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ABSTRACT

The radiative transfer of Doppler broadened resonance lines in a
plasma which is not in local thermodynamic equilibrium is studied for
a simple model of an infinite, uniform plane parallel plasma. A two
level atomic model is used in which electrons are transferred between
the levels by electron excitation and de-excitation, spontancous emis-
sion and photo-excitation. Stimulated emission is neglected. It is
assumed that the source function is independent of frequency and that
the spontaneous emission is isotropic and unpolarised. The radiation
is emitted in a Doppler broadened profile in which natural and pres-
sure broadening may be neglected. In the calculations the population
of the excited level is assumed to be much smaller than the ground

level.

The distribution of excited atoms in a steady state with their own
resonance radiation has been calculated, and from this the rate of loss
of energy, and the line profiles and intensities are obtained. The
rate of loss of energy is compared with a model of diffusion of photons
in frequency space. The line profiles are self-reversed although the
calculations are for a uniform plasma.

The validity of the assumptions is examined and the restrictions
they place on the range of application are considered with particular
reference to Lyman alpha radiation.
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1. Introduction

The resonance lines emitted by a plasma are important for the means they
provide of studying the plasma and because the process of radiative transfer
influences physical properties such as the distribution of excited atoms and
the radiative energy balance. The problem of radiative transfer is simplest
when the plasma is optically thin and the radiation emitted leaves the plasma
without any interaction. A more complicated situation, but one where many
simplifying assumptions may be made, is when there is local thermodynamic
equilibrium and the populations of the excited levels are given by the
Boltzmann distribution. This has been extensively studied for its applica-
tion to stellar atmospheres. (Chandrasekhar 1960).

In high temperature laboratory plasmas and some astronomical plasmas
such as the solar chromosphere, these assumptions are often invalid. The
populations of the excited levels can be calculated only by considering the
transfer of radiation and the atomic processes together, and the result
depends on the geometry and optical depth of the plasma. The importance of
this type of calculation has been pointed out by Thomas (1957). The general
solution of radiative transfer for an atom with many levels is too difficult
to be solved at present, but in order to study the main consequences of
radiative transfer in a plasma, a simple two level atomic model has been
used in a uniform infinite plane parallel plasma. Four processes transferring
electrons between the levels are included. These are electron excitation and
de-excitation, spontaneous emission and photo-excitation. Stimulated emission
has been neglected. The distribution of excited atoms in a steady state with
their own resonance radiation has been calculated, and from this the total
intensities of the lines with their profiles have been calculated together
with the total energy loss from the plasma. The line profiles show self-

reversal although the calculations are for a plasma of uniform electron
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density and temperature. In some conditions the intensity of the line is
greater than the corresponding optically thin intensity. The rate of loss of
energy is compared with a simple model of the diffusion of photons in frequency
space.

26 Basic equations

In an optically thick plasma with a uniform number density Ny of atoms
in the ground level and a uniform electron temperature Te and density Ng ,
the number density N, of atoms in the excited level will vary throughout
the plasma. The distribution of atoms in the excited level is calculated
from the atomic processes between the levels and the equation of transfer of
radiation.

Using the definitions and nomenolature of Ambartsumyan (1958a) the equa-

tion of transfer is

‘i_I_"‘:-Iu-f:}_‘f (‘)
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where ];f is the specific intensity of radiation at a given point and in a
given direction at a frequency V' , 'Zb. is the optical depth, .J¢ the
emission coefficient and jxwp the absorption coefficient. This equation has

an analytical solution of
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where t[¢. is the intensity incident at the origin of 'IAy .

This equation represents the change in intensity of radiation after passing
through a plasma that emits radiation as well as absorbs it.

The coefficients of absorption and emission may be expressed in terms of
the Einstein coefficients. For a Maxwellian distribution of atoms with

negligible natural and pressure broadening, the absorption coeffficient is
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where \]\o is the central frequency of the absorption line, qu is the
Einstein absorption coefficient, ZXVB the 6?1 frequency of the
gaussian profile and P the mass density of the plasma.

