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ABSTRACT
This paper discusses the radial hydromagnetic oscillations

of a plasma cylinder confined by an axial magnetic field for

the general case of an arbitrary distribution of mass.

The oscillation freﬁuency is expressed in terms of the value

for an annular distribution multiplied by a correction factor, g.
3 Values of g are calculated analytically for several simple

distributions and the results compared with those obtained by a
numerical method and using a variational principle. The numeri-
cal and variational methods are used to calculate g values for
other distributions, including examples from the Hain-Roberts
theta-pinch code and from a theta-pinch experiment. The wvalue
of g varies from 1 for an annulus to about 1.4 for a distribu-
tion peaked on the axis. These simple calculations show that an
accurate value of the plasma mass can be obtained when the oscii-

lation‘frequency and density distribution are known.
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1. INTRODUCTION

Radial hydromagnetic oscillations of a plasma cylinder confined
by an axial magnetic field in the theta pinch have been studied by
several authors. NIBLETT and GREEN (1959) calculated the frequency,

w , analytically i{for the simplest case where the plasma lies in an
annulus; the result is 2 :,J%; where M is the mass/cm length
and B the external magnetic field. Good agreement was found bet-
ween theory and experiment for a reversed field theta pinch im which
the plasma was observed to lie in an annulus. TAYLOR (1959) treated
the more general case which includes different radial density distri-
butions and,calculated analytically the period for uniform distribu-
tion énd also for some other distributions which could be conveniently
expressed in simple analytic form.

The present work extends Taylor's theory to include any arbitrary

digtribution.of mass. The results are expressed in terms of a correc-

tion factor g by which the expression for oscillation period for

an annulus must be multiplied; g 1is defined by the expression
., B2
w =g M
and for an annulus g = 1

Cortrection factors are computed for the distribution used by Taylor
and also for a number of other distributions including examples from
the HAIN-ROBERTS (1960) hydromagnetic theta pinch code and from the

mega joule theta pinch experiment (BODIN et al, 1965).
2. THEORY

The model and equations used in calculation of the natural
periods of oscillation of a plasma cylinder are the simplest possible
cases of those considered by TAYLOR (1959). Consider an infinitely

long cylinder of -plasma of pressure po(r) containing a magnetic



field, Bo(r) and surrounded by an infinite vacuum containing another

uniform magnetic field, B, , such that
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Azimuthally symmetric radial oscillations of this plasma cylinder
are assumed to be governed by the linearised magnetohydrodynamic

equations:
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where p = plasma density, and the subscript, 1+ , refers to pertur-
bation quantities. As the motion of the plasma is only two dimen-

sional the equation of state will be approximated by the adiabatic

law p = p? so that
dp dp
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Assuming that perturbation quantities are of the form 9, = qi(r)
equations (1) - (5) reduce to
B2
v d 1 d 2 -
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Integrating this equation through the boundary at r = r gives the
boundary condition
d '
e o) = 7
drl\l,J_k 0 (7)
r =T
o

and at the origin, V (0) = 0.



For purposes of numerical computation the equations are put in

dimensionless form as follows:

The mass cf the plasma per unit length is
T
(9] .
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where 5 is the maximum number density and m . the ion mass, so

that equation (6) may be rewritten as

4 (14 2g® _
s(igev)rZaev, -0 e (8)
4
s f=/n<a)f»;da
0
A variational principle for g@ may.be found by multiplying equa-

tion (8) by V{ and integrating t he result from 0 to 1:
1
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An approximate value, G* , of g* for any density profile m (&)
may be calculated as follows: insert into equation (9) any trial
function, V , which satisfies the boundary conditions and evaluate

G= ., By allowing V to depend on one or more parameters, o, , an
an upper bound to g may be found by minimising G? with respect
to the @, - Thus, the best wvalues of the @, are given by the

solution of the equation:
G2

a .
1

Q

Q

A simple trial function which satisfies the boundary conditions is



The correction factor is then given by
. i i ;
2 e - e
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where the fi are the moments of the density distribution,
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Evidently, g cannot be simply related to any one feature of the

density profile but a knowledge of the first four moments will enable

an upper bound to the correction factor to be calculated with ease.

