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ABSTRACT

The properties of electrostatic ion cyclotron instabilities
which can exist in mirror confinement machines are examined theore—
tically. Instabilities which are caused by an arbitrary combination
ol the loss-cone effect and the temperature-anisotropy effect are
considered for an infinite plasma. The propagation characteristics
(absolute or convective) of this class of instabilities are deter-
mined by numerical and analytical methods for interesting ranges of
plasma parameters. Criteria on the length and lifetime of the plasma
necessary for the growth of convective and absolute modes are deduced.
The application of these results to present and future-generation
mirror machines is discussed.
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1. INTRODUCTION

The observation of R.F. emission at frequencies close to the ion-
cyclotron frequency and its harmonics in the present generation of
mirror machine experiments (BERNSTEIN et al, 1965; CORDEY et al, 1967,
BELL et al, 1965 and 1966) is in keeping with theoretical predictions
(SOPER and HARRIS, 1965; GUEST and DORY, 1965). Two appropriate
sources of free energy are known to be available to drive such insta—
bilities at plasma densities which have been achieved in these
machines. One of these sources is the 'loss cone effect' where par-
ticles with low perpendicular energy can escape rapidly along the
magnetic field lines. The other is the temperature anisotropy, a
result of the method of creating the plasma by injection perpendicular
to the magnetic field B so that the 'perpendicular temperature',

a? » a?, the 'temperature' parallel to B.

Theoretical studies have shown that instabilities can exist in
the presence of either or both of these sources of free energy in an
infinite, homogeneous plasma (that is, one which eliminates free
energy sources associated with density and temperature gradients).
Since all mirror confinement devices contain some combination of these
two free-energy sources, as long as the wavelength of the unstable
wave is significantly less than the plasma dimensions, the infinite

theory should be adequate in describing the unstable behaviour of the

plasma.

Instabilities associated with anisotropic temperature distribu-
tions were first examined by HARRIS (1959). Later several more
extensive examinations of these modes were made by 0ZAWA, KAJI and

KITO (1962), DNESTROVSKY, KOSTOMAROV and PISTUNOVICH (1963), HALL,



HECKROTTE and KAMMASH (1965), and SOPER and HARRIS (1965). The loss-
cone driven instability was first examined by ROSENBLUTH and POST
(1965). A complete examination of the ion-cyclotron resonance modes
(w = n“bi) for a large class of distributions including effects of

the loss cone and anisotropy has been given by DORY and GUEST (1965).

Although qualitative agreement between theory and experiment
exists, a more detailed examination is necessary to describe the
behaviour of these modes in an experimental plasma. For exémple, an
examination of the propagation characteristics of the unstable waves
was necessary to explain threshold density observations in the DCX-2

device (BELL et al, 1966; BEASLEY, 1967).

In general a growing eigenmode can be identified theoretically
by considering the sign of the imaginary part of « for a real pro-
pagation vector kp. However this does not imply that the amplitude
of an arbitrary wave packet increases with time at every point in
space or that in a finite length plasma the amplitude of the wave
packet will reach an experimentally detectable amplitude. To dis-
cover whether an instability will be observable in a particular plasma,
one must couple a knowledge of the propagation characteristics of the
unstable wave packet (i.e. convective or absolute modes of instability)
with such parameters as plasma size and plasma lifetime. If the plasma
is convectively unstable, the wave packet must be able to grow to
sufficient amplitude to be observed during a single traverse of the
plasma*. Or if it is absolutely unstable, the plasma lifetime must

be sufficiently long to allow the instability to grow to a large

* This is based on the assumption that reflection at the ends of

t?é machine is negligible. At least for small density gradients
(T$ dN/dx « 1) this assumption is valid (AAMODT and BOOK, 1966)

N



enough amplitude. In addition, the unstable wave must at least fit

in the plasma, regardless of the type of instability.

