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ABSTRACT

The propagation of a slow electromagnetic wave in a cold
magnetized plasma slab located between two planar slow wave
structures is analysed. The slow wave structures are assumed
to be equivalent to a surface with an anisotropic impedance,
For a collisionless plasma of uniform density it is possible
to obtain an exact solution in terms of elementary functions.
Under certain circumstances there is a simple relationship
between the surface impedance of the slow wave structure and
the phase velocity of the wave, The presence of electron-ion
collisions which cause attenuation of the wave is treated by

an approximate method,

In the presence of density gradienfsjn_the plasma numeri-
cal methods are used to solve the problem, It is shown that
there are no singularities in the solution in the region where
the plasma density is the critical density for the frequency
of the wave (collisionless plasma)., An example of a numerical
solution of the problem is given, It is shown that the pres-
ence of density gradients introduces an extra constraint into

the system,
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List of Most Commonly Used Symbols

Amplitude of wave

Semi thickriess of plasma slab

~Scale factor of density distribution

Static magnetic field
Semi separatron of slow wave structure

Bulk wave

Coordinate of plasma of critical density

Electric displacement

Electric field

Constant of integration
Frequency of wave

Electron gyro frequency
Magnetic field

Dielectric constant

Wave number in 2z direction
Free space wavé ﬁumber

Wave number for x direction
Power e folding length

Constant of integration

Electron density of plasma

Critical plasma density for frequency
Any integer

Retardation of wave

Subscript denoting b or s

Subscript denoting surface wave

(iii)
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Te Electron temperature

U=1-j vw

X = ne/nc Nomalized electron density

X Cartesian coordinate

Y = Fc/f Normalised electron gyro frequency
¥ Cartesian coordinate

Z=v/w

Z0 Impedance of free space

Zy,Zi,Zé Normalized surface impedances

Z Cartesian coordinate

a Density gradient

Y = (kz—kgK)Iﬁ Propagation constant

Y, = (kz-—kz)T/2 Propagation constant

Y, = [1(2(1—-\’"2—'{"2(R‘?-l)'1)—kc‘";]l/2

n = (Tga)%/3 %, Dimensionless distance coordinate
2 Permittivity of free space

by s g Refractive indices of' plasma

v Electron ion collision frequency

p Wave polarisation

(0] Angle of propagation of elementary wave
Q Skew angle of slow wave structure
w = 2nf



1. INTRODUCTION

This paper considers the propagation of an electromagnetic wave
in a cold dense magnetized plasma located between two planar slow wave
structures which serve to define the phase velocity of the wave, The
attenuation of the wave arises from electron-ion collisions in the
plasma, Under favourable circumstances the characteristic attenua-
tion length can be small, a few tens of frge space wavelengths, It
has been suggested (Wort, Weaver, Hotston 1967) that the high atten-
uation of such a wave could form the basis for heating the plasma

electrons,

It has been found that when the result of the analysis can be ex-
pressed in terms of elementary functions, the expressions are often
so cumbersome that the properties of the solution are only realised
when specific numerical examples are considered. The values of the
plasma parameters chosen for numerical illustration was considered
typical of a small scale experiment designed to test the method of

plasma heating. The following symbols are defined:

el
T sec , is the frequency of the wave (~ 3000 Mc/s)
— -3
n, ~ 1+2 107 f%m , is the critical electron density for
frequency T
-,
fc sec , is the electron gyro frequency in the static
magnetic field impressed on the plasma.
n, cm_a, is the electron density of the plasma.
.
v sec , is the electron ion collision frequency
(fully ionized plasma).
X = ne/nc, is the normalized plasma density.
¥ = fc/f, is the normalized electron gyro frequency.

Z = v/w



It will be assumed for the purpose of numerical illustration that
XK=10, ¥~ 3, &~ 10"°.  These numerical values correspond to a
fully ionized plasma of density -~ (16 cmna, with an electron tem-
perature of 40 eV, (Heald and Wharton 1965), immersed in a static
magnetic field of approximately 3000 G. The transverse dimensions of
the plasma are assumed to be of the order 10 cm, The phase velocity
of the wave is assumed to be R~ times the velocity of light where
R ~ 10, Although a slab model has been used here any experimental
apparatus would use cylindrical geometry with approximately circular
symmetry. The solutions of the slab model have been restricted to
those which can be carried over into cylindrical geometry with cir-

cular symmetry,

Ir thé problem is analysed in c¢ylindrical coordinates, the argu-
ments of the Bessel functions which appear in the solution are so
large over most of their range that they can be replaced by their
approximations in tenné of trignometric functions, Because of this
the solutions obtained for the slab model have quantitative as well

as qualitative significance for the cylindrical case.