For the case of uniform density, m (§) = 1.0 , the variational
principle gives G = 1.21. In this case the solution of equation (8)
is V1 = J1(2gé) and the boundary condition gives
2 =
JO( g) 0
So, g = 1.20, and the simple trial function has given a very good

approximation.

3. NUMERICAL STUDIES

Values of g appropriate to several density profiles computed
by the Hain-Roberts program and profiles measured experimentally in
the Thetatron were calculated using a general complex eigenvalue
program (McNAMARA, 1966). As a check on the program g was calcu-
lated for density profiles pl(r)x ro, r?, fér which analytic
solutions were calculated by Taylor. Using a ten-point dgfference
scheme to compute the eigenvalues of the differential equation (8)
gave errors in g less than 3%. The computer program increased the
number of points in the difference scheme until the computed value
of g was constant to 1%. The values corresponding to the above
profiles are g = 1.20, 1,11, 1.09, 1.00 respectively, It is

interesting to compare these results with the values of g derived



from the variational principle (10), 8. = Ta2d ¢ 1alliB, Teld, 1.235
These values provide an upper limit on g and it is not surprising
that the simple trial function used should give a poor result for

the last case, where all the plasma is concentrated in an annulus.

Two experimental density profiles measured at dif ferent times
(2 and 4 usec respectively) in the mega joule theta pinch experiment
BODIN et al, 1965) are shown in dimensionless fomm in Fig.1. Because
the plasma tends to be concentrated near the axis in these profiles

the g wvalues (1.20, 1.26) are large compared with the value,

I

g 1.0, for an annular distribution,

A direct comparison with experiﬁent cannot be made as the oscil-
lations are not observed in the highly compressed plasma when good
measurements of density profile are possible. However, on the basis
of other measurements (BODIN et al, 1965) it is known that all of the
plasma is swept up in the initial implosion and simultaneous measure-
ments of frequency and magnetic field give a g wvalue of 1.1 to 1.15,
This agrees with the theory in this paper and the density profiles

expected early in the discharge.

Three further examples are shown in Fig.2 for theoretical
profiles taken from the Hain-Roberts computations. The bias field is
0, £ 2 kg and the values of g are (1.14, 1,13, 1.16). A precise
comparison with the Hain-Roberts code is difficult because the
external field is changing rapidly, but the average values of g are
g = (1.09, 1.11, .99). Agreement is fair for parallel and zero bias

field but not very good for reversed bias field. These results are

summarised in Table 1.



Table 1. Comparison of Various Calculations of g.

Analytic and/or g from simple variational
Profile
computed g. principle, equ. (10)
r’ 1,20 1.21
r? 1,11 1.15
r* 1.09 1.14
r 1.00 1.23
Experimental 1 1. 21 1,29
& 2 1.28 1.45
Numerical Experiment
H-R 1 1.14 1.09
H-R 2 1,13 1.11
H-R 3 1.16 0.+99

4., CONCLUSIONS

Three methods of calculating the frequency of radial hydromag-
netic oscillations of a plasma cylinder using a very s imple model
have been studied. Numerical computations were shown to agree with
arvalytic results and then applied to cases where an analytic solution
is not possible. Comparison with computer calculations with the
Hain-Roberts code show this simple model to be quite good.‘ A varia-
tional principle for the frequency gives good results, for the cases
where an analytic solution is possible, even with a very simple trial
function. Using this variational principle and a knowledge of the
density profile the g-factor can be calculated and the plasma mass
determined from the oscillation frequency. In the early stages of

the megajoule theta pinch experiment the g wvalue was 1,1 - 1,15.
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Fig.1 (CLM-P 117)
Experimental profiles: 1) ng = 3.4.101¢ em—3, f=.089,
g=252: 2) nyg=1151016cm—3, f=.24, g=2.39



Fig.2 (CLM-P 117)
Hain Roberts profiles

(1) no =1.9%x10'6 cm-3, no bias, f=.23, g=2.27;

(2) ng =.95x101¢cm-3,+ 2.0hg bias, f = .32, g=2.26;

(3) ng =2.2x1014cm"3,-2.0 hg bias,f = .21, g=2.32;

(4) for comparison, Taylor’s p4 profile, f=1/6, g =2.29









