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ABSTRACT

This paper deals with two topics, firstly with the conditions for plasma equilibrium
in an arbitrary magnetic field and their relation to the lowest order particle adiabatic
invariants, secondly with the formm of the higher order contributions to these adiabatic
invariants. In part I the equilibrium conditions are investigated in a systematic way: as
the time scale of equilibrium is increased the constraints on the distribution function
become more severe until they culminate in the requirement that it be a function of the
lowest order adiabatic invariants. In part II it is shown that this discussion of equili-
brium leads to a convenient and novel way of generating the adiabatic invariants, not just
to lowest order but including higher order contributions, for which a.recurrence formula is
derived. When the first correction to the longitudinal invariant J=0 v, ds is computed some
interesting differences are found between the case of particles oscillating between mirrors
and that of particles circulating round closed field lines. Part III discusses the effect
of electric fields and the extension of the calculations to time dependent magnetic fields,
leading to the third adiabatic invariant (the flux invariant). Part IV deals with the case
of toroidal magnetic fields possessing magnetic surfaces and the form of longitudinal inva-
riant appropriate in such a field. In the case of small rotational transform a modified
line integral for J leads to a convenient description of particle motions in toroidal

systems, including the effects of both rotational transform and guiding center drifts.

U.K.A.E.A. Research Group,
Culham Laboratory,

Nr. Abingdon,

Berks.

March, 1966 (ED)



CONTENTS

1. INTRODUCTION

2. PLASMA EQUILIBRIUM

3. LARMOR RADIUS EXPANSION

4. THE FLUID EQUATIONS

5. ADIABATIC INVARTIANTS AND EQUILIBRIA IN HIGHER ORDERS

6. HIGHER ORDER CORRECTIONS

7. TIME DEPENDENT FIELDS, ELECTRIC FIELDS AND THE THIRD INVARIANT

TOROIDAL SYSTEMS WITH SMALL ROTATIONAL TRANSFORM

8. MAGNETIC SURFACES
9. SMALL ROTATIONAL TRANSFORM
10. ACKNOWLEDGEMENTS
11. REFERENCES
APPENDICES
APPENDIX A
APPENDIX B

APPENDIX C

Page

10

18
21

24
24
26
29

29

30
31

33



PART I

1. INTRODUCTION

In discussions of low pressure plasma confined by magnetic mirrors two models have
been widely used; each model leads to criteria which must be satisfied in equilibrium. In

the fluid model the necessary and sufficient conditions(I) for equilibrium are

a =
P, . (pL p")ﬂ3 - -
ds B ds
and e (121)
[ B x VB
v - =
(pL + p”) v ds 0

where the integral is along the line of force. On the other hand, in the guiding center

model the necessary and sufficient condition for equilibrium(z's) is that the guiding

center distribution function F should depend only on p, J, and the energy € i.e.

Feq = F(u, g, J) . eea(1.2)

where u = v3/2B and
2

1l

J (g, g, a, B) [ [2 (s - pLB)]lﬁ ds vis (1+3)
a,p

are the lowest order adiabatic invariants. [The magnetic field is B = Yo «x Vg and a, B

~

label a line of force. |

The first part of the present work is an investigation of the relationship between
these two equilibrium criteria and of the general role of adiabatic invariants in equili-
bria. The problem ié approached through the Vlasov equation when the essential distinction
between different approximate equilibria is the time for which the distribution function f
can be regarded as stationary. The time scales of interest are investigated systematically
by expanding f in powers of m/e, which is equivalent to an expansion in powers of the
Larmor radius(4). As expected, we find that as the time scale is lengthened, increasingly
restrictive conditions are imposed on the distribution function, culminating in restric-
tions equivalent to those of the guiding center model. The fluid conditions do not emerge
directly but nevertheless are shown to be appropriate to an intermediate time scale in
most circumstances.

In the second part of this paper we show that this discussion of equilibrium leads

naturally to a novel and powerful way of obtaining expressions for the adiabatic invariants



- = L
i and J, not merely to lowest order in m/e but including higher order contribution&'),
for which a formal recurrence relation is derived. This is possible because the invariants,

(5)

while not true constants, are constant to all orders Hence, within the scope of any
expansion F(ﬁ, 3, €) can be regarded as an exact equilibrium and by comparing this form
with the results of the direct m/e expansion one can recognise the exact particle invariants
Q and J, even though the concept of such invariants was not originally introduced into
the calculations. This method of obtaining invariants by first finding an equilibrium

distribution circumvents the necessity for any calculation of orbits, either of particles

or of guiding centres, and may have application in other problems.

Using this method we have explicitly calculated the first order corrections p, and
Jy and the second order correction p, . An unexpected feature of our results is that
the correction J, to the longitudinal adiabatic invariant has one form for particles
which are trapped between magnetic mirrors and another form for particles which circulate

unidirectionally around a closed field line.

In Part III we extend the calculation to include the effect of electric fields and
time varying magnetic fields. This allows us to derive the third (flux) invariant @ by
a natural extension of the methods of Parts I and II. If the time scale for the field
variation is sufficiently slow this third invariant replaces the particle energy as a

"constant of the motion" and a solution of Vlasov's equation is of the form f = f(p, J, &).

Part IV deals with toroidal magnetic fields possessing magnetic surfaces and the
longitudinal invariant (replacing J) appropriate in such a field. One possibility is
that J should be replaced by an integral over a magnetic surface, but in the case of
small rotational transform a modified line integral is more appropriate. This line inte-

gral J**  provides a convenient description of particle behaviour in toroidal systems.

2. PLASMA EQUILIBRIUM

In the fluid description of low pressure plasma the necessary and sufficient conditions
for equilibrium are those(1) given by equations (1.1), whereas in the guiding center (g.c.)
Gz ma . g 2 : . . .
description of the plasma, an equilibrium is descrlbed( +3) by any distribution function of

the form (1.2). It may easily be shown, by direct substitution, that a g.c. equilibrium

() It is important to distinguish between the quantities p and J which are defined
e.g. by equation (1.3) and the true adiabatic invariants denoted here by ﬁ and J .
The true invariants are equal to p, J only to lowest order in the m/e expansion. It
might be more appropriate to use p., J, instead of p, J but we wish to avoid exces-

i i - 5= m m) 2 J= L mya
sive subscripts. Thus p =p+ = py + (e) Bgoeo o IS T+ 2T, 4 (e) Jg vees



distribution automatically satisfies the fluid constraints. On the other hand, there are
many g.c. distributions which are not of the form (1.2) but which nevertheless lead to
(6)

pressures satisfying the conditions for fluid equilibrium. Indeed BenDaniel has pointed

out that if the g.c. distribution leads to isotropic pressure it cannot be expressed in

the form (1.2) even though the corresponding pressure distribution may satisfy (1.1). One
can also construct g.c. distribution functions which lead to anisotropic pressure distribu-
tions satisfying (1.1) but which cannot be written in the form (1.2). An example, discussed

in Appendix A, is the distribution function

F. = %(HS)Q(<J>) was (201)

1

where
I = Z{: m, /-Hi (e, &) J (4, &, a, B) du de as e 12:2)

which cannot, in general, be expressed in the form of a g.c. equilibrium; but nevertheless
leads to a pressure tensor satisfying the fluid constraints (1.1). It is clear then, that
the fluid and guiding center descriptions are not equivalent and in the following section

we will show that this is because they refer to different time scales.

3. LARMOR RADIUS EXPANSION

The physically interesting time scales are those set by the Larmor frequency @, the
frequency of motion along the lines of force, v”/L and the frequency with which the guiding

center drifts around the system, Vd/l. These three frequencies may also be expressed as

£
sl [
>
|
€

where a 1is the typical Larmor radius so that the criteria for equilibrium on these
various time scales can be systematically examined by means of an expansion in powers of
a/L. An equivalent but more convenient procedure is to expand in powers of m/e, so follow-
ing and extending the procedure of Chandrasekhar, Kaufman and Watson(4). By imposing order

by order the condition that the distribution function be stationary we obtain a sequence of

constraints appropriate to equilibrium on the various time scales.

