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ABSTRACT

Observations on the fluctuationsAfrom a double Langnuir probe are
presented. It is shown that these can be interpreted in terms of
fluctuations of the density, temperature, their gradients and the
electric field. The measurements are consistent with the theory, and
it is found that the fluctuations are adiabatic at high pressures and
isothermal at low pressures. The properties of the fluctuations are
compared with the predictions of a theory of hydromagnetic turbulence,
which allows us to consider the origin of the observed density fluc-
tuations. It is concluded that they arise from flow along the maz-
netic field lines. Measurements of correlation functions both in
space and time are described and their significance in terms of a

containment time and wave motion is discussed.
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1. INTRODUCTION

Some observations on the electric and magnetic field fluctuations
in the ZETA plasma have previously been described (RUSBRIDGE et al.,
1962; ROBINSON and RUSBRIDGE, 1964; ROBINSON and RUSBRIDGE, 1966;
ROBINSON, 1966). We have attempted to interpret these fluctuations in
terms of hydromagnetic turbulence, and a result of a simple theory has
been ;iven (ROBINSON and RUSBRIDGE, 1964). This theory can be used to
determine certain properties of the density fluctuations which will be
described here, though a fuller account of the theory is given elsewhere
(ROBINSON, 1966; ROBINSON et al., 1968). A comparison of the results
of this theory and the experimental observattions will be made in this

paper.

The fluctuations have been measured using a double Langmuir probe.
Conventional double probe theory (JOHNSON and MALTER, 1950) is incorrect
in strung magnetic fields but good probe characteristics are observed
experimentally. We interpret these as if the magnetic field had no
effect because of the turbulence, which sweeps fresh plasma across the
probe and thus effectively increases the perpendicular diffusion of
plasma to the probe. An independent check on the behaviour of the
probe has been made using a combined Langmuir-microwave probe (RUSBRIDGE
and WORT, 1967), with which the transmission of 2 mm microwaves over
a short path of 5 mm could be observed simultaneously with the
Langmuir probe signal. A detailed comparison of the two signals has

been made and this yields a good correlation.

In the next Section we outline the theory for the density fluctua-
tions and give the principal results. Section 3 gives the theory of
the current fluctuations to a Langmuir probe. These fluctuations can

be analysed to give information about fluctuations of density and



temperature, their gradients and the electric field. In Section 4
we give the experimental results confirming the theory of the current
fluctuations, which are predominantly due to density fluctuations.
The observed density correlation function and its significance is
described in Section 5 while in Section 6 measurements of wave motion
associated with the density fluctuations are given. Finally, the
origin of the density fluctuations in the light of the presented

theory and other theories is discussed.

2. THEORY FOR THE DENSITY FLUCTUATIONS

The compressible magnetohydrodynamic equations in the presence of
an applied field are used to determine the density fluctuations by a
method based upon supposing that random stationary fields are set up
in response to a fluctuation force representing the effect of plasma
instability. A full non-linear theory (ROBINSON, 1966, EDWARDS 1964;
EHVARDS 1965) shows that it is possible to obtain estimates of magnitudes
by performing only a linear analysis and using "turbulent transport
coefficients'. Results are derived in a form which is independent of
the spectrum of the force so that it is taken in its most convenient
form -white noise. The linearised set of equations that we solve

(MARSHALL, 1958) is, in Fourier notation for a particular mode K
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where: U Tluid velocity, hK magnetic field strength in velocity
units (B//4mp ), H ~the applied field in the 3-direction (again in

' ; : By
velocity units), C, the sound speed, pE the density, v_ = e

the pressure

where o 1is the conductivity, F, is the random force, PK

K

and p/bo is the kinematic viscosity (v), which for a plasma is given
in (MARSHALL, 1958). The approximation we are making here is that the

integral of the basic density correlation function

/ ek p__K> dK

can be replaced hy_;EKtypical % p2/A where p2? is the r.m.s. density

fluctuation and K is a typical wave number associated with

typical
this fluctuation; more precisely, we take Ktypical = 1/A where A

is the integral scale. Our observations are only concerned with this
integral. In addition the transport coefficients can be replaced by

effective values to take account of the non-linearities.

