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1. INTRODUCTION

The problem of finding a rational function which assumes given function values
at prescribed positions of the independent variable may be approached from several

viewpoints. One can, of course, assume an explicit form for the function

p

" &
r=0
q.

r

R(x) =
b x
r
r=0
and attempt to determine the coefficients { a; 0 é FEp } and ibp; 0] Q r % qg

from the p + q + 1 linear equations which result from insisting that
R(x ) =f - ISssp+ g+, wme 20

where the (distinct) interpolating points | (xs,fs); s b ik ! are
given, Notice that, although expression (1) contains p + q + 2 coefficients
this number can always be reduced by one by cancellation, Thence, given that the

interpolating function exists, uniqueness follows from the fact that, if the linear,

homogeneous equations

q p
f Y;xr= ?ﬁxr; 185D +q+1 —
s /, rs , I'8 =
r=0 r=0

obtained from (2) have a solution in which the coefficients i ar,jand !brf are
not all zero, then this solution is unique except for an arbitrary, non-zero, con-
stant multiplying factor. Furthermore, this construction of R(x) is entirely
independent of the order of the given positions [xs s Irg s § p+q+ 1 I. How—
ever, the amount of numerical work involved in solving equations (3) for the

relative magnitudes of the coefficients makes this approach less attractive than

others,

The classical technique for constructing R(x), in the special case when
P=49g, or q+ 1, is due to Thiele (1909). This special rational interpolating

function T(x) is expressed in the form of a terminating continued fraction



T(X)=a +—j:"'— s (4)

where the coefficients i ar; o § r Q p+q§ are determined by constructing a table
of inverted differences, or reciprocal differences, {rom the co-ordinates ol the

given interpolation points.

Wynn (1960) and Stoer (1961) have given tabular methods for the purpose of
rational interpolation, Stoer's algorithms being somewhat simpler than those of
Wynn. A further, slight simplification is achieved by casting Stoer's algo-
rithms in the forms to be discussed. Moreover, a conceptual advantage is
obtained since the forms presented here arise naturally as special cases of a
generalisation of the Neville-Aitken method which is described in another paper

(Larkin, 1966).

2. DEFINITIONS AND NOMENCLATURE

=

Consider a set of points i(?j’fjvij = 1,2 ...|. Forany j=1 the fj

may thought of as defined in terms of some originating function f(x) by the

relation
f.=(x. h
J ( .]) s ( )

We assume that xj irxk unless j = k. The quantities ixj; Jj=1,2 ....; and

if_; j=1,2 ...] may be real or complex and their order in the implied sequence



is quite arbitrary. Our object will be to construct an array of functions

{fjk(x); f= 132,03 = 1,2, } each one having the property that

fjk(xr)zfr t 1SrEiak wea 10)

except in certain special circumstances,

For ease of presentation it is convenient to arrange these functions in a

table of triangular form, as follows:

TABLE 1

A TABLE OF INTERPOLATING FUNCTIONS

Xy [y
fi1
X2 fa fis
f21 f45
x3 fS fzg f14
fa1 fas . : .
X4 f4 faa .
f41 L] = - . -
X5 f5 . . .

For any j>1, k 21 we shall refer to the set of points ixr; i€rgy skl

as the domain of I‘jk(x), and we shall write

J+k
Dy = L Ix/] s [7)
r=j

Moreover, we define the domain of interpolation, Dﬁk’ of f‘jk(x) as the set of

points Xg € Djk such that

D, =D, sew (9)



and in this case we shall say that the function FJk(x) possesses Property I,

By extension, we see that it is reasonable to define

fjo = fj ; J=1,2,.... ee. (10)
and to say that the point xj constitutes the domain of interpolation of fjo'
so that

I ;
= . = 2 aasce LY
DJO DJO 2 -.] ]!", (I])

Fig.1 shows how a function fjk(x) stands, in a table of the form of Table 1, in

relation to its domain. Clearly, if fjk(x) does not possess Property I

L
: | Djk “ Djk vee (12)

f

* -1 =1
X i,

J J

~

3 f,
XJ+l N2 B

I i - -

I |

I I

~

I ! = "“f\ ”JPk_]

| I j4-],k—2 \f.
; , L - sp Jk
| | - JF1,k=1

I ! o =
< -

J+k-1 Ljek-1 -

X ek Lok

xj+k+l fj+k+l
Fig.1

! I
I 1
| !
I I

The domain of f _ .
ik



3. THE TRIANGLE AND RHOMBUS RULES

For the remainder of this paper we shall restrict ourselves to consideration

of’ the case where the {r are rational functions of x. In order to construct

ik}

these lunctions we shall make use of the two "triangle rules"