The first step is to introduce an appropriate coordinate system (Appendix B). Each
line of force is labelled by a, B where B = Vo xVB, and the distance s is measured
along each field line from some fixed plane, then (a, B, s) are used as position coordinates,
Velocity is expressed in tems of (e, y, ¢) where e =% (vi + v?), p=vi/2B and ¢ is

the azimuthal angle about the field direction g4 . A feature of these velocity coordinates

ot ) om



is that the transformation from (e, p, ¢) to y is two-valued, since v =* [2(e - pB) ]3.
To deal with this we explicitly introduce an extra "coordinate" o which takes only the
values *1 and indicates which branch of the square root is to be taken. All quantities
are thus functions of (a, B, s, &, p, @, 0). Although it has been introduced here purely
as a formal device to remove an ambiguity in sign, o will later play a much more funda-

mental rale; in some respects it behaves as a constant of the motion along with €& and p.

When expressed in these coordinates the Vlasov equation

af e af
rd +'x'vf4-m(!,xﬁ)-33 = 0
can be written
of 1 of
= =2(Df "'E—at) v, (32T)

where * = m/e can be regarded as a formal expansion parameter equivalent to a/L. The

operator D is defined by:

1 of of . of .
Df =% [cr q %g +cyr (VF-¥ SE)' (g, cosp + g sing) +uoq 5a [(pa- pglcos2gp + (7,- -ca)smgq,]]
1 2 q®
b [crq (1, +%(1,+7,)) + ((-(:IJ_ o, -¢,0, )cosg + (EI P, =€ 0,)sing +% oq( (1,- 7 )cos2¢
; af’
+ (pa-pa) smﬁp]} o eee (3.2)
where
1 1 2
q—=—[2(e-p,B)]'é : & =2 ;.11?')'§ s YJE§VB+E—§_1 Ve, . oo (3.3)

The unit vectors e,, €,, g, are orthogonal, with e, B/B, and the coefficients Pi» Ty
T, are related to the curvature and torsion of the lines of force as described in Appendix B.

The velocity V is related to the usual guiding center drift yd by

e
=V, = (g, x v) . eee (3.4)
We shall look for solutions of (3.1) in the form

f=f +Mf+ M f,+ ... cee §3.5)

The time dependence of fo may be regarded as being of any order in %, depending on the
time scale one wishes to investigate. We shall regard afo/a t as negligible to succes-

sively higher orders in X and so obtain criteria for equilibrium on successively longer

time scales.



(a) Zero Order

In the lowest order we have

afo & Bfo
TP = 55 5 ais k3:6)

indicating merely that if fo is to be stationary on the time scale of the Larmor period

then the appropriate constraint is that it must be independent of the azimuthal angle ¢,

(b) First Order

In the next order
of of
1 1 ]
= Df +B< at>1 s (36T

so that if f 1is again stationary we have

f, = g, (a,B,s,p,s,0) +'/ d¢ D f veo (3.8)

and, since f1 must be single valued,

<Df0> = 0 .- (3.9)
where g, is an arbitrary function of the indicated variables only, and the angular brackets

denote the average over the angle ¢. Since fo is already independent of ¢ (3.9) becomes

af
0
== = 0 e (3.10)

it

g

=la

{prf, >

Hence the requirement that afo/at 0 in this order, (corresponding to equilibrium

on the time scale L/V,) imposes the constraint that fo must be independent of both ¢

and s, and that f, be given by

f'1=gi+/D £, - vee (3.11)

(here and henceforth, if the variable of integration is not explicitly indicated it is

understood to mean integration with respect to ¢; other variables of integration will be

explicitly indicated). Equation (3.10) indicates, through its Lagrangian subsidiary equa-
tions, that in this order, o, B, 4, €, o are all "constants of the motion" in accordance

with the physical picture of a g.c. tied to a line of force. [But note that neither here
nor elsewhere do we introduce the g.c. concept directly.]

(c) Second Order

In this order we have

ofg  ofy /
—a—;_ﬁ—a?=nf1= D g, +DDf, voe (3.12)



so that if f is stationary in this order we have

+

jnfn f, - wes (3.13)

By 2 By (@ BPs,peo)+ /‘D g4

To ensure that f, be single valued we must have

<Dg=_>+<D/Df‘O> = 0 eee (3.14)
or
og
%ﬂ —a-si+<]}/[)f0> = 0 s (3.]5)
so that
S
g, = h, (a,Be0) -0 / %5(0[1) £, > e (3.16)
SO

where h, 1is arbitrary.

Equation (3.16) leads to a new constraint on f_; in its simplest form this would

arise, e.g., from the requirement that g, be single valued in s and would be

%%(D'/Dfo> = 0 vee (3.17)

where the integral is around a closed field line. If & > puB everywhere along the field
line then the constraint does take the simple form (3.17). This is applicable when par-
ticles circulate unidirectionally around a closed field line without undergoing mirror
reflection. In this case the particle streams moving in either direction, represented by

o =t 1, are independent and the constraint (3.17) applies to each direction individually.

When particles are reflected by magnetic mirrors the situation is less simple because
e < uB over part of the range of s and q becomes imaginary. Physically the two streams
represented by o = * 1 are no longer independent and it is the coupling between them which
now leads to a constraint. Mathematically this constraint arises because the two branches
(o = £ 1) of the distribution function coincide whenever e = pB and fo is independent of

o at these "turning points". However f0 does not vary with s so it must be independent

of o whenever it refers to particles trapped between mirrors.

Similarly g, is independent of ¢ at a turning point (but not elsewhere) and the
change in g, between turning points must be the same for both ¢ =% 1. This leads, from

(3.16) to the condition that

+fB -'3—(‘1-5-’:(0/[)1"0):] " -/BB—'-;EBD[D%):, sve (3.18)

A o=+1 A o=-1



or

Z /%<D/Dfo> =0 er (3.19)

=*1

where the integral is between turning points. For brevity we introduce the operator

Lf = <D/Df> .o (3.20)

then we can summarize the second order constraints on fo as:

(i) For particles which circulate round a closed field line:

Bd Bd
EQJTSL%:, =,:5{TSLfO:, = 0 . e.. (3.21)

o=+1 g=-1

(ii) For particles trapped between mirrors:

ZL/E?;EL%]:O S [fo:|=l:fo:]- con (5.22)

o=t1 o=+1 o=-1

In fact the operator L is independent of o but we leave these constraints in the

general form so that we may refer to them in connection with other operators which will
arise later.

The operator L 1is discussed in the Appendix; when operating on a function such as

f0 (g, &, @, B), i.e. one independent of s, ¢ it can be expressed as

LT = _._._._._._evd : Vfo + ( ﬁ a9 (——-.---_q el P £ ) (3.23)
o mB # m B 3s B frr e
ap

eV
where _Eg is the drift velocity defined earlier. Inserting this expression for L fo

into the constraints (3.21) and (3.22) one finds that either constraint can be concisely

expressed in the a, P, coordinate system as

af of

0o oJ o oJ
Ja 38" 3P 3a = 0 oo (3.24)
where J 1is defined by
J (CL, ﬁ: s B) = ﬁ q ds ) e (3-25)

the integration being around a closed field line or between turning points as appropriate.

According to equation (3.24) fo does not depend on a, B individually but only on
J (a, B, p, €); the lower order constraints already make fo independent of ¢ and s

and we therefore conclude that it must be of the g.c. equilibrium form.



So far, then, we have shown that if equilibrium is to persist on the L/Vd time scale:-

£, = £, (3, u e, 0) s ow [3.26)
s Bd
S
f‘1=hi(a,[3,p,s,cr)—o'[ TLf0+foo uw (3e27)
SO
fg = gg (G" B’ s! P'!‘ E, 0-) +fD fi LR (3-28)

where fo, h, and gy are arbitrary. For particles trapped between mirrors fo is
independent of o and it is convenient to take the lower limit of integration, 857 at a
turning point; then h, is also independent of o. For particles which are not reflected

by mirrors (circulating particles) the choice of s, must be left arbitrary.

