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ABSTRACT

There can exist a class of particles in stellarator fields
for which the cancellation of the toroidal drift is incomplete,
These 1localised particles, reflected in the gradients of the
helical field, can drift through the separatrix of particular
stellarators no matter how strong the field; they form a loss
region in velocity space. The loss of plasma due to binary
collision scattering into this loss region, in the absence of
electric fields, is calculated. The possibility of confining
a plasma with reactor parameters in the presence of this loss

is examined,
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1. INTRODUCTION

The rate of loss of plasma from axisymmetric toroidal confinement
systems has been calculated by PFIRSCH and SCHLUTTER (1962) in the
high density case where orbit effects are insignificant, and by
GALEEV and SAGDEEV (1967) in the low density case where orbit effects
are dominant. The orbits considered by Galeev and Sagdeev are those
of passing and blocked particles (GIBSON and TAYLOR, 1967) and these
are the only types present in axisymmetric systems, However in stel-
larator systems, because of the asymmetry, a further group of particles
occurs (GIBSON‘andTAYLOR, 1967). These localised particles, reflecfed
in the gradients of the helical field, are much more difficult to con-
tain and can drift through the separatrix of particular stellarators
no matter how strong the field; they form a loss region in velocity
space, The three types of orbit which can occur instellarator fields

" are compared in Fig.1,

This paper exami_nes the loss which arises because binary Coulomb
collisions scatter particles into the loss region, The form of the
self-consistent electric field resulting from these processes in
stellarators is not known and consequently its effect on the orbits
is not included, howéver in each process the effective loss rate is

taken to be the slowest of the ion and electron rates,

Diffusion coefficients due to the existence of localised particles
are estimated in Section 2, and in Section 3 are combined with the
results of GALEEV and SAGDEEV (1967) to produce a diffusion equation
which can be solved numerically, This equation is used to evaluate
the loss rate in a high shear £ = 3 stellarator approximating to

the reactor parameters proposed by CARRUTHERS (1967) and the results



‘are compared with the LAWSON (1957) criteria in Section 4. In Section
5 the effect of introducing a limiting density gradient is examined,
The work described in this paper has been reported at an American

Physical Society Meeting (GIBSON, 1967a).

2, DIFFUSION CAUSED BY LOCALISATION

In a stellarator with a sufficiently large number of field periods
even the localised particles can remain‘within the separatrix (GIBSON
and TAYLOR, 1967) although they may still have large displacements
from the magnetic surfaces. However for most configurations, includ-
ing those discussed here, the localised particle orbits will inter-
sect the separatrix; we shall assume that if a particle remains in

a localised region of velocity space, then it is lost.

Consider first the very low density case when localised particles
drift freely out through the separatrix, ions and electrdns drifting
at the same rate, The 1ocalised region of velocity space thus tends
to become depleted, and is replenished by particles scattered in by
small angle collisions. Since the localised region in velocity space
is a disc of small width centred on vy = 0; the time for a particle,
on average, to be scattered into this region is of order t90’ the
time for small angle collisions to rotate the velocity vector by 900o
At small enough densitiés this time will be longer than the time re-
quired for a particle to drift through the separatrix and will.be the
effective loss time. In this regime the ions are lost fMi/Me times

more slowly than the electrons.

At higher densities the localised particles will be lost less

rapidly than the t rate because there will be a good chance that

90



the particle will be scattered out of the localised region before it
drifts to the separatrix.- The particle will then be scattered in
velocity space until it again énters the localised region at approxi-
mately the same radius. Thus for a given particle there will be
periods when it is passing or blocked and has compensation of its
toroidal drift; alternating with periods when it is localised and
has an uncompensated drift. The drift in radius will be randomly in
and out according to whether the particle is trapped above or below

the median plane, The step length for this random walk process is:

éor ~V_ ., t

D* "L
where tL is the time for which the particle is localised and Vb

is the toroidal drift velocity:

o - (%)(8)

where
R, = major radius
V = thermal speed
B = Tfield strength
m = particle mass

and the other symbols have their usual meaning, We define a such

that the condition for a particle to be localised is

Vi
e
( VL )
where V; and V, are velocity components parallel to and perpen-

dicular to the magnetic field, tL is then:

Den &2
5 (q: ) 9o



If the frequency with which a particle enters the localised region is

fL then the effective diffusion coefficient is DL:

