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PART I: HYDRODYNAMIC MODEL

1. INTRODUCTION

Experimental work motivated by several accidents has shown that the
sudden contact of hot and cold fluids can sometimes result in violent explos-
ions. Explosive rates of heat transfer can be understood only if one
postulates that the interfacial area between the fluids increases rapidly
with time as a result of some hydrodynamic instability. Small scale debris
observed experimentally shows that hydrodynamic shredding does occur. To
improve our understanding of the fluid mechanics involved in these rapid
mixing processes a new hydrodynamics code called HYDRA has been written. This
report describes the hydrodynamic model, the computing technique and the

structure of the code.

HYDRA is designed to study the 2-dimensional compressible flow of
immiscible fluids allowing for large amplitude distortions of the interface
between them. The code employs an Eulerian finite difference method and to
demarcate the fluid boundary a list processing technique originally developed
by Roberts and Berk(l) is expldited. Although Eulerian methods have previously
been applied to multi-fluid problems, their application has been limited by
their tendency to smear out any density discontinuities. This results from
the fact that an Eulerian cell containing two fluids is assumed to have the
mixture distributed uniformly throughout and when mass fluxes are calculated
it is this mixture that is transported. This results in a diffusion that
eradicates density discontinuities. HYDRA represents the boundary between
the fluids, which may in general comprise several curves, by a chain of
straight line segments. Each segment is advected with the local fluid

velocity and hence the position of the interface is known at all times.

The remainder of part 1 of this report describes in detail the physical
model and numerical methods incorporated in the code; part 2 describes the

program structure, testing and application.



2. PHYSICAL MODEL

2.1 The differential equations

The equations representing conservation of mass, momentum and energy in

a compressible fluid can be written in the form

'2‘%= - div(py) (1)
oP. .
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ot (pvi) 0xj (2)
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where the density is denoted by p and the velocity by v. The total
momentum tensor is

B § = p(‘iij Ll R (4)

and the viscous stress tensor 1is

Bvi éﬁi avi
Vij = M(S;T + axi) + A Py (5)

with o the coefficient of dynamic viscosity and A the coefficient of
bulk viscosity. The total energy is
2

E=%pv™ +pl (6)
and the energy flux vector is
g = v(p+tE) - vij Vi &5 - K grad T (7)

where I 1is the specific internal energy, T 1is the temperature, K is
the thermal conductivity and e 1is a unit vector. The above equations
together with an equation of state relating the pressure p and temperature
T to the specific internal energy I and the density p are sufficient to

determine the hydrodynamic flow subject to some boundary conditions.

Equations (1) - (3) are readily solved by the Lax-Wendroff difference
scheme(Z) where exact conservation of mass, momentum and energy can be

guaranteed. The difference scheme is discussed fully in section 3.2.

When there are two fluids present provision must be made for dis-
continuous changes in p, & and K at the interface. Moreover, there may

also be a surface tension force at the interface between the fluids.



2.2 Computing Method

The computing method subdivides the material region into a finite mesh
of cells. The fluid boundary is represented on this mesh by a chain of
straightline segments; the junction of two segments is referred to as a node.
The solution of equations (1) - (3) is obtained at each mesh point using a
finite difference method and the local fluid velocity Vi at the location of
each node i 1is obtained from the mesh by interpolatigg; each node is then

advected with the local velocity Vv, according to

Loy, . (8)

From the position of the interface, the fluid composition of each‘Eulerian
cell can be found and hence the equation of state, the thermal conductivity
coefficient and the viscosity owefficient which are to be inserted in the
fluid equations of motion. Also, since the orientation of the interface is
known it is possible, in principle, to include the effect of surface tension

at the fluid boundary.

As the fluid motion develops the interface, in general, becomes longer.
; . ; . ’ . L) .
To maintain adequate resolution a list processing technlque( is used to
insert and remove nodes if segments along the interface stretch or contract

too much during the course of a calculation.

Js FINITE DIFFERENCE METHODS

3.1 The mesh

The material region is divided into a finite mesh of cells in the manner
illustrated in Fig.l. The solid lines represent the boundaries of the physi-
cal region and the surrounding points, called guard points, are employed to
facilitate the application of some boundary conditions (§3.5). Values at the
guard points are determined from some symmetry condition. This enables the
difference equations to be used right up to the physical boundary, so simpli-

fying and speeding up the calculation.

