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ABSTRACT

A new and simple method of finding an invariant, J, of a nearly periodic
dynamical system is presented. The Hamiltonian is written as H = b, + € Q(qipi),
where 2 is periodic in q, and e « 1, The first four terms of the invariant
series are found explicitly in terms of ! using Poisson Bracket and averaging
operators. This invariant is related to the adiabatic invariant and to various
constants of motion discussed in celestial mechanics; such as Whittaker's adelphic
integral. J 1is shown to be an asymptotic constant by using the rigorous methods
of Kruskal (1962) to calculate the adiabatic invariant K; it is found that
K/t = H - eJ, where 7T is the period in q, - The adelphic integral has differ-
ent functional forms depending on the presence of resonant denominators but is
shown to be always a function of H and J. The present method provides a single
functional form which is even applicable when Q is only almost periodic in A4 -

It is also much simpler than the methods of adiabatic invariant theory.

Many authors have found good general agreement between invariants and
numerical orbit calculations. Some examples are discussed here where several

terms of the series are required to achieve agreement near periodic orbits.
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1.  INTRODUCTION

This paper is primarily concerned with dynamical systems that are néarly
periodic in the following sense. The Hamiltonian of the systom is time indepen-
dent and also a function of a small paramcter e, When € = O all motions of the
system execute closed orbits in phase space but for small values of & the orbits
arc no longer exactly closed and slowly drift. One can show (see Section 2) that

the Hamiltonian for such systems can be reduced to the Cform
li=p, +e Qg ; pj) e (1.1)

where  (qj ; pj) are some set of canonical coordinates and Q is a periodic
function of q, . There is also a range of problems where  is only an almost-—
periodic function of ¢y . Many of the resulls with periodic can he extended

to the almost-periodic case and so this class of motions will also be considered.

Being time independent, the Hamiltonian itsell is one constant of the motion
but unless it exhibits some other symmetry, like possessing an ignorable coordi-
nate, there are no other obvious constants. However it is possible to Cind another
integral of the motion, cxpressed as a power scries in € , associated with the
fact thal the system is nearly periodic. It is with this invariant that the paper

is mainly concerncd.

Invariants o’ this type have been discussed previously but in two quite dif-
fercnt cuntoxts, celestial mechanics and plasma physics. In celestial mechanics
various authors (Birkhoff 1927, Cherry 19241, Contopoulos 1960, 1963b, Contopoulos
and Moutsoulas 1965, Whittaker 1937) have studied the motion of a particle necar a
point of ecquilibrium and iooked for another constant of the motion diffTerent [rom
the Hamiltonian. For example, Whittaker (1937) obtains an invariant that he calls
an adelphic integral, ? . He solves Liouville's equation and find ¢ as a serices
of' terms ol decreasing order ol magnitude. TIn his method several difficultics
arisc. lle encounters the problem of small or vanishing denominators which cntails

using differcent techniques in a variety of special cases. As a result the adelphic

integral has not onc but several diflferent analytical forms. Another drawback is



that these methods do not allow any conclusion to be reached about the nature of
the series, whether for example it is convergent or asymptotic. Applications of
this invariant have been Tound in the three-body problem and the problem of the

third integral of galactic motion.

In plasma physics the problem of particle containment has led to detailed
study of adiabatic invariants. Originally they were regarded as quantities that
remained virtually constant as the parameters of the system varied slowly in time.
A more gencral invariant is obtained when the parameters are allowed to vary slowly
in both space and time and a detailed discussion of this case has been given by
Kruskal (1962). The invariant is found as an action integral and is evaluated as
a series of terms which is shown to be an asymptotic series. Examples of the
invariant are the three invariants of a charged particle in a magnetic field and
the magnetic surfaces generated by nearly periodic magnetic field lines. Other

examples arise in the motion of artificial satellites.

It is not immediately apparent and does not seem to have been remarked in the

literature that the invariants obtained in these two situations are equivalent.
The correspondence is most easily seen by considering the Hamiltonian in each case.
The equations that Kruskal deals with are the equations of motion for a Hamiltonian
of the form (1.1) but with Q strictly periodic in ¢, with period T . One
can in general find an invariant as long as T is a function of p, and a slowly
varying function of (qa, Qg «- a3 Pas Po o pn) and the time, t. The dynamical
systems discussed by Whittaker also have Hamiltonians that can be reduced to the
rform (1.1). 1In his case 0 is the sum of several terms periodic in q, Wwith
periods T; (i=1,2 ......) and where the <; are constants, independent of the
coordinates and time. In this paper we limit ourselves to a discussion of dynami-
cal systems having this latter form with € either

(a) periodic in a, with period T independent of space and time

coordinates, or

(b) almost periodic in the sense that it is the sum of several such

terms with periods T; that are incommensurable..

i



The methods used below can however be generalised to other cases where the periods

are functions of the coordinates.