If it is assumed that the emission coefficient has the same frequency

spectrum as the absorption coefficient then y "
h -(\T-—-\To) /A\rb
0y NV Aas + 1\1‘ Bu) € (4)
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The validity of this assumption and others that are made will be discussed

Jy=

later, ﬂ:u is the Einstein spontaneous transition coefficient and BJ[ is
the stimulated emission coefficient.

The ratio of the emission coefficient to the absorption coefficient is
known as the source function f. If stimulated emission is neglected

¢ Au 2
- < B o (s)
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and it is independent of frequency.

In a steady state the rates of the processes populating and depopulating
the excited level must be equal. VIf M5 is alweys small compared with Ty
then

0=V /A\r
|2 R}- d¢ + ﬂeX:z

Na _ AV [T (6)
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Az, + Oe¥a

Xll is the rate coefficient for excitation by electron collision defined

so that the number of excitations/cc/sec is N, Ne x.z and \lg_l is the
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rate coefficient for de-excitation by electron collision defined so that the
number of de-excitations/cc/sec is My ne\’m « The integral term represents
photo-excitetion and f& is the radiation energy density at the point in

space being considered and is obtained by integrating the intensity over all

4m
- %/ T, do g

Tt is convenient to express the variables of these equations in terms of

solid angles

dimensionless parameters. A dimensionless frequency X may be defined by

X 5= v-do (8)
AVp

In full thermodynamic equilibrium, intensities are given by the Planck

function and the populations by the Boltzmann distribution, and the remaining
variables may be expressed as a fraction of their black body value.
If stimulated emission is negligible the black body radiation density ng

"VeTe

is 3 -
hv
bb C

The principle of detailed balancing gives the black body source function

phb as

Fg. A2 X2 (10)
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It also equals the black body intensity so that

= & (1)
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Dividing equations 2, 5, 6 and 7 by .FLB and putting
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This is the equation of transfer in its final form. It has to be solved

simultaneously with the following equations:
47

_ 1] Iedw (1)
R L

F =~ _PHa +0eYs (5)
Hz, + nNe Yll
50 2

where 5 P e‘x dx 7 ( ,6)

f is the intensity expressed as a fraction of the black body intensity.
bb '

The optical depth at a frequency x is related to the optical depth at the line

centre To by %
A ()
Tx=T¢€

For an optically thin plasma with no radiation incident from outside, the
fractional source function F has the value F o
Ne Yz
(13)
(«]
F}J_[ T+ Ne YQI

Equation (15) may now be expressed in terms of F;;,

= E.(1*Fo) + R (R)

)

The essence of the problem is to solve equations (13), (14), (16), (17)
and (19) to obtain the fractional source function F as a funotion of the
optical d.epth’l: through the plasma d.esc:_‘i'bed by the parameters of F‘; and
total optical thickness,

3. The method of solution

Let the plane parallel plasma have a finite thickness along the z-axis,
and be infinite along tﬁe X and y axes, By symmetry F is a function of z
only and is symmetrical about the centre plane of the plasma. Suppose that
-5 -



F is specified at a number of values of z throughout the plasma. Then the
corresponding normalised radiation excitation rate .P_ can be calculated

from equations (13), (14), (16), using an interpolation method for F. The
values of F). will not necessarily satisfy the steady state condition, equation
(19), if the values of F are arbitrarily chosen. But the relation between the

values of P obtained in this way, to the values of F assumed at each of the

points J is given by

p=2ak (20)
where the coefficients ai_‘j depend only on the optical thickness of the
plasma.

If linear interpolation is used for F, this result may be shown as
follows. In figure 1, let the plane of constant z upon which the values FJ
are specified be separated by an optical depth ATO measured along the z-
axis at the centre of the line. At a frequency xrand at an angle € to the

z-axis the optical depth between the planes is A’z_'x_ and

-

AT, €
|cosB|

F at a point ’r-i from the jth plane measured toward the j + 1 plane is

given by

F = FJ + Fj+1"5 Z‘J/c (22)
ATx

Inserting equation (22) into equation (13) and integrating over the interval

Atx gives :
~ATlx

_A‘rx ATx
Lc - EC e +ﬁ("‘eA )‘!’(F!-H—Ej)(e +ATx-1)

ﬁb i ﬁabj AT:r._ (13)



Ix

where - is the intensity arriving at the j + 1th plane from the

1cl:b ALd

direction of the jth plane. Since there is no external radiation incident on

the plasma, 1;5 is zero. Thus the intensity incident at each plane

Tib/1

 can be calculated using equation (23) for each value of J in turn. Since
equation (23) is a linear relation between the intensity and F, all the
intensities are linear functions of the assumed values of F. The numerical
integration formulae are simply sums of the values of the variable multiplied
by some numerical constant, so that the total normalised excitation rate E)
obtained by integrating the values of 1;5 over all frequencies and
b/}

angles in equations (14), (16) and (17) is also a linear function of the
values F3 and equation (20) is true.