The points represented by crosses and those represented by circles in
Fig.l are defined at different times. The reason for this will become

apparent in the next section.
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3.2 Lax-Wendroff difference equations

written in the vector

where

in which

In two space dimensions, the conservation equations (1) - (3) can be
form
ou ) . d _
St T g F(U) + o G(U) =0 (9)
P m2 n
m | m /p+p _ mn/p
n » FO mn/p » G(U) nz/P+p
E (E+p)m/p (E+p)n/p
p is the mass per unit volume
u is the horizontal velocity component
v 1is the vertical velocity component
m 1is pu
n is pv
E 1is total energy per unit volume
P 1s pressure.

HYDRA solves equation (9) using a two-step Lax Wendroff procedure with

(
second order accuracy

Referring to Fig.l, the circle points are defined



at even times 2nAt and the cross points at odd times (2n + 1) At. The first
step entails calculating auxiliary variables at the cross points using the

first order scheme

(2n+1)At 2nit 2nAt 2nit 2nht
u .. =% + L &0 3 U
i+l,j i+2,] i,] i+l,j+1 i+l,j-1
A A A
e (an £ an %> e <G2n ¢ ) GznAt >.
20x \ i+2,3 i,j 206y \ i+l i+l i41,5-17

(10)

The auxiliary variables are used to construct fluxes at the intermediate time

. . . 2n+ 2
which are then used to advance the main variables from t to t

follows:
(2n+2)At 2nit (2n#+1) At (2n+1)At
i _U _ At(F _F
i,j i,j Ax \ i+1,] i=1,]
A ( (2n+1)At (2n+1)ﬁ>
= el _G
Ay \ i,j+l i,j-1 (11)

2
The scheme is stable( ) if the timestep At is chosen to satisfy a Courant-

Levy-Friedrichs condition A

ét <‘J§_(|EJ + ¢)

where A 1is the space-step, ¢ 1is the local adiabatic sound speed and

u 1is the fluid velocity.

The diffusion terms which appear in the momentum and energy equations

are included as follows.

(a) Heat conduction

When constructing the auxiliary variables at the cross points, heat
conduction is ignored. The diffusion fluxes are calculated at the inter-
mediate time level and used during the second half of the cycle when the
physical points are advanced. Thus, the conductivity coefficient, which can
be a function of temperature, is calculated at the points N, S, W, E (Fig.2)
and grad T is calculated at these points using FN, FS, FW and FE. This

first order method for the heat conduction is justified if the diffusion is

sufficiently small.
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(b) Viscosity

Viscosity is also ignored during the auxiliary step and included during
the main step but this time the derivatives are properly time-centred. The
terms Bvilaxj are calculated using the points N, ENE, ESE, S .......... etc.
and the viscosity coefficient, which is also a function of temperature, is

calculated at N, S, W and E.

3.3 Interlaced mesh instabilities

The grid described previously has two interlaced meshes comprising
points like those labelled 1 and those labelled 2 in Fig.3. These points
are not linked together advectively and the scheme employed for the diffusion
terms does not provide any coupling. Thus, some ad hoc fil?e;ing must be
3

applied periodically to remove unwanted computational modes which may

otherwise grow catastrophically. A tentative scheme currently used by HYDRA

gNE 0y W
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Fig.3

constructs the following average at each physical point

U(Q) = (U(Q) + %(U(NE) + U(NW) + U(SE) + U(SW)))/ 2



3.4 Smoothing shocks

It is well known that the dispersive nature of the Lax-Wendroff

difference scheme leads to non-linear oscillations in the region of a

(4)(5)

shock . To remove this effect a short wavelength diffusion is added
which preserves the high order accuracy of the calculation(q). At the com-
pletion of each main step of the Lax-Wendroff calculation, the dependent
variables are replaced by new values as follows:

n+l 1 ntl

(a) each line of the mesh is scanned replacing Uj Kk by U 3.k where
3 2
1n+l n+l 1 1 At 1 ntl
= A — A H
U Uit e I]A VKK B e Uj+1,k:| ;
b) each row is scanned replacing U19+1 by U11 ?+1 where
j,k ik
gl ol _ Lol ol '_] ik o Bt |zl 1 ot
Pk gk L ikl A joktl |
1
AT £ = I, - £
j:k ik j-1,k
All £ = f - f

and ¢ 1is a constant. The application of this scheme affects only short
wavelengths (A ~ mesh spacing, A) and leaves longer wavelengths unperturbed
since the diffusion coefficient is a variable such as to be finite only for

