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ABSTRACT

A theory is developed which leads to an expression for
the partition of energy between mechanical and magnetic
modes in a turbulent magnetohydrodynamic system in the pre-
sence of a strong external field, Modifications to this
expression due to specific plasma effects are obtained and
are not significant. Results are also obtained for the

frequency spectra and diffusion coefficient,

Measurements of the turbulent fluctuations in the
ZETA device are described, and from these, values for the
partition are obtained, It is found that there is only
complete agreement with the theory if an anomalous resis-

tivity is assumed at low operating pressures,
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1. INTRODUCTION

Turbulence in magnetohydrodynamic systems is not only of interest
in astrophysical and geophysical applications (BATCHELOR, 1950;
CHANDRASEKHAR, 1951 (A204); TATSUMI, 1960; KOVASZINAY, 1960; COWLING,
1957) but also in laboratory plasma devices (KADOMTSEV, 1965). Experi-
ments on the containment oi nigh temperature plasmas by magnetic fields
have revealed many forms of oscillation which are frequently labelled
"turbulence', and it is clear that the word is being used in a broader
sense than in ordinary fluid turbulence. In additidn to the usual
fluid turbulence concept of a large number of interacting 'eddies',
which propagate only due to their mutual interaction, a plasma exhibits
a variety of wave motions which propagate independently of their mutual
interaction. Magnetohydrodynamic turbulence in the presence of an
applied field can exhibit these features and we shall attempt to inter-

pret the observed fluctuations by such an approach.

The problem of homogeneous, isotropic magnetohydrodynamic turbu-

~ lence has been studied by many authors (BATCHELOR, 1950; CHANDRASEKHAR,
1951 (A204); TATSUMI, 1960; LUNDQUIST, 1952; CHANDRASEKHAR, 1951
(AZO?) ;5 KRAICHNAN, 1958) and statistical theories of turbulence have
been developed berRAICHNAN (1957-1965), EDWARDS (1964, 1964) and
HERRING (1965), which give closed equétions describing the basic cor-
relation function. We shall follow the approach of Edwards in this

paper,

The assumption of isotropy is not valid for the problem we are
considering as there is a natural direction of symmetry. This implies
that we need to consider axisymmetric correlation tensors. The assump-
tion of homogeneity will be justified in our case by the measured

properties of the turbulent intensity fluctuations.
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LEHNERT (1955) studied the effects of an applied field on MHD
turbulence for the final period of decay. He concluded that turbu-
lence elements with finite wave numbers in the field direction would
be strongly damped though no non-linear terms were included. Thus the
turbulence would be axisymmetric and tend to be two-dimensional. It
has been suggested that turbulence would be suppressed by an applied
field, and this effect has been studied by NIHOULE (1963, 1965) and
MOFFATT (1961) for the isotropic case, but it does not occur if the
system becomes two-dimensional as the effect of the applied field
goes to zero (ROBINSON, to be published; ROBINSON, 1966). We can
expect therefore that MHD turbulence will tend to the two-dimensional
limit.

In MHD turbulence one of the most important problems is the parti-
tion of energy between mechanical and magnetic modes. For the case
when the mean field vanishes, it has been argued by some authors
(COWLING, 1957; BIERMAN and SCHLUTER, 1951) that there should be
approximate partition of energy between the two modes, whereas an
apparent similarity between the roles of vorticity and magnetic fields
has been invoked by others (BATCHELOR, 1950; MOFFATT, 1961). There
is little experimental evidence available from experiments with liquid
metals as the magnetic Reynolds number is far too small (SAJBEN and
FAY, 1965). In a plasma this need not be the case, but here other

considerations such as the anisotropy can become important.

In the next section we describe a model for the turbulent fluctua-
tions in the presence of a mean external field and in particular
obtain an expression for the partition of energy. Possible modifica-
tions to this expression due to specifically plasma effects are

considered.



In section 3 we describe measurements of electric and magnetic
field fluctuations in the Zeta discharge. Results are presented for
the partition of energy in the plasma and are compared with the theo-

retical predictions.

