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1. INTRODUCTION

Until recently theory prndictcd(I’z's) that a plasma confined by a shecared magnetic
ficld would be unstable to the resistive interchange mode if the magnetic field lines
curved concavely towards the plasma, as is the case in all toroidal confinement devices.
The instability could be slowed down, but never completely suppressced, by increasing shear
in the magnetic lield., As resistivity decreased, the maximum growth rate should decrease

in proportion, but therc was no critical value below which the instability completely

disappeared.

Coppi and Roscnhluth(4) recently considered the effect on this mode of ion-ion colli-
sions and other refincments. They start from the Vlasov cquation with BCK collision term,
and integrate along particle orbits. Although the details arc not given, this is likely
to jnvo}ve rather lengthy analysis. In section 3 the same problem is treated using guid-
ing cenlre equations for the motion perpendicular to the field lines, including linite
Larmor radius (FLR) corrections, and using the generalisced Ohms law for the current along
Ficld lines. Although the range of validity of these cquations is not so wide as those
used in reference 4, this method is anal&tical]y sjmp}cr and the equations can rcadily be
interpreted physically. Apart 'rom a few unimportant details, the final differential

equation agrees with that of reference 4 when the wavelength is assumed larger than an

ion Larmor radius.

(4)

Coppi and Rosenbluth solved their equation numerically over a range of paramcters
and found that there is now.a critical value of Lhe collision frequency below which the
mode is absolutely stable, Its analytical solution is dilficult because of the number of
new terms, each of which can be important over some part of the parameter range. In
section 5 the effect of cach of these new terms on the standard resistive-g theory is
estimated. Parameter space can be divided into a number of regions, within each ol which
only onc of the new cflects nced be included. Over most ol the parameter range it is ion-
ion collisions which first limits the validity of the standard theory. In section 6 the
eigenvalues of Lhe differential ecquation including ion-ion collisions is investigated
analytically, using Lhe phasc-integral method described briefly in section 4,  The compu-
tation of Coppi and Roscnhluth(4} is comparcd with the analytical marginal stability
curves in section 7, where salislactory agreement is Found. The analytical results cover

a very wide range of parameters, whercas prediction based on extrapolation of the computed

stability curves can be highly misleading.



2. THE MODEL AND ASSUMPTIONS

Most of the important physical processes contributing to the resistive interchange mode
in a plasma column can be simulated by the simpler model of a slab of plasma confined in
one direction by a sheared magnetic field. This model is illustrated in Fig.1. Density
varies in the X-direction only. Relative to fixed cartesian co-ordinates (X,Y,Z) the con-
fining magnetic field B = (O, sXBo, BO) is everywhere perpendicular to the X-direction,
its orientation in the YZ plane varies with X to give shear. The shear parameter s
will be assumed constant, and the shear assumed weak so that sX « 1 over the region of
interest. It will sometimes be convenient to use a different co-ordinate system (x,y,z),
which are curvilinear coordinates such that the x-axis coincides with the X axis, the z
axis rotates with x so that it is always parallel to the local magnetic field, and the

y axis is perpendicular to z and Xx.

A grévitational force, pg, acting in the X direction simulates the effect of field
line curvature in a confined cylindrical plasma. An estimate of the growth rates of the
corresponding modes in a cylindrical plasma may be obtained by making the following sub-

stitutions
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where R, = radius of curvature of the field line, t = rotational transform over the
length L , m = azimuthal wave number. The shear length, Ls, will be used in place of
s in the final expressions for conformity with the notation in reference 4.

Only low-P plasmas will be considered, which permits the variation of B, with X to

be neglected. In the standard resistive-g theony(z’s)

there are two sets of resistive-g
modes, of which one set is approximately electrostatic. Only electrostatic modes will be
considered here. It will be assumed that the mode frequency @ is much less than the ion

cyclotron frequency (Qi) , and its wavelength much larger than the ion gyration radius,

Yo
aj = [2ymaf] .