If we had retained time dependence of fo in this order we would have obtained,

instead of (3.24), the equation
of of
%_.Béi,r(_" ‘H__Oﬁ:l> =0 . in s [5:29)

and the Lagrangian subsidiary equations then give the time derivatives

- m ,o0J aJ,~1
a = +E(—') (335)

33y (33)-1
9p

- m
» P = -3 (=) (= ... (3.30)

and so 3 = 0. (The & and é are of course, just the first order guiding center drift
velocities averaged over the oscillation between mirrors or around the line of force,)

Consequently p, J and & are the appropriate constants of the motion on the drift time
scale and fO is a function of these constants. For circulating particles o is also a

"constant of the motion" and so also appears in fo.
(d) Third Order

So far in our analysis we have shown that as we increase the order, i.e. lengthen the
time scale of equilibrium, we must impose increasingly severe constraints on fo: however
this process does not continue indefinitely as we shall now demonstrate.

In the third order, with afo/at = 0, the initial form of the constraint condition is,

as in previous orders,

{Dfyy = 0 oo (3.31)
or
oq 28 _ Lhy 0] 28y <D/D[Df> (3.32)
= = 4+ o ™ o " cas (3
s
o



This equation determines g, and leads, by precisely the same arguments as applied to
equation (3.15) for g,, to constraints similar to (3.21) or (3.22). All that is necessary
to obtain these new constraints is to replace the operator L in (3.21) or (3.22) by the

right hand side of (3.32). For particles which are not reflected at mirrors this yields;

flincfmoi i afoforsy]0 am

while for mirror trapped particles this must be summed over o = + 1.
Now at this stage h, is a function of the same form as was f, in equations (3.21)
and (3.22) so that when L h, 1is evaluated and expressed in a, P coordinates, equation

(3.33) becomes

dh dh

Migs Mg [ pas des f f ]=
(aaaﬁ' agsaa)—}gq[clﬂ qu0—<D D/Dfp | = Hf, .o (3.34)
This is an equation of a type we have not met before. The terms in h, constitute the
derivative along the direction J = constant so that

h, = k, (g, & J) +[ agaaﬂ Hf, cve (B55)

J = constant

which determines h,, and hence f,, up to an arbitrary function of u, e, J. At first
sight it may appear that (3.35) does impose an additional constraint on fo if the surfaces
J = constant (which correspond to precessional drift surfaces) are closed. In this event

h, can be single valued only if fo satisfies

da
33/38 H fo = 0 . ... (3.36)

J = constant

However when the operator H (Appendix C) is evaluated in full, a lengthy calculation shows
that this constraint is automatically satisfied by any function of the form fo = fo(p,e,J);

in the case of mirror trapped particles one finds that H fo is identically zero while for

circulating particles it can be expressed in the form
af af
.25 2. o o)
Hi,=3p ao,(PaJ 3% "B\P 37 vee (8.37)
(where P is defined in Appendix C). In either case, therefore, the loop integral (3.36)

vanishes identically,

Another form for (3.37) is

of of
P o aP 0
Hf = (-a =5 - 55 a.) ... (3.38)



which indicates that the velocities defined by

o= @PEEHT - - B GHT

ce. (3.39)
must represent the second order drift velocity, averaged over the motion along the line of
force, just as (3.30) represented the average of the first order drift velocity. The

vanishing of (3.36) shows that the second order drifts produce no cumulative displacement

from the first order drift surfaces.

However the most important feature of this section is that on carrying the expansion

to a higher order we have not on this occasion needed to impose any new restriction on fo'

Instead we find that f, is now determined apart from a function of the same form as fo
and which could be absorbed into fo if desired. We will later indicate why no further
restrictions on fo are to be expected even if we were to calculate to still higher orders
and will show that restricting fo to be of the form fo (n, €, J) is sufficient for
equilibrium to all orders. For the moment, however, we anticipate this result and turn

our attention to the question of the fluid constraints.

4, THE FLUID EQUATIONS

It has been shown that if one requires equilibrium to persist for increasingly longer
times then successively more stringent constraints must be imposed on fo’ culminating in
the requirement that it be of the g.c. form (1.2); however, the fluid constraints (1.1)
have not appeared in the intermediate time scales, as might have been expected. This is
because we have so far been concerned only with the particle distribution function and have

not considered the electromagnetic fields.

Electromagnetic fields

When the electric field is included a new physical time scale is introduced - by the
plasma frequency W - and the m/e expansion must be extended to incorporate this., If wp
is comparable with W, this can be done most simply by formally regarding the m/e expan-
sion as one in which e » « (m finite) for then both «, > and «, = = but ub/hb
remains finite. In a similar way the case W « w, can be dealt with by regarding the

expansion as one in which m = 0 (e finite), for then w5 ® oy, W, e but “b/“b - 0.

The condition for the electric fields to be stationary is

5p af,
p PR 3 —
=F = Z e; 5z 4V = 0 e (4.1)

o

- 10 =



and because €, but not m, appears in this equation there are differences between the
theory with wp ™~ e and that with wp € We. In a situation where W € wp the charge

e 1is treated as finite; then (4.1) shows that dp/dt will vanish to any order so long as
of /ot does so. Consequently there is nothing to be added to the discussion of equilibrium
criteria and all the conclusions reached in Section 3 are unchanged. On the other hand,

in a situation where ub ~ Wa the charge e must be treated as a large quantity; then
equation (4,1) indicates that &p/dt is one order lower than of/dt. Consequently, the
vanishing of af/3t to a given order only ensures that dp/ot vanishes to one order lower

and equilibrium can only be ensured by making both of/dt and dp/dt vanish to the appro-
priate order.

In the case of equilibrium on the drift time scale, when fo is already constrained

to be of the g.c. form f (4, &, J), no new constraint is needed to ensure that d&p/dt = O,

I

for it has been shown that if fo fo (s, €, J) the distribution is stationary not merely
on the drift time scale but also to one order higher (indeed to all orders, as we shall see

later). Consequently the criteria for equilibrium on the drift time scale are unaltered by
the inclusion of electric fields.

However, in discussing equilibria on the intermediate time scale v;/L an alteration
is necessary; not only is it necessary that fo = fo (g, &, @, B), so making of/dt zero
to order A, but ap/at must also be zero to order A. This leads to an extra constraint

which is easily found by retaining the time dependence of fo in equation (3.15) which

then becomes

of og / :
e o 9q _“Ca _
m 5t * B 95 * <D Df & = B ee. (4.2)
The constraint dp/dt = 0 is therefore
oy Z B du de / iy
s * m; q {D{Df >=0 ee (4.3)

i,o

Vo= Z o‘/mi gi dp  de cee (404)
i, o

is essentially the current parallel to B). The existence of a single valued V¥ which

(where

vanishes in the vacuum surrounding the plasma requires the integral over s of the second
term in (4.3) to vanish., When the appropriate form (3.23) is inserted for {D [ D F >
the resulting constraint can be written entirely in terms of macroscopic quantities as

ds (4.5)

Eg V(pL + p”) «+ Bxp = 0 e

- 11 =



which will be recognised as an alternative expression for the fluid constraint (1.1). (This
form (4.5) is applicable at finite pressure whereas (1.1) applies only in the low pressure

limit.)

From this discussion we conclude that when the time dependence of electromagnetic
fields is considered the guiding center constraint remains sufficient and necessary for
equilibrium to all orders. However the weaker constraint fo = fo (p, e, a, P), which
was previously adequate for equilibrium on the time scale L/Vi , now needs to be supple-

mented by the fluid constraint (1.1) unless the plasma density is so low that R

- 12 =



PART _II

5. ADIABATIC INVARIANTS AND EQUILIBRIA TN HIGHER ORDERS

In Part I it was shown that as the time scale of equilibrium was lengthened by going
to higher orders in A\, the restrictions on fo became increasingly severe until it was
restricted to the guiding center form. However, once this point had been reached, an
extension by another order imposed no extra restrictions on fo; instead the restrictions
affected f, which was thereby determined in terms of fo (apart from an arbitrary func-
tion of u, &, J, which could be regarded as part of fo}. It was suggested that no matter

how far the calculation was pursued no further restrictions on fo would be found.

