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ABSTRACT

The discussion of the motion of single particles in
stellarators is simplified by identifying three distinct
groups of particle, These groups are treated by approximate
analysis and by numerical methods. It is shown that, unlike
an axisymmetric system, the region of a stellarator with
surfaces closed about a magnetic axis need not form a per-
Tect trap. In fact, unless the toroidal curvature is very
small, particles in one of the groups, those mirrored between
maxima of the helical field, will drift out beyond the separa-

trix no matter how large the magnetic field strength.
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1. INTRODUCTION

Single particles moving in toroidally helical stellarator fields
can be divided into three categories. (a) Passing particles which
pass completely around the minor cross section without being reflected.
(b) Blocked particles which, although they pass through several
helical field periods, do not pass completely round the minor cross
section: instead they are reflected, symmetrically about the median
plane, because of the gradient of the toroidal magnetic field (Be).
(c) Localised particles which are trapped within a single helical
field period and have orbits which are not symmetric about the median

plane,

The drift motion of passing and blocked particles is averaged
over many field periods, consequently their motion can be treated
approximately by replacing the real field with an axisymmetric field
having the same rotational transform, This approximation is discussed
in Section 3. The localised particles, being restricted to one helical
field period, move in a system which is not axisymmetric, and an

approximate treatment of their motion is given in Section 5.

As is well known, the drift surfaces of the passing particles are .
similar to, but displaced from, the magnetic surfaces; the displace-
ment tending to zero with the Larmor radius. The blocked particles
make larger excursions from the magnetic surface but this excursion
still tends to zero with Larmor radius.' On the other hand, because
they are confined to a single field period, localised particles have
drift surfaces which are not strongly related to the magnetic surfaces.

In many cases they may 'escape' no matter how small the Larmor radius.



In Section 6 these results of the approximate theory are supported.
by comparison with numerical guiding centre computations for specific

¢ = 3 toroidal stellarators.

2, DEFINITION OF CONTAINMENT

Stellarator fields consist of two regions separated by a separa-
trix (which may be broadened into a separatrix region®). Magnetic
field lines inside the separatrix encircle the magnetic axis, whereas
lines outside the separatrix pass between the conductors generating
the helical field. Particles which drift onto these outer lines may
undergo mirror reflection and sooner or later return to the interior
region, However they will then have sampled lines which intersect,
or pass near to, material conductors and the behaviour on these lines
will be typical of mirror confinement rather than of stellarators.
Consequently we shall consider a particle to be confined only if its
guiding centre never passes outside the separatrix. We shall show
that in this sense a stellarator need not form a perfect single part-

icle trap.

This concept of confinement is different from that used by
Morozov and Solov'ev® and Pom"yaclukhin‘3 where a particle is assumed
to be confined if it has a finite displacement from an initial

magnetic surface.

3. APPROXIMATE TREATMENT OF THE MOTION
OF PASSING AND BLOCKED PARTICLES

The coordinate system is shown in Fig.1. All lengths will be

expressed in units of I the maximum separatrix radius, so that r
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must always be less than one for confinement. The Larmor radius FL
is defined in terms of the total velocity V and the field B0 on

the £-winding axis.

mcV
L~ aByr,

s 1

r

where m and q are particle mass and charge. The rotational

transform in passing once around the machine will be taken as:
L(]"): LO l“2n faee (2)

where, n = £€- 2 and £=number of pairs of conductors in the £
winding. We will set 'y to the maximum value for small aspect

ratio stellarators? i.e.

by = pr/6 s (3)

where p is the number of field periods on the torus.

In discussing passing and blocked particles the real stellarator
field will be replaced by an axisymmetric field which has the same

rotational transform:

B(P/BO = (p/12R)r*n* 2 oee (4)

By/By = R/R = [1+(r/R )cos cp]—i exs LB)

If A= curl B, is the vector potential of this field, then the

motion of the particles in the axisymmetric field is given by,

RA, + (mc/'e)R.Ve = const. ees (6)

and the flux surfaces by,

RAe = COHSt. L (7)



which may be expressed in terms of the field as,
. r

Il

RA@:i/- Ry By, dz
0]

or Ris = vy pBy r™¥ 402(2n +2) wss 18)

The velocity Vg can be expressed in terms of the usual invariants

2e/m

(Vﬁ + Vj) = Vs? |
j eee (9)
_ %2
2u/m = VJ_/B

where V,, and V, are velocity components parallel and perpendicular

to g. Then

(mc/e)Vg = rp rpm Bp By [1- pB/a]PZ/B eeo (10)

and substituting (8) and (10) into (6) we obtain for the trajectory of
the guiding centre

I
p rpantz . Be[l—pB/E:]é

= const ees (11)
12 Ry rp (20+ 2) B

1
where the quantity [1- MB/’;;]’é changes sign on reflection of the

particle.