3. DERIVATION OF THE DIFFERENTIAL EQUATION

THE PERTURBED ION DENSITY

The last assumption permits the use of guiding centrec equations to describe the motion
perpendicular to field lines of both the ions and eclectrons. The unperturbed velocity of

the ion guiding centres is the gravitational drift

g8 i, ' vee (2)



where i is a unit vector in the y direction. The mode produces a perturbation of the

=y

ion guiding centre velocity whose mean value, averaged over the ion distribution, is
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The first term is the electric drift, including the FLR correction which results from the
averaging of the perturbation electric ficld (g) over the ion gyration orbit(s). The
second term results from the finite ion inertia. The third and fourth terms are the mean
diffusion rates resulting from ion-electron collisions and ion-ion collisions, and the
last term is the ion mobility due to ion-ion collisions. Vie and v;i are the appro-

priate collision frequencies, N, is the unperturbed density of ion guiding centres and

N

4 the perturbation in this density.

The perturbed density of ion guiding centres may be found from the continuity equation

for the guiding centres

i

d
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For the modes of interest the phase velocity along the field lines is much larger than the
ion thermal velocity. In this case the contribution to V.v; from ion motion along field
lines is negligible. The perturbation may be Fourier analysed in time and in the y direc-
tion, giving

E=E (x,2) Mgy = &I e (5)

Combining equation (2), (3) and (4) then gives
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The ion particle denéity (n), required later for substitution in Poisson's equation,

(5)

is related to the guiding centre density by the equation

2
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Operating on hoth sides of equation (6) with the above FLR operator, and substituting

E=- V¢, gives
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THE PERTURBED ELECTRON DENSITY

Since the phase velocity along the field lines is generally less than the electron

thermal speed, the parallel velocity must be retained in the electron continuity equation

dn, E Vaial dv
. _ 0oy CZci%e g= ell
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The only finite electron Larmor radius effect which need be included is the electron-ion
collisional diffusion (ae = electron Larmor radius}. For convenience, gradients along the

field lines will be denoted by 9/9z, rather than the more cumbersome (B - V) form, e.g.

d
=L e N . cvv (10)

The parallel electron velocity may be determined Trom the component of the generalised

Ohms law along the field lines
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EII+;(‘)—€_B"Z:L'—T]J”:F?—£ . cee (11)

The electron inertia term on the right hand side may conveniently be combined with the
collisional resistance, when the latter is expressed in terms of the electron-ion collision
frequency Vaj

5 m 9y m . ;
My + 7e? Tg = g Cei ~ 19y - ~n (12)

Il the phase velocity along the field lines is assumed less than the electron thermal velo-
city, it can be shown that the electrons behave isothermally. Thus P,, can be eliminated
using equation (9). Since the ion velocity along the field lines is negligible j, =-Ngevy,

and equation (11) gives
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where U, = - —= — —— = the electron diamagnetic velocity. Eliminating vg, from
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for brevity, Vv - iw will from now on be denoted by V. Electron inertial effects will

el
not be discussed explicity, although the following analysis is valid when these effects

are important.

QUASI-NEUTRALITY CONDITION

The V.E term in Poisson's equation contributes terms of order k? hg (*,= electron
Debye length) which can be neglected, giving the quasi-neutrality equation ng, ne1 .

Eliminating n, from equation (8) and (14) yields the following equation for ¢
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where U; = — — —— = the ion diamagnectic velocity.

The non—cummutability of the operators on the left hand sides of equations (8) and (14)

has been corrected for, assuming that

2g2 4 2,2
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Terms arising from the ion/electron collisional term on the left sides of equations (8) and
(14) canéel, because Vciag = vieaf . This is consistent with the quasi-static result that
ion-electron collisions produce cqual diffusion rates for each species, and hence do not
affect the space charge. The mode amplitude is assumcd to vary more rapidly with x tﬁan

the unperturbed density, which allows the d¢/dx temm in equation (8) to be neglected.

