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ABSTRACT

In this paper we study the effect of a spatial modulation in the magnetic field
on invariants such as the magnetic moment p = Vf/B. In particular we investigate
whether an invariant still exists when the wavelength of the modulation is compar-
able to the gyro radius of the particle, In an axially symmetric magnetic field,
with a square wave modulation, the orbit equations reduce to algebraic relations
convenient for numerical study. We find from such studies that orbits are of two
types; (a) regular orbits which generate an invariant, (b) orbits which are
quasi-ergodic. We have also calculated an invariant by perturbation theory with
the depth of modulation of the field as a small parameter. For this we develop a
modified form of perturbation theory which overcomes the difficulty of infinities
arising at resonance between the perturbation and the cyclotron period, This dif-
ficulty in fact corresponds to a change in topology of the invariant curves. The
invariant calculated from this theory shows very good agreement with the numeri-
cally computed orbits of type (a). The transition to quasi-ergodic behaviour can-
not be predicted analytically but some indication of it may exist in the complex

topology of the invariant curves in the ergodic regions.
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1. INTRODUCTION

The invariants of motiuh play an important role both in the trapping and containment
of charged particles in magnetic confinement systems. For motion in sufficiently smooth
fields, an important adiabatic invariant is the magnetic moment = Vi/B,where VL, is
the particle velocity transverse to the magnetic field B. In this paper we consider the
effect of a spatial modulation, superimposed on an otherwise uniform magnetic field, on
the behaviour of such invariants. We are particularly interested in the situation where
the wavelength of the modulation may be comparable Qith the gyromagnetic radius of the
particle. In this case p is no longer a valid invariant and we' investigate whether any

alternative invariant exists.

Interest in a possible invariant in a modulated magnetic field arose out of studies

of the containment properties of magnetic traps incorporating such fields(]’z’s) but here

we are concerned only with the invariant itself, not with any possible containment. Acc-
ordingly we consider a very simple field, with axial symmetry and without any end effects.
The axial component of the magnetic field B, is B (1+ € g(z)) where g(z) is the

periodic modulation with wavelength @%; there is no radial dependence so that VxB £ 0,

although v.B = 0.

The motion of a charged particle in this field is studied both numerically (Section 2)
and analytically (Section 3).  In the numerical studies g(z) is taken to be a step [unc-
tion, alternately + 1 with discontinuities at =z =n \/2, With this form of magnetic field
“the orbit equations reduce to a set of transfer matrices so that the orbit can be computed

over many field periods with speed and accuracy.

The results of these numerical calculations show that, depending on their initial
values, orbits can be classified into two types; (a) regular orbits which correspond to
the existence of an invariant of the motion and (b) orbits which fill quasi-ergodically

all the available part of phase space not mapped by orbits of type (a).

In the analytic investigation we study invariants using perturbation theory, with €
as a small parameter, Straightforward perturbation theory fails because the perturbation
may 'resonate' with the cyclotron period of the unperturbed orbit, leading to the problem
of 'vanishing denominators'. However, a modified form of perturbation theory is intro-
duced which overcomesthis difficulty and permits us to generate an adiabatic invariant J,

as a series in e. This is valid throughout phase space, even in the region of resonances.



Comparison of the first few terms of the invariant, J = J, + & Jq, with the numerical

computations shows excellent agreement with the regular orbits calculated numerically.

2 NUMERICAL COMPUTATIONS

(4)

It has been shown by Laing and Robson that within a range of 2z Tfor which

f{z) =1 + € g(z) has a constant value f;, the orbit equations may be put in the form

2
o o
dz
2 -0 wun (2]
dt

We have used as a dimensionless time variable T = Y wt, w= eBo/hc and the length
ro 1is related to the constant canonical momentum pg conjugate to the azimuthal coordi-

nate © about the axis of symmetry.