In this paper we will describe the method for determining the
appropriate propagation characteristics of unstable electrostatic
ion cyclotron waves. Criteria for the existence of these waves in
mirror machines will be discussed. The method used for determining
the propagation characteristics will be given in Section 2, 1In
Section 3 we discuss the dispersion equation, show hoﬁ analytical
results can be obtained in the limit of high anisotropy (af » aﬁ),
and describe numerical techniques. In Section 4 we present the
numerical results for the ion distribution used by GUEST and DORY
(1965). These results depict regions of stable, convectively unstable,
and absolutely unstable plasma for appropriate ranges of plasma para-
meters. 1In the Section 5 we discuss the relevance of the results of

Section 4 to present and future mirror machine experiments.

2. PROCEDURE FOR DETERMINING PROPAGATION CHARACTERISTICS

A rigorous method for determining whether an instability is con-

vective or absolute was first described by BERS and BRIGGS (1963) and
BRIGGS (1964).

Essentially the criterion for an absolute instability is that
there is a branch point wp of the solution of the dispersion
equation k = k(w) occurring in the region S between the real ki

curve in the w plane and the real w axis.
To find these branch points (if any) of k(w) for w in region

S, the whole of the region S is mapped into the k plane. A

saddle point configuration in the k plane then indicates a branch
point of k(w) at wp -

s (]



This procedure gives precise information about the mathematical
nature.of the instability. However, finding the solution to D(w,k)=0
over a large region of complex k-space in order to find this saddle
point is rather slow, and to do so for a large number of parameters
would require a prohibitive amount of time. Hence our numerical tech-
nique uses instead one of the equivalent criteria derived by DYSTHE

(1966), who shows that an absolute instability exists if the equations

1l

D(w, k) = 0, el (1)

o D{w, k)

= o, —

have a solution for finite (w, k), with I (w) > O and where the two
roots belonging to the branch point are on opposite sides of the k
axis for w on the 'undeformed' Laplace contour. This latter con-

dition is equivalent to wp lying in the region S.

Equations (1) and (2) were solved numerically by the iterative
methods described in Section 3(c). By varying interesting plasma
parameters we are able to determine the regions of convective and
absolute instability in appropriate parameter space. We now turn to

the appropriate expression for D(w, k).

3. SOLUTIONS OF TIIE DISPERSION EQUATION

(a) The dispersion equation

The dispersion equation for electrostatic ion-cyclotron insta-
bilities in a homogeneous plasma in a uniform magnetic field has been
given by many authors (SOPER and HARRIS, 1965; GUEST and DORY, 1965;
HARRIS, 1959); we write it as

2 oo 2 .
w - I3k, v, /w ) of nw_of
e P n L ¢ { 0 ¢ _o j 3, _
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Here wp is the plasma frequency, k is the wave propagation vector
with components k; and k; parallel and perpendicular to the exter-
nal magnetic field, Wa is the gyro-frequency, w 1is the wave
frequency, J,, is the Bessel function of order n, and fy, is the

unperturbed distribution function, normalised such that / fodav = 1k

We shall consider the class of anisotropy-loss-cone distribution

functions which were first used by GUEST and DORY (1965), that is

: 2 2
/
Jj 1 F o 2 ¥y i
I"O: T ka—- exp e
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where j =1, 2, 3, ... . The of and of are the 'temperatures'

in the directions parallel and perpendicular to the magnetic fields

respectively. Thus there exists a temperature anisotropy, T = aﬁ/dj.

If we substitute fé in equation (3), we may then write the

dispersion equation in the form (see GUEST and DORY, (1965))

2

(e o]
— (,up { j w—nwc w—nwc
D=1 2 - 1 A e Z
i 2; k%af i Z [Cﬂ( ) ( ki oy ) <I<|| ay )
n = =

species
j nw, w-nw, g
ol (e B
+l%()<MGM>Z<MMM>JJ P

(k, v,/0) g(v,)

where

I

) =o2n [ v, av, I

Oh\“ﬁg

| o dg (v )
J = - N 1 =
D- (%) = -ma} / vy vy, 3 Ak YA ) v, dv, °

. v 2]
J = 1 __J_-_) L uE e 2
gO(V¢) = i ( o, exp ( Vl/hl)
k? o? i af
- ; T et



and o«

Z(2) = ﬂmz./ = dx

e ]

is the plasma dispersion function (FRIED and CONTE, 1961). The

infinite series in equation (4) is convergent for all values of

< |
lknP| ’ |klli

. Outside this domain one must either put a cut-off in
the ion velocity distribution or else find a convergent expansion,
However the non-convergence of the series is not bothersome unless

one attempts to calculate (wB, kB) at very high densities.