To reduce ecquation (15) to an ordinary differential equation,'a trial form must be
assigned to either the x or z variation of ¢. The differential equation'can then be
solved Tor the mode variation in the other direction. The trial form is valid if this
complete solution can satisfy all boundary conditions. Two types of mode have previously
been considered, whose equations relative to the fixed Cartesian co-ordinates (X,Y,Z) can
be wrihten

9, = ¢, (X) AlkyY o+ kyZ — wt] ... (16)
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¢, is the normal mode form. The wave number components Ky and kz are constant and
consequently the component along the magnetic- field [5- E]/B s (X - Xg) ky varies with
X due to the shear. ¢, is the quasi-mode form in which the effective wave vector rotates
with X so as to remain everywhere perpendicular to B(X). The distinction between the

mode types is discussed in more detail in references 6 and 7.

When the quasi-mode form is substituted, equation (15) becomes a second order differen-
tial equation for ¢y(z). When instead the normal mode form is used, a fourth order

(8)

differential equation for @i(x) is obtained, Fourier transformation reduces this to
a second order differential equation for @(kx)’ which has the same form as the equation
for ¢,(z). The boundary condition that ¢(z) >0 as z ™ % e applied to the quasimode
gives an eigenvalue equation for @ which is identical with that obtained for the normal
mode under the condition ¢(X) ®0 as X = *+ =, This analytic relationship is not
surprising since, as was pointed out by Roberts and Taylor(ﬁ), 9, may be regarded as the
superposition of a large number of normal modes, each highly localised about successive

values of X, and having coherent phases. The quasi-mode form will be used in the follow-

ing analysis, since this avoids the necessity to Fourier transform.

Substituting the quasi-mode form in equation (15) gives the following equation for

p(z) when s x « 1 1is assumed over the region of interest
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where W, = w - KyUe 5 W = - kin ;

When kiaf < 1 is assumed, equation (34) of reference (4) can be compared with the above
equation. In Coppi and Rosenbluth's form, the terms containing Vi; are reduced by a

factor of 0.5. Apart from this, the equations differ only in a few unimportant details.

4. THE PHASE INTEGRAL CONDITION FOR LOCALISED SOLUTIONS

Theé problem has been reduced to the solution of a second order differential equation of

the Torm:

2
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subject to the boundary condition ¢(z) *Oas z* *« along the real z-axis. This equation is
reminiscent of the Schroedinger equation for a particle in a potential well, When V(z)
is a real function, which is negative for z, <z <z, and positive outside this range,
then a solution exists which is oscillatory between z, and 2z, and falls of f exponen-

tially beyond these points, provided that V satisfies the phase integral condition

Z
[ V=V(z)dz= (N+%) = , ees (20)
z, ' :
and that V(z) does not vary too rapidly with z. When V(z) is a complex function, the
zeros of V(z) will generally occur at complex z. If equation (20) is satisfied, solu-
tions exist which are localised over some part of the complex plane, but this need not

necessarily include the real =z axis. The regions over which such solutions are bounded

are defined by the anti-Stokes lines radiating from each turning point, z; and 2z .

The anti~Stokes lines from z, are the locii of =z such that

z
]\/ - V(z’) dz’ = real quantity . e 21)

24

The anti-Stokes lines for the case where V(z) has two complex turning points, at % z,,
are illustrated by solid lines in Fig.2. From the theory of asymptotic solutions(g) we
know that, when equation (20) is satisfied, ®(z) is oscillatory between AB and falls
of{ exponentially along AC and BD. Along any other line through-the origin, ¢(z) = 0
as |z| 2 o provided the linc goes to infinity within the sectors QOP and SOR. If the
line lies outside these sectors, then ¢(z) ~ « as |z| Z e jin one direction along the
line. Ag the asymptotes SOP and QOR are approached, the decay at large 2z becomes
progressively weaker, tending to a pure oscillatory solution on the anti-Stokes lines.
The equation illustrated in Fig.2 has a solution localised along the real 2z axis, where

amplitude increases slowly between O and E or F, and then decays as z2 2t

5. ZONES OF INFLUENCE FOR EACH EFFECT

Even using phase integral methods, the solution of equation (18) is difficult because
of the number of terms. Although each of these terms can be important over some part of
the parameter range, they will not in general be simultaneously important. In this section
the raﬁge of parameters over which each of the new terms becomes significant will be esti-
mated by evaluating its. effect on the standard resistive-g theory. This will provide the

basis for the analytic investigations of these effects in the next section.