Once the Hamiltonian has been reduced to the standard form an invariant can
be calculated explicitly in temms of ! and this is done by two methods. In the
first of these (Section 3), which is the most straightforward, Liouville's equation
is expanded in powers of & and solved order by order. It differs from Whittaker's
method in several important respects and as a result the problem of vanishing deno-
minators no longer arises. One formalism embraces all the cases that previously
needed separate treatment and a single expression is obtained for the invariant. -
The operator techniques used also allow several terms in the series to be evaluated
with comparative ease. The second method is to carry out explicitly the procedure
described in general terms by Kruskal. This is more tedious to apply but has com-
pensating advantages. It is systematic and so allows one, in principle, to obtain
the series to any number of terms. It also gives information about the asymptotic

nature of the invariant. Kruskal's method and its application are described in

Section 4.

Although these two methods give esseﬁtially the same result it is not obvious
that they are equivalent to the adelphic integral. The relation between Whittaker's
invariant and the forms obtained in this paper are discussed in Section 5. In con-
nection with the problem of the third integral of galactic motion there have been
many calculations of particle orbits (Henon and Heiles 1964, Contopoulos and
Moutsoulas 1965). In Section 6 the numerical data and the predictions of invariant
theory are compared. Agreement is good for sufficiently small values of & although

careful treatment is sometimes necessary in the neighbourhood of periodic solutions

of the perturbed motion.

2, REDUCTION OF THE HAMILTONIAN TO STANDARD FORM

The basic dynamical system considered in the following is n-dimensional and

has a time independent Hamiltonian of the form

H = HO (q_;_ ] pf‘i_) + EI.I:_‘(QJ’_ ’ pi’) s e e (2.1)



where (d{ 3 pi) are canonical coordinates. It is assumed that the equations of
motion for the zero-order Hamiltonian H, can be solved and that all the trajec-
tories are closed curves in phase space, having the same periodic time T. This being
so one can use Hamilton-Jacobi theory (Goldstein 1959, p.280) to transform to new
coordinates (qi ;5 Pj) such that H, is a function of the new momenta, P only.

In particular it is possible to choose (qi s pi) so that Hy = p, . This is done

by solving the Hamilton-Jacobi equation

! oW ;
Hy (qj » 3, ) = Py eee (2.2)

for Hamilton's characteristic function W(qi » Pi). It is then found that

a, =t + Py
and ] snw (2gB)

Bi » i # 1

il

di
where the ﬂi are constants. The new momenta are given by the equations

oW
py =57 (q; » py) . (2.4)
qj -

During the motion described by HO , therefore, q, 1is proportional to the time
and (qg «.. Qn 5 Pg «-- pn) remain constant. The essential step in the following
calculations is to transform to this coordinate system that displays the funda-

mental angle variable, ¢, , of the zero order motion.

Because of the periodicity the point (c[1 see A 5 Py ovo pn) is the same as
the point (qi + T oy Qg ese Qp 5 Dy ses pn). Since the Hamiltonian is a constant
of the motion and a single valued function of position in phase space it follows
that

H(q,) = H(q, + 7)
The Hamiltonian can therefore be written in the required lorm

H=P1+€Q(Pi,qi) (1.1)

with € periodic in q4 period 7 .
There are dynamical systems where the lowest order motion is not strictly

periodic with closed orbits but conditionally periodic, the orbits describing open

= U ow



Lissajous figures. For example if the lowest order Hamiltonian is of the form

n
H = ;iJ %(p£2+ af qiz) vwe (255)

i=1
the system represents n uncoupled simple hannonic oscillators. If all the
ratios ai/dj are rational numbers the phase space trajectories are closed and
the system periodic: If any ratio is an irrational number however then the motion
is only conditionally periodic. In this case one can still transform to new
co-ordinates such that the Hamiltonian takes the form (1.1) but one now finds that

Q is only almost-periodic in q, .

3. THE POISSON BRACKET METHOD

With the Hamiltonian in the reduced form a new constant of the motion J can
now be found different from H. Considering firstly the case with Q periodic
in q, , an invariant is sought independent of time and periodic in q, with

period T . The constant J must satisfy Liouville's equation

D.ICI-
5

_ :
== -[oHl =0 eee (341)

where [J,H] is the Poisson bracket defined by

0J oH 0J OoH ’
[J3,H] = - . een (3.2)
70 9py 94z dq; 9py
. aJ .
With 5==0 (3.1) reduces to the equation

[7,H] =0 . eee (3.3)
J is expanded as a power series in ¢ :
n
J = zg: > Jn i sun ()
n=0

Substituting (1.1) and (3.4) in (3.3) and equating terms in e" one obtains

aJO :
—_— =0 veo (3.5)
. aqi
. and aJ ,
n
aqi = [Jn_.I, Q] - LI (3'6) ‘
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Integration of (3.6) gives

J =/[Jn_1, Q] dq, + G, ees (3.7)
where Gn is independent of q, . Since Jn is required to be periodic in q,
one obtains the periodicity condition :
T
/[JIH, Q] dq, = 0 ees (3.8)
o