P @ S LN S Y S B 1T S (13)
ik ¥ R cee
d e
and
X . — X,
J+K J
rjk = X =x] T s, (P
+
Pt i U5 et
and the "rhombus rule"
Xirk Ty
T = Fro jon * X = Xj . Xtk - X

Fied k=1~Tian k=2 T k=1"Tjs1 k=2
ws ((15)

Equation (13) is, of course, the Neville-Aitken formula, which, when the starting
conditions

f =T : RS Tk ... (16)

~ ~

are used, leads to interpolating functions | Flei J <r < jrk-s, 1 <s <k} such
that rrs is a polynomial ol degree less than or equal to s. Also, it is easily
shown by induction that recurrence formula (14), starting from conditions (16),

leads to functions of the form

/AN

s
i S =1
f =?>_/ atxt] i JETL jak -8, 185K, vam CTL)

where the coefficients I at; 0] S;t Q S I are constants. Moreover, provided that
none of the given function values er; J é r g j+kl is equal to zero, all of the

functions constructed from them will) possess Property I,

Before recurrence formula (15) can be applied, for the purpose of generating



the functions in the k'™ column of Table 1, the two previous columns must be
available. It-is shown in the following section that if the first few columns of
functions in Table | are constructed either exclusively by recurrence (13), or
exclusively by recurrence (14), and the succeeding columns exclusively by recur-
rence (15), then all the functions in the table will possess Property I, except
in certain special circumstances. Naturally, if there does not exist a rational

function, with prescribed degrees of numerator and denominator, which interpolates

a certain, given set of points we cannot expect an algorithm to produce one.

Table 2a illustrates the use of formula (15), after one initial application
of the Neville-Aitken rule, in constructing a table of rational interpolating
functions. Table 2b illustrates the use of the same algorithm for numerical
interpolation at the point x = 3.5. The values i(xr,fr); l & S;GE are also
discussed by Hildebrand (1956) as an example in rational interpolation, Notice
that the function f,5(x) is peculiar in that it does not possess Property I. The
possibility of loss of Property I, and the necessity of taking this into considera-

tion, accounts for much of the complexity in the arguments of the following section,

4, THE ALGORITHMS AND THEIR RESULTANT FUNCTIONS

The two algorithms for constructing tables of the form of Table 1 which we

shall consider are as follows:

Algorithm Aj:

Use the Neville-Aitken recurrence (13) to construct the first i columns of

Table 1, i.e, up to and including the column of ith degree polynomials, Then

use recurrence (15) to construct all succeeding columns of the table,

Algorithm B;:

Use recurrence (14) to construct the first i columns of Table 1, i.e. up to

and including the column of jth degree inverse polynomials, Then use recurrence

(15) to construct all succeeding columns of the table,




TABLE 2a

EXAMPLE OF A TABLE OF RATIONAL INTERPOLATING FUNCTIONS

f.
J

3/2

4/5

1/2

6/17

7/26

22-7x
10

14-3x
10

32-5x
34

10-x

304-37x
w2,

/

TABLE 2b

(2-x) (4-x)

2(2-x)

x2-10x+48
2(7x+6)

x2-14x+136

2(33x+4)

Quein

/

Ry

NUMERICAL RATIONAL INTERPOLATION AT THE POINT x = 3.5

£,
J

™

3/2

4/5

1/2

6/17

7/26

k=1

0.25

-0.