THE STANDARD RESISTIVE-G THEORY

This theory neglects ion-ion collisions and the electron acoustic term due to clectron
motion along the field line [the second bracket in equation (18)]. Equation (18) then

reduces to

3%p ivekd
S;% + ﬁ—%gﬁ [a g+ ww; (1 + s?z®)] 9=0 . ees (22)
(] e

The phase integral condition, equation (20), applied to this equation gives the eigenvalue
equation

ivoky [a g+ ole-kvu)]?
0,087 (2N + 1)?

w(w - kyUj) (w - kUp) = - oee (23)

The mode number N will be put zero, since the lowest order mode is the most unstable.
The equation for the corresponding mode in a cylindrical plasma may be obtained using the
equivalences set out in equation (1). This equation can be expressed in terms of the non-
dimensional parameters used in reference (4).
w )( w ) w ) 161C|: bo w ( w :
T f-—_] -T—._+I =i ez memm——— w-i-__' ‘_"_1 3 L) (24)
@U kyU %U S 4 kyU @U

where

T} = Té has been assumed, and so U = - Ue = U, Ls = 1/s is the shear length, and

r = n/(dn/dx) is a characteristic radial dimension.

The second term in the bracket on the right of equation (24) is usually neglected,
although in certain conditions it can influcnce the instability(4). This term will be
referred to as the ion inertia correction term. Equation (24) is then a cubic in ® , and
one root is purely imaginary, w = i¥, corresponding to a pure growing mode. When

S « 16Cy?%, then Y » kyU and is given approximately by
- I
¥ il
ﬁzt—‘l‘—‘ﬁg ] .en (25)
3

This condition will be referred to as the magnetohydrodynamic (MIID) condition, since FLR

effects are then unimportant. When S » IGC¢2, then Y « kyU and is given approximately

by
Y 1ecy? (26)

kyU_ S ’
This condition will be referred to as the FLR condition, In the MID condition the turning

points lie on the real 2z axis, and so the solution decays rapidly beyond the turning



points. 1In the FLR condition, the turning pointé are almost mid-way between the real and
imaginary axis, as illustrated in Fig.2, and the anti-Stokes lines lie close to the real
z axis, indicating that the solution at large z decays relatively slowly. The phase
integral approach to the solution for the standard resistive modes is discussed in more

detail in reference 10,

ESTIMATED MAGNITUDE OF THE NEW TERMS

We now return to tﬁe full differential equation and estimate the magnitude of each
term neglected in the above treatment. Tﬁe zones of parameter space within which the
various effects become important are illustrated in Fig.3. The eigenvalue depends on four
parameters, ¥, S, C and bg which are measures of the destabilising curvature, shear,
collision frequency, and mode nunber respectively, To reduce the parameter space to two
dimensions some special relation between these paramcters must be assumed. The curves in
Fig.3 have been drawn assuming | = constant. With a different assumption these curves
may differ in shape, but their relative positions should be much the same. The relative
magnitudes of most of the new terms do not depend explicitly on bge OBD 1is the line

S = 16C¥”, below which is the MHD regime and above which is the FLR regime.

(a) Electron Acoustic Term

The mathematical and physical origin of this effect, which gives rise to the
second bracket in equation (18), is discussed fully in reference (10), It can be neglec-

ted if
<i”-;—k9) b s%2% <1 ese 271

g9% o _ _Og _ 4¥ iﬁglw , wun (28)
x5 W |

at which the coefficient of ¢ in equation (22) changes sign. Substituting the FLR
expression for w , condition (27) becomes (5/4CY¥) < 1 which is satisfied below line OEFG
in Fig.3. Since the field lines are assumed to be only weakly curved (V¥ « 1) the above

condition is automatically satisfied over the MHD region where (S/4C¥) < V.