Problems of excitation of the wave are not considered.

2, FORMULATION OF THE DIFFERENTTAL EQUATIONS

Fig.1 shows the geometry of the system, the static magnetic
field B0 is parallel to the z axis and the slow wave structures
are located at x = *b . The wave is assumed to depend on time t
and the z coordinate as the real part of exp j(wt-kz), and to have
no dependence on the y coordinate. The plasma density is independ-

ent of z. Using the dielectric tensor of a plasma and Maxwell's



equations (Budden 1961 A) the following pair of differential equations

can be deduced.

k2| — -
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The variables E,H are related to the fields E,H,D of the wave by

The other symbols are defined as follows: B is the permittivity of
free space, U=1 - jZ, and n =+ 1 if Bo is anti parallel to

X =

the z axis and n=- 1 if it is parallel: ko =k R 1is the free

space wavenumber,

In sections 3-7 wave propagation ina uniform plasma is considered,
the attenuation being obtained by an approximate method. In section
8 approximate solutions of equations 2.1, 2,2 are given for the colli-
sionless plasma (U = 1). These solutions are valid in the region
X =1 and have no singularities. Also in section 8 an example is
given of the numerical integration of equations 2.1, 2,2 for a plasma

with a density gradient.

3. THE PLASMA OF UNIFORM DENSITY

The plasma is assumed to fill the region aEE xQ? - a, There is
no power flow parallel to the x axis. The required solution of
equations 2.1, 2,2 is one in which Ey, Hy are both odd functions of

X, S0 that they correspond to the solutions in cylindrical coordin-

ates which have circular symmetry,
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where Eyr = A Sin k, x exp jlwt-kz)
p - B Fb + %
¥ R L_ The

ZO is the wave impedance of free space and r can take the mean-

ings r=Db, r = s,

TABLE T

Values of p calculated from equation 3.3 for a collisionless plasma

Y = 1+5
R 2.0 5.0 10-0 26-0
X Hy | Mg By K Hy e By Mg
0033 | 111 | 0.998 | 1-57 | 1-00 02+61 | 1-00| 06+36 | 1-00
0-533 | 1.82 | 0-984 | 4-18 | 0-998 | 08-24 | 100 | 213 1-00
142 2:02 | 102 522 | 1.00 105 1.00 | 27-3 1.00
241 1:76 | 1+31 5:79 | 1.02 118 101 | 30-9 1.00
5.6 ' 6:08 | 1-26 13+3 1:06 | 35-2 101
20,8 13-1 181 | 374 1-13
Y = 4-5
2.0 ‘ 5.0 10-0 26+0
'
By By By Mg by Mg My b
0.033 | 1.05 | 1-00 136 t-00| 02+11 | 1:00| 04:96 | 1-00
0533 | 1-63 | 0-998 376 | 1.00| 07-42 | 1-00| 19.2 1-00
1.2 2:13 | 1-00 543 | 1:00| 10-9 1:00 | 28+3 1-00
2.1 2461 1-02 7.02 | 103 | 126 1-00| 36-9 1-00
5.6 348 | 1-24 10-4 111 | 213 1:01 | 55-6 1-00
20-8 152 1-39 | 32-0 110 | 84-2 1-02
Y = 9.5
R 2.0 5.0 10-0 26-0
Ky By Hy Hy By By Hy By Mg
0:033 | 1:05 | 1-00 1:35 | 1+00 2:08 | 1-00 4.87 | 1-00
0.533 | 162 | 100 1.72 | 100 7+35 | 1-00 23-8 1.00
12 2.14 | 1-00 5.45 | 1-00 |10-9 1-00 284 1-00
241 2:69 | 1-00 7-18 | 1.00 | 14-5 1-00 57 %7 1-00
5.6 4.05 | 1:05 | 11:4 1-01 | 23-0 1-00 60-1 100
20-8 6-55 | 169 | 20-1 1:09 |41.0 1.02 | 1070 1-00




TABLE II

Limiting values of various parameters
for a collisionless plasma for X ~ 1

Parameter b wave s wave
p= XR®+ (1 -X) 1
X 1 YA(RP - 1},
pE =1 B¥ o i X -1
1
. 1 _R® x? Y R® -1
P Y R - 1 R X~1
2
ny Y(R® - 1) R
p(X = 1) X - 1JR Y(R® < 1)
p®sin®e ¢ §P 1 - R?
1~ X 1 -X
V.
- np®Sin®e ¥(R* — 1) ¢° _ R 1
- 1
(T =X) R(X - 1)* Y (1 - r2)?