_ T 2
D =< e 8.5
where { > indicates an average over all velocity and 6;3 is the

mean square steplength. Now

where the bar indicates that the product is averaged over all the
occasions when the particle enters the loss region. Evaluating the
average gives:

Dy, & a®{tgq «Vp™>
Since, for a given particle, tg, .VD2 varies like V7 the more

energetic particles diffuse most rapidly. Averaging over a Maxwellian

distribution yields

5 s / 3¢ kT \* -
DL ~ 10 q < S Ro ) : t90 ees (1)

where T is the temperature in OKn

In this case, as opposed to the low density case, the ions diffuse
‘Mi/Me times faster than the electrons, and the diffusion coefficient
decreases with increasing density. The dependence on a, implies that

DL will increase steeply with radius,

The value of o can be estimated from approximate theory (GIBSON

and TAYLOR, 1967). It is given by

3/2 2 3244
o,zzz(a-I)(g%) (?) (;’:ﬂ-) e (2)
o}

where
2 = number of pairs of conductors in the helical winding
p = number of field periods on the torus
r = minor radius
Iy = separatrix radius, taken to be equal to the plasma radius



It has been assumed that the rotational transform per field period

' L\
LK = !.O ( ;—' )
m

When & = 3 and by = 7/6 (GIBSON, 1967b) equation (2) can be written

5
/:
ufvo-z(?),(%)a eeo (3)
; [o] m

and in this case numerical computation (GIBSON and TAYLOR, 1967) for

(1) is given by

a toroidal stellarator shows equation (3) to be a good approximation,

At still higher densities particles are scattered out of the
localised region before completing even one transit between mirrors
and localised diffusion stops, This situation will arise for n > n,

where

X 3 3 2
72 X 10 a pT e (4)

e = g &£ < R

(o]

where log A 1is the Debye screening factor;

3. NUMERICAL MODEL FOR THE DIFFUSION

To estimate the loss rate due to these processes we will integrate
numerically the diffusion equation for a cylindrical system, but using
the diffusion coefficients derived for the toroidal case. Consider such
a system maintained in equilibrium by the injection of Q ions and

electrons/per sec cm length on the axis, then:
dn 2 esu 15)

HE = _ZﬂpDin,pi

where

p = n/qn .
The diffusion coefficient will be taken to be:

D=DL+DG ese (6)

-5 -



where DL represents the diffusion due to localised particles, DG
that due fo passing and blocked particles. The low density behaviour
of the localised diffusion coefficient in this model, is somewhat dif-
ferent from that described in Section 2., Thus as the density falls
with increasing radius so the time for which a particle is localised
increases, and the time required for it to drift to the wall decreases.
Ultimately the localised time will exceed the drift time and at this
point localised diffusion stops and is replaced by a unidirectional
drift of localised particles through the separatrix and out of the
system. We will take the radius at which this change-over occurs to
give the boundary condition for integrating equation (5). The radius
(rb) and the density (nb) at this radius can be obtained by assum-

ing that, in this outer region, the loss due to localised particles

will greatly exceed the other loss process. Thus:

Q"’(Lnb I"b VD eee (7)
where any is the number density of localised particles and we have
taken half the localised particles to be drifting outwards at the

boundary. The condition for the localised time and drift time to be

equal is:
22}, Um ) (8)
T " 790 T V s
D
From (7) and (8) we see that ry, and ng are determined by:
lﬁ 3 3 2 4 _
ry [} + 46A7 T 0, Vp*/Qz* log 4} =r ee. (9)
and
nb =Q/G'VD rb ) (]0)

where A 1is the atomic weight of the diffusing particle and Cp is

defined in terms of ry by (2).



For the case of ¢ = 3 and Ly = /6 the expressions of Section
2 can be written as:

35 7-5
BTe p

3-5 x 107 / PL '
. < L for n < n, evs 111}

k Z* 1og A \ Ry ) n(p) R?B®
(o]

and

where (11) is evaluated for electrons (i.e. the more slowly diffusing
particles) and correspondingly A in (9) is taken as the electron
atomic weight.

Galeev and Sagdeev's results for the ambipolar diffusion of pass-

ing and blocked particles can be written .