(b) Breakdown in the FLR Approximation

. The FLR approximation is valid only if % afvf@ < ¢ i.e. boszz2 < 1. In the FLR

regime this condition is practically the same as inequality (27) above. Hence the condi-

tion for validity of the FLR approximation is again (S/4C¥) < 1.



{c) Ion Collisions

The ion collision term in equation (18) can be neglected if
Vii bgs?z®
A e (29)
4w '

Substituting equation (28) for z and equation (26) for ® gives the condition for

neglect of ion collisions within the FLR regime

% s oy, \s % %
S ¥ & _ ¥ M
@) (55 ) - () (8) - e 0

: 1
Within the MHD regime, equation (25) must be used for ® giving (S/¥) < 16(Wm)%. Thus
ion collisions should not significantly affect the mode if the represehtative point lies

below curve OHFBJ.

(d) Ion Inertia Correction

The condition that the second term in brackets on the right of equation (24)
shall not significantly affect the unstable root when the parameters lie within the FLR
regime is S/4Cy > bg. IT b0 < 4 this-:condition is satisfied over the entire FLR region,
Within the MHD region, equation (25) must be used and the condition for neglect 6? the ion
inertia correction term is (S%/4C?y) > bg. In the following sections, by, < 4¥ is assumed,
so the ion inertia correction is unimportant over most of thec parameter range. The case of

shorter wavelengths, b_ > 4V, where this term may become dominant, is discussed in the

o}
Appendix.

Within the hatched regions of Fig.3 the standard resistive-g solution is inapplicable
because one or other of the neglected terms becomes important. It does not necessarily
follow that the mode is then completely stabilised, although the following physical argu-
ments suggest that effects (b)-(d) should have a stabilising effect. The driving mechanism
for the mode is the same as for the MHD interchange mode. If the plasma is given an initial
neutral density perturbation, the gravitational drift (or the centrifugal drift in the
cylindrical plasma) pulls apart the ion and electron density perturbations. This gives
rise to a space charge field, and the resulting E xB motion of both ions and electrons
produces an additional neutral density modulation, and so on. In a sheared magnetic field
the phase or amplitude of the space charge field will vary along each field line. The
instability owes its existcncc to resistivity, which limits the ability of electrons to
neutralise any space charge by flowing along field lines. The electron pressure gradient

also affects the neutralising llow, giving rise to the.acoustic term on the left hand side

- 10 =



of equation (13). It is not obvious how this will affect the growth. Ion-ion collisions,
which allow the ion space charge to leak away across the field lines, will obviously reduce
the growth rate. If the wavelength becomes less than an ion Larmor radius, the magnetic
field cannot prevent the ions from neutralising the electron density perturbation. Ion

inertia is likely to slow down the growth rate,

6. SOLUTION OF THE DIFFERENTIAL EQUATION

Equation (18) will now be investigated over the range of parameters where ion colli-
sions first limit the validity of the standard resistive-g theory, i.e. above the point F
in Fig.3. Dropping the electron acoustic term, equation (18) can be written in terms of

the non-dimensional parameters defined in equation (24)

kiU W
._E 1% 1 1 m
aa;+.l.b (wo>[4w+h0<kyU><kyU f Cb)
+ e 8 N L ) i D ooz2 } z? =0
kyU kyU+l Mo )3 M B=0 "¢

where 2 % = kyal sz, and Ti = Tp is again assumed. The eigenvalues for ® which give

solutions localised in =z will now be found using the phase-integral method.