It is necessary to consider the amplitudes of the field compo-
nents given by equations 3.4 in the region where X = 1, These values
calculated from equation 3.3 are given in the Table II for a collision-
less plasma, From this table it is seen that the amplitude of the
transverse fields is never infinite, so ﬁhat a wave of finite energy
density can propagate in the plasma as X = 1, Of the axial fields
only E, for the b wave (o (I—X)—%) tends to infinity as X = 1;
this arises from the neglect of collisions, However DZ for the
b wave is proportional to (1—X)% so the energy associated with

this singularity is finite.



4, THE SOLUTION OUTSIDE THE PLASMA SLAB

The region between the plasma and the slow wave structure is
assumed to be filled with a lossless dielectric of dielectric con-
stant K. For reasons of symmetry only the region X > a need be
considered, and the solutions of Maxwell's equations in this region

are,

Ey=F]e_YX+F2er ., H :Fe“Yx+F4er , (b2=2x2>a) v.. (4o1)

where the F's are constants of integration and Y= k* - k% K > O.
The other field components can be found from equation 4.1 by use of
Maxwell's equations. If the solutions given by equation 4.1 are

matched at the plasma boundary X = a to those found in section 3

‘it 1s found that outside the plasma

. ; Kir .
Ey_.ZAr [Sll’l klra Cosh Y(x-a) + e Cos k1ra Sinh Y(x a)]

r .
i WeA Cos kqpa
H :j;ﬁii e [%lr K — ;r Sinh Y(x-a) + Sin k, & Cosh Y(x—a{}
Y/ % Pr L) - =
= .
vou (4:2)

5. THE SLOW WAVE STRUCTURES

Two slow wave structures which match the wave are considered,
differing in the boundary conditions they impose at the plane X = b,
The first structure is similar to that of a particle accelerator,
consisting of a series of grooves parallel to the axis cut in the
surface of a perfect conductor at x = b, the spacing of the grooves
being small compared with a wavelength. The boundary conditions at

X = b are then

N

aH

E
- Z_ _ ;0 1 7V _ .
Ey =0, Hy, =~ kOK &y ox Jzozz -ee (501)



where Zz’ the normalized surface impedance of the slow wave struc-
ture (Slater 195C), is a function of the geometry of the surface. It
will be shown later that to match the wave ZZ has to be positive,

so this type of surface is called inductive,

The second type of structure is the complement of the first and

imposes at x = b the conditions:

=1
o , s =-jk2 E (EEX) == j 22 e {5a2)

T
Il

HZ 00 y \ dx v

= ;y is the normalized surface impedance and for this structure has
to be negative so that the structure is capacitative. A structure

of this type could be made by cutting the grooves parallel to the z
axis and filling them with a material of dielectric constant greater

1
than RZ,

The condition that Ey =0 or Ez =0 at x =Db gives the

ratio -As/Ab’ from equations 4.2 if Ey =10 at X=Db, fota

collisionless plasma

k

! 1b
A - (8in k,.a Cosh ¥Y(x-a) + —— Cos k..a Sinh ¥(b-a))
5 _ 1b Y 1b (5.3)
Ab = k o8 8 (-]

. 15 .
Sin k]éi Cosh Y(b-a) + v Cos k]sa Sinh Y(b-a)

and if EZ =0 at x=0Db

- K k1b
AS % |:Sln klba e Cos klba tanh Y(b—a):|
K; = = . — eee (5.4)
P_s [Sln kIsa -~ Y Cos klsa tanh Y(b~a§|

The surface impedance of the slow wave structure required to obtain
any value of R can be obtained by substituting from equations 4,2
into equation 5.1 or 5,2, but the resulting expressions are cumber-

some and are not given, In an experimental arrangement it is



reasonable to assume that there will be a finite separation (b-a)
between the plasma and slow wave structure, for the parameters con-
sidered typical of an experiment it will only require (b-a) to be
greater than two or three millimetres for tanh Y(b-a) ~ 1, With this
condition the expressions of Zz, Zy take a simple fomm,

I S

= p =

z Kko y i
so that the phase velocity of the wave is governed directly by the

impedance of the slow wave structure.

