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ABSTRACT

The ion cyclotron drift loss-cone instability is studied for
1 dn . .
(n T % ® -0+3), mag-

netic field gradients and finite plasma dimensions. Computational

the case of steep particle density gradients

results show that there are no high density stable regimes. It is
found that for a mirror velocity distribution the magnetic well field
gradient is destabilizing, in contrast to the stabilizing effect
found by Krall and Fowler for a near-Maxwellian velocity distribution,
Potential distributions and critical densities are found for a slab
model using appropriate boundary conditions to determine the modes.
The threshold densities for the boundary value case are only slightly
higher than that given by the usual local approximation. Frequencies
and growth rates as functions of azimuthal wave number are found for

the instability for typical PHOENIX II and ALICE parameters.
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1. INTRODUCTION
(1)

The ion cyclotron drift instability is a result of the non-

Maxwellian ion velocity distribution. In toroidal systems this is
due to the pressure gradient, and in magnetic mirrors it is mostly
due to the presence of a loss-cone. Since the deviations from the
Maxwellian distribution are larger in mirror éxperiments than toroi-
dal ones, the instability can be expected to have larger growth rates
in mirror confined plasmas. The density threshold for this insta-
bility may be estimated by realising that the wave which couples to
the gyro-frequency 1 is here the electron drift wave with fre-

2

Ypi & . ; =

quency W = g where Wni is the ion plasma frequency, € the

1 Y
density gradient scale length and 'ky the wave number. The coupling
condition w = Q; therefore requires that ubi 23fg.

The ion cyclotron drift instability was first discussed by

(1)

in 1963, for near-Maxwellian plasmas.

(2)

Mikhailovskii and Timofeev

It was shown by Post and Rosenbluth in 1966 to be a serious insta-

bility for loss-cone types of plasmas; density gradients lower than
dn

1 6]
ga, = —_

— aj = 0-01 where a; is the mean ion gyro-radius, were
ki Ng dr .

i
required to obtain stability at densities of about 10 em™®. It
would be difficult to employ such low gradients ih a fusion reactor
and in most existing experiments they are larger. Thus it is worth
while searching for even moderate stabilising effects. By numerical
methods we have been able to ascertain quantitatively the stability
boundaries, frequencies, growth rates, and wavelengths of this insta-

bility for present day mirror machines like PHOENIX II and Alice.

(2) (3)

Following the work of Post and Rosenbluth , Post has investi-

gated the stability of a loss cone type distribution and concluded



that for sufficiently large plasma density gradients there existed a
stable region at high plasma densities. Since quite large density
gradients, e.g. ea; = -0+3, are present in some experiments, we have
examined this case (Section 2) in more detail and included terms

which were omitted in the analysis of the above authors.

In Section 3 we examine, using the local approximation, the effect
upon the instability of magnetic field inhomogeneity. Since in mag-
netic well confinement, there is always present a magnetic field
dn

0

' . 1 dB . : ; . 1
gradient B dr of opposing sign to the density gradient N ar °

it is interesting to consider its effect on the stability boundary

(4)

and frequency. Krall and Fowler have recently shown that a cusp-
like magnetic field curvature can stabilise completely a locally
Maxwellian plasma. However the effect of the field curvature on a
loss—cone distribution is more complex. The electron drift wave fre-
quency is enhanced by a factor
148
i - B dr
1dn
n dr

which originates from the fact that,

diV\T"’:diV?— +0

in a nonuniform magnetic field, this increases the magnitude of the
term proportional to w %%% which for a locally Maxwellian plasma
leads to stabilisation; however for a loss-cone type of distribution
this term is destabilising. This is shown both analytically and by

computation in Section 3.

Finally in Section 4, we abandon the local approximation and
attempt to take into account the finite size of plasma. Shima and

Fowier(s) first treated this problem in cylindrical geometry and



found that, under certain conditions, the radial potential variation
may be approximated by a Bessel function. Here, we cxamine the criti-
cal density for an arbitrary loss-cone distribution as a function of
the radial wave number in a plasma slab with appropriate boundary
conditions. The results show that the instability in a plasma slab
with a linear density gradient has a growth rate only slightly less
than that predicted by the local approximation for the point of maxi-

mum density in the slab.