2. THEORY

The theory we use, termed a 'generalised random phase approxima-
tion' (EDWARDS, 1964, J. Fluid Mech.) uses a Liouville approach to
consider the probability functional P([u(r)],t), where u(r) is the
fluid velocity at r. For the linear case this satisfie€s an equation
of the Fokker-Planck form. The non-linear interaction among the wave
number modes is assumed to be comprised of two parts, representing
diffusion into a particular wave number from other regions of wave
number space and a dynamical friction extracting energy from this
mode to other modes; thus the Fokker-Planck form is retained. Equa-
tions are then derived for these two quantities, by an expansion in
'degrees of randomness'. This approach leads to a basic auto-
correlation function of exponential form; this is not satisfactory
for small and large times, but it is expected that the detailed beha;
viour of the auto-correlation function will not affect the behaviour
in wave number space significantly. This defect has led to a
Lagrangian approach (EDWARDS, 1964, Plasma Physics) which discusses
the more realistic probability functional P([u(r,t)]) and the equa-
tion it satisfies.

We will study a system consisting of a uniform externally applied
magnetic field and a uniform viscous conducting fluid; however, some
specifically plasma effects will be considered later (e.g. Hall effect,

tensor conductivity, etc.) and described by the two-fluid equations.
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We do not consider Landau damping. In the application to our experi-
mental situation the applied field is strong compared to the fluctuating
magnetic and velocity fields; the system is subsonic‘i.e. u E,co where
u is the r.m.s. velocity fluctuation and o the sound speed so

that we can start by assuming incompressibility, and the plasma pres-
sure is small, ﬁ = gnP/B% « 1 where P is the plasma pressure and

B the total magnetic field strength. Disturbances in such a situa-
tion are naturally close to two dimensional. This can be seen from

equation (1) where there is no term to balance those involving BO if
s) 0

~

org  dry g

.

The incompressible MHD equations in the presence of a uniform

applied field B (in the 3 direction) are

3
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where p 1is the mass density, P the pressure, v the kinematic

2
. . - ; : c -
viscosity, Ve the magnetic viscosity = —— where ¢ 1is the conduc-

Ang
tivity, and indices a and { run from 1 to 3. The magnetic field
will be expressed in velocity units, = ZE-, and as we are consider-
ing a homogeneous case we will use fourier Eotation. F 1is an exter-
nal random force introduced to maintain a stationary turbulent system.
In a real system it represents the input of energy due to iﬁstability,
for example, in a discharge from interchange modes for which the driv-

ing force is the pressure gradient, or for flow down a tube, from the

mean velocity shear (ALLEN, 1963). Because we do not know what



properties to assign to F, the only significant results are those
that are essentially independent of the details of its spectrum. In

addition we assume that the principal source term is purely mechanical.

The reader who is not interested in the mathematical development
of this theory, but only the results, can now turn to equation (12)
which gives the result for the partition of energy in terms of the

basic fields, lengths and turbulent coefficients.

We require the probability of the system described by (1) having
values of uk, hk at time ¢t, and for a particular system this pro-
bability will be a 6 function. To obtain the average behaviour of
an ensemble of systems we average with respect to the random force
Loe,

<P(u-ls, h,

 ty R ]'....[ Plu, b 0 [FD) PR (0)])roF,
| (2)

where
P(ovitensy woelyenns £) = 6 (e = U () 8l ~ h(t))

K here is the fourier index i.e.

v  being the volume of the system. A formal solution for uk, hk

can be obtained from (1), for example u, is given by

*(t) = 7:—“/ [(vmk2+ M) eMt-T)_ (vmk2+ u) ep(t’_T)] Kko'(’U)dT

'7'{1"_/ (eME-T) _ o (E=7), il Kq ch”('r)'r:lT
o

i AL ) ut u (o)
+[(vmk‘+')\)e —(vk+|_L)e ]W
iH K.
S — h (o) (M - o) e (3)