The remarks on convective and absolute instability apply to the
direction parallel to the magnetic field. In the direction perpen-
dicular to the magnetic field we assume the plasma boundary determines
normal modes which are discrete and real. This is a valid assumption
as long as the radial wavelength is not significantly less than the

plasma radius.

(b) Analytic solution for limiting case of high anisotropy (T « 1)

In the limit of very small T, the 'C,' term dominates in
equation (4); in this case, it is possible to simplify equation (4)
so that we may investigate analytically whether the instability is

convective or absolute. We further assume

W - nw_.
(1) [—— «1 (we consider instabilities in which
ci
the frequency is close to the nth
harmonic of wci)
W = Nw ;
(2) T | » 1 (ions have small velocity spread
parallel to the field lines)
2 2
kT &g
(3) », (=2 —— « 1 (perpendicular wavelength much
e 2
w,
ce

greater than an electron gyro

radius)
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(4) dje = 0 (electrons assumed to have zero

velocity spread along field lines).

Using the assumptions (1) - (4) and the asymptotic form of the

plasma dispersion function, equation (4) reduces to:

o B 2 o
K2 Wpe _ wpe Cn(?\i) iv - kit airy )

= 2.2 9
kil nowe 2 (w-nw

]

(w—nwci)2 ci)d

for frequencies w close to the nth harmonic of w.;.

To find the branch points of kj(w) for the above dispersion

equation we solve equations (1) and (2). Using the D of equation (5)

we obtain
: 1
io . fcd(n) ]2 % ki ay
i * T e W L o S0
e~ | pin i
= Zas UB)
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Thus we see that there exists a branch point of D(w, ky) = O in the
Im w > O region (unstable region) of the w plane. Moreover after
a careful examination of the real k; curve, one can show that pro-
vided wpe is large enough the branch point with the two upper signs
lies between the real k; curve and the real w axis (i.e. in the
region S). Hence the ion-cyclotron instability caused by strong

anisotropy is absolute. These values of (mB, k“B) (equations (6)

and (7)) were found to agree quite well with the numerical results

discussed in Section 4.



(c) Numerical solutions

As a precaution against numerical errors, two completely differ-
ent numerical techniques were employed to obtain the solutions
(wg, kip) to equations (1) and (2) for the various parameters. These

methods will now be briefly described.

The first method made use of the fact that the roots of equa-

tions (1) and (2) are also the minima of

s 1%
Flw, ki) =I: |D‘2 + |%E'”| :’

The minima of the function F were found by using an existing pro-
gramme written by M.J. POWELL (1964). This programme minimises a
function of several variables by changing the value of one parameter
at a time and does not require the derivatives of F. When a minimum
value of F of order 10~°% was found,the corresponding (wB, k"B) was

said to be a root of equations (1) and (2).

The other method made use of two functions,

<21
aky

F, = |D12 and F,_ = ‘
This program first used F, for a given set of parameters to find a
solution of the dispersion equation, w(ky); then, F, was used to
obtain the saddle point. After each iteration on F,, F, was again
used to ascertain the new w for the new k;. The solutions
(wgs kyp) were deemed to be 'good' solutions when their fractional
change after an iteration was less than a prescribed amount (usually
10"%). The functions were approximated by an appropriately dimen-
sioned paraboloid in order to obtain iteration equations. Analytic

derivatives of F, and F, were used in the programs. This itera-

tion technique was written as a subroutine usable for any arbitrary

= 8 =



dispersion relation and was first tested on the three-stream disper-

sion felation, the results of which are well known in certain limits

(BERS and BRIGGS, 1963; BRIGGS, 1964).