(5)

That this conclusion is correct is indicated by the following; it is well known
that invariant quantities ﬁ and J exist which are constant to all orders in m/e and
which are identical in lowest order with the pu, J defined in Part I, Therefore, within

the framework of any m/e expansion scheme, a distribution such as
¥y = ¥ (4, J, €) s (8 1)

can be regarded as an exact equilibrium, and if we put

= p0+7\.p1+7\3p2.... cew (B52)

>

J Jo+2J, + 2% 7, ... s v (5:8)

{(where for emphasis we now write Ho? J0 for the zero order invariants p, J) we see that

an equilibrium correct to all orders can be expressed in the form
24 2% 2
ﬂ!(po, Jos s)+ h(pi g + J, 53, + A7 L. .o (5.44)

This general equilibrium thus contains one arbitrary function of three variables and is
completely defined once its lowest order fom is given. However if V¥ is regarded as

explicitly dependent on M (5.4A) can be written in the form

ay Y
0 0
¥ (po, Ty €) + A ( Ry 5@; + J, 53; + U, (po, €,y Jo) ) T ees (5.4B)

though this corresponds only to a relabelling of the equilibria and by summing
Yo + MY, o+ A2 ¥, +.. (5.4B) can always be re-cast into the form (5.4A).

Clearly, the lowest order term in (5.4) must be identified with the fo of Part I;
it is then apparent that even if one demands equilibrium to all orders fo remains an

arbitrary function of “o’ Jo, £ .

- 13 =



It is also clear the higher order corrections pi, Ja; pHas Ja; ... can be obtained
by identifying higher order terms of the series fo + AT+ A2 f, ... which have already
been calculated in Part I, with the corresponding terms in (5.4). There are marked
differences between the case of particles trapped between mirrors and those which circu-

late round a toroidal system and we first consider only particles trapped between mirrors.

Mirror-trapped particles

Collecting together results from Part I we have

. 'S
- Bds da
f, =k, (].J.O, Jo, ) +—/ Dfo - C!'-/ a4 Lfo +fm‘6 Hfo s (5:5)
o J = const

%
where the various operators have been introduced in Part I and Appendix C. For convenience

we are taking S, to be a turning point (q = 0) as this simplifies the evaluation of H,
_ in fact it then vanishes identically for trapped particles. When the operators D and
L are explicitly introduced into (5.5) one finds, significantly, that f, depends only

on derivatives afo/apo and afO/BJO although higher derivatives appear in the indivi-

dual operators. Consequently , as given by (5.5) is, indeed, of the functional form

indicated by (5.4) and can be completely identified with (5.4) by setting

X' E
1 i 1
He= -3 [‘L.L-ENT{!J.- (R- D g, +2- (g0 U g+ M (fel'?-“’u)ﬂ
... (5.6)
and
aJo ° ds
J1=Q.VJ0+H1<"3—!_E> —U‘f ?Ed.v']o ve. (5.7)
afe So
where
%
J, = [2(e = p B)]?ds , «es (5.8)
o
8 a e
ﬁd___-B_-a-x(q R+pVB)=aY_d ... (5.9)
v, xB
g === = .e. (5.10)
e, is the unit vector along B and p is the curvature of the field. All quantities in

(5.6) and (5.7) are referred to the position of the particle not to the guiding center
which we have nowhere introduced, similarly the integrals in (5.7) and (5.8) are along the

line of force through the instantaneous position of the particle.

* Any other choice leads, of course, to the same final result, any change in the explicit
s integration being compensated by a corresponding change in the operator H which

implicitly depends on Sy *
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The expressions for K, and J, agree with those given by Kruskal{7) and by Northrop,
Liu and Kruskal(s) respectively. The second invariant J, can be cast into more convenient
form by observing that the term a . VJO in (5.7) is simply the change in J, which would be
introduced if the path of integration in (5.8) were transferred to the field line through
the instantaneous guiding center. Similarly Mg aJO/Bpo is the change introduced if we
replace By DY (po + {,) in the integrand of (5.8). Hence if we collect together zero
and first order contributions to J and take all integrals along the field line through

the guiding center, instead of through the particle, we can write

14 s
m., _ _ m - ds
Jo+eJ1_}( I}(e (g + g Ha) B)] ds crf < Y v, s USTT)

5o

This can be written in yet another form which is important for the later discussion
of circulating particles. We introduce the instantaneous drift velocity in a, B space
by defining

- Va ’ g

Ya yd-Vﬁ eee (5.12)

and recall that the average drifts o and P are related to 3JAP and 8J/d by

(3.30); then (5.11) can be written
1 " 8 ’
G, +23)) = 51( (2(e- (uy+2u,) B)]* ds + o 2 f;( &7 f G(s'ys") (ory  -ee (5.13)
where G(s’, s") is a zero order quantity defined by
G(s', 8") = :1_: [&(5') é(S”) - a(s”) é(s'):, E za s 08L14)

The factor o which appears in the last term of (5.11) or (5.13) is due to our con-
vention that ds is measured in the direction of e, irrespective of whether the particle
is moving to left or right. If instead the integration is always taken in the direction
of motion then the o is unnecessary. Equation (5.11) can then be interpreted by observ-
ing that the last term represents the change in J0 since the particle left the turning
point due to the drift of the guiding center and s0 is exactly the amount which must be
added to Jo to ensure that (J0 + g Ji) retains its original value as one follows the
particle. (However note that (J0 + E Ji) is entirely a local quantity which can be com-
puted from the magnetic field and the instantaneous position of the particle; it is not

necessary to calculate the orbit of particle or guiding center.)

In a simple axi-symmetric magnetic field the symmetry ensures that !d' VJO is

identically zero so that in such a field J is given correctly through first order by
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b
J = 35 |:2(s- (b, + 3 &) B):’ ds eer (5.15)

the path of integration being along the field line through the guiding center.

Circulating particles

For circulating particles i.e. those not subject to mirror reflection, f, is again

given by
s
Bds da
fy =k, (o, o €, JO) +foo-U[ —C'I**Lfo +[Wa—'ﬁ HfD ... (5.186)
5o
J = const
and
sl
_ 4 Bas Bds . _
Hfo_?{ - [crL[ < o <Dfnfnf0>} . vee (5.17)

5o

but there is now no natural choice for the lower limit So and the operator H must be

evaluated for an arbitrary S As a result, H no longer vanishes; at first sight this

appears to mean that f, involves an integral over the precessional drift surfaces
J0 = constant. Fortunately, however, it is possible (see Appendix) to express the operator

H as a total derivative along J = constant, i.e.

of of
aJ d 0 aJ -9 o]
[-li‘O = Eﬁ' 7y (P ﬁ) =3 EE ( 6.]') ee. (5.18)
where P is given by
slf
ds” ds’
P=o as' (v, +% (v, +7)] - g f- G(s’,s") vee (5.19)
Ho é 1 3 3 2 q(s”) 4 qls’)
5o

the function G being again defined by (5.14). The coefficients T,, 7, T, are related

to the torsion of the field line and «, P are again the instantaneous drift velocities.

Consequently
s of
f1=k1+foo-UfE?I—SLTO+PT§ ... (5.20)
So

which once again involves only the first derivatives of f and so is of the form (5.4).
Direct comparison with (5.4) now yields the invariants for circulating (non-reflected)

particles as

e. v N
1 =1~
p1=-§[h-‘1d+ 7 {L- (@D e, +a-(v,.1e +4 Ez"'xsi]:l ee (5.21)

and aJ
Ji:E'VJO-FP‘L_BﬁO"‘O-pO{ ds’ [11+3~2(Tﬂ+'€3)]
., vis (5:22)
dS” [S ds’ o ds” = ds’
s
g G(Sf S") - = ﬁ _—f G(S' S") .
j{ q(s”) a(s’) ' 2 ] alsm)) qls) ’
So So

- 16 =



The second invariant can again be simplified by changing the path of integration to the

line of force through the guiding center, then

1
J=J0+EJ1=5{ [2(e - (u, + T 1) B)]? as + I uojg [ey + %7, + 7)) as’

e
; S "
om ds ’ ds’ ' o om- ds” s ds’ ' ”
" L] -3 ) s .
e G(s', s") e = - G(s', s") (5.23)
q(s”) q(s’) al(s”) qls’)
SO SO

The invariant u, is identical with that for particles trapped between mirrors but the
second invariant is of a different form*. Some difference was to be expected since the
expression for (J0 + g J,) in the mirror case involved an integral whose lower limit So
was a definite physical point - the mirror reflection point - which does not exist for
circulating particles. If J had been given by the same expression therefore, it would
now have involved an arbitrary value of Sy The extra double integral in (5.23) rectifies
this; both integrals of G(s’, s”) depend on the arbitrary point s, but their sum is

independent of S, and can, indeed, be written as

s
1 ds” ds’ ’ "
G iE o2
% Gf}" 1) (s (s", s”) (5.24)

in which there is no arbitrary quantity.