NS A

3.5 Boundary conditions

For any specific problem it is necessary to supply an appropriate set
of boundary conditions. The present version of HYDRA provides for periodic
boundary conditions or rigid free-slip walls in either direction. However,
there is provision in the code for defining more complicated ad hoc situa-

tions, such as intermal obstacles, if required.

The boundary conditions in the y-direction will be discussed below; the
conditions in the x-direction are exactly analagous. The indices 1i,j refer
to a point on the bottom boundary of the mesh. Thus, if the boundary con-

ditions in the y-direction are periodic we have

U =U . U = U
i, j+NY i, §° i, j -1 i, j+N -1



where U represents any variable and NY 1is the number of mesh intervals

in the y-direction.

If the boundary is rigid, the basic condition is that the normal
velocity component vanishes. Moreover, we assume that the dimensions, of
viscous boundary layers are small compared with the dimensions of a mesh
cell (free-slip condition). In this case the tangential velocity at a guard
point (Fig.l) is simply the value at its image point in the active region.
The normal velocity at a guard point is the negative of the image value;
this makes the average of the exterior and interior normal components zero,

consistent with the vanishing of the normal component at the wall,

It is also necessary to apply a boundary condition at the interface
between the two fluids. Thus, it is assumed that the pressure is continuous
across tﬁe boundary. Knowing the mean density of a cell containing the inter-
face, the fractions of either fluid in the cell (§4.4) and a relationship
between p and p it is then possible to determine the density of either
fluid in the cell ‘and hence the pressure.

The preceding sections have discussed the physical model and the finite
difference representation of the system. It was indicated that a knowledge
of the position of the interface and hence the fluid composition of each
Eulerian cell is an essential part of the calculation. The following

sections describe the treatment of the interface between the fluids.

4. REPRESENTATION OF THE INTERFACE

To demarcate the position of the interface at all times, each curve is
represented by a chain of straight line segments where each node is regarded

as a Lagrangian '"particle'" which is advected with the fluid.

4.1 Motion of the interface

The motion of each node i 1is followed according to

where Vi s, the velocity at the location of the node, is obtained from the
mesh by interpolation. With the mesh velocities defined at integral times
and the position of the nodes defined at half-integral times it is almost

possible to use a time-centred leapfrog scheme to advance the interface
lo g A At i
Flerg) = x (-7 + L) ae

L - ; i, ; ,
where X 1is the position of node 1 and V is the velocity at the location



of the node. However, the velocity li (t) cannot be obtained by interpola-
tion- from the mesh until the positions at time t are known. To circumvent
this difficulty,‘HYDRA employs two sets of nodes; auxiliary nodes whose

positions are known at auxiliary (half-integral) times and main nodes whose

positions are known at integral times.

After the first step of the two-step Lax-Wendroff calculation, the
auxiliary nodes are moved from the time level t - At/2 to level t + At/2
using the main chain to evaluate the velocity at time t. Knowing the
position of the interface at time t + At/2, the pressure distribution at
this time can be found and the second step of the Lax-Wendroff calculation
completed. At this stage, the main nodes are moved from t to to + At using
the auxiliary chain to find the velocity V; att+ At/2. We can then
calculate the pressure distribution at t + At in order to proceed to the

next cycle.

4.2 Area weighting

The fluid velocity at the location of a node n (Fig.4) is obtained
from the mesh by interpolation. Referring to Fig.4 the area Weighting(6)

scheme is as follows:

N

X

vx_ = sy ex VRN + (4-8x) (4-bylIvx(s) +

(2-5x1)6y1VK(W) + axl(ﬂ-syl)vx(E)

where VXn is the x-component of velocity at the location of the node,

' 1 1 ;
N, S, W, E are the four nearest defined points, 6x , 8y are the coordinates
of n relative to point S, and £ = A2 1is the length of the square. The

y-component of velocity is calculated in an identical fashion.