0.3

0.426471

0.3947ff—’J

25

5

S

0.406250

0.415730

0.414773

| e

0.413934

0.415272

TR

0.415094

0.415094

—

—«“"”””

/

5

0.415094



It is obvious from consideration of the triangle and rhombus rules that all
the functions E fjk(x)g are rational in x. Let us then write
ng(x) ij(x)

L
Qﬁk(X) QJK(X) K=

r (x) ,?’ T oo (]8)

jk

where Pﬁk(x) and Qﬁk(x) are polynomials in x having no non-constant common

factor, ij(x) and ij(x) are also polynomials, constructed from PEK(X) and
ﬁk(x) by the following process:
(i) If fjk(x) possesses Property I
ij(x) = Pﬁk(x)
s k F9)
ij(x) = QEK(X)
(ii) If fjk(x) does not possess Property I
- * L]
ij(x) ij(x) Ejk(X)
} .er (20)
ij(x) = QEk(X)' EJK(X)
where
B0 = H (x-x.) cee (21)
I
e, D,
There seems to be no obvious reason why the degrees of the polynomials ij(x)

and ij(x) should not increase very rapidly with k. However, it turns out that
these degrees are the smallest possible, consistent with allowing fjk(x) to possess
Property I in the general case -~ an assertion which is expressed more precisely in
the propositions which follow. Let us introduce the notation deg{P} to indicate
the degree of the polynomial P(x). Now, using the above definitions of the poly-

nomials {ij’ ij, L ij}, we have:-

Theorem 1:

If Table 1 is constructed by the use of algorithm Ai’ the kth column con-

sists of rational functions satisfying the conditions




deg iP. ] <k
Jk } i>1,0<k<i e (22)
deg {Q; }=0
and
k+1
deg {ij} é["z-]
};J?hk}iﬂ. s (23]

k—-i+1
deg inkI Q[—Z——J

The expression [y] indicates "largest integer not greater than y."

Theorem 2:

If none of the given values {fr; ¥= 13253, ...} is zero, and if Table 1 is

constructed by the use of algorithm B;, the kth  column consists of rational

functions satisfying the conditions

deg{ P } ‘
Jk ; 151, 08kKs e (24)

deg | Qe FE kJ

|
deg { ij'] z [hf“:l

deg { iji < l:%]

Notice that the restriction in Theorem 2, that the given function values be

and

]; iZ21, k2isl . vew (20

non-zero, is simply analogous to the implied restriction in Theorem 1 that they be
finite, In fact, the functions generated by applying algorithm Bi to the given

points § (xr’fr); r > 1} are the reciprocals of those generated by applying

algorithm A, to the points i{xr,i/fr); r>1}.

We now proceed with the proof of Theorem 1. The proof of Theorem 2 will not

be given, since it trivially parallels that of Theorem 1,

Proof of Theorem 1:

Equations (22) simply state a well known property of the Neville-Aitken

algorithm, so our task reduces to proving the truth of equations (23). This will

= O



be done by induction, after noting that for k equal to i and i-1 equations

(23) are indeed satisfied.

For j>1 and k > i+1, we define quantities ij, Rjk’ Sjk and Tjk by

the relations

J+k—t
7. [x) = L oo (26
Jk T (x Xr) (26)
r=j41 '
Rie® Zie = P Qer,kez ™ Phen, k2 Y ses £27)
8c* Ty, = Py Yunen T Faagel ", k-1 52+ 428
Tic Zik = Pyet,k-1° Yai,k-2 7 Fiet k2 ", k-1 ces (29)

By construction of the polynomials ip (x)} and iQrS(x)z, we see that the right

rs

hand sides of equations (27,28 and 29) all vanish whenever

X =X M

t J ; .ot (30)
such that g1 €t < jek-1
so that ij must be a proper divisor of each of these right hand sides, except

possibly when one of them vanishes identically. The case when one of the right
hand sides of equations (27), (28) and (29) vanishes identically will be considered

separately, so in the meantime we can assume

Rjk # 0
S_]'k £ 0 ] iss (31)
TJ.k £ 0

It is clear now that Rjk’ Sjk and Tjk must all be polynomials; in the follow-

ing Lemma we go on to show that they must be polynomials of degree zero.

Lemma : Rjk! S jk and Tjgx are all constants.

Suppose the polynomials iPrs(x), Qug(x); r >1, k-2 <s <k-1} all satisfy

conditions (23). From equation (28) we then have

= T =



deg{ Sjk' ij }§;Max [deglPJ,k_]}+ deg Iqj+l,k—2;; deg {Pj+l,k—é + degi Qj,k—l }}
K+i=1 —i-1] (| k+ti-2 k-i
< [ (7)o [ 9] [

deg | Sk Zik I ket wis (52]

Similarly, from equation (29), we obtain

deg T. .2 < k-1 onw: COG)

jk Jk I
However, by construction

deg{Z. | = k-1, wes (84)