Since all the passing and blocked particles intersect the plane
¢ = 0 we will consider the containment condition for particles start-
ing in this plane. Two such orbits are sketched in the (r,¢) plane in
Fig.2. Consider a particle starting with a guiding centre at the point
A; this will be most difficult to contain if it is just passing or
just reflected at a point such as B oﬁ ¢ = m= where the Bg field
is a maximum, AEBFA and AEBGC are limiting orbits for passing and

blocked particles.
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If we make the additional approximations Be/B ~1 and r/R « 1
then we can obtain from (11) simple conditions for these limiting
orbits, and hence all the guiding centres of the passing and blocked
particles, to remain within r =1 (i.e. within a radius equal to the
maximum radius of the separatrix in the original fields). For the case
E = 3 the condition for confinement of all passing particles origina-

ting at r = rg 1is,

] % (1+ro)t
A 5 M8t (1 srak e (12)
rL P (1— I'04)

and for containment of the blocked particles is;

1
._l.>48Roé . (ro+r1)1§ + (p1+1)’/§
r £~

" 5 (1-r9) see (13}

Since rg <r, < 1 it will be sufficient to put r; = % (1+ rg)

when evaluating (13).

4, CONDITION FOR A PARTICLE TO BE LOCALISED

The localised particles are trapped within one helical field
period and we will represent the field for these particles, for £ =3,

by the approximate expressions:

By r® Sin(3¢- po)

[==]
o
Il

B, = By r? cos(3¢-po) eee (14)

Bg = B, [1-r cos ¢/R; ]

where (Bt/Bgy) ® = (p/Ry)>/18



and the rotational transform is given by (2). For a given ratio of
separatrix to £ -winding radius the quantity (p/Rg), which is propor-
tional to the tangent of the mean winding pitch angle, is typically

1.5 in a high shear stellarator with-a 45° degree winding?,

The condition for a particle to be trapped within a field period
is
(Vu/VL)E S (Brax = Bpin)/Bmin asm 15)

where (V,/V,)o is the value in the centre of the helical mirror and

the variation of B is taken over one field period. For r/R small,
(B/By)? = 1 + (Bt/Bg)® r*
and with Bpax/Bnin ~ 1 and (Bt/Bo)2 « 1, (15) becomes:

(Vi/VL)§ < 0.5 (Bt/By)? [ rmax® - rpin®]

The bracketed term can be evaluated by integrating

RA® _ dr
By By

over a complete field period and the condition for localisation

becomes
(Vi/VL)E S (v2/27) . (p/Rg)? r® eeo (16)

where r 1is the normalised radius at the centre of the helical mirror.
The fraction f of an isotropic velocity distribution within the
region of velocity space defined by (16) is obtained by integrating

over r, and for (V,/V.) small is

f = P/12R, oo (17)



Inan £ =3 system this is numerically equal to the value of

the shear parameter ®, important for considerations of plasma stabi-
lity. Thus we see that an appreciable number of localised particles
necessarily occur in a high shear stellarator. In an £ = 2 stel-
larator, the fraction of localised particles will be greater for the
same shear. In higher £ number stellarators, where the shear and
rotational transform occur mainly in an annular shell near the separa-

trix, the fraction of localised particles will be smaller.

5. APPROXIMATE TREATMENT OF THE MOTION OF THE LOCALISED PARTICLES

A particle which is just localised on a field line with the
maximum transform per field period (7n/6) has its projection in the
(r,¢) plane move through 2 =/3 between reflections; all other
localised particles move through smaller angles, Thus there can be
no complete cancellation of the toroidal drift for these particles
and they can be expected to drift through the separatrix in the
z direction., In fact other drifts, particularly that due to the
gradient of the B@ field, modify this expectation, and a condition
Tor the localised particles to be confined can be obtained by examin-

ing their total drift motion.

Since a localised particle necessarily has small (V”/Vi) the

velocity of the guiding centre is given approximately by:
Xg ~ const, E 4 E (B?)/B4 + ‘y'”

and the average drift velocity of the guiding centre is thus

{Ng> » const. Bg - E<B‘?> /B*



where By is the toroidal field at r = 0 and <> indicates the

average over the orbit between reflections.