2. HIGH ION DENSITY GRADIENT

In order to facilitate a close comparison of our results with

(2)

that of Post and Rosenbluth , we have expressly adopted the same
basic premises and used the same ion loss-cone distribution functions.
We assume an infinite plasma slab with a linear density gradient in
the x-direction and examine the marginal stability curve in the local
approximation, that is, at a point x = O. The density gradient at

dn
this point is given by € :1% 75% where ng is the particle density
0
at x = 0. The equilibrium distribution function is necessarily of

the form:-

y v
. 2 2 Y
Foj = fo (vi, vi) ( 1 +e(x + ?T:) ¢ swm K1)

where j denotes the species, ion or electron, and QJ the cyclo-

tron frequency.
The normalization is given by:
© . o, 2T
/' / / fo v; dv, dvy df = 1
o ~®'0o

where the cylindrical co-ordinates (v,, vy, {) are used.



The perturbed density f,; 1is obtained by integration along the

particle orbits in the unperturbed magnetic field

-t ‘
-en, L of (v')
o . — /
fiJ = m / E T dt i (2)

=00

where nj denotes the sign of the electric charge e. Let us assume

that the perturbed potential is of the form

¢ = exp i(wt + kyy)
and
E = - Vq) = - ]_k.y ¢
afOJ
To obtain the perturbed distribution one first calculates oy
. ; Y
using equation (1)
2 2
o _ £ (v, vi) + ( 1+ e(x + y)> 2v! it Vi
Svl T . lol\Vis Vi Q.
dvy  Qj | ' -

Inserting the. result into equation (2), the perturbation becomes

ep { af'o [: af'o sky :‘
= 2(1 + —_— =] 2 1+ _—_ - f I
(1 +ex) - w (1+ex) ror- i o n

iion  mj 2 @ 5
2e ar0
+ Q— avf (Vy -w vy I,)
where y .
e Jn o exp(i(n-m) ¢)
n,ms=-ow

Hence the perturbation in ion density is

a : 3
4m p; = 4n nege /.fij d®v afo . gV
o _av2 n( 0 )VJ_ dv, dvy
L i
=—2atw1§i<p(1+ex)ZQZ T
./ fJ ( > v, dv,; dvy
+ 21 w? —LZ
pi ? Q+n

1
ky Vo

N=—wx
f n Jn ( —"'—‘"—Ql
+ 27 w®, == 20 Z
p1

Q- n

> Vi dV_L dV“

(3)

"



where () = é%. Here the first term on the right hand side of equa-
i

tion (3) depends on the shape of the velocity distribution, in parti-
of

cular on the positive slope of a loss-cone type distribution.

vy
The second term is the ion density gradient term omitted in the com-
£ Vf kY
putations of Ref.(3) because of the assumption oo <« 1. The
.

electron perturbed density is much simplified because of the assump-

tion w « Ifkl and ky Vip « Ifk[, and is given by

w? k e
N po = - (1 + ex) 552 E; @ + wge -%Zrh)@ "
e "

The last term on the right hand side of equation (4) is the dominant
electron drift term which cancels exactly the ion density gradient

term mentioned previously in the limit of low frequencies,

The Poisson's equation then leads to the dispersion equation

which can most conveniently be written in the following form

1 —mé F:]_( Eai ) < 1 Eai
B mg PaE N T Y Fe- g
LY (5)
= G(Q, ky, £)
where wﬁi _ {72
D = Z @ = ky a; ai = Qi
i

and Vv? is the root mean square ion velocity given by the velocity

distribution function. The functions F1 and F, are defined by

<0

2 (20.-1)
F, = — 0 I :
Z (0" - ) ((n-1)% _t@) ‘n-1,n (&)

n=1

with

In—1,n (ay) = - 40‘_/ dy ¥ (y?) Jn—1 (oy) Jp (ay)
o



and )

. 0 2Q K
R = gy Z

with .
/‘ dy 2y ¥ (y®) J2 (ay)

=
1l

(=<}

K= @ e on 5 e
[0}

The change of variables from v, to y was performed according to
- v 322
VJQ_ = yz V2 3 7(t \72 :/ fO dv ”

In Fig.1 we have plotted the dispersion equation given by equation (33)
of Ref.(2) which does not include the ion density gradient term for

a mirror ratio of 10 and for o = 10 and ea; = - 0-8.