The general solution of (1) is

r? =g + B cos (2 f; 7+ ¢;) v, 105

where

2 _ g2 - pd /02
“i Bi ro//fl

At any time <1, the state of motion of the particle is thus described by only two para-
. . d .
meters aj, ¢j . At a discontinuity in f, both r and Hg are continuous so that at

the boundary between region (i) and region (i + 1).

aj + B €os ¢ = a;,.q + By COS ¥y

and

fi Py sin g5 = 3.9 Biyy sin Vi cee ()

; . h .
Here we have set ¢ = 0 at the boundary between the lth and (i + I)t regions and V¥; , 9
; .th .
denote the phase at the beginning and end respectively of the 1 region, thus

(Pl = qjl + M‘l/ul -..(5)

where u; = (dz /dt); and can be determined from (3) and the energy equation. This takes

2 2 2
d dz To —rf,) =v? -+ (6)
@) . (@) )

where we have written v = 2V/ w. A more detailed account of the procedure for computing

the form

the trajectory of a particle is given by Dunnett et al(]).



Instead of using ¢ and a to represent the orbit the results are presented in

terms of the phase ¢ and the normalized magnetic moment
i 2

2 dz

= 2R = 1 - = -
E'l VJ_/ - VE (d‘t)

The value of £ is constant within a region of uniform magnetic field, and is related to
aj by .
g = 2(f4~?) (o5 T3 - 12)

In the calculation,then, values of (£ .¢) are computed in successive periods of the
magnetic field and the successive points (Ei,@i) are plotted to give a representation of
the 'orbit'. Some typical results are shown in Figs.1-3, These all refer to orbits
with v =2, A= 2g, ro = 2 which were of particulér interest in the containment problem
studied by Dunnett et al(]). They represent a particle injected parallel to the axis at
a distance r, =2 from the axis with a velocity satisfying the resonance criterion
V=w\2x, i.e., v=2 for A=2x, The three figures are computed with amplitudes of

the modulating field which are respectively 0.025, 0.05 and 0.10 of the main field.

From these diagrams it can be seén that orbits are of two distinct types. In some
regions of the (&, ¢) 'plane the successive values of (Ei, @i) along an orbit, lie on a
smooth curve. These, type (a), orbits correspond to the existence of an invariant of
motion. However for orbits in other regions of (&, ¢) the successive values of (gi, ¢i)
do not lie on a regular curve but fill, quasi-ergodically, part of the (& ,¢) plane. 1In
fact one of these, type (b), orbits eveﬁtually fills all the (& ,9) plane except for
regions already mapped by type (a) orbits and some regions of large E, (These excluded
large g regions correspond to particle reflectibn at the field discontinuities). Tt
should be stressed that with type (a) orbits each initial value (Eo » $) generates only
one invariant curve, (except that it may generate a chain of 'islands', as shown). However
with the type (b) quasi-ergodic orbits, any single initial state (&, , ¢,) will ultimately
map the whole area. It is in this sense that we refer to the motion as quasi-ergodic.

The region occupied by type (a) 'regular' orbits decreases, and that occupied by type
(b) 'quasi-ergodic' orbits increases, as the strength of the field modulation e is
increased. In Fig.1, where ¢ = 0,025 almost all possible orbits are regular and possess
a valid invariant. In Fig.3, where ¢ = 0.1, almost the whole plane is mapped by a quasi-
ergodic orbit and only a small class of orbits possess a valid invariant. In all cases

there is a sharp transition between regions where an invariant exists and those where

quasi-ergodic behaviour pertains.



This kind of behaviour is similar to that found in several other problems, notably in
the quest lor a third invariant of galactic motion(s). It is worth noting, however, that
in our present problem the motion.for & = 0 is unbounded whereas interest usually centres

around motion which is periodic when € = 0O,

We note in passing that if g were an invariant the orbits (gi, ¢i) would be on

horizontal straight lines & = constant.

3. THE INVARTIANT

The results of the numerical calculations indicate that, at least for small g, an
invariant may exist even when the usual magnetic moment invariant is no longer valid. In
this section we show how this invariant may be calculated by a perturbation expansion in e.
The essential problem is to devise a perturbation expansion which remains valid even when
the modulated magnetic field gives a perturbation in resonance with the unperturbed cyclo-
tron orbit, i.e., when its effect is no longer 'small'. In conventional perturbation
calculations this resonance gives rise to vanishing denominators in the coefficients of the
g power series. We shall show how this difficulty may be overcome, in principle to any

finite order in eg.