To generate the terms in the series for J it is now convenient to introduce some

new terminology. For a periodic function [ of 0 period T , the functions

f and f are defined as follows

T
Fud | a4
R qi
0

/(f - f) dq,

and

-
1l

css (3:9)

sea (3¢10)

with the constant of integration chosen so that f=0. Thus f is the mean

value of T and f the indefinite integral of the oscillatory part of f. It

follows from the definitions that

T =0 ;
d = ar
ax(f) (ax ’
and N\
d a of
ax(f) = (ax

sws BxT1)

eiw (Ba12)

vww (Ba138)

where x 1is any of the variables q; , p; . The following results can be proved

using integration by parts :
fg+ fg=0

and
PN

fé +

|
3

&
-
ol
4=

4
g

+

:fg—
where both f and g are periodic in q, , period

the Poisson bracket relation

[f,g] =: = [g,f]

=hay
09

ees (3.14)

oo (3.15)

Use will also be made of

.o (3.16)



and Jacobi's identity

(f, (&n]] + [n, [£,g]] + [g, [n,£]]=0 . is b3 1Td

Finally for a function K , independent of a,

(k,r] = [K,T] css 0218)
and .
[k,r] = [k,f]. vee (3.19)

The first few terms of J can now be calculated in terms of the operators  ,

~

and [ ]. Equations (3.7) and (3.8) become

Pl 8

Jn = [Jn__I, Q:I + Gn s 00 (3.20)

and

(3, =0 . oo (B021)

n

JO is independent of q, from (3.5) and the lowest order periodicity condition

is obtained from (3.21) :

3, Al=0=1[3, 9] . e (3.22)

In generating a constant of the motion, J, one seeks only a particular solution of

this equation and an obvious solution is

Since any function of an invariant is also an invariant any functional form could

be taken for - Jo . For simplicity the choice made is that

JO = Q . e s (3.23)

(3.20) then gives

J,=[0 a] +¢c,

and the periodicity condition (3.21) gives

(70 o +[c,W =0 . e (3.24)

To solve this equation for G, the first term is rearranged as follows:

(0,9 = - [Ef?jﬂ?ﬂ - [[Ez;ﬂ,Tﬂ using (3.17) and (3.18)
= - [[%,9,q - [[:“7-,?1],5] using (3.14) and (3.19) .
L [Rde =-%[[aa T . | : el (3.25)



Equation (3.24) becomes

[Gg_ -% [ﬁsﬂjsﬁ] =0

With the equation rearranged in this way a particular integral is easily found:

G, =% [ﬁ,n] + F(1) (3.26)‘

where F is any function of Q. In generating the invariant series one chooses
the particular case F = 0. Any other choice merely adds a function of the lower

order invariant JO to J1 .

This process can be repeated, a new partial differential ecuation for Gn
having to be solved in each order. The relations (3.11) to (3.19) allow these
équations to be rearranged as above but the difficulties rapidly increase. By
these methods it was possible to find G, . For the particular case where N=0

it also proved possible to find Ga . To sum up therefore

3= Z el i (3.4)

n=0
where
™
J = [an,n] + Gy (3.7)
and

PR~
(G, + [[Jn_m,ﬂ] =0 .

A solution is

ens (3270

and when Q= 0 G. =%[0,[[8,0]]] + %[[939],[0;61]




The distinction between  being periodic and almost periodic now appears
to have been unnecessary. Instead of insisting that J - be periodic in q,; s one

could have applied the condition that J contain no terms that become indefinitely

large as q, ® e . This is assured il
T
Lim + [ [3,q]
im = ne Qdq, =0 . ees (3.28)
T oo )
o)
With a redefinition of T to be
T
= Lim 4
f‘ = T oo T f d'qi LRI (3-29)
o

(which also includes the previous definition (3.9)) it is apparent that the cal-
culation follows exactly as before. The results obtained in (3.27) therefore
apply both for Q periodic and almost periodic in q, with the averaging opera-

tor defined by (3.29).

It must be stressed that this is merely a formal series solution of (3.3).
The derivation allows no statement about the validity of the solution and whether
the series is convergent or otherwise. However using Kruskal's method one is
able to show thaf it is in fact an asymptotic series in the limit & = 0 , at

least for the case where 1 is periodic.

4. _KRUSKAL'S AVERAGING METHOD

A large part of celestial mechanics is concerned with almost pefiodic systems
and, since one can rarely obtain exact results, a particular aim has been to find
approximate descriptions that are valid even for large values of the time. For |
this latter condition to be realised it is necessary for. the solution to be free
from secular terms and one of the achievements of the subject is to have produced
perturbation techniques that accomplish this. They are all essentially what is

now called "the averaging method" and associated with the names of Poincare (1899),

Bogoliubov (1961) and many others.