Jjk
which enables us to deduce that strict equality holds in equations (32) and (35);
and that SJ and Tjk must be constants, as required,

k

Now notice that equation (15) may be written in the form

Xj-l—k - XJ, 5 X - x]_ . X‘]_+k - X

—p. -y . ’
PJk 1 ,k=2 pJ+I,}c-l - PJ+I,R—2 Pj,k~1 _ Pj+l.k~2
Uk Y1, k-2 Getket Yrrke2 Y1 Qyqxen

Q; -
and that a factor _J§1¢5_§ may be cancelled throughout, leaving

Jjk
Q. Q, Q.
(x.+k - Xx.)- EJE = (x-x.)- —J$l45:l + (x.+k -X) e _Jgﬁ:l wam L350
J I Ry J ik J ik

(X k=% +)
We next multiply through equation (27) by ——J§5K—J—, through equation (28) by
ik

Xi =X X-X;

—%;E—— and through equation (29) by ﬁ:;}, and then combine the results linearly
Jk J

with equation (35) to yield

= 15



S and T. were known, equations (35) and

Notice that, if the quantities Rjk’ ik ik

} and iQ.} .

(36) would provide separate, linear recurrence formulae for the iP ¥

Jjk
Now, by construction, the only non-constant factors common to ij(x) and
ij(x) are those occurring in Ejk(x), defined in equation (21). But, since

neither of the right hand sides of equations (35) and (36) contains a singularity

in the finite part of the complex plane, RJk must be a divisor of both pjk and

ij, and so it may only consist of a product of single factors of the form
(x - xs), where
I
Xy E'Djk - DJk i

i.e, where

Polxg) = 0= Q(x)

and } ees (37)
P#k(xs)
o (% # L
jk s

However, from equations (35) and (36), we have

P i ket P k-1
P, Px (o) + =Rt (g ) 0 2 =
._.-JE —_ ...JE s d Jk . -jk (38)
Q.. Q& Q. Q. . o
Jk Jk (x%=%.) " ikl oy Ly bkl
J Tjk J+k Sjk

and separate consideration of the three possibilities

s =]
J < s < J+k
s = j+k

P (xg)

i can only fail to equal f _ when both nu-
leads to the conclusion that a%;r;;y y 1 q s
merator and denominator of the right hand side of equation (38) possess a factor

P %
(x - x_). But, if that is so, equations (35) and (36) indicate that 3K and
. s R ik
st . both vanish at x , implying that P, and Q. both possess a factor
Rjk S Jk Jk

(x—xs)z, which is absurd since the construction of ij and ij ensures that

- 128 =



a common factor of the form (x-xs) can only occur singly., This argument applies
separately to all the points

I
-D
T & D =P 5

thus enabling us to conclude that Rjk must be a constant, as required.

To recapitulate, the Lemma shows that, under the assumption of the induction
hypothesis, the three quantities Rjk’ Sjk and Tjk’ appearing in equations (27),

(28) and (29), are all constants.

Before proceeding to determine the bounds on the degrees of ij and ij

notice that, from equations (28) and (29), we can write

9 ( Pitt ket Py Pj,k—I\ _p < Qi k1 3 j,k—l) vy (39)
j+1,k=2 Tjk Sjk ) J+1,k=2 Tjk Sjk

Also, from equation (28) or (29), we have

ki1 k=i )
k-1 £ Max [(: ; .] + deg in+],k_2j ; deg ipj+l,k—2 . [}5{] J s «.. (40)

and when k-i is even, k+i is also even, so equation (40) becomes

iy o kK+i-2 k-i-2 | k—-1i
k=1 & Max 5 + 2 ; deg in+],k_2 }+ —5—

Bl _ 4 L

. deg iy p 0=

Hence, we can deduce from equation (39) that

. : : Q. Q.
k—;~2 N k+g—2 Efkgi DAY g { ]+%,k—l » 1ék—1 }
Jk Jk
Q. Q. 5
., deg Jri, k-1  “j,k-1 §; k-i-2 cee (42)
T, S 2
jk Jk

Similarly, when k-i is odd, k+i 1is also odd, so equation (40) becomes

K+i—1 K . B=i=
< ;
k-1 < Max [ S— + deg [QJ+1’k_2 }s S }
. _ k—i-1 ce. (43)
« » 96§ in+l,k 2§ 2