4.3 Matching the particle chains

As explained above, the HYDRA model employs two associated curves, main
and auxiliary, to represent each physical interface curve. Any small mis-
alignment of the two curves can lead to spurious motions(l) and to prevent
this from becoming too serious we stop the calculation periodically and re-
adjust the positions of the nodes. Currently, the simple first order scheme

described below is used.

- O ¢
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The calculation is stopped at time t and, using the area weighting
scheme described previously, the velocity at time ¢t 1is used to estimate
the position of the node at time t - At/4; similarly the position of the
corresponding auxiliary node at t - At/4 is estimated using the velocity
field defined at t - At/2 (which are still available in the computer store).
Due to misalignment of the chains, the new positions Al and Ml of the nodes

(Fig.5) will not in general coincide. The average
X = (XA + }LM)IZ

is calculated and the positions of the main and auxiliary nodes adjusted to

>
I

ox o+ (X -xX 1)
A A '\

i XM—(}_{-)S%D

4.4 Determination of the fluid composition within each cell

o]
I

Given a directed interface as in Fig.6 (which may comprise any number
of disjoint parts) it is possible to find the fraction of each material which

lies in each Eulerian cell so that the appropriate equation of state and

= TO =



transpo
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(b

(c

rt coefficients can be determined. This proceeds in the following way:

) Scan over each directed segment (i,i+l).

) If the end-points lie in different cells, break it into
sub-segments, each of which lie entirely in one cell.

) Find the cell in which each sub-segment lies (see Fig.6).

Fig. 6

(d) In ome 2D array A, accumulate the signed quantity

(e)

When the

determin
pictoria

area a

i1

(x - x7) Ay

This gives the area of material 2 which the sub-segment
contributes to this particular cell.
In a second 2D array B, accumulate the signed quantity
i+l i
(x - x)
This gives the effect of the segment on cells lower
down in the same column.
scan over segments is complete, an integration in the form

¥y

a
|

J B dy
ymax

A+

es the amount of material 2 in each cell. This can be seen

lly from Fig.7 . The sum of all segments P1 - P2 contributes an

to cell I (via A), and an area @ to all lower cells (via B). The

sum of all segments P, - P, contributes an area b to I, and B to all lower

cells.

3 4

The sum of all segments P2 = P3 does not contribute at all to I, but

contributes c¢ to II (via A), and Y to III and lower cells (via B). Thus the

total area of fluid 2 in cell I is (a+tb), in cell IT it is (a+c+B), while

cell III is completely filled with fluid 2 as shown in the diagram.

=1l =
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4.5 Surface tension

Although not incorporated in HYDRA at present, surface tension can, in
principle, be included by treating each segment as an elastic spring. If
the segment lies wholly within a cell then it does not exert a force on that
cell. On the other hand, if the segment crosses a cell boundary there is a
net surface tension force o acting on the cell which perturbs the momentum
of that cell an amount oAt where At 1is the timestep; this results in a
velocity perturbation oAt/p. The dependence of surface tension on tempera-
ture can be included by evaluating the temperature at the point of

intersection of the segment and the cell boundary by area weighting.

4.6 Chaining

As the fluid motion develops, the interface becomes contorted and, in
genéral, longer. To take account of this a variable number of points is used
to describe the interface, each point (node) being chained(l) to the next in
the computer store. Each node is numbered and their locations on the mesh

are stored in the computer memory in random locations

The‘storage location of the node £ which follows the node £ is obtained

from a successor function , NEXT , where

- 12 -



o' = NEXT (0)

the serial number of the first node, labelled B, is obtained from another

array bj . The interface curves may be closed or periodic in which case

NEXT(zE) E ﬁB

or the curves may be open. All unused nodes are linked together to form a

free list whose first element is b0

To maintain adequate resolution the length ©&s of each segment is
examined at intervals and if any segment is found to be too long it is broken
in half and a new node inserted at the centre giving two segments of length

8s/2. A point & can be inserted between o and B by writing

5 bO 5 bD NEXT(bO), n, = T, nj nj+1

(remove the first point of the free list and assign it to curve j) and

NEXT(ﬁa) =4 NEXT(ﬂﬁ) =4

6 ° B

(insert the new location between ﬂa and EB in the chain).
Similarly if any pair of adjacent segments becomes too short, the cen-

tral node can be removed in order to save storage space. A point B lying

between @ and & «can be removed and the location added to the free list by
writing
=4
NEXT (£ )

=}
(I
I

- 1) =4
5 nj 1, NEXT( e) 5 ?