(a) General Description of the Method

A general formulation of the averaging method has been given by Kruskal (1962)
and in several important respects he has extended its usefulness. He deals with

a set of equations of the form

dx
X = 5t = Flxe)
such that for & = 0 the point g(t) traces out closed curves (loops) as ¢t
increases. (For this reason his method as it stands is only valid for the case
where the lowest order motion is periodic and not for the conditionally periodic
case.) It is then possible to transform to new variables y and an angle-like
variable v such that 4 is constant on a loop and v varies around it. When

the motions around the loops all have the same period T the equations for Yy

and v become

1l

Yo =€ & Q{,v) eee (4.1)

I

ve = 1+ ef(y,v) ees (4.2)

where f and g are periodic in v period T . When € is small these equa-
tions describe a slowly drifting oscillatory motion and the object of the method
is to transform to new variables z and ¢ which separate the drift motion and
the oscillation. It is required that 2z be periodic in v and that ¢ be an

angle-like variable i.e.

z(y,v) = z(y,v + 7) ver (4.3)
ply,v + 7) = ¢ly,v) + 7 eee (4.4)

and also that the equations of the drift variables should not contain the angle

variable i.e.
Z, = SD_(E) cae (405)

eos (48)

F
i
+
™
g
N
S

Kruskal has shown that it is possible to find systematically 2z, ¢, h and w as

power series in ‘& to any order required. It is also possible (and this is

- 10 =



essential in what follows) to find the inverse transformation as a power series

in e 1i.e. ! o
n
y_=y_(g,@)=Z £ ¥n
n=0
00
n
y =y (_z_,tp)-z RS
n=l

'He is able to show that the solutions of the transformed equations (4.5) and

(4.6) provide asymptotic solutions of (4.1) and (4.2) in the following sense.

If one writes the partial sums in forms like

n

EEnLZ Enbn ) | poe (EuZ)

h=0
then g' and ¢’ are defined to be solutions of

dz_"/dt - e }_][n] (El)

de'/dt = 1 + ¢ ol (z') .

i

In terms of these one can write

o -Z[n] (EI’(PI)

and

v' = v[n] (z',9") .

Kruskal proves that if x% and v* are solutions of the original equations
satisfying the same initial conditions as l’ and v’ then

!

_ O(sn+1)

|
|
Je

and

voo— v = O(sn+1)

for t within a range of order 1/s. That is, solutions of (4.5) and (4.6) give

asymptotically correct solutions of (4.1) and (4.2) as & ~ 0 .,

- 11 =



It is apparent that the equations of motion derived from (1.1) are equations
of the form (4.1) and (4.2) with

(v, y) ~ (g, p)

and
(r, g) ~ (Qp; - 0q)
where
On = A5 etc.

One could therefore find an asymptotic solution of the equations of motion to any
order in & by solving (4.5) and (4.6) for z and ¢ as functions of t and
then substituting the results to obtain q(z, ¢) and 2(5, ¢). However, if one
Sceks an invariant of the motion rather than the trajectories it is not necessary

ecven to solve the differential ecuations for z and ¢ .

Ir Ces is any closed curve in phase space at time t = O and if at a later
time, t, the points that comprised it now lie on a curve Cg , then it is well

known that the action integral taken around Ci :-

{0
is an invariant of the dynamical system. In order to evaluate the integral it is
necessary to know the general form of Cy which usually entails solving the equa-
tions of motion. However, one can see from (4.5) and (4.6) that the points com-
prising a ¢-loop (a closed curve on which z is constant and ¢ varies) remain
a ¢-loop as the system develops in time. Choosing C; to be a ¢-loop one can

therefore define an invariant K:

T

aqi

K(z) =f§ Q-QC[:fpiﬂdtP 2 ees (4.8)
(8]

The time rate of change of K 1is

Kt:}{(at'gq—gt'du) ,

the second term having been integrated by parts i.e.

o # (Hq- dq + HR- dR)

. ﬁ:dﬂ

- 2

e
11



If p and g were known exactly as functions of z and ¢ and used to evaluate
this integral then K; would be exactly zero. However p and ¢ as functions
of z and ¢ are only defined as power series in e . If the invariant is cal-

[n] [n]

culated to order n wusing the partial sums p and ( instead of p and ¢

then the integral does not vanish exactly. One finds

1
Ktn] -0 ()

The quantity K 1is therefore only asymptotically invariant.

(b) The Coordinate Transformation

As a preliminary to calculating K the transformations

(¥, v) 2 (2, o)

are obtained. From (4.1) to (4.6) one finds
Et = ED(?_:) = E:‘g'_zK + (1 & Sf)g.v v 0 (4’.9)

and
9o = 1 + ew(z) =sg-tp‘x+(1+af')(pu eee (4.10)

9z 0z ;
where z = > is the tensor with 1ij-th component 5;1 etc.
‘ i

On integrating over v and applying the initial conditions

zZ=Y
and
¢=0 oo (4.11)
when '
v =20
(4.9) and (4.10) give 5
Z=Yy + e/dv (D'(Z'}_&.EX“ fgv) eee (4.12)
and Ov
9=V + & ]adv (olz) - g .?1 - f@v) i eeo (4.13)

o]
There is some freedom in choosing the initial conditions of the transformation.
In the work of Bogoliubov and Mitropolsky (1961) the integration constants are
chosen to eliminate the contribution of the lower limits to the integrals in

. (4.12) and (4.13). This makes the transformation formulae .somewhat simpler but



the only convenient choice, if the inverse transformation is to be obtained also,

is that given here.

