B; can be zero if §&;
has a suitable variation along B (see equation 29). This cancelling is possible, how-
ever, only if S is periodic along B, since the g, term is of necessity periodic. The
important quantity is the average value of S; this is proportional to the gradient of

the rotational transform.
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