The average drift motion is therefore along the surfaces,

{B"> = const -« ves (18)
or from (14)
p(p/Ry)r* A, -2rcos ¢ = const. eeo (19)
where
A, =1/18 = VZud> /9 oo (20)
and

u = cos(3¢ - po)

The condition that a particle with guiding centre starting at

(rgs9o) always remains within r = 1 is

2(rg cos ¢p-cos ¢) (Ro/p)
A1(1. '-I"04)

AV

p

or if we replace (ry cos ¢,~-c0s ¢) by its maximum value (1 + rg)

confinement of the localised particles is ensured if,
p 2 2(Ry/p) A1(1—r0)(1+r02) sne £21)

The quantity u has the value - 1 at the minima of the helical field
and for particles which make only small excursions about this point
<q> =- 1, on the other hand for particles which are only just localised
{u> = 0. For these extremes we see from (21) (with Ro/p=1.5) that
the value of p necessary to contain all the particles with rofé 0.9
(i.e, approximately 80%), is

35 < p < 130
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Such a large number of field periods is not usually attainable in
practice so that a substantial fraction of the localised particles
will not be confined within the separatrix., Whether or not localised
particles are confined depends only on the gradients of B and is

independent of the Larmor radius.

If positive values of {u> are possible, as will be the case if
the orbit is not symmetric about u = - 1, then a resonance (A, =0)

can occur so that r becomes unlimited.

6. NUMERICAL COMPUTATION OF PARTICLE ORBITS

The approximate treatment of the previous sections describes
the qualitative features of particle motion in stellarator fields
and provides quahtitative estimates of the orbits. However, it is
not clear to what extent the approximations will be valid in a real
case. Consequently, we have computed guiding centre orbits, in the
drift approximation, for a toroidal, high shear, £ = 3 stellarator
which is of special interest to us. The currents and the filamentary
conductor configuration are as described in referencel; at the
separatrix the aspect ratio is 6,5 and the ratio of toroidal to

helical field is 3.7.

The motion of the guiding centre is obtained by integrating

the equation

N

m(VZ + 2vi) B ~ ¥ (B?)
Ng = +
4qB

where ¢ and p defined in (9) are assumed to be invariant. A
predictor—corrector routine(s) is used for the integration and the

accuracy is verified by varying the step length.



Examples of computed orbits are shown in Figs.3 to 8, The
complefe orbit of the guiding centre in the (r,¢) plane is shown,
the position of the guiding centre at each field period is numbered
and the numbered points joined to give a cross section of the drift
surface. The helical nature of the trajectories arises (rom the
helical form of the field lines. Figs. 3 to 7 were computed for
the same magnetic configuration as Fig.2 of reference 1. Fig.8 is
for a winding with the same mean pitch angle (= 450) but with 64
field periods and a winding aspect ratio of 21, This shows the orbit
of a localised particle which is confined. The figures show examples
of confined and escaping particles of each of the three categories of
passing, blocked and localised. Fig.9 shows the intersection of the
|B|: const. surfaces with the plane ©6=0 and is to be compared with
eq.(19). The intersection of the orbit of a localised particle with
this same plane is also shown, it is parallel to the contours of IBI
showing that in this case the averaging described in section 5 does

not greatly affect the motion,

Fig.10 shows a comparison between the approximate containment
conditions (12) and (13) and the containment found in the computations.
Tamm e has shown that, in axisymmetric systems, considerations of the
conservation of energy and angular momentum alone ensure that a
particle does not depart from its initial magnetic surface by more
than a Larmor radius in the B field. This limit is also indicated

%

on the figures.

Fig.11 shows a comparison between eq.(16) and the value of

(V"/VL)O found necessary for localisation in the computations,

- 10 -



7. DISCUSSION

Fig.10 shows that it is much easier to contain the passing and
blocked particles than indicated by Tamm's upper limit ®; this is
to be expected because of the extra constraint introduced by assuming
pw to be invariant. On the other hand localised particles, which have
no analogue in axisymmetric systems, escape even when Tamm's condition
is satisfied. The agreement between the approximate treatment and the
computed results in Fig.10 is to within a factor 2, the computations
showing that it is more difficult to contain the particles than indi-
cated by approximate theory. Fig.11 shows eq.(16) to be suprisingly
accurate and together with Figs.8 and 9 offers support for the validity

of (21) as a criterion for confinement of localised particles.

As an illustration the approximate expressions may be used to
calculate the parameters of a stellarator trap with a 450 winding
which is such that 5% of an isotropic distribution of 20 keV H" ions
has drift orbits which intersect the separatrix. According to (17)-
about 12% of the ions will be localised and from (21) a value of
p = 100 will retain some 80% of these so that 2% of the total ions
are localised and lost. The condition that less than 3% of the ions
are lost as passing and blocked ions, is, from (13), 1/rp 2 140. If
we assume the £ - winding radius to be twice the separatrix radius
lead

and the Be field to be 10° gauss these values of p and n

to a #£-winding minor and major radii of 0,8 and 21 metres.