In our notation this equation is of the form

1 me  Faoooe3y
D Ti+;; =) = H(Q, ky, g) i e (5A)

In Fig.2, the dispersion equation (5) which contains the ion

(6)

density gradient term, is plotted . The roots (% are obtained

graphically from the intercepts of the right hand side of the equa-

tion plotted in Figs.1 and 2 with the horizontal line H or G = l.

o

In the stable regions the number 6f stable roots is equal to the
number of harmonics of (. It may be seen in Fig.1 that, it was
possible by making the electron gradient term large enouéh, to obtain
bands of stable regions at high density. However, Fig.2 shows that

if all ion terms are included, the upper stable regions do not exist.



To examine in more detail the effect of the ion gradient term on

the critical density for the onset of the instability, was

crit
calculated as a function of a = kyai for a more realistic velocity

distribution:- AF’ of Ref.(2) - corresponding to a mirror ratio R
of 1+5, with a density gradient ga; = - 0-3. The results, with and
without the ion density gradient term differ by about 20% as shown in

Fig.3. 1In both cases, the most unstable wave number is around

a = 2+5, while for a < 2, the plasma is stable for all densities.

3. EFFECT OF MAGNETIC FIELD INHOMOGENEITY

In this section we examine the effect upon the instability of the
inhomogeneity in the magnetic field again in the local approximation.
In a mirror machine, the curvature and transverse inhomogeneity of

the magnetic field lead to particle drifts

Vi
Ye T R o
o Vi g M
Ve T 20 Bdr T R

respectively, where R. is the radius of curvature of the magnetic
field. The dispersion equation which is derived from equation (2)

and the Poisson's equation may be written in the form

2 2 k Vi
e S G o, . kef . Jﬁ(%i—)
1 =—Z ky / 2 —2 (2 —2L X2 —_—} v, dv, dv,
J

0
ovi ov3 Q. w-nik v

i = Y Dj

wan (6)

where
E(Vf + 2vi)
Yo . ==
Dj RCQJ



To simplify the electron terms of the dispersion equation, we

assume that the distribution function is Maxwellian,

2

e "!E“
T = B e vee
oe v
Be
k Vi
and take |—¥Tr-| « 1, the electron term then becomes
© ; w2 k(e - i)
w3, k2 pe 'y R
- pe vy C
e = = Qz (P + Q w (P .
e e

Since we want to exhibit both the effects of a hole in the ion
distribution at v, = O caused by the loss-cone, as well as the ion

density gradient, we take the velocity distribution for ions in the

¢ 2 2

( VJ_ >2P ( vy Vlt >
., Sl i g, i
Vio ; Vi

£ (vy, vii) = e (7)
o\l ] PR
K9b T(p+1) Vio V0

form

To further simplify the ion terms of the dispersion equation, we
assume that for the unstable waves |[w-n Qil « Iw-—(n +1) ﬂ&l and
consider only one ion term. With the above approximations, the dis-

persion relation equation (6) becomes
2
wpe . wpe (e RE)
e k O, w
e e

1 =

¥y
wEi pe 2 'ky e viou?
L R V.
T k; V_Eo Viio T (p+1) i .
J= ((1* u, ) 2 2
n L u2(P—1) -(uf +uf) A d
- 8 e u; du; duy
w=-n Ql+ky Vi
o8 (8)
where
vy vy . Kk, Vio
uy = uy = and a” = —x—ﬁ——
Vio V[[O i



(4)

Using the same procedure as Krall and Fowler to simplify the inte-
gration over u; and u;, the denominator of the ion terms was

expanded in the form

i 1 Ky Vpi
w-nj +k_ v ® To-n Q-){1_w—n Q-+"'J
o TRl 1 i

This procedure is valid provided ’ou- n Qil > ky-VDi' Summing the

integrated series the dispersion equation may be written in the form
2 2 _2 P Lk %
w wpe (e FE) wpi 20A —-a  ea; Qi B

e 1
1+58—~. o iae 18]

where

A = ﬂh)/ (p-u?) J2@* u,)

2(p-1) -uf
u, p-1) e u; du;

_ 1 " 2, % -u?
B _P———(p+1)/u_|_p.]n (CL UJ_) e u; du;