Solving these equations in the steady state limit for the case of

no magnetic field gives the result for the density correlation

<pgpg> K §P P
kPx”2 K % e (2)
Po c

2K2
(o]

in terms of the velocity correlation
ap _ a P
QE -<UEU_-K.>.
Upon integrating over K and using the approximation given above we

2
find Rg ~ E-g .
o Co

Note we have not assumed anything about the symmetry of the
fluctuations, but that they are stationary and homogeneous. The
introduction of the magnetic field makes the equations intractable so

it was assumed that the system was close to two-dimensional in the



sense that
2 2 4
H0 K3 « vy K eee (3)
in which limit the transverse components of the magnetic field go to
zero (ROBINSON, 1968). The final expression for the density fluctua-
tions is
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which in the ordering

gives

An estimate of the turbulent viscosity is v ul,, where A, ~ K
is the transverse correlation length. In the above approximation we

also obtain the result that

a.a 2 2 , Y A 2
Qg ) HS + Co+ v (3 v o+ vm) K (5
3 3 T H2

Chy h 3

which gives equipartition of energy (energy in velocity field is the
same as that in the magnetic field) in the limit of large Alfven speed.

In ZETA Cg « Hg so the bounds on the density fluctuations are

—C

& <

6thb|

o5

u2
H?
o
depending on the value of the dissipative terms. Experiments to
determine the parallel correlation length A ~ K;1 show that it is
large (2 100 cm) but nevertheless equation (3) may not be satisfied.

The result in this case is complicated but for the fluctuations arising

from the perpendicular part of u we have an additional term



H2 K2 (% + CEA K"")/(V +V ) K®
in the brackets in both numerator and denominator in equation (4). An
appreciable H0K3 -can then give rise to density fluctuations which are
closer to equation (2) than equation (4); however equation (5) is

essentially unaltered by the now non-negligible HoKa terms. The

results for p®/p> in the various limits are summarised in Table I.

Inserting knownexperimental values (BURTON et al., 1962) for the
temperatures, density, velocity and field strength, we obtain the
density fluctuations as a function of filling pressure in the discharge.
The electron temperature and density is determined from Langmuir probes
and microwaves; however the ion temperature is somewhat uncertain and
is estimated from energy balance calculations and some spectroéCOpic
measurements. The two bounds as given in equation (6) are shown to-
gether with a curve for K; = 0°02 in Fig.1. A turbulent viscosity
and a classical resistivity was used to obtain this curve. The value

of u is obtained from electric field probes (RUSBRIDGE et al., 1962;
ROBINSON and RUSBRIDGE, 1964), spectroscopic measurements of Doppler
broadening (JONES and WILSON, 1962), and microwave scattering (WORT
1965). We have thus studied a system where Alfven waves can propagate,
and also fast and slow magneto-sonic waves (THOMPSON 1962). The
results for Ks = O arise from damped fast waves alone whereas the
latter more complicated results arise from the effects of all three
damped waves. From equation (4) it is evident that the fast wave

gives rise to fluctuations of order uz/(Hg + Cg) and the slow and

fast wave to uz/tﬁ if we assume no damping.

The above model for the fluctuations can also be extended to

obtain expressions for the temperature fluctuations in certain limits,



by using the additional equation
aT 2

K kK 2 L
at"“pokTK'sTlK My

where x is the thermal conductivity and T the temperature. This
leads to estimates of the temperature fluctuations and to the cross
correlation between density and temperature. For example in the case

of no magnetic field we find

a afB B
e Ty >_ 4 K" Qg K
2 - 2 —
1 o '37 KT + o (. g? +vK?)
pok pok .

Tt is also possible to use the model to investigate the effect of inhomo-
geneities, provided that L » K™* where L is a typical scale of the
inhomogeneity and K is the minimum effective wave number, essentially

the large scale length of the turbulence.