Hence, we can also deduce from equation (39) that

. P, P ; ;
k—;—l " deg[ 1;;1,1<-1 _ g.k—l}g k+;—3 N k—;—]
Jk Jjk
P. P. .
.. deg JELde i & e ees (44)
T. 5. 2
Jjk Jk

Now, from equation (42) and the induction hypothesis, we can write

Q. Q
deg [ J+%’k_] J’k— } [% i ﬁ} ... (45)
jk

and from equation (44) and the induction hypotheses, we can write

- P, P,
deg L J;"k_] - s k_ } [%+l_ :} ... (46)
jk

Hence, using equations (35) and (45), and the induction hypothesis, we find

degIij} < Max {l:k;;:l:l+ 1 ,\:—?}}
deg iQJ.kl < [:%”] , ve. (47)

as required. Also, using equations (36) and (46), and the induction hypothesis,

deg{ ijl \<\ Max {[:%‘—2—] + 13 lik—g'_—q }
deg l: i| ... (48)

In the foregoing reasoning it was assumed that none of the quantities R

la€s

we obtain

as required,

Jk?
Sjk and T‘k vanished identically. For completeness we now give separate con-

sideration to that possibility. Suppose, for example that

lif

P e Q. - P 0

J.k-1 J+1,k=2 J+1,k-2 QJ k-1

= 4 =



fj’k_] Ll e 2 ces (49)

then, from equation (15) we see that

Pk = Tie1 ke2 +e. (50)

thus satisfying equations (23) automatically. The same conclusion follows if we

suppose that either

et k=1 Y, k-2 = Pir,k-2 " Yyt k-1 =0

or

i

Pi® Yer,k-2 = Pyir k2 Qp =0 o

which finally confirms the truth of equations (23), under the assumption of the
induction hypothesis. However, we need only recall that equations (23) are cer-
tainly satisfied for k equal to i and i-1 to see that the induction is

complete,

Corollary 1:

§ > 2 3 | = =
Fer all j21; k2 i+, gxcept when fjk fj’k—l fj+l,k—l’

deg {ij] = Eéi , whenever k+i is_even, ass (51}
and
deg IQkf = k_;+] : whenever k+i is odd. «ee (52)
To prove this, consider
X e = ij- QJ.’k__T - Pj,k_]- ij 7 vee (83}

which is a polynomial with zeros at the k points i xs; J S;s S;j+k—1§ « Thus,

il

from equation (15), we have

unleas Ky <O MOLARS P S FT e

deg | X. gék ee. (54)

ik

w {5 =



Hence

k < Max {deg ijk} + deg IQj,k—lI; deg IPj,k-l }+ deg inkEJ . ... (553)
Thus, when k+i is even and k = i+1,

k < Max [deg EPJRZ + deg [Qj’k_]}; k—l]

k+i k—-i

. degiPJki =5 and degin,k_] } === . ves (56)
Similarly, when k+i 'is odd and Kk 2 i,
< 1 -
k < Max {k 1 degipj’kﬂll + deg {ij} }
. K+i—1 k-i+1
.*. deg ipj’k_1i = and deg{QJ.k} SR 555 CST)

which completes the proof of the corollary.

Corollary 2:
The polynomials {ij(x), ij(x); j =1, k 2 i+1} may be constructed from the
recurrence relations
P = St Xg) o Pyg g ¥ By m O X0 Py ey
} i &as (58)
Qg = oper (oexg) e Quy g * Byt Ky = %) Qe

where the constant weighting factors ik and Bjk are chosen, not both zero, so

that when k+i is even the coefficient of x (k=1)/2+1

. (k+i+1)/2

in ij vanishes and when

k+i is odd the coefficient of in PJk vanishes,

This follows from the results of the previous Lemma and Theorem, and from

equations (35) and (36).

Corollary 3:

(x) possesses Property I it is unique and independent of the order of

k
the given points { x.; j <r < j+ki.

If .
= ]

This follows from considerations discussed in the introduction.

& 18 =



As mentioned earlier, the proof of Theorem 2 follows closely along the lines
of the proof of Theorem 1. Corollary 3 to Theorem 1 also applies to Theorem 2%

as do the following two corollaries which are analagous to Corollaries 1 and 2.