(31)

1
EFFECT OF ION COLLISIONS WHEN (S/4¥) > 2(M/m)?

Let us first assume that over most of the localisation region viscosity predominates
over inertia i.c. the term in &% is negligible in equation (31). The approximate phase-

integral condition is then

o e %
14y ¢ &yt f 1 - Z4/41 az= (N+%) 72 .. (32)
(e}

where A% = (8iy/C) /M/m (kyU/hﬁ). Substituting t = (Z/A)* transforms the integral into

a Beta function

1
/(1 —24)1/2 dz:ﬂ%é&: .875 .

Hence the eigenvalue equation for bounded solutions is

4
w3w, 16Gi c“ i\[_w
i _ _ 16icy® ( )[(;NHJ ﬂ:] ) vos 3%Y

(I%U):’

This result is consistent with the neglect of the inertia terms in equation (31) if

(8/4Vy) > 2(m/M)I/2 i.e. above BJ in Fig.3.

- 11 -



The parameter range over which FLR effects are negligible should now be revised
using this revised eigenvalue equation. Equation (33) predicts that |wl > kyU so long

2

as S°% < 2¢c(4y)® (Mﬁn)l/z. Thus within the region JBQ, equation (33) predicts a pure

growing mode, w = iY, where

a
Y\ 16C1I! VoM
(@) B ( ﬁ)':(ENH)?t:l ' cee (34)

Comparing equations (25) and (34) it may be seen that within region JBQ the growth rate is
reduced compared to the standard resistive-g expression. Ecquation (34) agrees with the
expression deduced in reference (1) for the non-electrostatic normal mode in the MHD limit

(11)

when ion viscosity is dominant. This confimns the supposition that the eigenvalues for
the electrostatic and non-electrostatic modes will still be the same, even when ion colli-

sions are included.

Wheén the representative point in parameter space lies above BQ, the unstable solution

of equation (33) is given approximately by

@ w2/ 5.5\°
—ky%:—1+[l‘82 ’E_‘ (T) s s (35)

The mode now has a phase velocity equal to the e¢lectron diamagnetic drift velocity. It
still grows with time. If the collision [requency falls below the value where 4CY = (NVhUl/z
(i.e. to the left of point B), the Z* term becomes important and equation (33) is no
longer valid. The correct eigenvalue equation for this range, deduced later in this section,

shows the mode to be stable.

In pinch experiments, such as Zeta, ¥ ~1 and S ~ M/m, i.e. the representative
point lies above BJ. Thus the resistive interchange mode will be slowed down by ion colli-

sions if 4Cy > (Mﬁn)'/z, and completely stabilised at lower collision frequencies.

EFFECT OF ION COLLISIONS WIHEN 4 (M/m)'/ 2 < (s/49) < 2(M/m)'/ z

The neglect of the g2 term, which leads to the phase integral condition of
equation (33), is no longer valid below the line BJ. The turning points of the equation
(the zeros of the coefficient of ¢ in equation (31)) now occur at + &, , * &, where
£, and &, are gencrally of widely different magnitude. The phase integral condition

between either pair of turnLng points can be evaluated using the following rcsult

/.(1 p}1/20{ + K?y“)l/z dy = gl;(: (1-26'?)y E(x) + «"? K(x) :}
" 3

* 1 am indebted to R.J.P. WHIPPLE for this evaluation.
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where K(x) and E(x) are the complete elliptic integrals of the first and second kind,

and «'? = 1-k2. The phase integral condition, equation {(20), between turning points

r &, is

- ... (36)

Aéi y 12 I2 1
= (1-2¢"%) E(k) + ¥ 2 K(x) [= (N + E)

3u'k

1
2 & 1c(wi)(m>’5 . 2 4101:;( u
BT T T e\ku/\ M/ . A =5 Ecﬁg '

When £% « Z% , and hence «” « 1, E(x) and K(x) can be expanded in powers of &

(STh

where

2

and this equation takes the simple form
ATZZ = (1 - 46P) (v + 1)2 wae (B7)