where
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A and p are the roots of X* + (v + v )K®X + (HZKE + vy K*) = 0.
The summations % are such that k = j + 1. If (3) and the expres-
sion for hk(t) are inserted into (2), using the fourier representa-
tion of the—&elta function i.ez_? G gy 5(2) we can obtain < P )
and the equation it satisfies (ROBINSON, 1966). We are interested in
the stationary situation and take the limit t -+ «» to obtain a time
independent averaged P. The result is that the random force intro-
duces a diffusive second derivative in the Liouville equation for the
averaged P , i.e. it yields the Fokker-Plénck equation for a random
process. The exact form of the equation depends on the auto-
correlation of the random force and the simplest and least limiting
assumption is that the fluctuations are instantaneous i.e. the cor-
relation time is much shorter than that associated with the velocity
correlation function; hence we use a & function (or an exponential

with time constant smaller than all other natural périods appearing).

The equation then takes the form
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where YEB = <-FkG’F_kﬁ >, the input correlation tensor. The factor
% in the_diffusive terms is a consequence of our & function appro-
ximation; some other factor would appear for a different auto-
correlation function. If we consider a more general input tensor,
allowing for magnetic sources and their possible correlation, then
additional diffusive terms will appear, of the form

v
%_ 3 " o 9 m
2 gl_(_ ? _agl-gv+vm Jq(ag!s ? ahliv+vm #5
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o
N

where é&k =< G, G_]?, f{’k =< B, G—k > and G, is the magnetic
source term. The é{k represents the source term in the equation for
the cross correlation < u h_ p 2

The non-linear terms neither create nor destroy energy, but the
magnetic non-linear terms transfer energy between the velocity and
magnetic fields, leading to the appearance of random fields. We
assume that the non-linear terms can be considered as a random force
representing the non-linear input to, together with a dynamical fric-

tion representing the loss from, cach mode (EDWARDS, 1964, J. Fluid

Mech. ). On this basis we would expect (4) to be replaced by an



equation of the form

a, B ot aui k aEE k k 3 . k aﬁE
. (5)
D 42'ap 3 3 ( %p 0, 0B P B B)j )
+ ahi d aEE % ahi d/ agi # W, Ag & %N < i > =0

k

ponents uk, Ek and hk’ Ek respectively, arising from the combina-

The diffusive coefficient d! and dz gives the input into the com-

tion of the external input and that arising from all other components
of u and h. The wﬁ give the total output due to dissipative
losses and the output to all other u and h modes. The wi are
different in that they transfer output to other u or h modes only;
these are effectively the wave frequencies which couple together a

particular u and h mode. The di can be looked upon as represen-

ting the input arising from other modes in the equation governing the

cross correlation < u b .

As our system is homogeneous the basic correlations possess

Hermitian symmetry

M =<yl > =t w =<

=

J
h > ... (6)

I~

however %

ij i ji
Flk) = Cuy nl > = - P (k)
is anti-Hermitian. (5) plainly possesses a solution of the form

B o ST EN BN B iJ'iJ')j
P(uk, hk) = N exp t b = ( a Tu 2by “iﬁk + ¢ h T e (7)

where N is a normalising factor. By forming the Qk's, Hk’s, Fk's

we obtain relations between the basic correlations and the a bk’

¢, 's. Inserting (7) into (5) allows us to obtain the following four

k



equations

10 _ a4 JB ol i
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If we multiply (5) by u;(t) on the -left and Ei(t*) on the right

/ Fi - - s
and average over uk(t), h&(t), uE(t ¥s hE(t ) — we obtain an equation

for the velocity auto-correlation

% Qli&j(fr) + w;-iﬁ QE']j('r:) + w;iﬁ FEé('L‘) =0

— similarly we can obtain three other equations of the same form. The
auto-correlation functions are therefore exponentials and when the

w, are diagonal the relevant time constants are given by the roots of

k

X2 4 (wli +'w1§) X4 (= w]i wli’ +wf{- w;) =0

which reduce to the roots N and p of (3) in the linear limit.
Consider the lifetime of an 'eddy' which is small so that the local
Reynolds number is of order unity. If H0k3 is not large and

Vo >V then the lifetime is of order

This implies that a turbulent eddy with a small scale in the field
direction (large k3) will be damped out relatively rapidly and thus
the final state of decay will be approximately two-dimensional

(LEHNERT, 1955).