4. NUMERICAL RESULTS

Stable regions and regions of convective and absolute instability
were determined from the dispersion relation equation (4) for j = 1
distribution using the numerical technique described in Section 3(c),
Results are shown in Fig.1 as families of pairs of curves in

Ehﬁ - T - space. The dashed curves denote the neutral stability

®ei

curves, and the solid curves the convective-absolute (c-A) boundary.
Each of the family of curves represents a different value of ki;
Fig.1 gives a portrayal of unstable regions for three of the four
parameters. In Table 1 we give the value of kipj (pj = ari/wej)

on the C-A boundaries of Fig.1. Dependence of the results on the
electron temperature, ag can be described in terms of these results
and will be given below. Also the very important dependence of the
results on harmonic number will be discussed in the light of the

results for the fundamental frequency. Stability criteria based on

these results and incorporating all parameters will be given below.

The most important result is that provided certain criteria on
plasma size are met, the absolute instability can exist at sufficiently
high density in any mirror-confined plasma, regardless of the value
of T. Hence, even though the energy source is completely different
in the regions of low or high T, and even though the mathematical
term characterising the instability is different, the qualitative
behaviour of the unstable wave is the same: it will be absolutely

unstable at sufficiently high densities with a frequency and growth

-9 -



rate w = wp + iwj; ; where 0.95 wqi g;wr S;wbi s @5 ~ (4O2) @,

As can be seen from Table 1 and Fig.1, the characteristics of
the instability are somewhat different in the two regimes. Threshold
densities are considerably lower for the anisotropy-dominated modes
than for the loss-cone modes. On the other hand, the wavelengths are
generally much longer for the loss-cone modes. In both regimes, Kip
decreases as density is increased, or in other words, the characteri-

stic wavelength becomes longer.

The convectively unstable region extends to a density an order
of magnitude lower than the absolutely unstable region. In this
region, maximum spatial growth rates occur at the C-A boundary. On
the basis of these growth rates and assuming that to be observed the
wave packet must grow ten e-foldings in one traversal of the plasma
(see footnote page 2) we may write a stability criterion against

these convective modes. The plasma will be stable if

L, < 10° VTp; ee. (8)

where Lp is the plasma length and p; the ion gyroradius. Thus

the convective modes will be observable only in very long plasmas.

The absolute instabilities have a sufficiently fast growth rate
to assure their being observed in almost any mirror injection experi-

ment, since in order to be observed, the plasma life-time,

T, 2 10%wy; . oo (9)
However, these absolute modes have rather long axial wavelengths.
Since these waves must fit in the plasma, the plasma length must also

satisfy a criterion for the absolute modes

LP,>/ 57VTp; (1 - logso T) . «.. (10)

- 10 -



The absolute instability cannot occur if this criterion is not satis—
Tied. Although infinite plasma convective modes per_se would not
exist on the basis of growth length considerations, it does not neces-
sarily mean that the system will be stable. 1In this case a correct

treatment of such a problem must include boundary effects.

Very important scalings in all quantities become evident if one
considers instabilities at higher Trequencies w = ey s W =152:85 %%
In order to make a proper comparison of instabilities at the different
harmonics, one must not Tix Ki, but rather consider the instability
at the most unstable N Ay - The value of Kk, associated with
this A, 1s approximately equal to the maximum k;, for all unstable
A; for a given n, and of course the density is by definition the
minimum density for a given n. We find that A, scales with n=.
For these ), both Kk anq wj scale approximately with n, and the
threshold density scales slightly faster than n®. The scaling of Kk

with n means that the criterion (10) must be divided by n.