For a steady state condition, equation (19) must also be satisfied,
Inserting it into equation (20) and eliminating is gives a series of

equations for the values of Fi o These are represented by the matrix

equation

(1- Fo)-a.;- i £ f (24)

~Fo =

where _Eé is a vector with all its components equal to F% and.gg is a
unit matrix.

This equation can be solved by any of the standard methods given the
coefficients Cl%j o The coefficients are calculated essentially in the

following way. Differentiating equation (20) gives

—

GJL = a P) (25)
oF;
This equation is valid for any choice of F so that the values of F are

chosen to be zero except for FE which is conveniently put at unity. The

corresponding values of F> can be obtained from equation (23) in the
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manner described in the proof of equation (20) and so the coefficients Cl%j
can be obtained., They depend only on the optical thickness AT, .

If a polynomial interpolation is used for F, equation (20) is still
valid. A better interpolation function would require fewer points to give
the same accuracy in the results, and the calculations indicate that a great
improvement would be obtained by using at least & quadratic fit. If the
quadratic term of the interpolation is the largest neglected, then doubling
the number of points and so halving the interval between them will reduce
the error of the linear interpolation by four. Figure 2 shows this effect.
The accuracy of all the results was estimated by calculating them with half
the number of points. The results for an optical depth up to ten are
accurate to 1% or 2%; the results at high optical depth and small F; may
be in error by as much as 10%, particularly at the edge.

Some early results for Fo nearly unity were obtained by iteration and
the ocalculation converged satisfactorily. The convergence for small Fﬁ is
very slow. The improvement in F for each iteration is rather less than Fo o
L.  The results

The distribution of F was calculated with an IBM 7090 for a range of
optical thicknesses and values of E . The results for F;) ranging from
0.5 to 0.001 are shown in figures 3 to 7. The abscissa represents position in
the plasma, the origin being the outside edge and the right hand extreme
being the centre of the plasma. The ordinate is the fractional source function
F which is plotted for various total optical thicknesses of the plasma measured
at the line centre. F equal to unity represents a Boltzmann population. If
the plasma is optically thin, F equals F; o When the optical thickness
becomes large, the population approaches the Boltzmann population over a
large portion of the plasma. The smaller is Fi,, the larger is the optical

thiclkness necessary for this. The variation in F is then concentrated in a
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small portion of space and the results obtained with equally spaced points
become inaccurate.,

Equation (24) shows that when F; is very small, its contribution to
the coefficients is negligible and then for a given optical thickness of the
Plasma, the shape of the solution for F is independent of F; and its
magnitude directly proportional to Fz « It is not easy to show from a
general analysis when F; is sufficiently small, but examination of the
numerical results for fi of 0.01, 0.001 and 0.0001 shows that if F at the
centre of the plasma is less than 0.1, the shape is constant within an accurecy
of 5%. The results for F; of 0.0001 are not shown here. Since F increases
with optical thickness of the plasma, the larger the optical thickness the
smaller F; must be to satisfy the criterion.