6. THE ATTENUATION OF THE WAVE

The attenuation due to the electron ion collisions is now calcu-
lated. The spatial dependence of the waves is assumed to be the same
as in the collisionless case except that the =z dependence becomes
proportional to

e 2L oxp j(wt—kz) oo (B.1)

where L is the attenuation length for the power flow. If the plasma
is in contact with the slow wave structure and only the bulk wave

propagates then
=y '
L " =2 kg Im(ph)/Cos Py ees (6.2)

where %n(pb) is the imaginary part of u, and is calculated from

equation (3.3) or the Appleton-Hartree equation (Radcliffe 1959 A).

In general L is found by calculating the power flow in the z
direction across the planes z,z + Az and equating the difference to
the power loss by collisions between the planes. Following Ratcliffe

(1959 C) the power loss in the plasma is written in the form

a

2, 5
[ v]:Bltg}; + E;) + B, E;:| s sss LOwd)
o}

= i =



where B,,B, are independent of x. For the first slow wave struc-
ture (Ey =0, x = b) numerical calculation shows the power loss is
almost all due to the bulk wave (> 99-8%), over the following range
of parameters 2.5 <Y <3.5; 7<Xx<13; 7<R<15. For the
capacitative slow wave structure the bulk wave is again the main
cause of the power loss. Assuming the attenuation is due solely to
the bulk wave the attenuation length becomes

a
=% 0 2k Ty (1) é[(gb » H,) ax (6.4)

L
Cos ¢, PE « BF) dx
0

This form is more convenient for numerical computation than the direct

use of equation 6,3.

7. NUMERICAL VALUES OF THE ATTENUATION LENGTH

The attenuation length L has been calculated for a plasma of
electron temperature of 40 eV, Fig.2 shows values of L for the
first (inductive) type of slow wave structure for values of R of
7,10,15, The attenuation length L is seén to be strongly dependent
on R and on the separation of the plasma from the slow wave struc-
ture (b-a). .Figs.3,4 show the dependence of L wupon X,Y with

R = 10,

For the curves of Fig.2 the presence‘of the surface wave accounts
for less than 1% of the power flow in the plasma and the fluctuation
of L with variation of b-a is due to changes in the power [low
outside the plasma relative to the power flow inside the plasma, The
amplitude of the surface wave at the edge of the plasma A,S Sin klsé

is of order A, or less.

- Pl o~



Repeating the calculations for the second capacitative type of

slow wave structure it is found that AS Sin kIsa can be of order

200A so that the variation of L with b-a is much greater,

%

2
.
e

b’

In all cases L scales with electron temperature Te as T

8, THE PLASMA OF VARYING DENSITY

The general wave equations 2,1, 2.2 are now solved for a collision-
less plasma of varying density. The density distribution of the slab
is assumed symmetrical about the plane x = O and to decrease mono-

tonically from its maximum at x = O to zero at x = * b (Fig.5).

To solve the equations the origin is shifted to a surface where
‘X =1 so that x = x1 + ¢ (Fig.5), and we assume that X =1=-aX
in the region where Xj; ~ 0, where o 1is the density gradient.

Introduce new parameters Y,,Y,,m where

2 _ L2 _ 2
¥ = k¥ ~x2
-2 —2 -4
¥y = k° [I—Y -Y (R2—1)]-—kg es (841)
2 1%
n={Yia)" x,

On substituting these quantities into equations 2.1, 2.2 and putting

X ~ 1 the following pair of equations is obtained,

gk 5 outs O P

—H = [Ti - {¥2e) angj E wen (B2)
nk® o _[ye, K2 e /13
v Eg * YR = an\non) | M s 1B

No approximations have been made in obtaining the last terms on the
right hand sides of equations 8.2, 8.3 so they should be valid for a

plasma with a small density gradient (a ~ 0).