If we consider equations (1) in the incompressible case but with
a finite density gradient transverse to the mean field then in the
limit that Vo - 0 (if the plasma is not frozen to the lines of force
we find the fluctuations are no longer stationary, unless we introduce
a source term ) it is possible to obtain an expression for the densit&

fluctuations of the form (ROBINSON, 1966).

<o pg” S | ane (
Pg = Hcg) K2 E'g<ax J vee (7)
where J' is an angular factor of order unity. Thus density fluctua-
tions from this origin should possess a 'hole' at the centre of sym-
metry of the mean density. In this case, if we use a non-white noise

input, the correlation < Px u_k > is finite and gives the rate at

which matter flows down the density gradient. In the above case we

obtain
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where J© is an angular factor. This is of a similar form to that
quoted earlier (CHEN 1965) when considering "anomalous diffusion,"
except that J Hg KZ/vK? is replaced by Im(w) which is the inverse
correlation time of the fluctuations in his case. In the above case
the correlation time of the fluctuations is vK®/H> Ki provided

vK? > H% Ks. If we use this approach on the drift wave e¢uations
eB

(KADOMTSEV, 1965) and assume w < Q= 7&? and u < C, then we

obtain a diffusion coefficient similar to the Bokm one, namely
KT

22, €

n /ho eB0 '

3. FLUCTUATIONS TN THE CURRENT TO A LANGMUIR PROBE

The current drawn by an equal area double Langmuir probe im-
mersed in a homogeneous plasma and biassed to a voltage V is given by

(JOHNSON and MALTER, 1950)

2KT \ % e(V+V)
i = aAne [ — tanh ——e—m—>S- (8)
m, 2KTe o0

where A is the area of the probe, Vb the potential difference aris-
ing within the plasma and o is of order unity (values of C+*4 = 1-0
have been obtained by various authors). In a turbulent plasma flucta-
tions of n, Te’ Vc will give rise to probe current fluctuations,
while second order effects which do not vanish when averaged over time
may affect the mean current (see also DEMETRIADES and DOUGHMAN, 1965).
The mean square probe current fluctuations will be given by an expfes—

sion of the form

5i° = 3 on° + 3 8T° + 5 SE° + 2ff, onoT + 2f,f3 OnOE + 2f,f; OTOE

eve (9)

where



oi i di
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and .E is the electric field associated with gradients of the plasma
potential VC. Similarly the first order effect on the mean current
is given by

2 (Di> = f, on% 4 Ty BE? + g OT° + 2f, ONOE + 2fg ondT + 2fg OEOT

s s 10D

where
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¢ T\ an®)rE 5=\ &% n,T ° ¢ =\ 3r% )n,E

3%i PO \ & 9%i
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The last two terms in equation (9) are antisymmetric with respect to

fq

1l

positive and negative values of the applied bias voltage and thus can
be removed by symmetrising. (There would be no antisymmetric terms

in a homogeneous plasma.) The non-dimensional forms of the f's are

-X

2 2e f
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Thus for any curve of &i° against x we can attempt to obtain the

four coefficients in equation (9) but this may not be easy due to the

—

limited accuracy of §i-. OE® is immediate from the value of



§i® at X =0 as fi,2,6,8 >0 as X~ 0. As f, has a zero at

X = 2:2 then we could determine &n°> fiom this point and as

X > =, 8i® > 6n° + % OT + 8ndT which gives a further relation to
determine the remaining two parameters.