L =4 , n,=n,+ 1

where ﬁe is defined to be the last free node.

- 18 -



PART II: THE COMPUTER CODE

S5 INTRODUCTION

HYDRA is a member of a class of computer codes referred to at Culham as
OLYMPUS. The code is'designed and constructed around the control package
CRONUS(7) and is written to a set of standard rules. The program is written
entirely in ISO FORTRAN and can readily be transferred from one computer sys-
tem to another. However, the code is designed in such a way that sections
with high execution frequency can eventually be replaced by faster versions
written in Assembler Language on one particular system. Considerable effort
has been spent in ensuring that the code is intelligible and that.gg hoc
changes can readily be incorporated. The following sections discuss the

general structure of the code, the output generated and various utility

routines and analyser programs which are available.

5.1 Program structure

HYDRA is based on a standard framework called CRONUS for solving time-
dependent problems. A block diagram of the main control subroutine COTROL-
is shown in Fig.8. This subroutine controls the calculation and initiates a
number of actions which must be carried out before a run is started or re-

started. To initiate a run COTROL calls subroutines to

1. clear COMMON storage (CLEAR);

2. fetch re-start record if appropriate (RESUME);

3. 1label the run (LABEL);

4. set default values of variables where possible (PRESET);

5. define housekeeping data for a specific run e.g. number of timesteps etc.

(DATA) .

6. constant auxiliary variables from data obtained through subroutine DATA

(AUXVAL);

7. set up initial conditions (INITAL);
8. any further work required before the calculation can start (START).

Fig. 9 is a block diagram of subroutine INITAL and illustrates how
complex initial conditions are set up. Having first of all set up the
particle lists (in FLIST) a user supplied routine SOURCE is called where the
configuration of the intérface is defined; HYDRA supplies a number of utility
routines for this purpose. The fluid composition is then calculated by
COMPSN and routine SETUPV is called which initiates a scan of the mesh.

SOURCE is again called at each mesh point and the mesh variables are defined.

- 14 -
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The user, therefore, need not concern himself with the logic of scanning the
mesh ‘and setting up storage indices. Finally, a subroutine called CHECK
ensures that the initial conditions have been properly defined and BNDRY sets

the guard points according to the boundary conditions.

The general principle of separating the logic from the physics is
similarly applied in the main calculation loop; fig. 10 is a block diagram of
the inner loop and Table 1 gives a list of the subroutines involved and an
indication of their function. This makes it very easy for the user to define
any equations of state, thermal conductivities and viscosity coefficients

(which can be functions of temperature).

If an experienced user wishes to change any part of the program while
retaining the basic structure a dummy subroutine EXPERT is called frequently
from various parts of the program. By including his own version of EXPERT,

the user is able to carry out ad hoc changes e.g. construct internal boundaries.

5.2 OQutput from program

A typical production run of HYDRA involves very large amounts of data.
For example, there are typically 104 mesh points with 11 variables defined at
each point and possibly several thousand nodes. Such an enormous amount of
information can only be digested in graphical forﬁ though it is also necessary
to print sample diagnostics periodically to ensure that the calculation is
proceeding correctly. In-line graphics include plots of the nodes and vector
plots of the velocity field; off-line output includes contour plots and
isometric projections of the total energy, pressure, density and temperature.
In addition, a diagnostic routine PROBE will sample any mesh variable at any
point on the mesh (by area weighting) and utility output routines are available

for plotting this information.

As the calculation proceeds, checkpoint records are dumped periodically
in a ledger file. Each record contains sufficient information to restart a

run from that point either using HYDRA or some other analyser program.

A checkpoint record comprises the whole of COMMON. Writing such a record
is inherently a slow process and since each record is large only rather few
can be contained on a single magnetic tape; checkpoint records are therefore
written rather infrequently (say every 20 timesteps). Thus, a second

analysis file 1is written which contains only some control information and

selected variables. These records can be written at every timestep if necessary

and are designed for use with analyser programs described below.

_17_.



