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1. INTRODUCTION

The propagation of electromagnetic radiation through a turbulent
plasma is of considerable interest in both naturally occurring and
laboratory produced plasmus., For example, fluctuations in the elec-
tron density of the ionosphere are known to be responsible for the
'"twinkling' effect observed in radio stars and the scattering of
microwaves by turbulent instabilities has been observed in high-

current discharges such as ZETA. (Edwards & Stott, 1965; Stott, 1967a)

Radiation propagating through a turbulent plasma is scattered by
random localised variations in thz refractive index produced by the
fluctuating electron density. The scattering is in general a non-
linear process since the radiation amplitude at any point in the
plasma is composed partly of waves scattered from other regions of
the plasma, in addition to the incident wave, The problem may be
linearised and a straightforward solution obtained if the refractive
index fluctuations are of sufficiently small magnitude to produce
very weak scattering. Calculations of this nature (e.g. Tatarskii
1961, Chernov 1960) are useful in ionospheric scattering but are not
applicable to the recent experiments which have been carried out in
laboratory plasmas at frequencies close to the plasma frequency. If
the turbulent scale length is large compared to the radiation wave-
length, the simplifying approximation of ray-optics may be made., A
ray-optics solution has been given by Wort (1966) by tracihg the
trajectories of individual ray-paths through a randomly spaced set
of parallel, cylindrical plasma filaments which is taken as a model
of two-dimensional turbulence., Some of the more drastic assumptions
of this model, but not the restriction to ray-optics, have been re-

moved by the recent numerical work of Rusbridge (1968).
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A wave-optics solution for the problem of multiple scattering has
been given by Tatarskii (1964) and independently by Stott (1967b).
The electromagnetic wave equation is taken as the basis for a Green
function series solution in which the randomly varying part of the
refractive index is the expansion parameter. Averaging term by term
results in an approximate geometric series which can be summed to give
an expression for the mean Green function. The imaginary part of the
singularities of the mean Green function in k-space represents the
apparent attenuation experienced by an initially coherent wave as it
is converted by scattering into incoherent radiation. However it is
difficult to calculate the distribution of the incoherent radiation
especially for experimentally realistic scattering geometries. There
are further limitations to the Green function method stemming from
the random pﬁase approximation which implies that the scattering time
be short compared to the free time between scatterings. It is also
necessary to make mathematically unsupported assumptions regarding the
continuity of the analytic properties of the Green function through-
out the expansion and resummation procedure,

In this paper we consider the scattering of electromagnetic waves
in a turbulent plasma using a method which avoids these difficulties.
A generalised phase-space expansion technique, which removes the time-
scale restriction, is employed to derive a transport equation for the
energy density of the scattered electromagnetic field. The advantage
of this formulation is that it separates the short-range interactions,
ie wave-optics effects, from the long-range, ray-optics effects. The
former are treated correctly in terms of diffraction theory and are
contained in the kernel, the equivalent of the scattering cross-section
in a particle transport equation, whilst the long-range effects are

conveniently handled by the usual properties of the transport equation.



2. PLASMA TURBULENCE AND DENSITY FLUCTUATIONS

The term 'turbulent plasma' will be used here simply to refer to
a plasma which supports density fluctuations of a scale-length longer
than the Debye length yet small compared to the overall dimensions of
the plasma and with a time-scale which is much shorter than the plasma
lifetime, It will be assumed that a statistical description of the
turbulence is both adequate and meaningful,

The local electron density will be written as: n = n + n(r,t)
where n is the mean electron density, which is assumed stationary
in space and time, and n(r,t) is a randomly varying quantity with
zero mean value.

We will consider initially a Gaussian functional probability dis-
tribution for n(r,t), since a more generalised distribution can be

included easily at a later stage.
P ([n(g,t) ]) = N exp {— / n(r,t) én(g,zjt,t’b

N being a normalisation such that the total probability is unity,

<
n{r’,t’)drdr’ dtdt'}

eee (2.1)

Integration over the functional space (Gel'fand and Yaglom 1960)

of n(r,t) gives

<n(£,t)n(£’,t')>’=j.n(z,t) n(r',t") P <[ﬂ]> on = Qn(£s£'st,t')
oo (2.2)

Qn(z,g’,t,t') is the density correlation function. We will use tri-

angular brackets as in (2.2) to denote ensemble averages,

It is convenient to introduce a typical scale-length a and time
T without insisting at this stage on any particular functional form

for the correlation,



For homogeneous turbulence
Q(r,r,t,t") = Q (r-r',t-t').