The wk can be written in the form

1ap a 10 a 20, .
wk - vk2 [3 + Rk ‘3 , W;GE} - vmk2 8 E’ + R]_(- B , wiﬁ — lHokaaarﬁ_I_ R?‘(p

—_— — —

veo (9)

The Rk's represent specifically turbulent contributions to the eddy

-—

frequencies w and th/k2 is effectively a turbulent viscosity. We

can justify the assumption that wﬁ :cni =w, in terms of the equal

transfer of energy to and from the velocity and magnetic fields by

the applied field terms. The dk are given by

ik
dka’ue - IE‘B + S;’a'ﬁ ; dlia‘ﬁ - S;O’B ; d}jaﬁ =y S;G‘B

where the Sk represent effective inputs due to the action of the

non-linear terms, and I, a.physical input into the velocity field.

k

Using (8) we can now obtain an expression for the partition of energy
between the two fields. As our system is axisymmetric the tensor form

of Qiﬁ and diﬁ is (ROBINSON, 1966)

i Kied i ik i ki g
Q (k) = Alk,ks) | Sz—-6 +clk,ks) | & Eg+?»?\—i-g(7\k +2'k)

af

where A 1is a unit vector in the direction of symmetry. W, is
diagonal but with different elements. Using these properties we

¥ & - . . /! a
11 21a ,1al l1a .2 al
B M % % %

ii 7 1iq %l g 20i
Hll( W % k %%

obtain

. ... (10)

It is difficult to obtain the closed equations for Rk and Sk in
such a system (ROBINSON, 1966); however, we can make an estimate of
all the above quantities in the energy containing region of the turbu-
lent spectrums. This is the region where K ~ 1/L where L 1is the

correlation length. In this region where we only have a direct input

= 0 =



to the velocity field, I, » §,» and we obtain from (10)

k™ "k
Qii w2(wi N wz)
e [ o, s 3 cee (11)

where the w, are the transverse components. We see that in this
approximation the energy residing in the velocity field is always
greater than or equal to that in the magnetic field. In addition if
the applied field is made very strong and the system cannot tend to

the two-dimensional limit at the same rate as the field is increased

(perhaps due to the finite length of the apparatus) then
ii,ii
Q.k/ -)1'

This represents a system of weakly interacting Alfven waves. If the
system is close to two-dimensional then there is virtually no transfer
of energy to the magnetic field by the non-linear termm in the velocity
equation arising from the magnetic force term, nor is there much trans-
fer due to the non-linear term in the induction equation, hence we
expect wi and wk to have approximately their linear values vmk2
and - iH6k3, so the 'turbulent conductivity' component is small. The
nett transfer of eneréy by these two non-linear terms can be shown to
vanish in the two-dimensional limit. As wi = vk® + Rk and for the
above region of wave number space, the turbulent frequency Rk is

approximately u/L; or we can consider an 'eddy viscosity' Rk/k2 ~ uL,

which we call v. Thus (11) becomes

. ess LI2)

H2k2 + v kK2(V + v )k2
K ~ ]_) _ m m:
L )=

2 .2
HO kS

IF:';J“IFCMI
N

It is possible to obtain a result similar to this by a linear cal-

culation (ROBINSON, 1966), but .the above calculation shows how the

- 11 -



expression is modified by non-linear effects. The major contribution
to the ‘energy in the two fields arises from this small wave number
region so that measured ratios will not be sensitive to the value at
higher wave numbers (unless we frequency discriminate) where a possible
inertial range might exist and basic theories can predict a value for

the partition (KRAICHNAN, 1965).

If we consider the two-dimensional limit ®2 « w> W® then the

k k k
frequency spectrum of the velocity field is determined by wli as
af
1" (w)
Qiﬁ(w) = :{ = (Iiﬁ(w) = fiﬁ for the delta function input).
+ w
k

VWe can therefore consistently approximate wl’{' by the characteristic
frequency of the velocity fluctuations, this frequency is observed to

be of the same order as that given by a turbulent viscosity, ~ u/L.