Corollary 4:

If the functions | fjk; in Table 1 are constructed by means of Algoritﬁm Bi’

; i 2 = =1
then for all j =21, k 2 i+l, except when fjk rj,k_t J+1,k-1"

deg ipjki = k_;+l : whenever k+i is odd s [D9])
and
k+1 oL
deg {ijj === whenever k+i 1is even. ... (60)

Corollarx 5:

If the functions ifjk; in Table 1 are instructed by means of Algorithm Bi

the polynomials { ij(x), ij(x); j 21, k > i+1}] satisfy the recurrence relations.

T R
} > .o (61)
-x).Q

Ve = Tgper AV Qi By s k-1

P =T AN (X—XJ.) « P

ik = %k et | P

T

that when k+i is even the coefficient of x(knl)/2+l in ij vanishes, and when

(k+i+1)/2

where the constant weighting factors aj and Bjk are chosen, not both zero, so

K+i is odd the coefficient of x in Qjx vanishes.

This observation forms the starting point for Stoer's development .

5. FURTHUR REMARKS ON THE ALGORITHMS

The successive advances in the degrees of numerator and denominator of the
functions {fjk], as k increases, are shown schematically in Fig.2, The three
paths starting from the square (0,0) illustrate columnar progressions of the three

algorithms A,;, A; and B,. Notice also that all the { fik,E which are not

~

= T



either polynomials or inverse polynomials can, in general, be constructed by two
separate algorithms; for example, functions with numerators of degree 3, 4, 5,
etc.,, and corresponding denominators of degree 1,2,3 ... etc., may be constructed
both by Algorithm A, and Algorithm Az. Furthermore, it is clear that, by con-
sulting the diagram in Fig.2, we can choose algorithms specifically for the purpose
of interpolating given points by a rational function with prescribed degrees for
its numerator and denominator., Table 5 illustrates the use of Algorithm A; in

constructing an interpolant with numerator of degree 3 and denominator of degree 1.

n 0 1 2 3 4 5 6
d
0 r == =}~
I : \i
i I
1 [ Lo -y
! \i
I I
2 I l——-l-——g
¥ L
| 1
3 | L-HL——O
| ’ |
1 Y
4 W S |
| Y
\]
5 b — = = I S
|
]
6 |
FIG.2

REPRESENTATION OF SUCCESSIVE ADVANCES IN THE DEGREE OF NWMERATOR
AND DENOMINATOR OF RATIONAL INTERPOLATING FUNCTIONS WITH SUCCES-
SIVE INCREMENTS IN k. n AND d INDICATE PERMITTED MAXIMUM
DEGREES OF NUMERATOR AND DENOMINATOR RESPECTIVELY
Algorithm A, indicated by the solid line in Fig.Z2, is of particular interest
since it completes the analogy between the classical Newton-Neville-Aitken tech-

niques for polynomial interpolation and the Thiele continued fraction method for

the special type of rational interpolation mentioned in the introduction. It is

- 18 -



well known that the rationalised form of T(x), in equation (4) satisfies the
same restrictions upon the degrees of its numerator and denominator as does
fi,p+q+]’ constructed from the points {(xs,fs); i & 8 & p+q+l] by means of

Algorithm A;. Hence, if possesses Property I it is unique and there-

1,p+q+1

fore identical with T(x).
If we express the Newton interpolating polynomial in the form
N(x) =b_ + (x-x (b + (x=X3) {by + +.u. (x=x )b I ees (62
(x) 0(1)“ 2) L, (x=x oo 34, (62)

where the constants 3 bs; 0 S;s < p+q I are constructed by means of a table of
divided differences, the correspondence between the two forms of interpolation is

easily seen from Table 3,

TABLE 3

ILLUSTRATION OF ANALOGY BETWEEN NEWTON AND THIELE INTERPOLATIONS

Interpolating function N(x) T(x)
Method of Table of Table of inverted, or
constructing coefficients divided differences reciprocal, differences
Method of Neville-Aitken ,
direct construction algorithm Algorithm A,