We see that on taking ensemble averages by integration,all the
odd moments of n(g,t) are zero, whilst the even moments can be
expressed as permutations of the binary correlation Qn(g,g'st,t')e
Thus for odd k

Enlr, 8, seeses M(Flty ) 3 =0

and for even k

<n(£11t1) LN n(_l:k?tk)> = Z Qn(£13£25t19t2) LR Q(Eﬂ,Ek’t& !t'k)

peil saw (243)

The dielectric constant of a plasma in an oscillating electro-
magnetic field of frequency w 1is given by the Appleton-Hartree

equation (Budden 1961).

LBy Ay %!
E=1-X {1-12 ~ 5 E [1-)(—12 + YL] ] eee (2.4)
where
X = 4mne®/mw? = w;/wz’ = TN
Z = v/w
Y = uh/w

mp is the plasma frequency, wE the electron cyclotron frequency
and v the electron collision frequency. YL and YT are components
parallel and transverse to the direction of the steady magnetic field
Eo' n, is the critical density, i.e, the density at which the plasma
frequency mb is equal to w,

The dielectric constant is a function of the electron density.

Thus density fluctuations produce corresponding local variations in

the dielectric constant and hence the refractive index, resulting in



the randomisation of the phase ol a propagating wave front, We shall
obtain a solution in terms of the dielectric correlation function,
which is denumerable in terms of the density correlation by means of
(2,4), although the dependence is non-linear in general, In many
cases however, the Appleton-Hartree equation can be simplified. For
exanple, if the collision and cyclotron frequencies are small compared

to w, i.e. Z « 1, Y « 1, the dielectric constant is linearly

dependent upon the density.

g:i-x=1—n/nc
Then _ _
E.',:l—n/nc
and s
QE = e Q -

3. THE GENCRALISED EXPANSION

We will illustrate the general principles of the method of solu-
tion which will be employed by considering briefly the analogous
problem of Brownian motion, Consider a single classical particle
moving with a velocity U(t) in a medium of viscosity J under the

influence of a fluctuating force f(t). The equation of motion is

Since the particle is a discrete entity the probability pP(u,t)

of finding U(t) equal to some value u at a time t is a ©&-

function
P(u,t) = 8(u-u(t)).
Now
ap oU d
31-_: = —a'E m 6(u--U(t))
oU 9
= - 3{_: al' a(u_U(t))
J
. = - E (- Ju + f(t)) S(U-U(t))
i.e.
%£+%1(—Ju+ f(t)) p = O. eee (3.1)



This is Liouville's equation for a single particle and since it is

linear in p it must be true also for an ensemble of particles,

We may now specify the randomly varying force f(t) by means of

the functional probability

i &
F([£]) = N exp [- ) ff £(t,) & (t,-t,) f(t,) dtidtg}
where N is a normalisation such that the total probability is unity.

Then clearly

F([ul)
. du -1 ou
N exp {- '3 j]‘<sz—q—Ju> g (t1 -tz) <Ef_+ Ju) dtldtz} .
1 ’ 2

1t the time scale of g(t) is sufficiently short, as for example if
=Xt

<p>

I}

and ¥ » J, <{P> is a Gaussian

> = () oo [- 2]

which is a result well-known in the theory of Brownian motion.

g(t) = ve

It can be shown easily that the mean distribution function satis—

fies the Fokker-Planck equation

[a% v & (s -raen™ -5-)} P> =0. . (3.2)

In a more exact formulation of Brownian motion, the scattering
force f(t) is velocity dependent and no longer cdmpletely externally
defined, This force f(u,t) is not completely random since u is a
functional of f but a convenient method of solution is to take the
force as being approximately random and to obtain a solution as a
series expansion about the equilibrium (p_ > . As pointed out by
Edwards (1965), this approximation is independent of the magnitude

of the fluctuations and must be distinguished from the usual! form of



weak coupling random phase approximation. One can derive the Fokker-

Planck equation of Brownian motion in the form

{%,,% <Qu+s§l-;>} p>=0 s LB

0Q=J+ R where J is the viscous friction and R, which is refer-
red to as the dynamic friction, is a term occurring when the force f

is internally dependent upon the variable u,

Returning to the electromagnetic case, it is a fairly straight-
forward matter to obtain from Maxwell's equations the analogous equa-
tion to (3.1). We may then proceed along the lines suggested above
to a Fokker-Planck equation (Stott 1967b) but this is by no means so
easy as it was for the Brownian motion model, The difficulties are
apparently caused by the basic feature of Liouville's equation which
separates the space and time variables. This is a useful thing to
do in kinetic theory where they really are separable quantities, but
is inconvenient in the electromagnetic case where space and time are
closely inter-related. These and other difficulties can be avoided
by using the Lagrangian formulation of statistical mechanics invented
by Edwards (1965) for the analogous quantum-mechanical problem of

electrons in a disordered system.