If one now writes

(¢y z), H(Z) = (w, h) ,

1N
1l

eee (4.14)

1l

Y= (v, y) and G(Y) = (f, g)

equations (4.12) and (4.13) become
vV

_Z_=X+e/dv (H(z) - G- Z,) . ee. (4.15)
0

The conditions that z be periodic in v , and that ¢ be an angle-like variable

with period T can be written

T

fdv (H(z) - G- %) =0

A 4

or
T
HQ) =+ /dv G -2, + H(y) - H(z))

! Y

:G-;_Y+g(y_) - H(z) . een (4.16)

Equations (4.15) and (4.16) can now be solved iteratively to give a power series

n
£

Zn . H must also be expanded as follows

o0
expansion of Z = %

H(z) = H,(z) + eH, (2z) + ¢°H, (2) + ...

=0
= Hy(z,) + e, (z) + z, 72 Holz))
2 0 1 d 2
+ el (z)) + 2z, 57 H, (2) +3 (z, 53) ﬂo(go)) ees (4.17)

It is convenient at this stage to introduce the ~ operator defined by

v
F:/(r-?) dv ' eo. (4.18)
Q

where f is any periodic function of v . Comparison of (3.10) and (4.18) shows

that f and f differ only by an integration constant. The ~ operator has

= T4



slightly more complicated properties than the operator as follows:

f=0,f+0 ver (4.19)
and .
9 = of
g;. (f) = ) =0 . eee (4.20)
However
D e =
55 (f) =f -1 eee (4421)
and -
(g—i) = f(v) - £(0) wee (s 22)

where f(0) is f evaluated at v = 0. One can also show that

fg+ fg=71g+ g er (4.23)
and — N 'N
fg + fg = g + Ig + Tg . eer (4.24)

We can now proceed to calculate the required transformation, using (4.15) to

(4.24);
Z, =X
H, = &
v
—:L:/ dv(G - G) = -G
0
T
H == '/ dv (- G+ G, + 2+G )
B X g. _y_
0

Adding ?Ev » which is zero by (4.20), to the integrand we can write ﬂl as

Eiz_g'gz"'g'gzz_G QX-I-Q.QX
and similarly
T N—r ~
_Q:Q'gx_g’.-g_ E
Evidently one can find Z and I to any desired order in e . To find the

inverse transformation we start with the equivalent of equation (4.9) for Y
Y, = eglz, ¢) = F‘llx-z_ + (1 + ew) l‘P

and follow exactly the same procedure. As shown by Kruskal the series and their

inverses are unique and the choice of integration constant shows that the series

- 15 -



are equal at v =0, ¢ = 0. To order e? , therefore, the transformations are

Z=Y-eG+¢e® (GG, -GGy + 0 (s%) o (4425)
5 T o B
Y=2Z+eG+e® (GG, ~G-Gy) + 0 (&%) sun (9:28) "

The equation of motion for Z, gt = eH, looks different according to which trans-
formation, Z *Y or Y = Z, one calculates but with the aid of equation (4.24)

they can both be shown to be

Z, =eG(2) - €° GG, -GG

1Q]

) . een (4.27)

N

For the Hamiltonian system (1.1), Y and G can be chosen as

¥

(qd; p)

it

[}
1l

(Qp; - Qq) .

The averaged coordinates Z are denoted by
Z=(Q; P

For any function S(q ; p) the dyadic products of the transformation formulae can

be conveniently written in terms of Poisson brackets,

.S, =- Q- Q-s.= [0 .
The formulae (4.25) and (4.26) can then be written
a il e :
2 3
B:E+eﬂg—e [Q,Qg]+£ [Q,Qg]—l-o(e ) eos (4.28)
g o —
Q=q-¢e0 +e2 (0,0 1-¢?[0,0]+0(e?) wwe (B28)
= 2 B 4
—p-e -2 [,0.]+ e [a,0, ]+ 0(e®) vis [ 500
E=="" gl gl
— s
= 5! 2 [ -e¢? [n,n 8 ee. (4.
Q—Q+EQE+ € [Q,QP] e? 9, 2]4—0(8) (4.31)

The equations of motion of the averaged variables P and Q are

gt=_e‘r§_52f?3,ng]+ s”[ﬁ,ﬁg]-a-o(aa) ee. (4.32)

g‘l} = 8?.12 T [E,QE] - R [_Q, 62] + O(Ea) een (4.33)

- 16 =



(c) The Action Integral

It is now possible to evaluate the action integral
T

oq; oqy
K = pl “ﬁ; dQ:L: T pl E (4. 8)
0

The leading term comes from
T

o~
ody 1 ~ ~ - = :
P1zq; = qui[pi- e, - sz[n,rb1]+eﬁ[n,%1]+o(ea)}
0

x[1+s((2p —?)]))+€2(F—'F-)+0(83)}
1 1

Al

+E:3,:ﬁ T +O(83) .
%,
oq

The second order term in =—= denoted by (F - F) has zero average and does not

0Q,
affect the result to this order.