D, = D, for D, >Dg s 12}
Dg = Dg for D, >‘DG1 > D, sas  L13)
~ and
where
by 8n
D = 4n7/2 T'ce ckTe \ . (16)
Gl — R eB e
0
— 3. Ve
Dgy = 3+6 (R/T) D, ees (17)

and where m is the plasma resistivity, ¢ is the rotational trans-
form in going once around the machine and rce is the electron Lamor
radius. For systems with £ > 2 DG tends to infinity at small

radius.



4, COMPUTED RESULTS

The density profile can be obtained by integrating equation (5)
from the boundary (10) inwards to the axis. The dependence of Dg
on . (equation (15)) ensures that the use of a line sources does
not lead to a singularity for £ > 2. Equation (5) has been inte-
grated numerically, in this way, for the parameters in Table 1, which
approximate to those given by CARRUTHERS (1967). An example with
Q = 10*® cm~~ is shown in Fig.2, the boundary condition imposed by
(9) and (10) is in this case n = 2+6 x 10*® at py = 0-94, Fig.2
shows that the diffusion coefficient is small at intermediate radii
but large at both small and large radius. At small radius in this
2 = 3 field there is poor compensation of the toroidal drift so that
particles make large excursions from the magnetic surfaces; colli-
sions, by changing (V;/V,), cause large displacements of the drift
surfaces for a given particle and hence lead to large diffusion. At
large radius the inhomogeneity of the helical field increases leading
to a rapid increase in the number of localised particles and in the

associated loss,

The significance of the binary collision loss may be assessed by

plotting the LAWSON (1957) factor (Lg):

~14 —-14 27a” 2
Lg = 10 . {nte> =10 *7q [n pap

against the average thermonuclear power generated in a D-T plasma
with T; = 20 keV:

_28
P=8x 10 fnz pdp  watts/cc.

Such a plot is shown in Fig.3. A self sustaining reactor (in which

it is assumed that cold input material is heated directly by the



reactor products) requires LF to exceed 1 and in injection systems

(KOFOED-HANSEN, 1960) L+ should exceed about 10. For a reactor to
be economically feasible Carruthers concludes that P should exceed
at least 10 watts/cc. The cross hatched region, (Fig.3) indicates on
this basis, the confinement necessary for an economic reactor., The
maximum value of B in the plasma will be limited by equilibrium con-
siderations, to some critical value say BE, the point at which
first reaches 1% and 10% is indicated by the bars in Fig,3. The dashed
curves show PFIRSCH and SCHLUTER'S (1962) and GALEEV and SAGDEEV'S
(1967) results for comparison*, It will be seen that the margin over
the Lawson criteria which is 2 x 10° for Pfirsch and Schluter's cal-
culation is reduced to ~ 400 when passing and blocked orbit effects

are included and to ~ 7 (for Bg = 10%) when the effects of localised

particles are included,

A crude estimate for BE for this confiéuration can be obtained.
by requiring the shift of magnetic axis due to the field of the second-
ary currents to be less than half the plasma radius; it is: ﬁE = 3%,
In order to obtain higher P ~ 10% and so obtain P ~ 10 watt/cc it
is usual to consider adding: a transverse field, scallops, or an
€ =2 winding. All of these-may introduce more localised particles
and so make the collisional diffusion worse, However we have made a
calculation for a pure £ = 2 winding with similar parameters to
those of Table I, and having 6 field periods giving sufficient trans-

form for BE ~ 10/%. The containment is better than the £ = 3 system

*For these cases the boundary condition is set by supposing that plasma
flows out of the separatrix with sonic speed, along lines of force
which make an angle ¥ (~ 309) with its surface and which connect to
the wall. The density at the separatrix (r = qn) is then:

n, = Q/(2x r.c_. sin 1)

where cS is the sound speed,



giving a margin over Lawson of a factor of 20. Thus adding an & =2
component to an £ = 3 system may well increase ﬁE without increas-
ing the diffusion due to localised particles.

The results shown in Fig.3 are not especially sensitive to the
exact form of the boundary condition or the precise value of the dif-
fusion coefficients. Thus if we change equation (8) so that the bound-
ary occurs where the localised time is three times the drift time, then
the maximum Lawson factor only changes by 10%. Similarly decreasing
the localised diffusion coefficient by a factor of four, increases the
maximum Lawson factor by 15%. On the other hand increasing the mag-
netic field by a factor 2 to 200 kG produces a substantial improve-
ment. The Lawson factor at a given density is increased by a factor
3¢5 and for the same BE a larger n is permissible leading to a
further increase, The results for this increased field are shown as

~the chain dotted curve in Fig.3; the margin over Lawson is a factor

of 150 (for BE = 10%).