The Lagrangian equation of motion is

3_ 3 & E
axi< - )-—aAm_o eee (3.4)
oX.
d,

£ being the Lagrangian density and X; the space-time 4-vector;
X; = (peict)s A, are the components of the vector. potential A,
defined in the Coulomb gauge, div A = O, There is also a similar

equation to (3.4) for the complex conjugate AZ .



e E = 12 and E* = 1 _Q{\_*
= Cot = T .8t
H = curl A and H* = curl A* ,

The Lagrangian density for the electromagnetic field (Landau and

Lifshitz 1959) is

or in terms of the vector potential

2

2= [Lann. g g

= A* - curl A.curl _Q*] eer (3.5)°
where &(r,t) is the dielectric constant,
We introduce the probability function for A  and Aji s P([AQ,A’;])
and following Edwards (1965) the Lagrangian equivalent of (3.1) is,
{ 3 < d ad od 3 ( 3 ad oL i}
—— - ~ — — ¥ e £ - ""'";{:
8A_\3x; <aA§ A JAT \ 9x; iA”g; aAaﬂ P([A A D
X ox. '
1 oo o (316}

Substituting for £ from (3.5)

J 32
[ 3 (E(E,t) 302 A - curl.curl.Aa)

J 3% x *
- SiF (E (r,t) o A - curl.curl.Aﬁ)} P([A,A 1) =0. ... (3.7)
a.

We will use the superscript k to denote the 4-dimensional Fourier

transform, thus

AC = Ak, %’*): fA(z,t) exp (- iwt + ik.r) dr dt
and K © . .
AR = A*(E, E) = j'A (r,t) exp (iwt - ik.r) dr dt.

Fourier transformation of (3.7) gives

{a k Lk 6“’12c'z,.k-JAj
LSK(E(MaﬁAﬁ* wpez 58 P

aB
- eee (3.8)
A 3 w]i
k 1 k-J J . _
- EiJ[aAk* Q“kﬁ Aﬁ* ¥ 6&ﬁ o? f g AB*>} P([AGFA;]) =0
b 0 ]
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and
Dk = (6 -k k l(*) e
af af a P

The term & = [53“3]k=j has been included in Miﬂ and the prime on
the second summation sign in (3.8) is used to indicate that the term
k = j is omitted from the summation. The subscripts a,B etc. are
used to denote the polarisation components of the vector potential
and the usual tensor conventions regarding summation over repeated
indices will be employed.

The Brownian motion model suggests a Gaussian form for the equi-
librium distribution

PO([A,A%]) = N exp {—GE Ag (Ck)_1 Aﬁ*} . ese (3.9)

The gauge condition provides the constraint

div A = kA = 0

and hence the correlation

1

k k
<A, Aﬁ*> = /Al; Alg* P, ([A]) 8(k.A%) 8A

k k
= C Daﬁ ee. (3.10)

ap .

Il
Q

We expect PO to be the solution of the Fokker-Planck equation

2 kK ok _o
Z Ak {Q]:'“p A * Sap aAE*}

a
Eﬁ
d <N < Kk d
- Z A [%5 Ag + SQEEE} P ([A,A*]) =0 . eee (3.11)
ap @ p
k

Substitution of (3.9) into (3.11) requires that

k .k kK =%
Qaﬁ "$Sa{ (CYB) =0 sis UdsT2)

o 1 o



and

We see that

which suggests that

aﬁ:ﬂ Da@ DU . -
and
k kK k
ng= S D@B i eee (3.14)
We will write
k
n‘;ﬁ=mip+kaﬁ .o (3.15)

defining Rﬁp; the electromagnetic analogue of the dynamic friction

term in Brownian motion.