5. Solution and results for a semi-infinite plasma

In a semi-infinite plasma, the source function and all intensities have
their black body value except for a small region near the edge. The source
function in this region may be calculated by considering a finite plane
parallel plasma illuminated on one side by an isotropic black body inten-
sity. The equations may be solved as before, but now there is a contribution

S

from this incident intensity and the equation for ’D becomes

(24}

0
t[ is the black body intensity and is unity. Combining this equation
bb

with equation (19) gives
'—.E? - (‘* F;).S; = 111—'59 g% -;£J ES

The results of the calculations for a range of values of FL are

(27)

shown in figures 8 to 11. The ordinate is the fractional source function

and the abscissa is the optical depth measured at the centre of line from
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the edge of the plasma,

The calculations for a fihite plane parallel plasma have shown that for
large optical thicknesses, the source function is near to its black body
value over most of the plasma, variation in F is then concentrated in a
small portion of space and the results obtained with equally spaced points
become inaccurate. But if the optical thickness of the central region is
sufficiently large, the intensities arriving at the edge region will be
black body over the range of frequencies in which the effective part of the
absorption coefficient is situated, and the source function at the edge of
a large finite region will be the same as for a semi-infinite plasma. Thus
the source function for a large plane parallel plasma may be represented by
two edge regions calculated from a semi-infinite plasma and a black body
region between. There is a region of overlap between the values of the.
source function calculated this way and those calculated earlier, and the
agreement is good. The accuracy of the results for Fi of 0.5 is about
2%. For F; of 0,001 the results are 10% low in the centre and perhaps up
to 30% low at the edge.

6. The rate of loss of energy

The total rate of energy radiated from the surface of the plasma is
obtained by integrating the intensity I( \f, 9) leaving the surface over

all frequencies and angles. For a plane parallel plasma
co W2

o_lf_EZ// 2 I(\I" 9)C059 sinf dBd\ ergs em2pec!

dt (28)
0 o

For an optically thin plasma _(\}*\}0)7&\]‘: (2q)

]:(\h 9) o 4C )(o F)1~ e

cos b

where jto is the absorption coefficient at the centre of the line and L is
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the geometrical thickness of the plasma,

The fractional source function has been calculated across an optically
thick plasma and the equation of transfer may be solved to give the intensity
| leaving the surface at all frequencies and angles. The total rate of loss of
energy from both surfaces is conveniently expressed as a fraction W of the

rate at which energy would be lost if the plasma were optically thin. So
co Wa

W = 2 1(%,8) st cosB dBdx (30)
mrT )| B,
09

1(x,6)

where is the intensity calculated to be leaving the surface of the

plasma ex%%%ssed as a fraction of the black body intensity.

The fraction W is shown in figure 12 plotted against optical thickness
for various values of Fg .

F; is the fractional source function when the plasma is optically
thin, but equation (18) shows that it is also the fraction of excited atoms
which undergo collisional de-excitation and consequently a fraction I-F; of
the photons absorbed are reémitted. In an optically thin plasma atoms are
excited by electron collision only and all the photons escape. In an optically
thick plasma electron excitation is again the source of photons. FPhoto-
excitation and spontaneous emission simply represent the absorption of one
photon and the subsequent emission of another. If F; is very small all
the photons created by electron excitation will eventually escape and the
rate of loss of energy is the same as if the plasma were optically thin, and
W is unity. At each absorption a fraction Eé of all the photons are converted
back to electron kinetic energy by de-excitation collisions. As the optical
depth increases, so does the number of times a photon is absorbed, and the

probability of it reaching the surface before suffering de-excitation becomes

small,
- 11 =



It has been suggested by Zanstra (1949) and Osterbrock (1962) that for
a doppler broadened line the change in freguency upon reémission of the
photon provides a more important escape mechanism than diffusion through
space, since if a photon is emitted in the wings of the line where the optical
depth of the plasma is small it will escape.

Assume that a photon will escape if it is emitted at a frequency greater
than 11 and it will be absorbed if it is emitted at a frequency lower than
I,‘ . If the optical depth at the centre of the line from the edge to the

centre of the plasma is To , then at a frequency 3(.' the optical depth

’[_" is
e .
T=T, e (31)

It has been assumed in the calculations of the fractional source function
that the emission coefficient has a gaussian profile, so that thezpro'bability
that a photon is emitted between x and XX + dx is \-!—1_—__ e‘x dx
irrespective of the frequency at which it was absorbed. -go the probability gq

that a photon is emitted at a frequency greater than Ii , from the line

centre is

q = 2 /e dx = 1-erfx | (32)

If atoms excited by electron collisions emit photons, a fraction g will
escape and 1-g will be absorbed. Of those absorbed a fraction 1~ Fo will
be reémitted and of these a fraction q will again escape. The total fraction
W of photons emitted as the result of an electron excitation which escapes is

therefore
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W= g+ (1=R)(1-9)g + (1-Fo(1=¢)% + -

4

) 1-(1-R)(1-9) (33)

When o 1s sufficiently small, W is close to unity and all the photons

eventually escape, when F; is nearly unity, the higher terms of the
series are all very small and W equals q. Figure 12 shows W calculated from
this simple model when 'Z; is unity.