5. THE EFFECT OF IMPOSING A LIMIT ON THE DENSITY GRADIENT

It has been assumed so far that the density gradient can be arbit-
rarily steep, Let us now limit the gradient by assuming an enhanced

diffusion takes place if
6\<.‘E: _E=e LR (18)

where the shear parameter 6 is given by:

du /dp
g = IO k
L [?WT{F] <sa (199
where L, is the length of a field period, and € is a constant, We shall

K
assume the rate of enhanced diffusion approaches that predicted by

- 10 -



- KADOMTSEV and POGUTSE (1966) for universal modes i.e.

DK = DB rLi/ﬂne ] 20

2xeB/kae

)
1]

with an upper limit of DB for small 6, The density gradient limit
is imposed only inside the boundary (equation (10)); the region near
the separatrix where an anisotropic velocity distribution will develop
is not considered, When equation (5) is integrated with this addi-
tional term the margin over the Lawson criteria is reduced from a
factor of 7 for the binary collision case to unity for € = 1 and to

a factor 3 for € =1/4, For & = 1/4 the density and diffusion co-

efficient are shown in Fig.4, and the variation of the Lawson factor

with power density is indicated in Fig,3.

6. CONCLUSIONS

The loss rate of plasma from a stellarator due to binary colli-
sions has been calculated, The treatment is incomplete in that, in
the absence of knowledge of the form of the self-consistent electric
field, it has been assumed that the orbits are those predicted
(GIBSON and TAYLOR, 1967) when no electric field is present, Some
attempt is made to include ambipolar effects by assuming that, in
each process, the loss fate is the slower of the electron and ion
rates, Calculations are presented for a specific configuration and
changing the parameters from those given will change the loss rates,
thus increasing the field above 100 kG will reduce all the diffusion
coefficients and increasing the dimensions and number of field pefiods
will increase the rotational drift of the localised particles and

improve their confinement,

w1, 5



Subject to these limitations in a particular case, corresponding
to reactor parameters, localisation has a serious effect. The Lawson
factor is reduced from about 2 x 10° calculated from Pfirsch and
Schluter's formula, to about 7 (for B = 200 kG the corresponding
reduction is from 8 x 10° to 150), This margin would be satisfactory
if achieved in practice, but it is uncomfortably small in view of the
idealised nature of the calculation. The poor margin occurs because,
in the high shear system we have considered, the two main diffusion
processes - localisation at large radius and Galeev diffusion at small
radius - have a measure of overlap. The results can be expected to be
sensitive to effects which modify the diffusion in the overlap region
where the biggest density gradient occurs. In this respect it is en-
couraging that if instabilities do not cause enhanced diffusion except
where the density gradient is so steep that 6 ¢ 1/4. [Mg/M;; then

they do not make the situation much worse,

TABLE 1

Number of pairs of helical 3
conductors (&)

Number of field periods (p) 32
Minor radius of helical winding 25 m
Separatrix radius - 125 m
Major radius 25 m
Rotational transform () = ( %E > p®
Field strength (B) 10° G
Electron and ion temperatures TezzTiz 20 keV

- 12 =
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The three types of orbit which occur in stellarator fields. The orbits are
plotted in the R-Z plane ofa cylindrical polar coordinate system (R, ,7)
having its Z axis coincident with the major axis of the stellarator. The
thick curves show the intersection with a plane @=constant. The
three particles originate at the same point in space and have the same
initial Larmor radius (11 ), they differ only in the starting value of(V” /V)
the ratio of velocity parallel and perpendicular to the magnetic field.
The outer circle (r=1) represents the mean separatrix radius and the
particles start at r=0.36 with IE1=120, the inner circle is the maximum

radius of the magnetic surface through the starting point
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Density and diffusion coefficient due to binary collisions in an £ =3 stellarator
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The full curve shows reactor criteria for an £ = 3 stellarator (Table I) when
plasma containment is limited by binary collisions. The dashed curves show
the results of previous calculations for comparison, and the chained curve
shows the improvement when the field strength is increased to 200 kG. The

dotted curve shows the effect of introducing a limit on the density
gradient (g = 1/4)
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