L) o

22

Similarly for the magnetic field spectrum we have
(w? +w™? ) (Ww? + W )

Hiﬁ (w) =
k
so that if w? < w! the characteristic frequency is w? and could

k k k

be used to obtain wﬁ. Thus at high frequencies Q ~ w2, H =~ w4,

In the wave limit U® - h®, the above considerations are not valid.

A diffusion coefficient associated with the turbulence can be cal

culated from

Dk=}ﬁQ(k, W)
- w-=>0

which in the limit of ua/hE » 1 gives ~ uE/wl‘: and so D~uylL . In
the opposite limit the diffusion coefficien; is considerably reduced
as the plasma is frozen to the lines of force (effectively Ve = 0).
Thus the simple calculation of diffusion as a random walk (GIBSON and
MASON, 1962) is valid only if u?/h® » 1; otherwise the observed dis-

placements do not represent steps of a random walk.

- 12 -



We can obtain some estimates of the effect of departures from the
basic equations (1) on the partition value (12) by solving the problem
in the linear limit and using the above ideas to extend the expressions

to a turbulent limit.

The linear Hall effect arises from a coupling of the fluctuating
current density with the mean applied field. The equations to be

solved are

a
oh
k @ a mc 2 aBY, B .Y
— 2 — i LD
% T vmk h£ = 1H0k3 uE + na? HOKSE k hE
wis (18)
Q
auk
S 2 & . e A
= # vk u = lHOkaaE + Fli D]_(- /p

where m is the ion mass, eapY the Levi-Civita symbol and

mc ?
4mne

equations for the stationary correlation functions of the fields pro-

5 = Rs is the ion collisionless skin depth. To solve these
duced by the random force involves a considerable amount of algebra
and only the results will be quoted. In the wave limit when

Hgkg > vvmk4 we obtain

uf v

i ] g ey Je AR ... (14)
2 v 4+ VvV S

hy

and in the opposite limit the previous result holds. Consideration

of the non-linear terms again suggests that vk? - wlk, vmk2 - wok.

Compressibility can also introduce modifications to the expres-
sions, but in the limit when kg is small the principal effect }s
to produce a parallel component of the magnetic field fluctuations,
which we do not consider as our experimental results only give the
partition for transverse fields (the full value is unlikely to differ

significantly from the transverse). These calculations are most
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useful in predicting the size of the density fluctuations (ROBINSON
and RUSBRIDGE, 1966). We can also consider pressure tensor effects
as w; Ti can be large {wi is the ion cyclotron frequency and ®y
the ion-ion collision time). Again the algebra is complicated but
the final result is that there is no radical alteration to (12)
except that if ks is small, v should be taken to have its perpen-
dicular value (MARSHALL, 1957)

y = = : vae (15)

18 2 s
p<1+9wi‘ci>

We can also consider the effect of inhomogeneity and in particular

the effect of a magnetic field possessing shear e.g. B = (o, By, Bo)
and the effective shear length is given by Lg = Ba/ﬁBy/ax. In this
case we find that if k, is small, 1/k; is replaced in the expres-

sion for the partition by a length related to the shear length.

3. EXPERIMENT

Measurements of turbulence were carried out in the Zeta discharge
(BUTT et al., 1958; BURTON et al., 1962; GIBSON and MASON, 1962) at
a gés current of 150 kA, applied magnetic field of 370 gauss and fill-
ing pressure between 0°5 and 5 mtorr D;. Radial magnetic fields were
measured using small search coils of 50 turns with high frequency com-
pensated Miller integrators, with the integrating resistor mounted
close to the ¢oil. The overall frequency response was abdut 1 MHz
and the sensitivity about 1 mvolt/gauss. The coils were placed in a
7/8" diameter quartz tube silvered on the inside, that served as a
vacuum envelope. Electric fields were measured by dbserving the volt-

age developed between two platinum pins, 4 mm long by 2 mm diameter

- 14 -



separation 1 cm. The frequency response in this case extends up to

500 kHz.