The operator in (3.11) is Hermite's operator generalised for the
functional space of Ai and P([A]) may therefore be expanded as a
series of functional Hermite polynomials (Erdelyi et al. 1953) multi-
plied by the basic Gaussian.

i.e.
P([A,A*]) =P + P, + P, + etc.

# ee. (3,186)
_ k ,kx
— > a“l ~ an,nk* (AT,A™) P,
n k

The functional Hermmite polynomials are mutually orthogonal and are

defined by

kK .k % %
H (aK A% {( +1):1 [( + 1):]
nk’nk* nk nk*

K 3 K\ / k 2 ko \ e
.(C -—-—ak*—A> (c — - A P,

A 3A
ees (3.17)

where n = (nk cesey My wes.) 1is a vector in the Hilbert space of

the polynominals,

o



We proceed with the expansion in a systematic manner by first

rearranging equation (3.8)

3A A
ap @ P
k
wli
5 Zlk.s KA _celp
a0 e® g P
a a
kﬁ
J (k kK Kk 9 )
= ——— (R, As % 8 -c.c } P=0. ees (3.18)
Z gk O TR T TOR gk
ap & @
K

If we assign the nominal order £° to R and S we can make
the expansion in ascending orders of E. Thus to the zeroth order

we have (3.11) and to the first order

af &
k
SR e w; e
= s—z A, (Ck> 6aﬁ-(:—251(JA%—c.c Poe eee (3.19)
3

This suggests that P1 has the form

’ . w? . .
P, = Z AK* [Kod (i)t Kk k-0 3 p .e. (3.20)
a 2 B o
af c
ap
kj

Substituting in (3.19)

A A -1
ko (Qk -QJ*> i ... (3.21)
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Continuing to the next order in & with the series solution of

(3.18)

2
3 % k-j
l%ﬁ Q
i
) (k k )
+ — (R _ A, + S -} -c.clP ... (3.22)
EE: BAR aB ‘B ap aAk o
af @ P
%5

We have defined the mean value of the electromagnetic correlation
% Al; Alf; > using only P_ and therefore the higher order probability

terms must not contain any second order Hermmite polynominals

; k k* 4
i.e. an Ag (P, + Py + ... etc.) BA 8A* = 0, e (3.23)

This condition will now be applied to the series solution of
(3.18) to determine successive approximations for the quantities Rk
and Sk which will then be used together with the consistency equa-
tion (3.12) to obtain an equation for Ck.

We will assume a Gaussian distribution for the dielectric fluctua-
tions E(r,t) and consider the extension of the theory to a more

generalised form in the Appendix,
F([g]) = Nexp {— E(r,t) Q;(g—;’,t—t’) E(g’,t')} eee (3.24)

The dielectric correlation is ;
CE(r st,) E(rs,tn) > = QE(Ei—y_E;ti—tE) . ees (3.25)
On averaging over E&, <Fg> = 0. The lowest order approximation is thus

obtained by applying the condition (3.25) to the second-order expan-

sion (3.22);

2
k ok k-1 ki % % ki
8% ()7t LY =l
Rap gl ) j oB 2 B
2 2 ; .o~ (3.26)
T S B S P o BN
Yji @y ¢®e? G vP

o T



and a similar equation for the complex conjugates.,
Together with (3.12) we have immediately the lowest order equa-

tion for Ck

ki 2 k- J k J
Zaﬂr %p - Z Loy % 95 © QE (C TB) oo (3.27)

Yji
Now
"2}_2_ _ 2 k k
zr\fllgwcﬂ3 - i[g 5 8oy = K D(w} DY‘BCk
£ s 2
= {g-‘é’;—kz}ciﬁ
= [RQ-kz}Ck
o ap
and thus
2 2
z 02 _ L2 FEPSUSNN  L Ths Shut QD L [0 S S
{gcz k}cl;ﬁ—? (=it ) > Q (Ca.ﬁ_cc, -

oo (3l28)
Fourier transformation of (3.30) gives an equation for the propaga-

tion through the plasma of the mean electromagnetic correlation

{jz _ai - Vi} <Aa,(£:|_’t1) AE (EE’tZ) >

&* 53

. = ool
- [ @ - 0 e gen) ew [Lptmn)- s X e |

cd

w,
x [exp (—115(31-1‘;) o % (t;~t;)>-—exp (— ij(rg-ry) + i (tl-t;)ﬂ

’ % ' ’ 4 ! ’ /] ]
x A (ri,t) Ag (ry,t)) > dj dr, dr; dt; at; =0 . ... (3.29)
Returning to (3.26) we will identify
k ’ J -4 k".j
= - E L C a0 e (3-30)
Ra,[S 3 op (nk wJ QE
and
sk -- w? ¢t Q& o ... (3.31)
O..-Y'wk E Y *
We note that Z
k
-85 = 0.
cw Tﬂ kK of
Yk