The temperature is determined from the mean probe bias curve by
determining the slope for small bias voltages but tiis is affected by

the fluctuations through equation (10), as is the consequent determin-

ation of n from the bias curve for large V. We find from equation

1
oKT % 5T°  ®neT —
e 1 il = e
m. 8 T< 2 nT
1 e e

lﬁ SR ———
- 2KT,_ név_ - BV BT
5\ KT TRT?
1 e e

The bias at which the slope for small bias intercepts i(V = «) is

(10) that

iW+m):MM<

ce. (11)

i(v - 0)

now - . BT? SnoT Snov 5V _oT
1 - 1 _ e + X e 1 €4 pC €
8 1§ nT, mw% 4 Kﬁf
V = 2T — e .e. (112)
e ( 3 8Ta 8V e®  &ndTe
1+ = = -4
8 T~ H(KT )~ nT
e e e

Note that none of the fluctuation effects on the mean current depends
strongly on the density fluctuations and we shall show below that the
probe current fluctuations are principally due to density fluctuations

thus there will only be small effects on the temperature and density

determination.

We have simplified the fitting of equation (9) to our experi-

mental results by writing

u

8T = 8T + 6T
, o e e

where the two parts are defined by
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GTg on =0

Y T ool
sns1C = (B0%)% (615%)?

then necessarily 6T2 BTZ =0 and we define Y Dby

6Te én
=0 - 0T
e

Th= results are much more sensitive to STE than 6T2, hence unless
the latter is very large it cannot easily be detected. We have
therefore assumed GTE = 0 in fitting our numerical results and make

this assumption in the rest of this paper.

Y is the usual ratio of specific heats; however we can also
consider ¥ - 1 as the quantity %—%%g—g. With this simplification
equation (9) becomes

TiZ = (fq + o (Y=1) )2 0% + T2 BE- + 2 5 (fy + (¥ = 1) f2) x OndE

ce. (12)
1
(615)’é as a function of the bias is

An example of the variation of
shown in Fig.2 for & =0 and ¥ = %, 1 - the adiabatic and

isothermal case.

The plasma will not in general be homogeneous and the density and
temperature may differ at the two probes by An and ATe respectively,

which are also fluctuating quantities. We assume, and ensure practi-

cally, that An, ATe =0 and so BbnZ ~ on° (probe separation/A)Z2,

>

which is a small quantity. Provided —=< 1 and ATe/Te « 1 we can
rederive equation (8) to give the modified expression for the probe
current (see Appendix).

A
. R 2KTe 2 (1 in ATe
= aAne (o AT 2n 4T
A An 0]

e
1+ (1 + o 2Te) e

(13)
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where
AT AT

e e e eV
¢ = - KTe (v + Vé + VS Té + = £n cosh 2KTe) .

and Vs is the floating potential of the plasma. As E, A4n, ATe
are all proportional to probe separation then they all contribute
to 5i% at V = O. 1In the central regions of the discharge these
corrections are negligible, except possibly for the term in 0]
involving the plasma potential which will also give rise to a mean

probe current with no bias on the probe (c.f. equation (11)). As

ev AT
S e

V, V. = O the bracketed part of equation (13) becomes T T
e e

which is of order ATe/‘I'e and again a small quantity. For large bias
AT
voltages the departures are of order >0 + T A similar expression
e
to equation (9) can now be obtained from equation (13), in this case

involving 15 coefficients.

Our experiment thus consists of measuring i and its root
mean square (EI?)% as functions of the bias voltage. From the mean
measurements we determine Te (little affected by the fluctuations,
equation (11a)) and an estimate of n and use the value of Te in

determining 6n§, 8E® and Y from the fluctuating results,

4. EXPERIMENTAL RESULTS

Our experiments have been performed in the ZETA discharge (BUTT
et al., 1958; JONES and WILSON, 1962; BUTT et al., 1965; ROBINSON et
al., 1967) at low power, at a current of 150 kA, applied magnetic
field of 370 G and filling pressures in the range 0°5 to
5 mtorr Dz. The probe bodies were of quartz 11 mm in diameter; the
electrodes were of platinum, 2 mm in diameter and 3 or 6 mm sep-

aration. The platinum pins are enclosed in quartz sheaths 1 mm

- 11 -



thick which project 5 mm from the end of the body, so as to reduce

the amount of quartz in the immediate neighbourhood of the probe.