This expression can then be substituted into the quadratic for Za, to give the following

eigenvalhes equation for @ for the N = 0 mode

S % [m 1 o?
¥ iU * MCb0](1-——4K)

i . ... (38)
=== 44 +b — + ’— Cb 3
S 0\ kyU kU™ 2N M 0

When the ion inertia correction termm on the right hand side of this equation is neglected,

~
«
s
2 I-'8
Hxlg
+
[RGB
Py

the unstable root is given by

o _,{ 16ct® [m 3 [ms ‘
i { Sl > Cb,, } * 5 ol ¥ 7 oo (39)

Ky

This is a valid solution of equation (36) (i.e. consistent with the assumption k? « 1)
only if the parameters lie outside the ion collision dominated region (to the right of
curve FB on Fig.3). From condition (d) of Section 5 (S/4Cy >b,) it follows that the mag-
nitude of the second term is less than the third, which in turn is smaller than the first.
The influence of viscosity can be seen by comparing equations (38) and (39) with equations
(24) and (26). The main effect on the eigenvaluc is the introduction of a real part,
corresponding to a phase velocity in the direction of the electron diamagnctic drift. The
reduction in the growth rate due to viscous damping is numerically less. When this cigen-
value is substituted into the expressions (or the turning points and anti-Stokes lines,
the diagram sketched in Fig.4 is obtained. The positions of the ncarcr turning points is
not substantially altered by ion collisions, and the anti-Stokes lincs emanating Trom

these points still intersect the real axis. The solution will thus decay slowly along the

real axis, outside the range EF.
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As the representative point in parameter space approaches curve FG of Fig.3, the turn-
ing points A and B in Fig.4 move outwards, and léi/’éil =2 i. The modulus of the
elliptic integrals in equation (36) are now complex functions, of order unity, and so the
integrals cannot be approximated analytically. As the representative point moves beyond
FG, into the ion collision dominated region, the two roots again separate in magnitude.

The phase integral condition between the closer of the two pairs of turning points is again
given by equation (38). However, equation (39) is no longer a permissible solution because
it leads to |«?| = [£2/2%] > 1. The other two roots of equation (38), w = kU and

Y

- kyU, both have small imaginary parts corresponding to damped modes.

For completeness, the possibility that the phase integral condition may be satisfied
between the more distant turning points should also be investigated. The phase integral
condition is still given by equation (36), but now &« = 1 and '® « 1. K and E may now

be expanded in powers of k', Retaining only lowest order terms, equation (36) becomes

A2%2 3n \® 2 42 . i8F (KUY 1L (M % (32 2
g=\7 ) W+ =G ) w\ . 7 )@+, .. (40)
b X

giving the eigenvalue equation for

3 2
) i ; m 3 2
— ) — = iSC = (——) (v + 1)° . eee (41)
( kyU ) W M 8
Since the right hand side is less than unity throughout the ion collision dominated region,
this equation has an imaginary root = i¥Y < kyU. However, the corresponding turning

points lie on the imaginary Z axis, and hence the solution cannot be bounded along the

real 7 ‘axis, i.e. it does not satisfy the condition ¢(z) * 0 as z = * =. Equation (41)

R

has a second unstable root, ® = kyU + ie., For this root, however, 4f éz‘and so it lies

outside the range of validity of this equation.

This completes the investigation of all possible solutions of the differential
equation (31), satisfying the condition ¢(Z) = 0 as & 2 * « along the real axis. It has
demonstrated that to the right of curve FB in Fig.3, the growth rate of the resistive-g
mode is not significantly affected by ion collisions, whereas Lo the left of FB there are
no solutions which grow in time. Close to the line FB the phase integral condition of
equation (36} cannot be solved analytically. However, the marginal stability curve, beyond

which the resistive-g mode is damped by cbllisions, must lie close to the line FB.
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7. COMPARISON WITH NUMERICAL SOLUTION