=13 =



This is not a unique choice, but one which is strongly suggested
both by the form of (3.26) and of Qk which agrees with the Green
function expansion in the limit of weak fluctuations (Stott 1967b).
We note that R° and SX are of order Qs i.e. £2, confiming
our earlier assumption as to the ordering of (3.18),

Continuing now with the series expansion of (3.18) the application
of the condition (3.23) to the terms involving higher powers of &
gives higher order corrections to the equation for Ck. The general
term of the expansion is

;Z: O gk Ak, gk -Em-} ~¢c.6 [P
@ aAlc‘L{ of "B Tap aAlé* n+2

2
Z e T N
J

k “af 2 g n+1
+ ‘ GJB aAO; C a0 e (3.32)
k
l
3 kK k Kk 9 ~
T o Ta P

As the algebraic solution rapidly becomes rather tedious, we will make
use of a diagrammatic technique invented by Edwards (1965).

We will use a full line to represent Aﬁ (or Azf), a broken
line to represent a/BAE and a dotted line for the interaction Ek_j.
We will write the diagrams across the page from right to left as in
the normal algebraic convention of time ordering and will therefore
adopt the convention that broken lines will always act to the left,

The basic term of the expansion is the vertex

sk
~
A
- i k—
“QE gk J Ai — oA, .5 J.... -
oA j
a

- 14 -



The averaging process is carried out diagramatically by adding a
series of these terms and joining together the free ends of pairs of
interaction lines into a join which we will mark with a cross. The

full lines may either join together to give a correlation term

k
af =

gram of the averaged series will have two remaining unjoined photon

K
c < Al; Ag > or may be annihilated by a broken line. Each dia-

lines. These may be either both broken lines, in which case we

identify the diagram as an S-like term

The second order diagrams, i.e. P,, are

- 15 -



and the central portions of these diagrams are equivalent to the ex-
. . . k
pressions which w= have already obtained for q;h and Rﬁﬁ'
The denominator may be included in a systematic way by drawing an
imaginary vertical line in between each pair of vertices and adding

an Q of appropriate Fourier index for each photon line which is cut.

For example the second order diagram contributes a denominator

@« - 3%

co. (3.34)

The irreducible diagrams of the next order, i.e. P, , are

ee. (3.35)

which is a contribution to %z

p

- 16 -



and k - ane (536)

which is a contribution to Sﬁﬁ‘
Continuing in this way with the expansion, we see that the gen-

eralised form of (3.28) is
K k=] -
(k2 - K*)C* - 3 ¥ (*-ch)=o ers (BS50)
J

-—

X" Y is the sum of all the irreducible diagrams like (3.33), (3.35)

and (3.36). The first few terms are

1]

k-] Je=1 o o =4 k-j
X (Qk -0) @ wj C QE

+

% (- a™)7" o2 w3 e Qg_ﬁ (2 - ™" ... (3.38)

uﬁ wj ¢’ Qz_j b ffﬁ)mi 8(m + k = j — &) + o..

This equation is not complete in itself of course since Qk in-

volves R¥ and generalising (3.30)

Rk _ z:-, xk—j

J
We can argue that the main effect of the dependence of Qk on

sum B589)

Rk will be to displace slightly the position of the pole in k-space
at Qk = 0, away from the value k = * w/c /£ which it would have
if there were no scattering. 'This effect will not be too dependant

on the value of k except very close to & = 0, and we can thus set

- Y3 =



up an ordering procedure in Rk and form an approximate solution to

(3.38). A simple example will be given in section 5.

We shall see in the following section that the formulation devel-
oped above leads naturally to a transport equation for the multiply
scattered electromagnetic field, which will satisfy the usual sum-
rules for energy and wave momentum conservation., We note also that

the time-scale restriction, imposed by expansion, has been avoided,

4, A PHOTON TRANSPORT EQUATION

In the above analysis, the short-range effects of the scattering
have been correctly treated by wave-optics and we now proceed to the
photon limit which provides a convenient basis for a description of
the diffusion-like behaviour of the long-range effects of the multi-

ple scattering.