The remainder of p-dgq gives

I

- .
P, a—(_-‘-)--':- ;/in {Pi - eQQi+0(s )} [E(QPi_ Opi) + e®(F-F) + O(e )}
0

~

==& %y (Qpi - T)Pi) F D)

Now

QQ' (9, - QP-) - (ﬂQi - bQi) (Qpi - Qpi) from (4,19)

5 & (QQi - DQ;L) (nPi - npi) using (4.23)

|—

=3 [(2-10, (2-10]

(%, o - 1%,

|
b=

= T e



Also

E?=::? ; —_———
[Q,QQi] - [q, fbi] =-[0, QQ_]‘_] - [q, fbi] using (4.24)
~  T—

(0,0 -a0)] - [0, - 0)]

(9,0)] - [0, a] + [%,000)]

- [0, q

]

As a result

aqi

Pi 3q, ~

& - 02 e 5
Pi-eQQ1+-—2— [Q,Q]+—2—-[Q,D]+O(e)

Transforming back to coordinates p and ¢ using (4.28) and (4.29) and trans-

» A = .
forming from ~ to operators using

T= 0- Q(0)
one obtains finally
M (-0 - <3[D, 0] + & [0, 8] + 0(c?) (4.34)
P; 3Q, - P, + B - - € . + 5 5 + € — .
One then has
oq.
K= 7% -'-—l
1. cQ,
—H - eT 0 - et ([B,h]_-’z—[n,h])

This is obviously related to the invariant J calculated from the Poisson bracket

method, by

K= t-¢e¢1tJ ees (4.35)

i

at least to order &% .

The advantages of the Poisson bracket method is that the first few terms of

kik_ the invariant can easily be found. The advantages of Kruskal's method are that

My

"it is systematic (although the task of calculating higher order terms would be
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arduous)‘and that one shows that the invariant is an asymptotic invariant, The
correspondence of the two methods to terms of order e? suggests that the Poisson
bracket method generates a true asymptotic series. Another advantage of Kruskal's
method is that one obtains some physical understanding of what the invariant is.
In a periodic dynamical system with an ignorable angle variable the corresponding
action is a constant of the motion. In the present system which is nearly perio-
dic there is an ignorable (in an asymptotic sense) coordinate ¢ . The invariant

K is the action corresponding to this almost ignorable angle variable.

(d) Reduction to a System of Lower Dimensions

Having found a constant of the motion it is well known that new canonical
coordinates can be found in which the constant is one of the new momenta. In fact
Kruskal shows that new coordinates can be found of which K and Q, are a con-
Jjugate pair. For the particular systems considered in this paper such a set of
coordinates is easily obtained. Although (Q; P) are not canonical coordinates
the set of quantities with K replacing P, are. This can be demonstrated

directly by transforming the Hamiltonian to obtain
B =K+ el Qg e O 5 Ko Py wes P) # O[59) e (4.36)

The equations of motion, (4.32) and (4.33), are of Hamiltonian form with the above
Hamiltonian.

Another method of finding new canonical coordinates (Q' ; P’) is to solve

the Poisson bracket relations

i/ I ! )
[Pi’ Pj]:[Qi’ QJ]ZO
ees (4.37)
! 1]
where Pi is chosen equal to K. The equations (4.37) have one set of solutions

i}

/ ., 88
P p; + s(fhi + aqi) + 0(e®), 1 #1

~

Q) = q; - e(fy, + ;p—is) + 0(e?)
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where S 1is any function independent of qi . There exists therefore considerable

freedom in finding new canonical coordinates. If the particular choice
§=- q, = 0)

is made, the coordinates are identical with the set mentioned in the previous para-
graph since
0= O~ 0 lg, =0) .

1

As in Section 3(b), the only one of these transformations that can be readily

inverted is the one obtained from Kruskal's averaging method.

In the reduced Hamiltonian (4.37) K appears merely as a parameter and the
s&stem has been effectively reduced to n-1 dimensions, If this Hamiltonian con-
tains a further small parameter ©& , such that for 8 = 0 'the motion is once more
periodic, then another adiabatic invariant exists and can be calculated by the
methods of Section 3 and Section 4. it is worth remarking that these other perio-
dicities may not appear in the original Hamiltonian, only being created by the
construction of the first invariant and the subsequent transformation of the
Hamiltonian. This behaviour occurs in plasma physics where firstly the magnetic
moment can be foﬁnd and subsequently the longitudinal and flux invariants. A

recent derivation of these from Liouville's equation but not using canonical

formalism has been given by Hastie, Haas and Taylor (1966).