Perturbation Theory

The Hamiltonian describing the motion of a charged particle in the magnetic vector
potential A 1is given by '
1= (p - eA/c) /2m
In our case, using cylindrical coordinates, the vector potential has only one non-zero

component, Ag = r Bz/z. Using C for rg, but otherwise that same notation as in

Section 2, we may then write
2 2 2
H=14% (pr +p, + [c/r -r (1 + sg(z)] ) eee (7)

As we shall evaluate the invariant only to first order in g, Wwe express H approximately

in the form H, + € Hi

=]
1l

2 2 2
5 Z\:pr+pz+(c/r-r)__],

i = (0 -0 glz) vom L8]

0
1]

H, is thus the Hamiltonian for motion in a uniform magnetic field.



The object is to generate a new.constant of the motion J which is to replace the
constant p,s Or equivalently the constant & which exists when € = 0, The system is
still conservative and H = H, + e H; 1is a constant of the motion so that any other con-

stant of motion J has the property [J,H] = 0, where [, ] is the Poisson bracket.

Setting J = J, + eJ1 + «es 5 H=Hg+ sHI and expanding the Poisson bracket one obtains

a set of recurrence equations, of which the first two are
[3,5 Hs] = O
3y, 0] + [J,,H,]1=0 sws  (9)

.We first perform a simplifying canonical transformation(G) (r,pr) - (Q,P) so that

2 : 2
% [pp + (C/r-r) ] = P. This is effected by the generating function

W

2%
dr [2P - (C/r-r) ] vss (10)
which gives
r=P+C+Asin 20Q .o (11)

where

%

A= TP+ 6 —c®)8

The transformed Hamiltonian then becomes

H=>P+% p: + g0 sae I(12)
where

0= (P+ A sin 2Q) g(z)

The recurrence equations (9) become, writing Pz =P for brevity

3o 3T

3 TP - O 3 ¢ G
oJ 3T

1 1
3 *Pa Do Rl=0 .o (14)

Equation (13) indicates that J, is an arbitrary function of P ,p,pQ-z. However
dependence on the last of these is ruled out by requiring that J, be periodic both in Q
and in z for all p. In fact we need regard J, only as an arbitrary function of p.

Then, after a change of variables to o = pQ-z, B = z, equation (14) may be written

1 _1 %o a0
o " p op oz
so that
1 3o [P, 2 ] aste)
JI=-§ —p—/ﬁdp P+Asmp(c,+[3) ap ee. (15)

B



Now g(B) is a periodic function of period %, so that the integral is unbounded in
B whenever p = A/mn. In the neighbourhood of shuch points our expansion in £ must

apparently break down - the well known vanishing denominator problem.

This failure of perturbation theory near a resonance has a simple interpretation.
It is a manifestation of the fact that at such a point the topology of the true invariant
curves, J = constant, differs from that of the curves J, =constant. Generally, if e
is small the contours of (JO + g J1) = constant can be topologically different to those
of J, = constant only if Jl is large. Thus the appearance of a large J; is simply
the response of perturbation theory to the change in topology. Consequently a valid per-
turbation expansion can be obtained if J, is chosen so that a small J; can make the
topology of the (JD + g Jl) curves differ from that of the J, curves. This is the

case if 09Jp/dp vanishes at the points concerned.