It is of interest, also, to consider the limiting form of the table generated
by Algorithm A, (or, equally, by Algorithm B,) as the interpolation point x
moves to infinity. From Theorem 1 we know that, in general, fjk(x) will have a
simple pole at infinity when k is odd and a finite value when k is even,
Accordingly, let us construct a table, of the same form as Table I, by listing
extrapolated values of the quantities 2 fjk; J 2 1, k eveniin the even-k columns,
However, in the odd-k columns we shall list reciprocals of the residues, at the
assumed simple pole at infinity, of the lunctions [ fjk; J ;31, k oddf . Table 4

illustrates the scheme,



TABLE 4

SCHEME OF CALCULATION FOR RATIONAL EXTRAPOLATION TO INFINITY

X1 fi
€11
Xs f2 €4n
€21 €13
Xa fa €22 €14
€31 €z3 .
x4 f4 eBQ L]
- - .
€44 . 5
X fs i

It is easily verified that the numbers iejk; i =1, k>1} may be construc-

ted, both for odd and even k, by the single recurrence relation

X%
e =@, o - i ee. (63)
Jjk J+1,k-2 ej+1,k—1 ej,k—l
with starting conditions
e. =
Jo J 7
5. = J . ... (85)
Je=1

We then consult the "highest-j'" members of  the even-k columns of Table 4 for

estimates of the value of

xlynm f(x).

In the special case when

x, =73 3 Jj=1,2,3 ... .. (65)

equation (63) reduces to

B, =€ iy, B - . ... (68)
jk Jj+1,k=2 ej+1,k—1 ej,k—]

a formula which is given by Wynn (1958),
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Notice that, whereas the direct application of algorithms i Ai} and i BiI
provides efficient means for interpolating numerically at a single, specified
position X, Corollaries 2 and 5 give us convenient methods for evaluating the

coefficients in the polynomials [ij(x)} and {ij(x) b

Let us write

r
P (x) = ijkrox

r

' r
ij(X) = zg;qikf' X

r

r . ves (B7)

Then, from equations (58), recurrence relations for the coefficients | pjkrz and

iqjkr; may be written in the form

= . ' K ; .p =
Piger: ™ Bite * P et e, et % Py gy ) B P B e g 2 Pt i)

Qjkr = %k ° (qj+l,k—l,r—l_xj "D ket B g ¢ 05 1, 5% et pet?

«o. (68)
with starting conditions
ij_l=qjk]:o 1 21, k20 s, (BF)
] :
Pjoo - f.]' D '
. =,/§;j>l, 5% {i7a)
Joo

and for Algorithm Ai

. 9 k-1,0
Jk 9,k-1,0 * Yj41,k-1,0
r e . (71)
IR RK L,
. 401,k-1,0 - o
Jk 9,k-1,0 ¥ 9541,k-1,0 )

- 21 =



Pj’k_]’k+i—l 7
(e = ‘2'
Jk . .
Pii-1,keiml * Pypq g keizi
2 2 iz,
(k> i+ e (72)
P -
3+1,k-1,‘.<i§_‘ k+i odd.
f},_ =
Jk P . g
J,k—],k+l_1 + Pj+1’k_1’k+l“]
2 2 ol
quk"1 !Tk_l
., =
kT g i aq .
3,k-1,5L T Q441 k=1, KL
2 2 i ;;1
? sk 2 i+l .
qj+i,k—1,£%£ k+i even
B =
Jk ) _
qj,k—l,E;_l. * qj+1,k—1,k_£i

Formulae (71), (72) and (73) are simply precise statements of the obvious rules
for choosing the iajk; and Eﬁjk; in order to suppress increments in the degrees
of numerators or denominators of_the ifjkl at appropriate stages in the construc-
tion of Table 1., Similar formulae apply when constructing the interpolating func-

tions generated by Algorithm Bi'

Table 5 illustrated the construction of a rational function having not more
than one pole. Like Table 2, it may be regarded as having been developed, either
directly from Algorithm A,, or by application of rules (71), (72) and (73).

From the latter viewpoint we can regard f,,, for example, as constructed from

5. (x+2) » (x®- 6x% + 5%) + (2-x) - (5x%+ 6x°- 11x)
6 {-5(x+2) + (2-x){

£44(x)

1l

i.e,

4x% + 3x% - 7x
Fyy = 3(3xed) = ees (74)
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TABLE 5

CONSTRUCTION OF A RATIONAL INTERPOLATION FUNCTION OF PRESCRIBED FORM

X+3 \\\‘~ 3

4
-2x 5x%+6x2-11x \\\\““\\
. 6 \

4x%+3x2-7x

2_
3 0 (0] X*=-X 3(3x4)
- _ x8-6x2+5x
6 /
x2-x :
4 1 0 5
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