5. WHITTAKER'S ADELPHIC INTEGRAL

A dynamical system of the type under consideration is the motion of a particle

near a point of stable equilibrium. The Hamiltonian can be written (Whittaker 1937

H:Z snl-[n eee (5.1)

n=2

Ch. XVI) in the form

where Hj is a homogeneous polynomial of a degree n in the canonical coordinates

. (q} ; pj) with i =1, ... N. In particular H, is of the form (2.5) so that to



lowest order‘the system can be either periodic or conditionally periodic. Invariants
of such systems have been studied extensively (Whittaker 1937, Cherry, Birkhoff
1927, Contopoulos 1960, 1963b) and Contopoulas (1963a) has shown that the various
treatments are equivalent. Whittaker's method is to change to new variables

qf " pf that reduce the Hamiltonian to

N
H= z{: (ay p;)'+ H, + H, ..... sis 5:2)

r=1
where the ap are the periods of the lowest order simple harmonic motions. Hp is
an homogeneous polynomial of degree n in (pi)k and also a function of sin qf and
co5 qf . One now looks for a time independent constant of the motioﬁ, $ and for
simplicity only a two dimensional system is 60nsidered. ¢ satisfies the equation

[e, H] = O eos (5.3)

which when expanded gives successively .

a@Q 0@
e _-2 —_—
Qy aq” +a, aq T o, eee (5.4)
a@a 3@3
@y ?ﬁzr‘ + Qg BEE— = [QQ, Ha] etc. .... (5.5)

To find a solution @ different from H one can take &, to be any function of
p: and p; independent of H_, (for example Whittaker took &, = aipg - agpg) and

the &, can be found as particular integrals of the successive equations,

A feature of this solution is that in the series one finds coefficients of

the form

(a, ¢ * aym)

where € and m are integers, the range of possible values of which increases as
the order of the term n increases. This means that, with ai/a2 irrational and
for sufficiently large n , there are in the series coefficients that are arbitra-
rily large. When a,/a, is rational the problem is even more acute since in the
formal series for @ there appear some coefficients with vanishing denominators.

Whittaker overcame this difficulty using two techniques. In solving for @&, he
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had selected only a particular integral but could Eqﬁally well have added an arbi-
trary amount of the solution of the homogeneous equation. In some cases it proves
possible to avoid zero denominators ﬁy a suitable choice of these constants in the
lower order terms. For others however it is necessary to renormalise the series
solution for & by, effectively, multiplying by the zero denominator, the new
form for © now starting with the term that previously had the troublesome

coefficient.

‘The problem with these methods is that it is not clear at any stage whether
further difficulties will arise in higher order terms. There is also the curious
point that the formal expression for the adelphic integral is different depending
on whether ai/dz is rational or irrational and also whether terms of a particular.

type appear in the Hamiltonian.

The Hamiltonian (5.2) can be written in standard form (1.1) using the trans-

formation
1
Py, = @pY + DG q, = E(Qi /o, + ay /a,)
1 ' . LR (5-6)
P, = @,py = agpy a; = '2'(‘1'1' /a'i B flg /‘12)

and the invariant J of Section 3 calculated. The question arises as to whether
the adelphic integral and J are equivalent or not. The main disparity is that
the lowest order temm of the adelphic integral is a function only of p, and pg
(except in some special circumstances associated with rational values of a,/a, )
whereas the lowest order term in J is apparently only independent of q, . How-
ever one is able to show that the first term in the series for J 1is in general

a function of p, and p, only (depending on qz; only when a,/a, is rational).

The way in which this occurs is as follows; (1 consists of a number of terms like

COs

n sin {(na1 +ma)q, + (na, - ma,)q, 1 s (Ba7)

where fmn is a function of p, and pg only and m and n take a range of
integral values. The lowest order term in J 1is Q which is only non-zero if

there are values of m and n such that

&y

G, n

e I



and then
0 = fmn cOs i(ncr,1 - ma,)q, ! vee (5.8)

Except under these special circumstances = 0 and the lowest order tem is

1 A . . .
J, =3 (2, ). This quantity consists of terms that are averages over q, of

products of two expressions like (5.7) and leads to integrals of the fomm

T
=" lT/dqifcos {((n-K)a, + m-£)a)q, + ((n-K)a, - (m-£)a)q,]
(o]

ees (5.9)
where f 1is a function of p, and p, only and n,m,k and £ take various
integral values. When n =k and m=4£ this integral is equal to f and there
always occur some terms of this form in J, . The only way for I to be non-zero

and to depend on (, is for

)
=

]

2 'HQ

~

= 2

(i.e. for o,i/a.B to have a particular rational value).

So, apart from these special rational cases, both H and J have lowest
order terms that are functions of p, and p, only. It is possible therefore to
construct another invariant (a function of J and H) that has as its lowest order
term any function of p, and p, whatsoever. This in fact is what the adelphic
integral is. In the three examples quoted by Whittaker (1937 Ch. XVI) onc can
show that the adelphic integral is a function of H and J. Examples worked out

by Contopoulos and Moutsoulas (1965) are also equivalent to J in the same way.

The advantage of the methods of Section 3 and Section 4 is that they overcome
all but one of the difficulties encountered by Whittaker. The problem of vanishing
denominators does not arise at all. A single expression is obtained for the inva-
riant irrespective of the value of ai/dz and, for the rational case at lcast,
one can show that the series is asymptotically invariant. The problem of small
denominators when ct,i/a,2 is irrational still occurs however and it is this fact

that prevents one proving simply that the Tormal series is asymptotically invariant

for all values of .a, /a, .