= 19



A solution of equations 8,2, 8.3 can be obtained in the form of
a power series in m Wwhich contains four constants of integration

M,,M,,M,,M, (see Appendix). The first terms of the series are

H=M, +Mn" + Mn° + M4n4 + 0(n®) ee- (8.4)
E=7|M "’0(*"*‘)Mblbg‘1 3+0(n®) ) -M,{ 4m +0(n")
“by |t B AT =M S 6= ) =l S=H0I =W T
aes (Bal)
where :
g 2
3.2 - Yj_ b - nkO 1
§ ST 1 =7y 3
(Y3a) (Y30) 7
k® nk=
a2 = 1 + —=———— , b =25
R YR 1) L Rl

The four constants of integration correspond to the four waves found
to exist in the plasma of unifbnn density, In that example the re-
striction that there was no energy transfer parallel to the x axis
caused the four waves to reduce to two resultant waves referred to
as the s,b waves, The same pairing of the solutions happens when
density gradients are present so that the four constants of integra-
tion are not independent, To effect this pairing it is assumed that
E/H for the resultant waves is independent of the density gradient.
Equations 3.4 show that for the uniform plasma E/H = (n/YR®)(1 +X/(p*-1)),
and using the results of Table II it is found that near m =0 for
the s wave E/H = - nY(RP'—I)(Yga)Jé (Rzot,‘r])”1 and for the b wave
E/H = n/(R?*-1)Y . Examination of equations 8,4, 8.5 shows that the
s wave must be formed from a combination of the second and fourth

terms and the b wave corresponds to the first and third terms, so

that

- \73
H=M, 1%+ 0(n%) ; E =-ny “‘R—Q” (%) M0 + 0(n°)

= 18 =



for the s wave and
3 5 nM:L 2
H=M, [1+1%3+0(n%)] ; E:m[1+0(n~)] c.. (8.6)

for the b wave.

The solution for the b wave in a plasma of arhitrary density
profile is obtained by numerically integrating equations 2.1, 2,2
using equations 8,6 as starting values, This has been done assuming

a density profile of

e
XO (1 - x* a ) X < a

- 0 (0]

X=0 X >a

where X,ao are constants. The problem is an eigenvalue problem

because for a given X,ao the solution only exists for those values
of R which give 0H/dx = O at surfaces where X = 1, This intro-
duces a constraint into the system absent in the case of the uniform

slab,

To obtain an illustrative example it is easiest to assume values
of XO,R and to integrate equations 2,1, 2,2 for a series of values
of a, until a solution is obtained which gives E,H as odd func-

tions of x, This has been done assuming X = 10, Y = 3, R = 10,

k, = /5 cmHl, and Fig.6 shows the result obtained for a_ = 4-9 cm,
which is an approximation for one of the eigenvalues, The solution
has nodes of field in the region where X > 1 which is characteristic
of the b wave, The assumption made in obtaining the starting values
appear to be justified by the agreement between the local refractive
index and that calculated from equation 3.3. As a random example

successive zeros of H occur at x = 426 cm and 3-89 cm giving

a local wavelength of 0<84 cm, the mean density X being 3-15,

- 14 -



Equation 3.3 predicts pSin ¢ = 1233 at X = 3-15 corresponding to

a wavelength of 0-811 ecm which is good agreement.

The slow wave structures required to match the wave are assumed
to be situated at x = * a,; and to consist of grooves cut in the

surface. of a perfect conductor at angle Q to the y axis (Fig.7).

Axes 0,y', 0,z are then taken in the plane X = a

o’ such that
0,y* is parallel to the grooves in the plane X =a_  and 0,z is
perpendicular to them. Equations 8.6 show that E,H are in phase,

so that the resultant electric field is inclined to the z axis,

This direction is chosen as the direction of the Olz1 axis, so that

tan Q = EkkaH/dx) at x=0
For the example given tan 2 = 4875 10_3 (Q~ 0-290). The normal-
ized surface impedance of the slow wave structure required to match
the wave is Z; whe re
EZ Cos Q - Ey Sin Q