We illustrate this by evaluating J; for the square-wave modulation used in the

numerical calculation, g(g') =+ 1. Then

co
-

d n '
E%' =2 J(—l) 8 (B’-nA\/2)
and so
o /3T 1e(=1)N A . (20-M/2) N . 2a+(N ‘)liJ }
Jy = P (552> { . 2 * 3 cos(n2p) | 5D —_gir_—- + (-1)7 sin _—_—BijL__ * oy by P

eee (16)

In (16), P has been chosen in the interval [NA/2, (N+1)2/2] so that B = N2 + 7,
0 <y < M2, The integration 'constant' C may conveniently be chosen so that terms

independent of N disappear; then if J; 1is evaluated at the mid point of an interval,

J; = (—l)N 1 252 P + A sin‘ZQ-W
- poap | " cos(n/2p) , wos (17)

we now observe that, as expected, J; is unbounded at p = 0, and at the zeros of

aJ
cos (A/2p) unless 552 is chosen so that it vanishes at these points. A suitable
choice for J, is

Jg = P° (sin (A/2p) - 6 p/\ cos (?x/2p>
giving finally

J =Jp + e Jq

p’ <sin (A/2p) - 6 p/A cos (}/2p>

+1

% e (1 + 48 (p/?f) (p cos (A/2p) + A sin 2Q>. ... (18)



aJ,
Of course other functions Jg may be chosen, provided 352 vanishes at the appropriate

points, and these would apparently lead to a different function for Jo + & Jy, (= 3 say).
llowever it can be shown that there would then be a functional relationship between J and

J, so that the curves J = constant would be identical with the curves J = constant.

Feor comparison with the numerical computations J must be expressed in terms of the
1
variables &, ¢. The only dynamical variable in Jo 1is p, and this is exactly v(l—gya

In J;, we need only zero order (in e) relations between P »Q and E, ¢. These are

P="§ vZ E Q=§-15 P .
Consequently J can be written
3 % A 6v* 2 2
I =v3(1-8) sin——g—%(l—&’,) cos —te 5 & A [1 % 489° (1B ]
2v(1-1) 2v(1-5)*

xLé v> gcos—-h—-—r+<(lﬁvﬁg)2+vag;—’c){’cos q:i| ... (19)
2v(1-)*

Curves J = constant are shown in Figs.4-6 for the same parameters (v=2,C=4,\ =2x
and £=0.025, 0.05, 0.10) as were used in the numerical computations of Figs.1-3. It

will be seen that there is closc agreement between curves derived Trom the invariant (19)

and the computed orbits of type (a).

4., SUMARY AND DISCUSSION

We have investigated the motion of charged particles in a spatially modulated magnetic
field, in particular to see whether any invariant exists when the modulations give reso-
nance with the cyclotron period and destroy the magnetic moment invariant. A study of
numerically computed orbits in a modulated field shows thét they fall into two classes (a)
regular orbits, corresponding to the existence of an invariant and (b) quasi-ergodic
orbits. Provided the modulation ¢ of the field is not too great the regular orbits

predominate,

For small e, then, these numerical studies indicate that an invariant exists, even
in the resonant situation, We have, therefore, computed this invariant as a power series
in e. For this we developed a form of perturbation theory which avoids the usual problem
of vanishing denominators near resonance and shows that this phenomena really indicates a
change in topology of the invariant curves. The invariant calculated in this way is given

by Equation (18), and shows very good agreement with the numerically computed orbits of



type (a). This agreement confirms that, when an invariant exists it can be calculated by

our modified form of perturbation theory,

lHlowever perturbation theory can give no direct indication of the transition to quasi-
ergodic behaviour. An indirect indication may lie in the chain of 'islands' which the
numerical studies show near the boundary between regular and ergodic behaviour. These
islands represent further changes in topology which would be reproduced if our‘perturbation
theory were carried to higher order and we may speculate that the increasingly complex

behaviour of the analytic curves represent the onset of quasi-ergodic behaviour,
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Fig.1 Numerically computed orbits, € = 0.025 (CLM-P 158)
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Fig.2 Numerically computed orbits, ¢ =0.05 (CLM-P158)
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Fig.3 Numerically computed orbits, € =0.10 (CLM-P158)
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Fig.4 Invariant curves J, + € J;= constant, ¢ = 0.025 (CLM-P158)
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Fig.5 Invariant curves J, + ¢ J, = constant, € =0.05 (CLM-P 158)
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Fig.6 Invariant curves J, + € J, = constant, ¢ =0.10 (CLM-P 158)