*dooT 1suur 3o wealdeIp NoOIg 01 *314

L2
HSHWAH

BT
HOAINT

6°'¢C
NSdWO0D

I1°¢
SSAYdA

91°¢
1agaav

\

_18_



SUBROUT INE-

STEPON
LAXWEN
TIMSTP
MATCH
ADJUST
HALVE
HYMESH
INTFCE
COMP SN
PTEMP
VPRESS
SUPRES
BNDRY
FETCH
ADFREE
MPOINT
VELINC
SMOOTH
COUPLE
LIMIT
STATE
THERMO
CONSRV
SYMTRY
AVRAGE
AREAW
FMU
FHCOND

FUNCTION

SUPERVISE THE CALCULATION
BOTH STAGES OF LAX-WENDROFF CALCULATION
FIND NEXT VALUE OF TIMESTEP DT '
KEEP MAIN AND AUXTLIARY NODES IN STEP
INSERT OR REMOVE NODES

REMOVE EVERY ALTERNATE NODE

SCAN OVER THE HYDRODYNAMIC MESH

ADVANCE POSITION OF INTERFACE

EVALUATE THE FLUID FRACTIONS IN EACH CELL
FIND THERMAL PRESSURES AND TEMPERATURES
FIND THE VISCOUS STRESS TENSOR

SUPRESS COMPUTATIONAL EFFECTS

APPLY BOUNDARY CONDITIONS

FETCH NODE FROM FREE LIST

RETURN NODE TO FREE LIST

RECALCULATE THERMODYNAMIC VARIABLES AT POINT
VELOCITY INCREMENT DUE TO SURFACE TENSION
ARTIFICTAL SMOOTHING OF SHOCKS

COUPLE THE MESHES

LIMIT THE VARIATIONS

EQUATIONS OF STATE

CALCULATE THERMOMETRIC CONDUCTIVITY
CALCULATE CONSERVED QUANTITIES

APPLY SYMMETRY CONDITION AT BOUNDARIES
FINDS AVERAGE ON A LAX-WENDROFF MESH
INTERPOLATE TO FIND LOCAL VELOCITY
KINEMATIC VISCOSITY COEFFICIENT

THERMAL CONDUCTIVITY COEFFICIENT

LABEL

2.1
2.2
2 o3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
A )
2.13
2,15
2.16
2.17
2.18
2,19
2.20
2.21
2,22
2.23
2.25
2.26
2.27
2.30
Fl
F2

TABLE 1

_]_9...




5.3 Analyser programs

A number of programs are currently available to analyse, off-line, data

generated by HYDRA. These include:
1. CONTOR - plot contours of pressure, density, total energy and temperature;
2. SEK3 - a package written by P Dewar for plotting isometric projections;

3. MODANA - a package developed by J P Christiansen which examines the modes
excited at the interface and produces phase-plane diagrams and -

growth rates;

4. MARKER - a marker - and - cell calculation which shows the fluid motion
by moving marker particles in the velocity field generated by

HYDRA.

6. PROGRAM TESTING

During development of the program each subroutine or set of subroutines
having a well defined task to perform was checked in a "test-bed" program.
Test-beds were caréfully planned in advance and designed to test as many paths
through a routine as could be foreseen. A test program comprised a simple set
of initial conditions defined on a small mesh (e.g. NX = NY = 4) and only a
few nodes when correct results could easily be obtained by hand. 1In this way
it was demonstrated that each section of the program functioned in the way it
was intended. Once a routine had passed its acceptance test it was included
in the program. Subsequently the assembled program was checked in a similar

fashion.

Having completed the test-bed checks a number of simple physical tests
were carried out to establish confidence in the code. These are described

below.

6.1 1-D calculations

(a) Shock waves

To test the fluid calculation and the smoothing of shock waves, a
single fluid was given a uniform velocity (of the order of the
sound speed) in the x - direction and brought to rest by a rigid
wall; this problem is readily solved analytically. In the absence
of any physical diffusion the computed shock speed was in good
agreement (better than 1%) with the analytical value when the
numerical smoothing was sufficient to eliminate short wavelength
"ringing" near the shock front. In the absence of any smoothing

energy absorbed by the oscillations reduced the speed of the shock
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(b) Heat conduction

To test the conductivity calculation a plane interface was defined
at y = yg. The region y > yo was of one substance whose density,

conductivity coefficient and diffusivity were Ql’ ST and

y <y, was another substance Q2, K2, Ky Initially the tempera-
ture distribution was
T = tant T >
constant T, ¥e Y,
T = constant T2 y <0

and the pressure was everywhere Po' The solution of this problem

with K1 and K2 constant is known and the agreement between the

numerical and analytic solutions was satisfactory. -

‘6.2 Kelvin-Helmholtz instability.