Z0 Hy Cos Q + Hz Sin ©

Zt =
> =

For the example given Z; = 644 so the structure is inductive., For
the treatment to be valid it is necessary that a standing wave can
be formed along the depth of the slot: this requires R (SinQ) « 1

which is true in this case,

It is concluded that the b wave can exist by itself in a plasma
of variable density if the slow wave structure is chosen correctly as
regards surface impedance and orientation of the grooves. To treat
prepagation in a plasma of arbitrary density profile surrounded by an
arbitrary slow wave structure it would appear necessary to use b,s
waves with a range of phase velocities (R values). In the case of a

uniform plasma only one value of R 1is required,

—= 15 =



9. CONCLUSIONS

The equations governing the propagation of a slow electromagnetic
wave in a plasma slab have been formulated. The case of the unifomm
plasma has been treated extensively and it has been shown that the
phase velocity of the wave is determined by the geometry of the sys-
tem and the surface impedance of the slow wave structure., For separa-
tions of plasma from the structure which are likely to be found under
experimental conditions the phase velocity is directly proportional
to (Z; + I)% (inductive structure). The damping of the waves due to
electron ion collisions has been considered and its variation.with
the plasma parameters determined. When density gradients are present
in the plasma, the solution of the problem becomes more complicated
but the wéve responsible for heating the plasma can still propagate.
The wave equations have been solved near the region of critical

plasma density.

In view of the need for a skewed slow wave structure i a pure
b wave is to be propagated in the plasma of variable density it might
be a fruitful subject of investigation to solve the problem for a

sheared or helical magnetic field,
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APPENDIX

The solution of equations 8.2, 8.3

Equations 8.2, 8.3 can be written in the form
9% ) 1a\
2 2
a“ - — | E = b,H a” = — (==—1]H = b,E
(1 an2> ' ( a9 ”aﬂ) ’
where the notation is defined in section 8,

If E is eliminated from these equations the following equation

is obtained

9° /1 oH 2 3 /1 oH » 3°H 2 2 ~
on? <n a'f])—ai 3 <n an>'a2 o7 T \Badz T Pabe JH =0

The solution of this equation can be found in the usual way Dby assum-
ing a power series solution of the form H = nB g Cpnp. The solution

is found to be:

a®a? - b b aja2 - b,b
: .
H=M, ————-—-—-—-1230 12n5+ 251:12”7”"'




Substitution into the original equation

E o= (g2 -2 li)
b, \®2 " \n o
shows that
2.2 2_2
_ 1 aya, - b,b, , aja, -bb,
E"byiimi a, + 5 n Pz

- 19 -~






Slow wave structure
Slow wave

structure

«Plasma

~=—Slow wave
structure

K
x=a
Plasma Bo
¢ o 2
X==0a
K
x=-b
--LH_M--_ Part of
inductive
surface
Fig.1 (CLM-P 141)

Illustrating the geometry of the system (a) Cylindrical plasma

with slow wave structure; (b) Planar plasma between two slow

wave structures; (c) Showing the position of the slots of the slow
wave structure.
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Fig.2 . (CLM-P147)
Showing the variation of the attenuation length L with the sep-
aration of the plasma from the slow wave structure for different
values of R the retardation of the wave. The stars indicate
points where the surface wave is absent. (AS = 0). The para-
meters are, b=15.35cm, X =10,Y =3, T, =40 eV.
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Fig.3 (CLM-P147)

Showing the variation of the attenuation length L with the sep-

aration of the plasma from the slow wave structure for different

static magnetic fields. The stars indicate points where the sur-

face wave is absent. (Ag =0). The parameters are, b =5.35 cm,
X =10, R=10, T, =40 eV.
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Fig.4 (CLM-P141)
Showing the variation of the attenuation length L with the sep-
aration of the plasma from the slow wave structure for different
plasma densities. The stars indicate points where the surface

wave is absent. (Ag = 0). The parameters are =5.35 cm,
Y =3.0, R = 10, Te =40 eV,
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Fig.5 (CLM-P 141)
A possible density distribution across the plasma column.
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Fig.6

(CLM-P 141)

(a) Density distribution across the plasma slab for X = 10(1 -(x/4.9)3
(b) The result of numerically integrating equations 2.1,2.2 using’

equations 8.6 as starting values. H 1is proportional to Hy
-1
E to Ey. (R=10, Y=3.0, N=1, kg =n/5 cm™).
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Fig.7 (CLM-P141)

Slow wave structure required for plasma with density gradient.
(a) Showing position of subsidiary axes y!', z', the lines
0.Y,,0,Z, are parallel to the y,z axes. (b) Showing the orien-
tation of the grooves in the slow wave structure relative to y,z
axes. The lines 0,Y,,0,Y, are parallel to the OY axis.