<

o S 2y k% 02
Di ~ T(p+1) //[260 (p+ur) -a” ea; O uJ_}

1
E(uf vio +2uff viio)

2 L - 2 2
w (P-1) -(uf +uil) 32 @ w) u; du, duy

RC Oy
sk VJ_O
a - = .
i O wen i, 10)
Putting _ .2 __g_
. ® e (e RC)
w., = )
D w
k |2] {1 +=28
e géz
and a . v _ ¥ oa¥
o wpe [2{&(an ky VDi) a” ed; Qi B] @,

2]
w
[=]
k2 vE, (1 + )
e

and solving equation (9), we obtain
nﬂi - ky VDi + @p

B® }
@' 5 | 5 tl:‘{;[nﬂi—ky VDi+wD(1+_;,g) o 111)

%
- (nQi-—ky VDi) U)D]

2

- 0



For instability, the following two inequalities must be satisfied:

B > 0 - care ( 12)

(nﬂi—ky;Di><1—%><01D<<nﬂi—ky;])i><1+i.—?>.

—

Condition (13) is easily satisfied by choosing a suitable wavelength

and

and a sufficiently high density. Hence the duestion of instability
depends essentially on condition (12)}. Choosing W, = nfﬁ -l<,y Vi
(and hence satisfying (13)) we may write inequality (12), the con-

dition for instability, in the form

2A0 + o (—Eai)fa B>0. eee (14)

The quantities Uy s a*, (—sai), (ﬁ and B are all positive and the
sign of A depends upon the sign of p in the ion distribution
function. In Appendix A, we show that for the loss-cone type of dis-
tribution there are always values of o giving A > 0, However if
p = 0, one can show that A 1is always negative whatever the value

of a¥*.

Thus for loss-cone types of distributions (p > 0), inequality (14)
E3
may always be satisfied for some value of o . As mentioned earlier,
the case of p = 0 (Maxwellian distribution) was discussed by Krall

(4)

and Fowler , and these authors show that for suitable choicés of
electron and ion temperature and magnetic field curvature, one can
keep the left hand side of inequality (14) negative for all values

of a*. So although one may completely stabilize the drift cyclotron
instability with a Maxwellian distribution by magnetic field curva-
ture, this is not the case for a loss-cone type of distribution. The
growth rate for a loss-cone type distribution is found to be propor-

1
tional to (- + ﬁ%)é. Hence for magnetic well geometry, in which

= 10 =



e < 0 and RC >0, the growth rate of the instability is increased

compared with the unifoﬁn field case and the density threshold of the

instability is correspondingly lowered.

To check the above analytical results, the complete dispersion
equation (6) was computed for the loss-cone type of distribution with
parameters of the PHOENIX II and ALICE mirror machines. In Figs.4

and 5 Re f%— and Im é% are plotted as a function of a*. It is
1 1

seen that the magnetic well type of field curvature is slightly desta-

bilizing and the range of unstable values of o® is increased.

It is therefore concluded that it is impossible to stabilize the
drift loss-cone cyclotron instability by field curvature in a minimum

B type mirror machine,

4. EFFECT OF THE FINITE PLASMA SIZE

The model used in this section is again that of a plasma slab in
a uniform magnetic field, but in this case the problem is solved pro-
perly without resorting to a local approximation and taking into
account the appropriate boundary conditions. The wave again propagates
in the y-direction with a wave vector ky, while due to the density
gradient in the x-direction the perturbed potential has to be of the
form: ¢ = @(x)eikyy. The finite extent of the plasma in the x direc-
tion can be expected to introduce é 'radial' wave number kx' In the

plane wave local approximation, this would result in an effective

gradient Bapp = ;F%¥==§ >
kx-+gy

most unstable for small kx' This problem of the finite plasma size

(5)

was first considered by Shima and Fowler in cylindrical geometry,

therefore the plasma is expected to be

who found analytically that, for a particular loss-cone distribution,

- 11 =



the radial potential distribution may-be approximated by a slowly
varying Bessel function, in agreement with what was expected. We
develop here a method for calculating the potential wave forms, fre-
quencies and critical densities for an arbitrary velocity distribution
by solving a differential equation for ¢(x) subject to appropriate
boundary conditions. This equation was obtained by expanding ¢(x)

in the small parameter (x! - x) prior to solving the Vlasov equation
by orbit integration. In this expansion only the terms up to the
‘second order in (x’ - x) were retained which resulted in a second