The variance of both these fields was measured by a long period
integrator (LEES and RUSBRIDGE, 1965). It measures <|b|> rather
than the variance, but provided the probability distribution of b
is gaussian

{bl> = 0-796 b2 .
In measuring b a filter passing frequencies above 10 kHz was used,
as it is known that this is sufficient to exclude the large scale
motions of the entire discharge (RUSBRIDGE et al., 1962) leaving only
the more localised turbulence. The signals were gated, the gate being
open for 400 ps centered on peak current for 20 successive discharges,
which is sufficient to reduce statistical errors to about #*5%, the

exact error depending on the auto-correlation function.

The amplitude of the radial magnetic field fluctuations, br is
found to be independent of radius over most of the discharge (Fig.1).
The amplitudes of br and b6 are equal within experimental error.
The density fluctuations behave similarly to the br fluctuations
(ROBINSON and RUSBRIDGE, to be published), which leads us to believe
that there is a central core region where the turbulence is homogen-
eous and an edge region where loss and interaction with the walls are
dominant processes. If the electric field E is derived solely from
a potential ¢, then if <{ ¢ tp>r = X where our correlation function

notation is defined by

<Ee (x) Ee()_c+ r) > = <Ee Eq >r,

then

%X ool
<E6Ee>e=—-g;';, <EBEG>P_“]"6P via (16]

= 15 =



These relations are compared with experimental data in Fig.2 and give
reasonable agreement after allowing for the imperfect correlation at
small separations, which is a constant feature of our electric field
measurements at low pressures. This may be due to small scale turbu-
lence effects or some surface phenomena on the probes. Measurements
of the two magnetic field correlation functions < br br >r = f(r)
and < by by >r = g(r) are shown in Figs.3 and 4. For isotropic
turbulence the condition div B = 0 requires that

of

ir wss (1)

r
g=f+'2‘

while in the two-dimensional limit (the correlation length in the

field direction is much greater than that transverse to it)

g=f+r el ... (18)

The two relations are compared with experiment in Fig.4 using a form
for f derived from Fig.3 and we see that (18) is a good fit to the
experimental points. Note that Figs.2 and 3 both show transverse
correlation lengths of about 5 cm. Attempts to measure the correla-
tion length along the magnetic field are shown in Fig.5 and give esti-
mates of 50-100 cm for this length. As the paths of lines of force

are not known with certainty, and in any case fluctuate during the
period of measurement we can only obtain a lower limit for this quan-
tity. Using order of magnitude estimates for the terms in equation (1)
and the known value of [, it can be shown that the parallel length

cannot be less than 50 cm.

By considering a generalised Ohm's law we can show that the fluc-
tuating electric field perpendicular to the mean magnetic field is
related to perpendicular fluid velocity by GE Bo®= EE to within 25%

at the lowest filling pressures we have used, where the departures are

“ 16 -



worst. We have confirmation of values for this velocity from spectro-
scopic measurements of Doppler broadening (JONES and WILSON, 1962),
and microwave scattering (WORT and HEALD, 1965). Using the known
experimental variation of this u, with filling pressure and the
calculated variations of v and vm using known electron and esti-
mated ion temperature (RUSBRIDGE, to be published), we deduce the
variation of the ordinary and magnetic Reynolds numbers (R, Rm) of’

the turbulence with filling pressure, shown in Fig.6. The Reynolds
numbers associated with the turbulence are large, of the same order

as those attained in laboratory fluid turbulence experiments

(BATCHELOR, 1960; GIBSON and SCHWARTZ, 1963; GRANT et al., 1962).

As we have already noted the correlation length along a field

!

line may be limited by the shear length L7* = ———Ji——s——z where
By S u(1 + p®r?
= —— : except very near the axis -of the discharge the shear length

rB, ’
is not greater than 150 cm. The most unstable hydromagnetic pertur-
bations are those whose wave numbers coincide with the inverse pitch
(2ﬂp_i) of the mean field configuration at the magnetic centre of the
plasma (WHITEMAN, 1965; ROBINSON, to be published). From experimen-
tal results this length is aboﬁt 220 cm, and it is plausible that this
length determines the actual parallel correlation length (A;,), because

this perturbation could be one of the dominant ones driving the more

localised turbulence.