The linear stability of the interface between two compressible fluids in
relative motion has been considered by several authors(s)(g)(lo). We consider
two compressible fluids in a steadj state separated by a plane interface at
¥ =¥ the fluids have translational velocities parallel to. the interface.
The stability of the interface is considered when it is subjected to a small
perturbation. It is necessary to distinguish two cases depending whether
the steady flow is subsonic or supersonic in a coordinate system in which the

interface wave is at rest.

(a) Subsonic flow

When the flow is subsonic it can be shown that the interface is
unstable. The growth rate of the instability, apart from a small
correction for the compressibility, is essentially that for incompressible

flow.

This calculation was set up numerically with periodie boundary
conditions in the x-direction and fixed boundaries in the y-direction.
The steady state flow speed U parallel to the interface was_i 3 (sound
speed). Further, to obtain physically meaningful results it was necessary
to choose a perturbation consistent with the initial conditioms. This

is discussed below.

We consider the coordinate system in which the disturbance is at
rest. -The problem is then one of steady flow over a wavy wall of small

amplitude e . The solution to this problem is well known for a medium
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(11)

of infinite extent . If the interface wave is described by
y = € Sin ax

it is easily shown that the perturbed velocity is

Vv = - 08 exp (- a ¥1 - M2 v ) Sin ox
/1 - M2

Uea exp (- o ¥l - M” y) Cos ax

‘ where M 1is the Mach number of the unperturbed flow (M2 << 1); the

SVy

perturbed pressure is
§p = = p Ve U

and the perturbed density is obtained from an equation of state. This
model is also adequate when the y-boundaries are fixed since the

; ; ; . : . -7
attenuation of the perturbation in the y-direction is v e even for the

longest wavelength.

A numerical calculation for the m = 2 mode showed that the interface
was indeed unstable to a small perturbation, However quantitative
measurements of the growth rates using MODANA were not consistent with
linear theory. This discrepancy is not yet understood and will be
investigated further. Figure 11 shows a series of plots of the interface

nodes at various times during the evolution of the instability.

(b) Supersonic flow

The case of supersonic flow relative to the interface has been
treated analytically only for a medium of infinite extent. In this case

(9

it can be shown that if the Mach number exceeds some critical value

( V2 for a perfect gas) then the flow is stable. In the case of super-
sonic flow, however, there is no attenuation of the perturbation. Instead,
the same value of the perturbation exists along straight lines inclined

at the Mach angle with respect to the undisturbed flow. Thus, the
situation is complicated by the presence of fixed y-boundaries when
reflections and resonances can be expected. However, if we consider the
steady supersonic flow in a tube of varying cross—section we find from

the continuity and momentum equations that

dp dA
P A
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where p 1is the pressure and A 1is the cross-sectional area of the
-channel. One therefore expects a tendency to stabilize any small

perturbation of the interface.

A numerical calculation was carried out with a steady state Mach
number of 1.5. During the time of the calculation there was no
discernable growth of an initial perturbation. The growth rate compared

with the subsonic case was therefore at least an order of magnitude less.

7. TFUTURE APPLICATIONS

" This report has described the HYDRA model to study the flow of compressible
media with a deformable interface between them. Under some circumstances
there can be more than two substances present. The problems outlined below
are planned or are currently being studied to elucidate various features of

liquid metal-water interactions.

High speed movie-films of molten metal dropped into watér highlight the
importance of vapour bubbles in triggering explosive processes. Therefore,
calculations are pianned to (1) study the stability of vortex sheets generated
by shock waves when they en~ocunter density discontinuities and (2) to study
the jetting produced by collapsing bubbles in asymmetric situations which

could penetrate the hot metal and lead to shredding.

A second area of work is to simulate the dynamics of the Q* experiment.
A first simple calculation, for which experimental data are available, will
simulate the growth of a N, bubble in water with a N2 gas blanket above the

free surface.
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