Before each experiment the platinum electrodes are conditioned
by applying a high bias voltage (in the region of 60-100 volts) in
each sense for about 100 discharges. Initially arcs are formed be-
tween the electrodes during the discharge, but these disappear as the
probe cleans up. There is no difficulty in distinguishing arcs from
genuine probe signal. A long period integrator {LEES and RUSBRIDGE,
1954) has been used to measure the mean and variance of the probe
current and the correlation of the signal from two probes. In the
case of fluctuations it measures < |Bil > rather than the variance,
but it can be shown that < |6i] > = 0+769 < 6i? >‘Ié provided the
probability distribution of ©6i is gaussian. A filter passing
frequencies above 10 kHz was used as it is known that this is
sufficient to exclude the large scale motions of the entire discharge,
leaving only the more localised turbulence. The signals were gated,
the gate being open for some 400 ps centred around peak gas current
for twenty successive discharges. Using the autocorrelation functionv
for the fluctuations and the known gate length we can estimate the
'effective number or readings' per discharge (RUSBRIDGE 1962) and
we then adjust the number of discharges necessary to achieve a given

accuracy (2 10%).

Before describing the experiments relating to equations (9)
and (12) a number of preliminary experiments were performed to
determine the radial variation of various quantities. As many of our
relations involve the variation with filling pressure we first verified

that the mean density varied approximately linearily with-the filling

= 12 =



pressure. If the voltage V developed across a 102 resistor due

to the probe current is measured for large bias voltages then at sat-

_ 2.2 2 =
= a*n’e® — oo (14)

uration we have v\ 2 2T
<
i

where a is the radius of the probe. At a particular pressure measure-
ments of Te from a probe plot, Fig.6, have been made and using the
above relation we have deduced n. The variation is essenﬁially lin-
ear except at the highest pressures where ionisation is probably in-

complete.

Measurements of 6i° at these large bias voltages have also been
made and these can be directly related to &n= by equation (12) if
Y = 1. The results, shown in Fig.3, have been corrected for the
actual values of ¥ obtained from results shown below. We see that

the percentage density fluctuations range from 24 - 6%.

The radial variation of Te has been obtained from a number of
Langmuir probe pléts and using equation (14) the radial variation of
the mean density has also been measured. The results at 5 m torr
of deuterium are shown in Fig.4. The variation of the r.m.s. density
fluctuations has also been measured as is shown in Fig.5. This
variation is very similar to that shown by the radial magnetic field
fluctuations (ROBINSON, 1966; ROBINSON et al., 1968) and suggests a
central 'core' region in which the turbulence is approximately homo-
geneous out to some 35 cm where we enter an 'edge' region. The
relative level of the density fluctuations increases as one goes out-
wards and in the outer 10 ecm of the discharge, the probe current
traces give the impression of isolated plasma bunches moving over

the probe. -

w fB =



A probe bias curve is shown in Fig.6 obtained at O-<5 mtorr; the
displacement. of the zero is a regular feature of our probe plots and
its origin may be associated with the effects mentioned in equations
(11) and (13). If we measure the fluctuations at the same time then
we find that their minimum coincides with the bias at which the

probe current vanishes.

Measurements of the liner voltage on the torus enables us to
determine the discharge resistance at the time when our temperature
measurements are made. Using the Spitzer formulae (SPITZER, 1956)
and allowing for the mean field configuration we can estimate the
average electron temperature. At 5 mtorr for example, we obtain
7 eV whereas a Langmuir probe plot gives 5+5 eV; thus tihe probe
measurements are in fair agreement with the observed value of the
resistance.

(&%

i as a function of bias volt-

The experimental curves of
age have been obtained at various pressures and in different frequency
bands. The results were analysed by first setting the saturation
level fron the mean of points with bias greater than 4 Te’ where
saturation has been achieved to within 3%, and 10% for the iso-
thermal and adiabatic cases respectively - thus a back correction could
be made to the level. The r.m.s. electric field fluctuations were
obtained from the points near zero bias then a fit was made to the

remaining points by varying Y. A computer programme was also used

to give a least squares fit for the three parameters and their errors.