The mean electromagnetic field correlation is

Caﬁ(zi!zgitl’t2) = K Auﬂzi’ti) AE (rayta) > .

Introducing a change of space and time variables,

R=r,-r, ; r=%(r,+r,)

ct
1]

b (t,+ty) .

[ V]
e

The correlation may be written in the form

- 18 -



Cap (L:R,t,T) = <A (r+k4R,t+ k1) A% (r-%R,t-%T) >.

We Fourier transform with respect to the variables R and T

ikR —ial
- e

CQB(E,t,E,w) = j‘Cmﬁ (r,R,r,T) e"= dR dT ... (4.1)

and in the limit |[T| - 0 we define

f(r,k,t) gf Cog (r,t,k,w) dw.éaﬁ
i kR

‘33 O f CAS(Z+AR,t) A (r-4R,t)D>e" == dR ... (4.2)

1l

Following th= usual procedure of taking the classical limit in
quantum mechanics, we will identify f(r,k,t) as the probability of
finding a photon with momentum k at a point r at time t. We will
verify later that f(g,g,t) does indeed have the correct properties

required of a classical probability distribution function,

In coordinate space, (3.37) becomes

£ 3 3 a_ __3d N
{;z ( 3t, atz) ( at, ar,z) - (vl‘i ¥ vr2> (Vr‘z vI,g)] Cap

_ i k-j /-k  Ad PP 1 o) o iwk(ti—tz) _
5 Im j’x (Caﬂ Caﬁ) d®j d*k e e =0 ..

Thus

2 aT r R

E 9 9
{C——"E—"v -V}CQB(Est’R:T)

j 4 = 4 "'j_E.B j_(l)k_T _
— ¥ T j‘ = ( ap Caﬁ) d?j d% e e =0, ... (4.4)

Fourier transformation of R and T gives the photon transport

equation,

[ E% W %% + k. V} f(r,k,t) + ]‘ITE-j) {f(g,g,t) - f(g,j,t)} d. =0
c ¢ - = - = J

where
D(k-j) = Im . X(k-j). ... (4.5)

w19 =



Transport equations of this form are well known in many branches
of physics and the kernel, P(Efi) is equivalent to the mean scatter-
ing cross-section par unit plasma volume. The total scattering cross-—
section is obtained by integration over all j aﬁd equation (4,5) can
be expressed conveniently by measuring space and time in the respective

units of mean free path and time
-1

i.e. Firn (fl"(ﬁ'l) dj_)

and

- %
tmf‘p £ c]k] qnfp °

The normalised transport equation is

(Fr&er) rimko + f olid) [ F(ks0) - f(z,i,t)}di = S(r,k, t)

where Kk is a unit vector in the direction of k and S(r,k,t) is
a photon source which has been included for completeness. a(k-j) is

the scattering cross-section normalised so that

The photon number density p (r,t) and current density J(r,t)

are given by the appropriate moments of f(r,k,t).

P(E: t)

f f(EaE,dt) dk

3(x,t) f f(r,k.dt) K.dk -

Integrating equation (4.6)

% p(r,t) + W(r,t) = S(r,t) = f S(r,k,t) dk
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and the first moment of the transport equation is

3T J(r,t) + Vp(r,t) + J(r,t) :[ k.S(r,k,t) dk .

If the photon source is zero within the plasma volume and J
has only a slowly varying time dependence, we may eliminate J to
obtain the familiar diffusion equation

3

5. CALCULATION OF THE SCATTERING CRDSS—SECTIQN

The cross-section for a single scattering event occurring in a
unit volume of plasma is given by the imaginary part of the expres-—
sion (3.38), which is the sum of the series of irreducible scattering
diagrams discussed earlier, The individual terms represent succes-
sively higher-order contributions to the scattering and each term

involves denominators of the form

(@ - )7 -2 - 52 - k)« R - RN
where
kg = w’&/*® .,

The singularities of these denominators in the complex space of
k and j impose the conservation of energy and momentum between the
initial and final states j and k. The Rk, which represent the
modifications in energy and momentum induced by the background of
turbulent plasma, are themselves given by a non-linear equation
(3.39). This coupled set of equations is difficult to solve in gene-

ral but there are some situations which enable us to limit the number

of terms involved and which permit concise solutions.



We will consider a plasma in which the electron cyclotron and
collision frequencies are both small compared to the propagating fre-
quency, since this conveniently simplifies the Appleton-llartree equa-

tion (2.4).