Calculated values of uf)hi_ using (12) and the above estimates
of v, v, are shown in Fig.7 for a particular 4A;. The lower curve 1
shows the partition as a function of pressure using the usual values
for the transport coefficients. Curve 2 shows the result of using
w? in place of the usual kinematic viscosity and 3 the effect of

k

also using wﬁ. This is less than wi from the measured frequency
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spectra and has been taken to be a constant fraction of it. The
effect of decreasing ks (increasing 4A;) is shown on curve 4,
Curve 1 should be comparable with experiment at high pressures, while
2 and 3 are likely to be valid at low pressures. The effec£ of the
Hall term on the partition as expressed in (14) is demonstrated in
Fig.8, where we have used wi and wﬁ in place of the usual dissi-
pative coefficients.

The electric field fluctuations are known to scale as I%/p
(RUSBRIDGE et al., 1962) where I is the gas current and p the
mass density, so the magnetic field fluctuation should vary as
1/(p Y)%, where Y = u®/h® is the energy partition. Thus if /Y does
not vary strongly we expect approximately h ~ I/p%. A summary of a
number of results for the absolute radial magnetic field fluctuations

demonstrates that this relationship is approximately valid, as shown

in Fig.9.

The partition Y was determined in detail as a function of fill-
ing pressure for a fixed current of 150 kA in a D, discharge by
measuring (E;E)% and (E;E}%{ The results are shown in Figsf10 and
11. Note that the p~* and p“Ié variations do not hold at high
pressures but nevertheless there is a strong correlation between the
absolute values of the fluctuating quantities. From other methods of
measurements of the turbulent velocity it is unlikely that uj; > u,
so that our measured partition is probably close to the total parti-
tion of energy. We note that the values range from 6<5 at the lowest
pressures to 1-0 at the minimum, rising to 19 at the high pressure
end. (It is interesting to note that these values are comparable with
those obtained by Russian astronomers (KAPLAN, 1964) in the solar

photosphere, where values of 5 to 10 were measured. )
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Values for the partition have also been measured in Tiber
(REYNOLDS et al., 1966), ﬁhich is a linear pinch device. Here values
in the region of unity have been observed. The operating pressure
used in these measurements was higher than the pressures at which we
have made measurements. Consequently as ks 1is restricted by the
finite length of the machine we would expect values close to unity
from our theory. The fluctuations in Tiber were considered to be of

a magnetohydrodynamic type.

The variation of this partition with initial pressure can be
explained by our model for pressure 2 35 mtorr, for measurable
values of kjy. At low pressures we only obtain agreement if in addi-
tion to using wﬁ we use wﬁ which is a sizeable fraction of wi,
and even then the kg's are rather small compared with our suggested
lower limits. Reference to Fig.8 suggests that the Hall effect can-

not give the correct size, but does give a more correct pressure

variation for the partition.

An anomalously high P could account for our results at these
lower pressures; this might arise from some non-hydromagnetic effect
(e.g. electron runaway). If plasma motion across the magnetic field
followed the Bohm law microscopically, i.e. within each individual
eddy, rather than as a macroscopic average over eddies, the effect
would be to increase the effective value of vm sufficiently to

explain the results.

In a homogeneous system, high values of the partition might arise
either from a high Vo, Or from a small value of k_,. However, as
shown above, in the presence of shear the maximum valve of the parti-

tion is obtained for k., %~ 1/L_. no further increase occurs if k; is

- T =



reduced below this value. High values of the partition can therefore
only arise if v is large; and with our parameters e must be
appreciably larger than the value corresponding to the Spitzer

resistivity.

The minimum observed in the fluctuations, Fig.10, may reasonably
be regarded as the minimum predicted by the theoretical model. This
arises because at the higher pressures the Reynolds number is rela-
tively small and if viscosity is the principal damping mechanism then
the intensities will be proportional to its inverse. The perpendi-
cular component has a maximum when w; Ti = 1 which for our para-
meters occurs at about 6 mtorr of Dy. Hence this may account for
our observed minimum. No such minimum has been observed in dis-
charges in neon where we believe wi Ti « 1 over the whole pressure

range of observation.