These curves give the rate of loss of energy as a fraction of the rate
of loss which would exist if no photons were absorbed. The total rate of

loss of energy from both sides of a plane parallel plasma of thickness L

cms is

dE Ny Ne sz(’-Ea) L Whv, ergs e sec (34)

e

dE

Ta Line profiles and total intensities

1}

The line profiles emitted normally to the plasma boundary have been
calculated from the spatial distribution of the fractional source function
using the equation of transfer. The profiles are shown in figures 13 to 18.
The ordinate is the intensity expressed as a fraction of the black body
intensity and the abscissa is the dimensionless frequency x. These profiles
show self-reversal although the calculations assume that the plasma has a
uniform density and temperature. This is most pronounced for small F;
where the radiation processes dominate the collisions, and in these condit-
ions the intensity at the centre of the line can never rise to the black body
intensity however large the optical depth may be. When F% is unity, the
profiles show no self-reversal, and the central intensity rises to the black

body value at an optical depth of 5.

The area of the profiles gives the total intensity of the lines. These
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total intensities are shown in figure 19 and they are normalised so that a
gaussian line profile expressed in dimensionless frequency having a central
intensity at the black body intensity has a value of unity. The curve for E;
of unity is essentially that calculated by Van der Held (1931).

These total normalised intensities may be compared with those that would
be emitted if the plasme were optically thin. In the same units the total
normalised intensity for an optically thin piasma is F; Qfo « Comparison
of this intensity with those in figure 19 for an optically thick plasma
gives the paradoxical result that the inteﬁsity emerging normally from an
optically thick plasma may be greater than the intensity calculated by
assuming the plasma absorbs no photons. It is illustrated most clearly at
en optical depth of 10 and [y of 0.001. The calculated total normalised
intensity is 0.0195 whilst the product [ To  is 0.010. It has been
explained that for small F; and modest optical depths all the photons
generated by electron excitation eventually escape. But the plasma used for
these calculations is infinite along two of its axes, and this restricts the
solid engle in which the photons can escape and the intensity must be increased
to maintain the equilibrium.

8. The physical assumptions and their validity

A number of assuﬁptions have been made in the calculations described

above. These assumptions are justified only under certain physical con-
ditions, and the restrictions which they place on the validity of these
calculations are described in this section and illustrated by reference to
Lyman ol radiation. The assumptions that have been made are

(a) the source function is independent of frequency

(b) spontaneous emission is isotropic and unpolarised.

(¢) stimulated emission is negligible and the density of excited

atoms is much less than the density of ground state atoms.
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(d) natural broadening is negligible compared with doppler broadening.

(e) pressure broadening is negligible compared with doppler broadening

These assumptions will be considered in turn.

(a) The source function is independent of frequency.

This is the most important assumption that has been made, and it means
that the profiles of the absorption coefficient and the emission coefficient
are the same. The gaussian profile of the absorption coefficient results
from the Maxwellian velocity distribution of the ground state atoms. For
the emission coefficient to have the same profile the excited atoms con-
sidered by themselves must also have a Maxwellian distribution of the same
kinetic temperature as the ground state atoms. If the probability of excita-
tion is independent of the velocity of the ground state atoms, then the
excited atoms created will be a completely random sample of the ground state
atoms and will therefore have the same velocity distribution. Excitation
which is independent of the atom velocity occurs with inelastic electron
collisions, where the velocity of the electrons is very much greater than the
velocity of the atoms, and also with photo-excitation by isotropic white
light or by a constant isotropic intensity over a band of frequencies much
greater than the effective part of the absorption coefficient for the line.
In these two forms of excitation the source function is unconditionally
independent of frequency.