Another difference between J for circulating and oscillating particles - which was
not foreseen - is the term involving the integral of the torsion around the closed line of
force. As this term is one of the terms arising from the operator H it can be inter-
preted as one of the consequences of the second order drift velocities (3.39). It may seem

surprising that one can relate part of a first order quantity J, to a second order drift,
but just as
ds
/eyd.w sos (5:25)

can be regarded as the accumulated change in Jo due to the first order drifts over times

of order L/q or L/Vy, so can

(2) da
/ Ya 'VJo aJ/aB ees (5.26)

JD = const.

* Northrop, Liu and Kruskal(s) have calculated J, for mirror trapped particles and sug-
gest that the value for circulating particles should be the same because the form (5.11)
makes, dJ/dt of order (m/e)?® whether the particle is trapped between mirrors or not.
However this is also true of our form (5.23) and would be true of any function of the
form [J1 + Qa, B, u, e)] so that this argument is inconclusive. To be a first order
invariant not only must dJ/dt be of order (m/e)® but its average must vanish to higher
order so that the error in J remains of order (m/e)® as t * = .
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be regarded as the accumulated change in Jo due to second order drifts, over times of order
L/Vél) or 3! L/AVu. In (5.26) the drift is an order smaller than in (5.25) but the time
for which it acts is an order longer so that (5.26) still yields a first order quantity.
The second order drift changes sign with V), so its accumulated value for oscillating par-
ticles is always zero. It must be emphasised again that this is merely an interpretation
of the result of a rigorous calculation, it is certainly not necessary to invoke second

order (or even first order) drifts in order to determine J, .

By the same token there is no necessity for the drift surface to be closed (i.e. for
the drift motion to be periodic). The invariant J exists as a consequence of the perio-
dicity of the motion along the lines of force and does not depend on any periodicity in
the drift motion. If the drift motion is periodic it gives rise to a further invariantts)
_ the flux invariant & (i.e. the total flux through a drift surface). In a static situa-
tion such as has been discussed thus far, this invariant is redundant since constancy of
g, J, € lnevitably ensures constancy of @ However ¢ can be obtained by our procedure
provided one includes appropriately slow variations of the magnetic field and this will be
discussed in part 3. For the moment we return to ﬁ and 3 and consider the general

th . ; .
n_ order term in their expansions.

6. HIGHER ORDER CORRECTIONS

A recursion formula for (T, and Jn involving only the operators already introduced
can be obtained as follows. When the equilibrium constraint < Df‘n > was applied to fo,

f,, f,, we found that f, could be expressed in terms of fo, for example

S
Bds da
f1=k1+foo—6f qu0+fm Hfo. eeo (6.1)

%o

If we carry out exactly the same calculation, but consider instead of fo, fi, f2 the

general consecutive terms fn’ fn+l’ fn+2 we obtain

S
Bds do
f'n+1—-kn+1+/Dfn—0’/ a Lfn+/.-d76_ﬁ an-. ve. (6.2)

50

n+1

Multiplying this by * and summing we have

f = k+AKT eee (6.3)

where K represents the sum of the three integral operators in (6.2) and k(y,e,J) =% ﬁ‘kn.

Consequently f can be written as

f = (1- M()" kg, e, J) con (6.4)
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which involves a single arbitrary function and generates f in the standard form (5.4A):

it can therefore be directly identified with m(ﬁ, 3, e). If now, we choose W(ﬁ,j, €)= ﬁ

th ; ; L A
then the n term in the expansion (5.4A) of ¥ is just [ similarly we may choose

V= J and generate a series whose nth term is Jn. Comparing these with the solution

generated by (6.4) allows one to write down a recursion formula for B, and J -

- [o{"] -0 [T |

So

] + /%H {J"}. iva (8,57

J
n
Fn Bn

Using this recursion formula we have determined My in an arbitrary magnetic field. This

can be written

4
B = Cg+ Z (cn cos ng + s sin ne) ve. (6.6)
1

where

tan ¢ = ES.X/ES-V . vee (6.7)

In a general magnetic field the coefficients C,» S, are very lengthy but for a vacuum
magnetic field they simplify somewhat and putting m = (py - pg) and v = (13 - T,) the

*
coefficients for a vacuum magnetic field can be written :

1 4 2 . 2 i
C, = —3 g; p? + QEEE [ div p -é (n?+ v“)] + LE%%— [ % (div E“Ea) + é(V- e)ﬂ

+ n(2o; - p,) - v(2, - 0,) }

A special case of Hy, - its value on the median plane of an axisymmetric vacuum field -
was calculated some time ago by G. Gardner and is quoted by T. Northrop(7). Our result
does not agree with this formula but we understand from Dr. Gardner that there is an

error in the formula of ref. 7 and his latest calculation agrees with ours.
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PART 111

7. TIME DEPENDENT FIELDS, ELECTRIC FIELDS AND THE THIRD INVARTANT

In parts I and II only static magnetic fields were considered; this led to the two
invariants p, J which together with the energy e form three "constants of the motion".
In time dependent magnetic fields e itself is no longer a constant but if the field
variations are sufficiently slow it is known(s) that there is still a third invariant
quantity, namely the flux & through a drift surface J = constant. We now consider how
this third invariant arises from our present viewpoint and at the same time discuss the
related effect of electric fields. These calculations are very similar to those of parts

I and IT so that we need give only an outline of the arguments involved.

To investigate these effects we first transform the Vlasov equation to a velocity

frame moving with the field lines. For this we choose a velocity

_ aa ap B
U = { = ¥p = == Va} x5 evs GTs1)
so that

da - . 9B i -

Fri E' Vo = O 2 3t + H Vg = 0 . sve (Ta2)

This velocity U is not the same as the E x E drift, in fact with

oA
E = - a—t' - ch ses (7.3)
and A = a VB the velocity U is
(E+ W) xB
U =5 ————— eee (7.4)
B B

where ¥ = (o 9B/dt + ¢) and V§ does not, in general, vanish.

After transforming to this frame of reference the variables My €, @ are introduced

as in parts I and II when the Vlasov equation can be written

/
af 1 of
B—?p - "\(B é—t-.g.Df‘+Gf'> asia. (125)

where D is the operator introduced earlier and G is a new operator, given in Appendix C,
which depends explicitly on U and on V. 1In fact G may be split into two parts each
depending only on either U or W,

G = vlgtagl . vee (7.6)

The calculation of f proceeds order by order just as in section 3, so that we can

omit all details. The effects of electrostatic fields and time dependent magnetic fields
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of various magnitudes are introduced by treating G as being of the appropriate order in
). For example, to reveal the flux invariant the time dependence of the fields must be

taken to be one order higher than that of the drifts Vd/L, that is

1 EE'. ~ U _ a . Yﬂ (7.7)
a at L L L ’ LS .
which makes the operators GIjr and GU of order A, Then LY %% and GUf are of the

same order and % é% can be absorbed into GU.

The zero and first order calculations are unaffected by the additional operator G

and, as before, constrain fo to be independent of ¢ and s, respectively.