It does not at all follow that such large dimensions will be
necessary to confine plasma for a specific time in such a trap. The

condition (16) in a stellarator defines the loss region in velocity

= JT =



space as a disc centred on V;, = 0, so that the loss time of a suffi-
ciently‘small density of particles in the trap will be of the order

t90 the time for small angle collisions to rotate the velocity vector
by 900. At higher densities however a particle entering the loss region
may well be scattered out again before it has time to drift to the
separatrix, consequently it will be contained for lﬁnger than tgg.

The collisional diffusion loss of plasmas in stellarators due to this

mechanism will be considered in a later paper.

8. CONCLUSIONS

Numerical computations for real stellarator fields confirm the
existence of passing and blocked particles which have similar orbits
to their counterparts in axisymmetric systems. In agreement with

e the orbits are found to lie on

previous approximate analysis
surfaces similar to but displaced from the magnetic surfaces®. The
displacement tends to zero with Larmor radius and the surfaces appear

closed within the numerical accuracy for at least 40 field periods.

However, just because a real stellarator is not axisymmetric,
a further group of particles exists which is much more difficult to
contain, These localised particles, reflected in the gradients of
the helical field, have incomplete cancellation of the toroidal drift
and escape from particular stellarators no matter how strong the field.
Furthermore ions and electrons of the same energy will leave with the
same drift velocity. These particles can be retained only by making"
the number of field periods, and hence the aspect ratio, so large

that the drifts due to the helical field dominate the toroidal drift.

= TR



Thus the stellarator does not form a perfect single particle
trap in the sense of our definition. However, the particles which
can drift through the separatrix are just those (with large VL/V”)
which will most easily be reflected in the increasing field towards
the conductors. Thus the hybrid stellarator-mirror field, which
includes the regions inside and outside the separatrix may well form

a perfect single particle trap.
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Fig.1 Co-ordinate systems (CLM-P137)

—

Fig.2 Idealised limiting passing and blocked orbits (CLM-P137)



Figs.3 to 7 show electron orbits in the (R,Z) plane for a filamentary £ =3 winding

having 8 field periods on a toroid of minor and major radii 11.4 and 30 cms and carrying

25kA; the toroidal magnetic field at the winding axis is 1kG. The maximum separatrix

radius is 4.6 cms about a centre at R = 29.3 cms andis indicated by the circle r = 1. The

position of the guiding centre at each field period is indicated by X and these points

are joined to give a cross section of the drift surface. The numbers indicate the order
of the points and thus show the magnitude of the particle transform

o

Fig.3 (CLM-P137)
Passing particle confined 1, = 0.98, 1! = 16, (v, 7V, ) =-0.85

o

Fig.4 (CLM-P 137)
Passing particle escapes 1o = 0.98, rp "1 = 16, vV, /V )o=-0.8



Fig.5 (CLM-P 137)
Blocked particle confined 1y = 0.37, rp,"1=80, (V,;/V ), =-0.44

=

[
Fig.6 (CLM-P137)
Blocked particle escapes 1y = 0.37, ri”! =40, (V,;/V)o =- 0.45



infersection with
field period no.2.

infersection with
field period no.l.

Fig.7 (CLM-P 137)
Localised particle escapes 1y =-0.17, 11 "'= 60, (V“/VJ_)0=-O.3

This particle is initially able to pass freely around the torus, but
becomes localised as it moves to small majorradius. Other exam-
ples show particles which are localised for the complete orbit.

Fig. 8 (CLM=-P 137)
Localised particle confined ry=0.5, IL'1 =60, (V“/VJ_)0=- 0.3

Major radius 240 cms, 64 field periods, other parameters as
for Fig.3.
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Bl
Fig.9 (CLM-P137)
Intersection of |B| = constant surfaces with plane 6 = 0 para-
meters as for Fig.3. The intersection with this plane of a com-
puted drift surface for a localised particle is shown. The
numbers indicate the value of |B| in K.G.
!
/
'
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l/ m
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750 —Equatien (12) o M Equation (13)
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25+
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-0'5 0 05 0 =05 0 05
r Ly
Fig. 10 (CLM-P 137)

The condition for confinement of (a) passing and (b) blocked particles accord-

ing to approximate theory. Tamm’s limiting condition for confinement in axi-

symmetric systems is shown. Computed results are plotted for just passing,
just blocked and localised electrons. Field parameters as Fig. 3.



X Computed point
— Equation (16)
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03 =
X
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X
Vﬂ X X
VJ~ X
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0l
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0 0-5 I-0
r 5/2
Fig.11 (CLM-P137)

The condition for a particle to be localised from approximate theory and for com-
puted examples, r and (V,,/V,) are measured at the maximum of (V,/V,) between
the first two localised reflections

Field parameters as Fig.3