Fortunately the electron temperature provides a stabilizing
influence (Landau damping) which we shall now examine. In all calcu-
lations reported so far, the ratio of electron temperature (assumed

to be isotropic) to parallel ion temperature

0 = -

mi affj

has been kept constant (© = 0.05, typical of present experiments),

Hence one must keep in mind that @ is not a measure of absolute

electron temperature but that it does depend on the anisotropy in

that constant o, implies constant @T. However, the effect of

= P71 =



electron temperature does not depend solely on a, , but rather on

the quantity
(.L\B nw

y - . i
e = Kip oe  Kip ae

since it is this quantity which is the argument of the Fried-Conte
function through which the electron temperature makes its contribu-
tion. But that contribution will be significant only when z& < 2.5;
for large Ke’ the effect on k”B’ Wy s or the position of the C-A curve
is nil. As ée decreases below about 2.5, the electron contribution
becomes increasingly significant in that the product kup a, approaches
a constant, or Kkyup « 9_%. (Thus at © = 0.05 fora T =1 plasma
the electron contribution is the same as at © = 0.39 for a T = 0.01
plasma.) An empirical approximation for the electron contribution is

s

knB G"e N C)
w

, 8

This wavelength dependence turns out to be the sole stabilizing con-
tribution of the electron temperature. The change in the position of

the C-A curve over & wide range of © is essentially nil.

We may use the scaling of results with harmonic number and elec-
tron temperature to rewrite our criterion on plasma length necessary

to allow absolute modes:
57 VTp;
L. » ——
p n

[:2.5 VO + (1-10g10T):} e Gld)

The threshold density for a given harmonic may then be related by

m. \% -
> ey () | | ‘
Wnm & NW. s = 2w C12)
pe L\ Me , 7" 4+ 0.025

Thus the two conditions (11) and (12) are able to describe the

infinite-plasma results for anisotropy-loss-cone instabilities.
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5. DISCUSSION

We may compare the results of Section 4 with experiments. Such
comparisons are compatible but somewhat inconclusive at this stage.
Perhaps the easiest comparison can be made with the DCX-?2 machine
(BELL et al, 1965). The plasma is accurately described by a T = 0.001
distribution and the length of plasma is such that absolute modes
should exist but convective modes would not be expected. The observed
threshold density (LAZAR et al, 1966) for onset of the instability

does coincide with the position of the C-A curve and not the neutral

stability curve.

The case of Phoenix II (T = 0.02) is not as easily interpreted as
that of DCX-2 since the wavelength of the instability is such as to
cast doubt on the applicability of the infinite theory. Nevertheless.,
the observed threshold density for onset of the fundamental cyclotron
frequency appears to be close to that predicted. It is also observed
that as the density is further increased, the plasma becomes stable
to this mode. It also becomes stable when the electron temperature
is increased (through action of the instability). Both obsecrvations
are in agreement with the theory; however, the wavelength is not
sufficiently sensitive to plasma density to permit meaningful compari-

son, and electron temperature cannot be measured sufficiently accu-

rately at present.

For a mirror machine to be in the region of thermonuclear
interest the ion density must be of order 10%*! particles/cm®. This
means that with presently available magnetic fields (10° gauss)

W o~ I4“bi’ so for the most stable plasma, T = 1, @ = 1, using con-

pi
dition (12) at least 14 harmonics of w,; could be absolutcly unstable.

= 13 =



For the 14th harmonic to be absolutely unstable we see from inequality
(11) that
Lp> 15 Pi

Hence in all but the very short thermonuclear plasmas the absolute

instability should exist.

In summary, we find that the instability associated with the tem-
perature anisotropy-loss-cone effect is convective at the instability
threshold but absolute at a plasma density an order of magnitude higher
than the threshold density. In the convective region, the growth length
is very long; hence in the absence of strong reflections from the ends
of the plasma, one should not expect to see an instability until the

density was raised to the threshold of the absolute instability.

The absolute instability occurs with a very long axial wavelength.
This sets a criterion on the plasma length necessary for those modes
to Tit in the plasma. This criterion is dependent on anisotropy,
electron temperature, and mode number. While this criterion is valid
for defining an absolutely unstable region, it is not valid as a stabi-
lity criterion, which cannot be obtained from the infinite plasma
theory. To examine stability, one must consider the finite-plasma
problem. However, on the basis of the low convective growth rates and
long wavelengths from the infinite theory one might expect this criter-

ion to be closely related to a stability criterion.

- 14 -
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