When the ground state atoms are excited by the absorption of a narrow
band of frequencies such as those in a spectral line, the slower atoms are
excited preferentially. The atoms at the instant they are excited, will not
have a Maxwellian velocity distribution. But they will be redistributed
into a Maxwellian distribution if they undergo many collisions with other
atoms, excited or ground state, during their lifetime. So that when atoms

are excited by a narrow band of frequencies the source function is
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independent of frequency only if the time between collisions of the excited
atoms with other atoms is short compared with the lifetime of the excited
state.

Little information is available for the cross section of elastic
collisions between hydrogen atoms. McDowell (1958) has calculated the cross
sections for hydrogen ions and hydrogen atoms. They are not very dependent
on energy and the rate coefficient for a Maxwellian distribution has been
estimated from the cross section at the mean energy. The density at which
the mean time between collisions equals the lifetime of the excited state of
the Lyman ol line depends on temperature and this is shown in figure 20.
The values of the parameter Fg are also shown for Lyman ol and they
have been calculated from the excitation coefficients of Seaton (1962),

The condition obtained for the source function to be independent of
frequency is probably rather pessimistic. No consideration has been given
to whether small departures of the source function from this assumption
would cause serious errors.

(b) The spontaneous emission is isotropic and unpolarised.

If the excitation is isotropic then the number of atoms in the different
states of the same level will be equal. Under these conditions, dipole
radiation between level f\J and ni)’ is isotropic and unpolarised.

If the excitation is by some anisotropic process such as the absorption of a
unidirectional beam of light, then the subsequent emission may also be
anisotropic because the excitation may establish different numbers of atoms
in the different states of the same level. However, collisions between the
atoms will distribute them evenly between the states, and if the states are
broadened by Stark effect during the collisions so that the states merge,

the assumption of isotropic unpolarised emission is justified.
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(¢) Stimulated emission is negligible and the density of excited atoms is
much less than the density of ground state atoms.

Stimulated emission is negligible if

A, >> Bafy (35)

where f&_ is the radiation density, 142, is the Einstein coefficient
for spontaneous emission and 81, is the Einstein coefficient for
stimulated emission. The intensity at any frequency cannot exceed the black
body intensity corresponding to the electron temperature of the plasnma.
Using the Planck black body intensity to calculate the radiation density and
the relation between the Einstein coefficients, the inequality (35) reduces

to

e"AT oo (34)

This also represents the restriction that the density of excited atoms is
small compared with the density of ground state atoms, since the excited
atom density cannot exceed the Boltzmann population and the ratio of the
statistical weights of the two levels is usually of the order of unity.

This restriction may be relaxed at very low electron densities since
the intensities will be well below black body intensity and the density of
excited atoms well below the Boltzmann population.

If stimulated emission for Lyman ol is not to exceed 20% of the

L4 o

spontaneous emission then the electron temperature must not exceed 7 x 107 “K.

(d) Natural broadening is negligible compared with doppler broadening.

At large distances from the centre of the profile the contribution to
the absorption coefficient of the wings of the natural broadening profile
is greater than that of the wings of the doppler profile. The freguency at

which the two are equal has been calculated together with the absorption
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TABLE 1

The dimensionless frequency at which the doppler and natural broadening
profiles are equal and the maximum optical depth for which natural
broadening may be neglected for various ratios of the e~ doppler width
frequency to the damping constant.

‘-A-YP AVe T max
AVp
1 %100 6.73 2.5 x 1010
3.2 x 10° 6.55 2.1 x 107
1 x 108 6.37 2.0 x 10¢
3.2 x 107 6.18 1.9 x 1012
1 x 107 5.98 1.8 x 1014
3.2 x 10° 5,78 1.7 x 1077
1 x 10° 5.57 1.5 x 1012
3.2 x 10° 5.36 1.4 x 10M
1 %107 5.13 1.3 x 1019
3.2 x 10% 189 1.2 x 107
1 x 10* 063 1.4 x 10°
3.2 x 10° 437 9.4 x 10°
1 x 107 .08 8.2 x 10°
3.2 x 10° 5,76 7.0 x 10*
1% 102 3.41 5.7 x 103
3,2 x 107 3,02 I x 102
1 x 101 2,54 3.2 x 101
TABLE 2

The maximum optical depth for which natural broadening may be neglected
for Lyman ol radiation for various atom temperatures.