For
w «w and VYV € W ;
C
E =1-n/n,
and
— 2

The dielectric constant is scalar in this case and there are no

polarisation effects,

We will take a stationary, isotropic density fluctuation of the
form

Q(r) = ng q(r/a)

where q(r/a) is unity at r = O and decreases monotonically to

Zero as [rl increases.

The terms of the series (3.38) contribute to the cross-section in
ascending powers of (no/nc)2 (ka)®. In the limit that this parameter
is small
. _ 2 3
i.e, p = (no/nc) (ka)® « 1
only the contribution of the leading term will be important. The

%
dynamical friction terms Rk and RY are also of order p and we
may therefore approximate
— — 12 _ 12
I
To the first order approximation we then have

4 n 2
P-g) = 7 & (;2) alk-3) 8C[kl-15D) .

C
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For example, if the correlation is Gaussian, the scattering cross-

section per unit volume is

-1 /Mg\2 4 w? n . 5 B
8) = i = 53 T (.. _on 2 X
r(8) = (8y/™) (;c> -7 a” exp { a® = (l o sin® 3

and the mean-free path between successive scatterings is

2
p 7 () S 1 (1-2).
(o

A coherent wave front propagating through the plasma density fluc-
tuations will thus be attenuated with an e-folding length equal to |
ﬁnfp' As we might expect for the lowest order approximation, this
agrees well with other scattering theories, for example that of
Tatarshii (1964).

To extend the range of our solution to higher orders of the expan-
sion parameter p, we would proceed along the lines of successive
approximations alternating between equations (3.15) and (3.38), but
this would be a tedious process and will not be attempted here,

It is frequently more realistic to regard the plasma density fluc-
tuations as a randomly arranged set of discrete plasma 'blobs' rather
than a truly turbulent spectrum. We then write the local plasma den-
sity as n(r) = Z W(E‘Ea)

R
a

where n(r) is the density profile of a typical plasma blob and
R, -+- etc. are a set of vectors which we assume to be uniformly dis-
tributed with a number density N. We can then construct the density
correlations, for example,

{n(z)n(r;) > = N f n?() e'EIaTa) g
The sum of the series of terms represented by the diagrams like (3,40)

is then equal to the Born approximations for the scattering cross-

section of a single plasma blob. Interconnected terms like (3,35)
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may be interpreted as a scattering commencing at one blob before the
previous scattering is completed. If the blobs really are discrete

we would expect such events to be infrequent and the contribution from
these terms to be small, The scattering cross-section is then given
simply by Mk-j) = N ¥(k-j)

where Y(E—Q) is the cross-section of a single blob. This is the

usual result obtained in transport theory for a set of discrete

scatters.

6. CONCLUSION

A transport equation for the multiple scattering of electromag-
netic radiation by a turbulent plasma has been derived by a mathe-
matically rigorous method involving the expansion of the Lagrangian
probability function for the electromagnetic field. The advantage of
this formulation over other multiple scattering theories is that the
solution of the transport equation, which is well known in other
branches of physics, can take account of the boundary conditions and
geometry appropriate to any specific experimental configuration. The
kernel of the transport equation, which is equivalent to the scatter-
ing cross-section of the usual particle transport equation, has been
given in terms of a set of equations involving the plasma correlation
function. As with all multiple interaction problems the solution of
this set of equations for the general case is a rather formidable
task but simple solutions are possible for certain limiting cases
and these provide a basis for extending the range of validity of the
solution. Numerical results of computations based on this theory and
a comparison with experimental observations of microwave scattering
in turbulent laboratory plasma will be the subject of a further

publication,
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APPENDIX

NON-GAUSSIAN DIELECTRIC FLUCTUATIONS

It is a straightforward, but tedious matter, to extend the treat-
ment to a non-Gaussian probability distribution for g(z,t). For a

generalised distribution (3.24) becomes

F(E) = N exp {_ E(E:t) Q%g (_[':f,’:tst’) E_',(I,',t’)

-1 "
- E(r,t) E(r',t') E(r",t") Qu (m,r',r",t,t" t7)

= ese etC. }.

We then have contributions to the scattering from irreducible dia-

grams such as

The contribution from these terms is important for plasmas with
non-Gaussian density fluctuations or where magnetic effects distort

the dielectric constant for Gaussian density fluctuations.
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