order differential equation for ¢(x). This equation can be put into

the form
R BYRNNET _
3% [J{ ) 55 |+ cX)e=0 ... (15)
where
X =-£’f— , H () =a+bx , c(x)=d+ex
1
Dea. Q
a =1-DQOS; + Sz + Dsai Ss
b = - Deai 0S4
Dea. (2 Daeai

d =-a%+ (D - ) Fy + Dea; o Fo - —g—
e = Deai Fi
and &
s, - a < o 0+ 1 _ 20 )K

=7 9(92_1) 1 (+n=-1) (-n-1) * e 1) (n+1)  0P-n? n

Ti=

S, = EZ: < n® + Q-1 & n® - Q-1 __2n ) K

2" 02—1 _ Orn-1) (O-n-1) (%n+1)(-n+1)  P-n® n

N Z ( Q(1-2n) ___A1-2n) ) ’
A 29, 2 (#n) (O-n+1) (=n)(¥n-1) n-i,n
Nn=

S ( 1-2n __1-2n )w

&= n-1)(=n) _ (t¥n)(%n+1) / n-1,n °

n=1

= 42 e



Here the integrals I Ko’ and -Kn have already been deflined

n-1,n’

in Section 2 and the additional integral W . == is given by

- 2y .2
Wt k./ Y (y?) y? J_(ay) Jpoqloy) dy

n=—

Equation (15) was solved numerically for the boundary conditions

¢(0) =0
and
I:dge(X)
dx
= XO _ _k
o(%g) = 70Xy

where xo is the width of the plasma slab. The latter condition was
obtained by integrating the equation (15) across the boundary. The
numerical procedure for finding the roots Q@ consisted of starting
off from the point X = xo with the slope satisfying the boundary
condition and then following the solution to X = 0. The frequency
= uVTi was then treated as a parameter and varied in small steps
until a solution was found which satisfied the condition ¢(0) = 0.
Several radial modes were found at each normalised density, for a
fixed Ky, and they are shown in Figs.6 and 7. The normalised density
D = fﬁi is then plotted as a function of the roots Qa in Fig.8

2
1
g = -0+1 and a value of a = kyai = 3+5 known to be the most

for
unstable from the local approximation. The range of 1 was limited
to the most unstable region 0O < (O < 1. The critical values of D
can be obtained from Fig.8 in the usual way as the maximum of the
curves D(Qe) versus Q%. It is seen that the solutions for £ = O,
where # 1is the radial mode number, are only marginally more stable

than the local solution for the point of maximum density in the plasma

slab.

- TR



5. CONCLUSION

The ion cyclotron drift loss-cone instability is found to be
unstable for steep particle density gradients. The high density
stable regimes for steep electron density gradients are removed when

the equally steep ion density gradient is taken into consideration.

Magnetic well type of field curvature is found to be slightly
destabilizing (i.e. the density thresholds for instability are
lowered) for loss-cone type of velocity distributions in contrast to

the results for the near-Maxwellian type of distribution.

The density thresholds for instability derived by using the
local approximation differ ohly slightly from the instability thres-
holds found for the boundary value problem, provided the local

approximatibn is applied to the point of maximum density.
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APPENDIX A
We show that A > O for p>0 and n=> 1. From eqation (10)
we may write ‘A in the form

® 2

2p -u

A =./. —‘3—2(uj_p e 1) 3%(a” uy) du? .
BU_L n

Integration by parts gives .

&* 0 o
A= - — R
T 3% p(a )

“where

o _2
Rp(a*) :./ ui(p_1) gl i J;(a* u,) duf .

o}
Thus for A > O we require the slope of Rp(a*) to be negative for

%
some Q. .

Now Rp(O) =0 for all p provided n > 0, and it is easily
shown that Rp(a*) >0 as a - for p > 0. Since Rp(a*) is
continuous and positive in the region O < a* < = then the slope of

%

Rp(a*) must be negative for some « in this region. Hence A > 0O

provided p>0 and n > O.

— .
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Plot of real and imaginary parts of the frequency against a = kyaj

for typical PHOENIX II parameters.
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Plot of radial potential distribution at a root p for € =0.
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Plot of density against (g for the result from local
approximation and for €=0, 1.