T°K Toox

10 5.1 x 10°
102 6.2 x 10*
103 7.5 x 105
101|r 8.6 x 106
105 9.8 x 107
106 1.4 x 10°
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coefficient of the doppler profile. If the total optical depth at this
frequency is small, the intensity of the profile may be caleculated from the
source function using the optically thin approximatién. For large optical
thicknesses, the fractional source function is unity for most of the volume
so that an upper value for the intensity of the profile for this cross-over
frequency may be calculated, If this is small, say less than 0,05 of the
black body intensity, the significant part of the profile calculated from
pure doppler broadening will be correct. So natural broadening may be

neglected provided that the optical depth does not exceed Tmﬂx which

is defined by . ( AVe )2
AVp
Tlﬂﬂl e arp = 0'05. (37)

where A\fe is the frequency at which the two profiles are equal and A\fp

-1
is the € frequency of the doppler profile.

Ave

ANy
doppler broadening to natural broadening. S is X/q-rr where X is

and Tm ax are given in Table 1 for various ratios of the

the lifetime of the level.

For Lyman oK the relation may be expressed as a maximum opticel depth
against temperature. This is shown in Table 2.

The main effect of adding natural broadening to a doppler broadencd
profile is to increase the wings considerably. Since the total area of the
absorption coefficient must remain the same, the centre of the profile is
reduced, but only very slightly. The rate of excitation of atoms by
absorption is determined mainly by the central region of the absorption
profile, If the addition of natural broadening reduces the absorption
coefficient at the centre by 5%, then the total rate of photo-excitation
will be reduced by less than this. The rate of emission, proportional

to the total area of the emission coefficient, is unchanged, so that
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the source function calculated from a pure doppler broadened profile will

be less than 5% in error. Tables of the combined absorption profile have
been published (Ambartsumyan 1958b). The absorption coefficient at the centre
is reduced by 5% when é)ﬁ&ﬁb is 0.0h. For Lyman ol this corresponds to
a temperature of 1 oK, so that above this temperature a good approximation of
the effect of natural broadening may be made by calculating the line profiles
using the correct combined expression for the emission coefficient <from the
fractional source function obtained for pure doppler broadening.

(e) Pressure broadening is negligible compared with doppler broadening.

The argument used for natural broadening may be applied to pressure
proadening. The pressure broadenecd profiles of Lyman ol calculated by
Griem, Kolb and Shen (1959) were used to find the frequency at which the
absorption coefficient of the pressure broadened profile equals the doppler
profile. The optical depth for the line centre for which the intensity of
the cross over frequency is 5% of the black body intensity was calculated
for various temperatures and densities. Figure 21 shows the maximum optical
depth at which the pressure broadening of Lyman ol may be neglected for
various ion densities and temperatures. TFor a given optical depth these
curves give a maximum ion density against temperature. This limit for an
optical depth of unity is shown in figure 20 to give an indication of where
the pressure broadening of Lyman ol becomes important.

9. Conclusion

These calculations show how the excitation in a plane parallel plasma
not in local thermodynamic equilibrium increases with the total optical thick-
ness of the plasma. At low densities when electron excitation and de-excitation
are small, a large optical thickness is required before the excited atom

density and line intensities reach their black body level. The excited atom
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density at the edge is not enhanced so much as at the centre, and since the
intensity at the centre of the line profile is determined by the conditions
at the edge of the atmosphere, the line profile is self-reversed and the line
centre caﬁ never achieve a black body intensity. If the optical depth is large
enough, part of the wings of the line profile will reach a black body intensity.
At low’electron densities all the photons generated by electron excitation
'eventually leave the plasma, since they can only be prevented from leaving
by converting the energy into kinetic energy by an electron de~excitation
collision. In a plasma infinite in some direction the solid angle in which
photons can leave if the plasma is optically thick is restricted and con-
sequently including the absorption of photons can increase the calculated
intensity emitted by the plasma.

Of the assumptions made in the calculations, that of a constant source
function is the most restrictive if it is to be satisfied unconditionally.
The effect of a source function varying in frequency has not been considered.
In the calculation of the source function quite large additions of natural
broadening have little effect, but the effect on the line profile emitted

from the plasma is great.
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