Second order

It is in second order that the operator G first affects the calculation and in place
of (3.12) one now finds

v
— i DF G ee. (7.8)

£, = g2+/Dg1+fD./Dfo+fG¢fo .en (7.9)

and the associated constraint

leading to

<Dgi>+<nfnf0>+<c‘l’f0> = 0 . eve (110)

When the last term in this equation is evaluated it has a similar form to the first, with

which it can be combined so that (7.10) can be written
Q.2 of
GBE<g1—\|x-a—E>+<Dfoo>= o . e LTWTE)
Consequently the constraint in this order is still just

jlg ﬁz_s (D/ch)) = 0 e {Tpi2)

indicating that fo is of the form fo(p, g, J, t). There is however a change in g,

which is now given by

s Bds af‘o
g, = -0 f TLfO + —aE U+ hi (I_I., g, @, By a) ees (7.13)

50

instead of by equation (3.16).

Third Order

In this order, both Gw and GU enter the calculation, and we have
af

3 U
d

- v :
= Df +G¥f +GT, oo (7.14)

S

—-22 =



leading to the constraint
(Dfa>+<G¢fi>+<GUf‘0> = B 3 ven (7.15)

When f, and f, are introduced in terms of f, one finds, as before, an equation for

g5, similar to equation (3.32). For brevity this will be written as

cd ag"—-Lh +oL [ 398 1 _<pfDpfDf >+cd -?P-i Mf (7.16)
B s 1 q o 0 B ds LTS Ty wee {2

Qs

where Mf0 represents all the several temms arising from Gw and GU which appear in
(7.15) and the operator M is given in Appendix C. Integration of equation (7.16) over

s leads to a generalisation of (3.33) and (3.34), namely;

dh dh
1 4J 1 9dJ ) _ Bds
( 3a 3 B_ﬁ E>_Hf0 +ﬁ -—-q Mf‘o . wes (TAT)
Now, as we observed in section 3 the expression on the left of (7.17) is the derivative of

h, along the precessional drift surfaces J = constant, and if these precessional surfaces

i

are closed (7.17) may itself lead to a constraint on f, namely;

J£ a%"’gﬁmo+j§ ai%%_ﬁ lB—g—SMf():O. .. (7.18)
J = constant J = constant
where the integrals are taken around the precessional drift surfaces.

It was noted in part II that the first term is automatically zero, so that (7.18)
leads to no new constraints in the time independent case. However in the present situa-
tion there is a constraint. To find this we must evaluate M; this is a tedious calculation
given elsewhere(g) and we content ourselves here with the result which is

of of
d aJ aJ
a?r7a;3 ( at?)(ﬁ)“( ag><ﬁ> ]= o . e (7.19)
ap

ap

J = const
[Here, 9J/0t at constant a, P means the rate of change following the field line labelled
by the numbers (a, B) (i.e. the Lagranian derivative moving with the velocity U,) the
functions a(x) and B(x) must of course vary if the magnetic field is to change. |

Equation (7.19) can be written

( 08 EEE ok EEE ) = 0 (7.20)
ot de ~ de at - ‘e -
where
3= j{ adp s i (Te2l)
J = const.

is the flux contained within the precessional drift surface J = constant. Equation (7.20)
shows that fo is of the form fo(p, J, $). Hence in time varying fields, although the energy
€ is no longer a constant it is replaced as an invariant by the flux @ and there are still

three "constants of motion" pu, J, 2.
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PART IV

TOROIDAL SYSTEMS WITH SMALL ROTATIONAL TRANSFORM

8. MAGNETIC SURFACES

In our discussion of adiabatic invariants in part II, two different cases were dis-
tinguished, that of mirror-trapped (i.e. oscillating) particles and that of particles
circulating round a closed line of force in a toroidal field. Closure of the lines is a
very special circumstance and more usually in a toroidal system the lines of force are
not closed. Instead, as e.g. in a stellarator with small rotational transform, the field
lines generate toroidal magnetic surfaces. The structure of such fields has been con-

(10)

sidered in detail by Kruskal and Kulsrud whose notation will be closely followed.

A magnetic field possessing magnetic surfaces can be represented by

B = VW x Vv ... (8.1)

~

where V¥ is a single valued function which is constant on each toroidal magnetic surface
and v is a multiple-valued function. By a suitable choice of scale, ¥ can be made
equal to the longitudinal magnetic flux inside the magnetic surface V. Then v 1is an
angle like variable which increases by unity during one loop encircling the magnetic axis

and increases by /2n during one circuit around the torus.

For the moment we ignore any complexity introduced by the multivalued nature of v
e.g. by introducing appropriate cuts" across the torus. Then we can use V, v in exactly
the same way that we used a, P in parts I and II, and the equilibrium constraints can
be determined by the same procedure. We consider only the o = + 1 stream, the changes

necessary for ¢ = - 1 are obvious.

In zero order the constraint is again that fo be independent of ¢ and in first

order that it satisfy
of

_ 9 _° _
(Df0> =3 35 = 9 - eee (8.2)

This implies that fo is constant along a line of force and as each line generates its
magnetic surface this is usually interpreted to mean that fo must be constant over a

magnetic surface. This is also indicated directly by the alternative form of (8.2),

namely

{pr,> = EqE(B-Vf‘O) = 0 . ... (8.3)

For the present we adopt this interpretation and examine whether any further constraints

appear in next order.
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Second Order

The second order equation is

o
— = Df, = Dgi-i-D/Df‘o oo (8.4)

S |w

leading to the usual equation for g,

ag
B?S—:L-+<D/Dfo> = 0 , ... (8.5)

but because the field lines are no longer assumed to close on themselves this no longer
leads directly to the constraint (3.17) which was obtained by integrating around a closed
field line. Nevertheless there is a constraint on fo implied in (8.5) as can be seen by
writing it as
Ba
B~ Vg + o5 {p[Dr > =0 ... (8.8)
and then annihilating the first term by multiplying by |V¢l_] and integrating over a

magnetic surface. Then the first term vanishes identically and fo must satisfy

f[ﬁr B—:‘- (D[Dfo> =0 . vow (Bs7)

(10)

From this it may be deduced that

£, = 1, (7% 5. &) ... (8.8)

*® . ; e .
where J is a surface adiabatic invariant

i // Iggﬂfils . (8.9)

which is an obvious generalisation of the simple invariant J obtained by replacing

um [ o . / BdS .. (8.10)
5% [y |

as is appropriate if the line of force covers a YV surface ergodically. Since J* is
by definition constant over a magnetic surface (8.9) merely confirms what had been con-
cluded from the first order calculation, namely that fo is constant over a magnetic

surface. Under certain circumstances however (8.8) remains true in the time dependent

situation(lo).

Although these results appear to be the natural extension of those in part II they
may not be really appropriate, particularly when we recall our observations in part I
about the relation of the constraints on fo to the time scale of the corresponding equi-
librium. In particulaﬁ.it is clear that J can only be a relevant quantity on time
scales much longer than L/V,, (where L is of the order of the circumference of the

torus). Similarly J*, or even the magnetic surface VY itself can only be relevant on
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time scales long compared to the time taken for a particle to "sample" the whole of a
magnetic surface which, especially in the case of small rotational transform, may be very

long compared to L/V,. Consequently the following argument would seem more suitable,

9. SMALL ROTATIONAL TRANSFORM

In the case of small rotational transform one should introduce the transform itself
as another small parameter and include it in the expansion (or ordering) procedure. This
can be simply done if one regards the field as composed of two parts; a large field which
possesses closed field lines and a smaller additional field which produces the rotational
transform and the ergodic behaviour of the field lines. (This is, in fact, the conven-

tional way of treating stellarator fields.) Thus we can write
B = WxW + Vox v, see (8.1)

where (¥, vo) label the closed field lines of the dominant field and v, corresponds to
the small rotational transform. The final results do not depend on the exact way in which
v is split into its component parts Ve and v,. Corresponding to the splitting of the
magnetic field we can formally regard D as split into a dominant part D0 and a small
D,, however, as will be seen there is no need to explicitly determine D,. The calculation
proceeds like all its predecessors. In zero order there is no change; in first order there
is the constraint < D, f, > = 0 indicating that f, is a function only of (¥, Vor €3 [TH I
and f, is given by

f = gi (y, vO’ Ey My s) +[Df0 . ' vee (9.2)

i

In second order there is an essential change from section 8. The second order equa-

tion is now
of ,

-1
55 = Dgfa+? D, T oo (9.3)

o

so providing the constraint
-1
<Dogl>+<DofD0 r,>+ % D, f > = 0 . oo (B.4)