6. COMPARTSON WITH NUMERICAL DATA

. A point mentioned by none of the methods is just how small e should be for
the analysis to be valid. There is in fact a useful range of values of & for
which the theory applies as can bé seen by comparing the invariant theory and the
results of numerically integrating the ecuations of motion. It had been intended
in this section to make a detailed comparison between calculation and theory for
a simple example. Recently, however, Contopoulos and Moutsoulas (1965) have pre-
sented results of computations for the dynamical system with Hamiltonian
{5

H = X% % 37 % 87 2% . ...(G.i)'

1
2
They have also applied tﬁe methods outlined by Whittaker and found the adelphic
integral. The comparison between the two was close even taking only the first
term ol the invariant series and improved as the second and third terms were
included. The detailed work of these_authors gives ample evidence of the validity

of the invariant theory even for values of & where the drift of the orbits around

the invariant surfaces is substantial.

Henon and Heiles (1964) have also described orbit calculations for the system
with the Hamiltonian

_3.:3)

g ¥ . sow (642)

H:%(f{9+§9+xz+y3+2x2y—-

This represents motion in a potential well with a potential

(x® +y® + 2x% - 37

o=

U =

The equipotential lines are illustrated in Fig.1. There is an additional feature
that arises in the study of this dynamical system that is worthy of mention. The
topological structure of ihvariant surfaces, even for small €, can be complex and
the lowest order term of the invariant may not represent the surfaces adecquately.
To explain how this occurs this example will be considered in more detail. The
invariant surfaces for a two dimensional system lie in the four dimensional phase
space (x, y ; %, ¥). If particles with a constant energy H = are considered, the
Hamiltonian can be used to eliminate one of the coordinates, x say. The surfaces

for given H, now lie in a three dimensional space and some knowledge of their
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structure can be obtained from their cross section in some plane, x = O say. Fig,2
shows the section of the surfaces for Hy = 0.01 in the plane x = O obtained
from numerical orbit calculations. (An orbit was integrated and its intersections
with the plane x = O plotted. As ﬁhe distance along the orbit increased the
intersections gradually traced out the cross section of the invariant surface.)
Henon and Heiles (1964) presented diagrams of this kind but only for large values
of Hp in order to show how the invariaht surfaces disintegrated. The present
authors also made orbit calculations for the same potential for smaller values of
H, and Fig.2 is reproduced from this data. From the symmetry of the potential
one can see that, for all values of the energy, there exist periodic orbits lying

along the lines RZ, QY and PX. These particular orbits transform in Fig.2 into

the points A and B and the bounding curve of the diagram.

The invariant J can be calculated as follows. Using the canonical trans-

formations
X =v2p, sin q, s Y =v2pa sin qg

Xx=v2p, cos q, , ¥ =V2p, cos q,
followed by
1
Pj_::pj_"—p:; Q1=§'(q1+q2)
1
Po=py - Py QE:E((h_qg)

the Hamiltonian (6.2) reduces to the standard form with & =yH . It is found

that 0 is zero so that the lowest order invariant is

which when evaluated gives

1 : 5 :
Jy =73 L(Spf - 4p,p, + 5p, + 14p,p, cos 2(q, - qB)J saw 18a3)

-,

TransTorming back to (x,y ; %,¥) one finds that for x = 0 and for particles with

energy Hy the invariant becomes

J, = f% Hy + 28 y2(y? + ¥7 - 2i,) eo. (6.4)

Fig.3 shows the surfaces of constant J, and it is apparent that although they

Iarc similar to Fig.2 sufficiently far from A, B and the bounding curve they
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differ substantially near these periodic orbits. It can also be seen that the
function (6.4) is topologically unstable in the neighbourhood of the line y = 0.
Further small terms in the series could alter the topology of the function drasti-
cally. The next term in the series J, was therefore evaluated and Fig.4 shows
the contours of (J, + &J,). Although the topology has been altered it is still
different from the orbit calculations; the invariant predicts that the periodic
orbits are unstable whereas the numerical data shows that they are stable. How-
ever, yet another term in the invariant series is required in order to determine

the topology near the periodic orbits. Near A the invariant is of the form

J, +eJ,=y® -200yy
where (y y) are cartesian coordinates with origin at A and o is some positive
number. This results in the J-contours near A being hyperbolic. One can sec
that the addition of a term &% % §? with P > ¢ would change the surfaces from

hyperbolic to elliptical form and such a term could appear in J, .

Another example of this behaviour occurs in the study of magnetic surfaces
generated by almost periodic magnetic field lines (Aleksin 1962). When small
helically symmetric components of a particular form are supcrimposed on a uniform
magnetic field the lowest order invariant surfaces are concentric cylinders. How-
ever in the neighbourhood of the axis the magnetic surface topology is only
adequately described by calculating the first three terms of the scries. Another
example, so far unexplained that may have a similar explanation concerns the mag—
netic moment of a charged particle. Numerical orbit calculations (Garren et al
1958) show that the particle orbits do lie in surfaces for sufficiently small
values of the Larmor radius. However the topology of the surfaces is more complex

than the first three terms of the adiabatic invariant predict.
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orbit calculations: H = 0.01
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e E ‘