Coppi and Rosenbluth solved numerically their general differential equation oveé a
range of parameters. The values of the parameters at which they found marginal stability
‘are compared in Fig.5 with the criteria deduced in Sections 5 and 6. The solid line is
the computed curve, taken from Fig.8 of reference 4 which plots S vs C for constant V,
Above the dashed line OFG, § > 4C¥ and the electron acoustic term in equation (18) becomes
dominant. This region has not been investigated here, because the FLR approximation is no
longer valid and more general equations, such as those derived by Coppi and Rosenbluth(4),
should be used. However, from physical arguments the mode would be expected to become
stable above this line. OHFB is the curve §% = 4(4y)? C(M/m)Jé above which ion collisions
become dominant. It has been shown in Section 6 that the marginal stability curve must
119 close to FB. The computed curve is higher by a factor of 2, which is quite a reasonable

agreement.

When the empirical best fit to the computed parameters for marginal stability,
equation (36) of reference 4, is plotted in Fig.5 it coincides with the line OEFG. As may
be seen from Fig.2 and 5, this best it équation would be highly misleading if extrapolated

1
.into the region (S/4¥) » 4\ (l\/l/’mY5 where ion collisions are the dominant stabilising

mechanism,

8. CONCLUSIONS

The results can be summarised in terms of the non-dimensional parameters defined in
equation (24).

(a) Ir s/(40)% < (Mﬁm)%, the standard theory for the resistive-g mode ceases to
be valid when the normalised collision frequency C falls below the value
S/4¥. On the basis of an earlier numerical solution(4) and physical arguments,
it appears that the mode is no longer unstable when C is below this value.

) 1,
(b) If 4y (M/m)% < (S/4Y) < 2(M/m)%, the resistive-g mode is stabilised by ion
l/
collisions when 2C < D(m/M)2 S2/(4V)°®, where D is a numerical factor of
order unity (computation suggests D = 1/4).
1
(c) If (S/4¥) > (M/m)%, ion collisional effects are important at all values of the

collision frequency, and reduce this growth rate to that given by equations (34)
1
and (35). However, the mode is completely stabilised only if 4Cy < (Mﬂn)é.
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APPENDIX

THE GRAVITATIONAL WAVE

At shorter wavelengths, when bg > 4V, the ion inertia correction term on the right
hand sides of equations (24) or (38) can no longer be neglected over the whole FLR para-
meter range (see condition (d) of Section 5). As was pointed out in reference 4, the
eigenvalue equation must then be solved as a quartic in ®. When (S/4V) < b, the left
hand side of cquation (38) may be treated as small. The lowest order solution is obtained
by equating the right hand side to zero, and the effect of the left hand side obtained by

iteration. One root has a positive imaginary part, given approximately by

. 5
®_ 4y i . 48 _im
—kyU = by + bo [l cnO] 3 }M Cu, ... (A1)

This mode is the FLR form of the fast interchange instability of reference 2. The last

term in equation (A1), which comes from ion-ion collisions, damps the mode when

0 axn [AZ)

The stability zones for the short wavelength case (bO > 4¢) are illustrated in Fig.6.
This figure is drawn assuming by and ¥ are constant, and S and V¥ varying, and is
on a different scale from Fig.3. The range of unstable parameters is now bounded both
below and above, and shrinks rapidly as 4¢/b0 gets smaller. '

At longer wavelengths, where b0 < 4y, the ion inertia correction term becomes impor-
tant over that part of the MID region where s? < 4y Cabg. The unstable solution of the

eigenvalue equation is significantly affected by ion vicosity only when the dimensionless

o-4(2 F(2) o

The gravitational wave is then slowed down, but not completely stabilised, by ion viscosity,

collision frequency exceeds

its growth being given by

1

%
[ ; M 4y
_=21<_. oo (A4)
kyU m Cb;

Thus to obtain the full stability diagram for the case bg < 4y a vertical line, defined
by equdtion (A3), must be inserted in Fig.3. This line lies to the right of point B. To

the right of this line the instability, now in the form of a gravitational wave, is slowed

down by ion viscosity.
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Zones in which different effects become important (i = constant)
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Anti-Stokes lines for eq. (31) when o satisfies eq. (39)
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