The first two terms are very familiar; it is only necessary to note that they refer
entirely to the field corresponding to vo which has closed field lines. The last term
is easily found without the need to explicitly determine D, by observing that, since

both £ b, T, > and B,: Vf, are zero,

{p,f,> = <D > = f,;(g-vro) = E‘E(gl.vro) : wes (9.5)
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Hence equation (9.4) can be written
dg
4 =2 -1 g _
B(as >0"|' <D0,[D0 r0>+?\- Bz (E-Vfo)_ 0 P (9.6)

where ®g1/$)0 must be taken along the direction of §O. The constraint which arises from

(9.6) and the requirement that g, be single valued is

B-.Vr
ﬁ%<D/Df0>+7‘-1f§~ 2 ds = 0 . eee (9.7)

Bo

The familiar first term in (9.7) becomes

(afo 8.3 ofy a3 8

of ov T dv ay
where J 1is defined by the line integral
1
J = 5!{ [2(e - uB)]? as eee (9.9)

around the closed line corresponding to the dominant part of the field. The second temm

in (9.7) is unfamiliar but can be reduced to a more transparent form by introducing

B= (VW x Vv) and

afo Bfo
Vfo = Vﬂ!—w+ Vvo —a-;-o .e. (9.10)
then
B« Vf of (B_. Vv) of
j{"‘ °ds='_avgﬁ—“°—“ds5——a—vg VWil  wxa (9:11)
& 5 Bo 5 ~ -

the last identity following because the path of integration is along the closed field line

ED . Now recalling that the vector potential A can be written A = {Vv some further

manipulation allows us to write

9
‘#zv-di=ﬁﬁé-dg vee (9.12)
and to show that
o)
-7 .A\.di = 0 . wisce: 1913

Collecting these results together the final form of the constraint (9.7) can be written;

Mo as™ _ °fo o™ _ (9. 14)

avy  dv dy ayr - *
so that

Hsk
f‘o = fo (p, €, J ) eee (9.15)
ok

where J is a new form of invariant defined by

J** = 51{ (g+§ﬁ)-ds ‘ ... (9,186)
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This is a result which could have been anticipated from the form of the canonical

angular momentum in a magnetic field. However the value and simplicity of introducing

ek

J does not seem to have been appreciated. By its use one automatically incorporates

the effect of both rotational transform and that of g.c. drifts, whereas previous calcula-

(11)

tions have achieved this only by a direct calculation. For example the average motion

of a particle under the combined effect of transform and drift is given by

= af‘*) sg ! T o7t i1 Y
‘ll! = ( v (3-8") vV = —("a—‘y—) (“é}") sae (9.17)

g
; p Aok :
and the particle remains on a surface of constant J™", not on a magnetic surface of con-

stant VY. Similarly the equilibrium distribution fo is not constant over a magnetic
surface but over a J** surface. This is because the actual path of a particle is due to
a combination of the drifts, which divert the particle from the magnetic surface and the
rotational transform which generates the surface. Both these effects are included in J**;
ﬁ. q ds represents the effect of drifts and ﬁ A ds that of the rotational transform.
When the latter is the dominant effect (small drift during one circuit compared to t/2m)

then
J**"gj{ A ds
m

which is constant over a magnetic surface. Hence the results of section 8 can be recovered

in the appropriate limit.

The invariant J** is different according to whether the particle is moving parallel
or antiparallel to the field. This asymmetry arises because the rotational transform and
drifts are additive in the one case and subtractive in the other, this asymmetry in J**
has, therefore, no connection with the asymmetry in J, (part II) which is a rather subtle

consequence of the dynamics of a charged particle in a magnetic field.
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APPENDIX A

As an example of a guiding center distribution which is not of the equilibrium form
F(p, e, J) but which nevertheless leads to anisotropic pressures satisfying the fluid

equilibrium constraints, one may take the separable distribution (for each species).

Fl (P-! Ey Gy |3) = Hl (}-'-, 5) Q(G" [3) . o0 ALl
Clearly (A.1) is not in general a guiding center equilibrium. The pressure resulting from

(A.1) can be expressed in the form

b, = R(B) Qe B)
e A2
b, = R (B) a p)
where 5
R, (B) = Z m, f%Hi (w, €) du de s o B
i
R, () =

z m; [qBHi (s €) du de . ees A4
i

It can be seen by direct substitution that A.2 satisfies the first fluid constraint

ap (p, - py)
_u L W“o9B _
=L = = = 0 . ve. A5

When (A.2) is substituted into the second fluid constraint

(Bx V B)

e e —
B4

v (pJ_+p”) ds = 0 io A

the result can be written as

(R (B) + R (B)) 30 8B  9Q @B
/. ax Il = L { 58 55 ] = 0 eee AT
However, on differentiating (A.4),
B (ﬂ) _ (R,(B) + R (B)) ;5 A&
ap B® B® op T

so that (A.7) becomes
aQ 9 dax aQ 9 dx
'agﬁ ([R”(B)B—a>—a%g; (fR"(B) F) = 10 cer ALO

The second equilibrium condition (A.6) can therefore be satisfied by making Q(a,B) a

function of ]‘R“(B) . Another form for this, obtained from (A.4) is

oo

s0 the distribution (A.1) can be expressed as

=5 =&

= z mi[Hj_ (u, €) Iy, €, a, P) dp de = . sios K10
1

F, (e, €, a, P) = H, (g, ) Q <3>) . wes A1

Although this is not a g.c. equilibrium, it nevertheless satisfies both of the fluid equi-

1ibrium conditions (A.5), (A.6).
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APPENDIX B

Coordinate Systems

The operators introduced in part I and discussed in the following Appendix are most

conveniently evaluated in one of the following coordinate systems.

The first is a generalisation of that discussed by Chandrasekhar, Kaufman and Watson(4).
Three orthogonal unit vectors €,5 €, €, are chosen with ei = B/B but unlike C.K.W.
we do not necessarily choose e, in the direction of the principal normal; for some

purposes other choices are more useful. Then if ds, dx, dy denote elements of arc length

in the direction e , e , e respectively.
5 3 5
T R AR tRR LT s e Bl
and
08,
aS = Pi Eg - 0-1 Ea
ae,
5 = -~ (Ty 85+ Pyed) sasa BB
de
~3

= Ti E,ﬂ + U-i -g_i .

Here p; o, define the curvature of the line of force and T, is related to the torsion,
[If we choose e, along the principal normal 7, is the torsion, otherwise the torsion
equals T, + ?l% (tan~! o,/p,).] The other derivatives are

de de

~1 ~l

Tx - Pz 827 Ta8s Ty T Tafat P38

LI agg .

Tx = Y2&%s - P28 By Oy &3 = T3 &4 .-« B.3
%2, %%,

ax = T281 938, 3y - ~Ps&i~% &a -

Because s, X, y are not true curvilinear coordinates the derivatives are non-
commuting; (in fact the operation J/dx must only be regarded as short hand for egeV

etc.). The commutators, which are required extensively in the evaluation of the operators

in Appendix C, are:

_a_alg_ azQ (rc +T}a_Q_0-'a£_0'a£
2 aas

dx dy  dy ox 2 3x 3 3y
% % _ - 9. .. 8_ ., 0
ds dx 9x ds vy - %) oy ~Paax P13 ... B.4
2 2
2B+ N_p 2,4 K

ooy "oy e — Vi T x P ay ¥ 913 -

=B =



Other useful identities include

Qv
[=-}

3 1
div e, = P3+Ps = - F 38 «e. B.S
curl g.g_ = P; € T 0-1 §.2 - (Tg + Ta) Qi siassj Daib
and
J
—"-=g-curl§_ = - (7, + 7)) B.7
B 1 1 a 3 . «ss B,

A second coordinate system which is frequently convenient is one in which the lines
of force are labelled by a, P, where B = VaxVp. Then a, f form two coordinates and
as the third coordinate one may use the distance s along the line of force. Then (a,B,s)
form a true curvilinear coordinate system with

9

3
v = Va.aa+\7[3

+VSE'S‘

2
ap '

However this is still not an orthogonal coordinate system and the fact that Vs is
not in the direction of B causes much complication which can be avoided in the special
case of a vacuum magnetic field (B = VX) or in one in which j.B =0, (B = VVX). For
then one can use (@, B, X) as curvilinear coordinates with

3J d d
v = Vaa—a+VB E+VX 3%

In this case VX is the direction of B and this affords an enormous simplification of

the algebraic steps in the evaluation of the various operators.