The radial variation of (Eg)!5 has been measured and falls con-
tinuously from the centre. If we combine this variation with that
of the total field strength then we can estimate the velocity fluc-
tuations as a function of radius; with the result that these are
homogeneous out to some 35 cm (c.f. Fig.1). The dynamics of the edge
region may determine the integral scale
A= /'w f(r)dr . _ (~ 5 cm)

o]
For example, KADOMTSEV (1965) has suggested that by analogy with a

turbulent jet one might expect XA ~ R/10 where R 1is the radius of
the tube; this gives about the right value and moreover A is very
nearly independent of the discharge parameters (ROBINSON et al., to

be published).
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The cross correlation F;J is an odd function of ks so that

the spatial correlation of u and h vanishes for zero separation.
The tensor properties of F%i) are the same as those for Qii)

except that the defining scalars are now odd functions of r. The
derivative of the correlation in the direction of the applied field,
taken in the limit of zero separation, yields the energy transfer

term associated with the applied field. As Fig) is odd in kg we
can then show that < u®(x) h*(x + rs)> = 0. This has been confirmed
experimentally by measuring < Eg (x) br(§ + r) >, where for separations

in the range 3-7 cm we have obtained a value for the correlation of

- 0-007 £ 0-031, i.e. zero within the limits of error.

4. CONCLUSIONS

A theory has been developed which leads to an expression Tor the
partition of energy between mechanical and magnetic modes in a tur-
bulent magnetohydrodynamic system in the presence of a strong exter-
nal field. The assumptions used in obtaining this expression have
been justified by experimental observations. Alterations to this
expression due to specific plasma effects have been obtained and are
not very significant. The result can be interpreted in terms of a
number of competing turbulent frequencies which characterise the two
modes. In addition results are obtained for the frequency spectra

and the diffusion coefficient.

A number of basic properties of the turbulent fluctuations in the
Zeta device have been described, in particular it has been shown that
the electric field correlation functions can be derived from a scalar
potential and the magnetic field correlation functions correspond to

a two-dimensional limit. The electric field measurements are used to



determine a turbulent velocity from which we have obtained estimates
of the Reynolds numbers, which can be sufficiently large to be com-

parable with those obtained in laboratory fluid flow experiments.

Observations on the fluctuations give values for the partition
in the region of unity for high operating pressures which can be
explained by the theory. However at low pressures, where values for
the partition of up to six are obtained, there is no agreement with
the theory unless the plasma motion across the magnetic field folléws
a possible Bohm law microscopically and leads to an anomalous resis-
tivity. Under these conditions values for the partition comparable

with experiment are obtained.
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Fig.1 (CLM-P 167)
Rms radial magnetic field fluctuations as a function of radius
0.5mtorr D,, I = 150kA, applied axial field 290 gauss
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Electric field correlation, Yamtorr D,, I = 150 kA,
applied axial field 370 gauss
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Fig.3 (CLM-=P167)
Radial magnetic field correlation <b, b.> ,, Yamtorr D,,
I =150kA, applied axial field 370 gauss, sech (x/4.2)
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Magnetic field correlation <bgbg >, 0.5mtorr D,,
I = 150kA, applied axial field 370 gauss upper curve
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Magnetic and electric field correlations in the axial direction
® magnetic  + electric
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Fig.6 Reynolds numbers as a function of initial pressure (CLM-P147)
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Fig.7 Partition of energy as a function of initial pressure (CLM-P147)
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Partition of energy for the Hall effect. Lower wi, wi
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Variation of rms magnetic field fluctuations with 1/p*
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Fig. 10 (CLM-P 167)
Variation of rms electric field and radial magnetic field with
initial pressure I =150kA, axial field 370 gauss
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Partition of energy as a function of initial pressure,
I =150kA, applied axial field 370 gauss