APPENDIX C

In the body of this paper we have shown that the equilibrium conditions and the adia-
batic invariants are determined by operators D, L, H and their integrals. For convenience
we now collect the operators together and outline their origins; the full calculations,
especially of the later operators, are too lengthy to be included here and will be pub-

(9)

lished elsewhere .

(a) The basic operator D

This is merely the operator -]Ig v.*V expressed in terms of u, £, 9, ¢ and using

€45 €25 &5 as base vectors. Then

1 =1 2, < D i < i
BX'E-’D"B{Uqas'FCJ_COS@(ax_anp +cJ_51n<p<ay—Vya“>
+ poq (p - ) cos2 l+cr('|.'—'r)sj.n2-a—
H Py = Py (Pap HoqQ ATy a ‘Pap
1 1 q® ; q®
+g1oa| T, +% (T, + ©.)[+ cose cr o, -c, 0, |+ sing e Py -c O,
+% oq (7, - 7,) cos2¢ + % oq (pz—pa) sin2<p} % san Bl
where
g %
q = 2 (e - uB) ; ¢, = (2uB)
p 9B  g° pgdB q®
Vx= B ax T B Pa 3 Vy: BE-Bo-i ees Cu2

The significance of o has been described in section 3 and &/dx = e,V etc,

All other operators are formed by repeated operation with D. Fortunately we do not
need these operators as applied to a general function but only to functions which are

independent of ¢, or even of both ¢ and s. First, therefore we record that for an f‘o

independent of ¢;
o =2 ve. C.3 = (3.10)

% Bt

and for an fo independent of ¢ and s;
/‘ ] { <af0 aro) ( of | af0>
Df0=E c, sing ‘E;—an—l_l" - c, cos¢ —éh_;(-_vya_p
loJ afo
+ Ezg--a—p (ps - pg) sin2¢ + (T, - T,) cos2¢ eee Cud

(b) The operator Lfy = {D [ Dfy

For a function fo independent of ¢ and s this is found by operating on (C.4)

with D and using the commutator relations of Appendix B. It can then be expressed as

Wy v, af q (g, + curl e,)

= W =2 i 8
Lfo = B + K B 35 B s CuS

= FFw



where

— L = 2
Wy = m¥g = & % (@ p+u ¥B)B .
We also need s
af e O(VXG)
Bds _ ds . o] o adRiey !
“a Lty = e Wy Vf‘o-i-p M Q —§ ... C.6
So So
and
Bds _ ds
?{ aQ Lf, _Jg 3 ﬂd Vf‘o . ees Cu7

This last integral can be expressed in a far more convenient form by transforming to the

(a, B, s) coordinate system when

]g Bds y Mo a3 o

Qs

o]
= Lo 3 Ta~ 3 T ... C.8

(c) The operator Hf,

This is defined in terms of the operators D and L by

S
_ Bds Bds _
HF “]g - [O'L / = I, <DfoDf‘0>] eer C.9

o

and is required only for a function fo which is not merely independent of ¢ and s but

is restricted to the form fo(p, By J)s

For the case of mirror reflection (oscillating particle), Ht‘o can be found fairly
easily: it will be recalled that our definition of the loop integral for oscillating par-
ticles implies summation over ¢ = *1 and that f‘o is even in o©. The operator L is
even in o and <D S D/ D> can be shown to be odd so that the whole integrand (in C.9)

is odd in o and the loop integral vanishes identically.

Unfortunately no corresponding simplification occurs for particles circulating round
a closed field line, Hf‘o, is then non-zero and must be evaluated in full. The calculation
in a general magnetic field is extremely lengthy, but is considerably simplified in the

special case of a vacuum magnetic field. In general H may be reduced to the form

S
_ ds a8 ds .
Hf = O'jg qu.‘?‘ [ m}\‘v‘d zfo p(T}é B (v x Q) y_,fo «es C10
fa
where
Q = [11+1§(12+13}] €, -0, 8,-0, 8, - s G V1

A further crucial step is the reduction of C.10 to the form of a complete derivative

along J = constant, since only then can the invariants of part II be obtained in local form.

= T



This reduction is achieved by introducing the (a, B, X) or the (a, B, s) coordinates. Then

the first term of Hfo can be reduced to

Mo (o3 Pa a5 P ,
3J \3F da ~ &a ap exe Gl
with i
ds” ds’ o
P, = jg m G(s', s") e 013

where G(s’, s”) is a zero order quantity defined by
Gls'y s") = ()2 [&(s") B(s") - als”) B(s")] ver Cal4

and c'L, [3 are the first order drifts y_d Va, Md' V@,

The second part of Hfo can be reduced to a similar form to C,12, that is

of 3P aP
ds 0 aJ 2 aJ 2
W}{B‘ng)'Vfo=a—J<ﬁ"aE-ma—g> i
with
P, = j..lU"jl{ [Ti+1ﬁ(12+13)] ds’ . o s (CailB
So that finally
Hr-‘ﬁ(.a_ng 952) & i9
o ~  aJ 9B da ~ Ao AP L
with
a ds” ® ds’
_ e - ’ " 1 ]
P o= -3 j{ i T G(s’, 8") + por f (v, +%(t, + )] ds
ess G 18

(d) Operators G for time dependent case

In part III the time dependent problem was investigated by transforming the Vlasov
(E+%)xB

BQ
and then introducing g, &, ¢ variables to replace (y-U). Equation (3.1) of part I is

equation to a coordinate frame moving with the flux preserving velocity U = y

then replaced by (7.5), namely

of af
'a—$=.l\ B;)T+Df‘+Gf‘) oo C.19

where D is the same operator as in parts I and II (C.1), and the operator G depends

explicitly on U andon V¥ = ¢+ a %-E » and can be separated into operators Gw, GU which

~

involve respectively V¥ and U only.
Thus G =21 ¥ + GU, where

€ xcC
¥ 1 oy a8 18,298 S L gy O
G' = B G'q e * & - Yy B al_1+a€ + 0B Vi 3o «ee C.20
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and

18 ., gv-11 4 2. 4B 2, 2) 9
Bat+G_B[dt+<ng+PBdt+dqas!§U 3%
dy 3y 3y y
=l et toak Tt puB cos2¢ (gz- = B, E;:)
U ay U
4 = 19 d o) ~ 9
1 Edu, au
-5 S X &y dt+26qas+(g_l_ Dy a(P was Gad
here &= 2 4 y.7 and g = (2uB)® ( ing)
where = = 3+ u- and ¢, = (24 g, COSP + g sing).

(e) The operator M

The operator M (equation 7.16) is obtained from the operators D and G and is

defined by

3%
Mr0=!5%‘1§-5- (wQTE-%>-<D/GWf‘O>—-<G¢[Df0>
o Ea22

-L 7o >+cr<c"’f Lf‘> <Gf>.

The operator obtained by integrating (C.22) over a field line is also needed. This is

Bds Bds U
% TMf‘O=—¢-T<GfO>

_ 4 %[(D[G¢f0>+<(}¢j Df0>-L(¢E:?O>

s -
+cr<c"’f BAB 5 >J. .o C.23
q o
s
Using the explicit form for the operator G, it can be shown that the first term in
(€.25) im o af
°o o _ o ﬂ) C. 24
de ot ot o : e
The remaining parts of (C.23) can also be reduced, after a tedious calculation to the form
da  9p ag aa aes 2
where
= ds
= —_— sus Co26
¥ ]g ] q
Finally, therefore, (C.23) becomes
q o de dt dt oe
- - ess C.27
(oo Tooof
da ap ~ 3B da

When this last expression is integrated around a closed drift surface J = constant the

second part contributes nothing to the integral and leaves us with the result quoted in

equation (7.20).
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