Fig.7 shows the r.m.s. current fluctuations as a function of
bias voltage for fluctuations in the range 10-25 kHz. The temperature

of 55 eV was obtained from the probe plot and a fit of the

e Rl o



experimental points for ¥ = 5/3, 1 is shown. The results definitely
indicate that the density fluctuations are adiabatic at 5 mtorr,
leading to temperature fluctuations of about 4%. The fluctuations

> 25 kHz have also been studied and Fig.8 shows that we again obtain

‘a good fit for the adiabatic assumption.

The results of 1+5 mtorr are shown in Figs.9 and 10 and least
squares analysis in this case gives ¥ = 0°98 * 005 (the error on
the temperature is about 10%), so the fluctuations zre isothermal at
this pressure. A similar curve for fluctuations > 25 kHz was also
obtained with the result that Y = 1-06 * 0<09. Fig.10 shows a curve
obtained with a 1 cm separation prdbe instead of a 3 mm one, and
the effective electric field level should increase by a factor ~ 3,
There may also be contributions from the An and ﬁTe terms which
will modify this factor. The figure shows it to increase by a factor
2+5, verifying that the major part of the signal at zero bias voltage
does behave as a éenuine electric field signal. All these results
confirm the theory presented in the previous section for the probe

current fluctuations.

At )% mtorr we obtain the results shown in Fig.11(a) but in
this case to obtain a good fit we require the density and temperature
to be negatively correlated, then we find ¥ = 0-83. Under much higher
current conditions and pressures of about 2 mtorr experiments have
been made (ROBINSON et al., 1967) on the Thomson scattering of light
from a giant pulse laser, which gives values for ne and Te over
a small region in space and essentially at a particular time (pulse
‘width 20 ns). The values are found to be negatively correlated,

i.e. a local peak in density is cold. For example, four successive

- 15 =



discharges yielded a ¥ of 0-+3, and the nomalised density-tempera-
ture correlation was -0°+9. Thus this negative correlation is also
observed by a different method, and may be associated with a dif-
ferential heating mechanism. Our results for Y as a function of

12/p are summarised in Fig.11(b).

The asymmetry term in equation (12) associated with a non zero
FnoE correlation can be associated with the loss or injection pro-
cesses in the plasma as 6E/BO ~u (ROBINSON et al., 1968) -
equation (7a). We may therefore expect an appreciable SndE cor-
relation in the region of maximum density gradient and arrive at an
estimate for the containment time of the plasma. The effect of the
electric field on a fluctuation-bias curve as given by equation (12)
is shown in Fig.12, where the cross correlation has been taken as
0-3 and .Eﬁ = %;%r%z-. Accordingly a fTluctuation curve was obtained
at 0-5 mtorr somg 40 ecm out from the geometric centre. Two curves
were obtained, one with the pins aligned along the mean field which
should show no asymmetry, and one with the pins transverse to the
field. The first curve is shown in Fig.13 which gives Y = 0-87,
and neither curve shows any sign of asymmetry. A full analysis
of the two curves gave EESE?(éﬁﬁ)% (gé?)lé < 0.1. A value of about

0.1 does give a containment time which is of the same order as that

measured by other methods (BURTON and WILSON, 1961).

These measurements show that the observed current fluctuations
at high bias voltages are principally due to density fluctuations,
though at the higher pressures the temperature fluctuations are not

negligible.

- 16 -



5. DENSITY CORRELATION FUNCTION

Measurements of the radial density correlation function
J(r) =<{n(x) nx+r)> /< nz(x) > son L15)
have been made using two Langmuir probes each biassed to about 40
volts. The results are shown in Fig.14 for filling pressures of
5 mtorr and 1-5mptorr. These results show that the integral scale

L, where L =-/ J(r) dr, is somewhat smaller than that observed for
o
the magnetic field fluctuations (ROBINSON et al., to be published).

The correlation function appears to possess no 'tail' but ends rather
abruptly, and there is no evidence for a negative correlation at the

longer separations.

If the density fluctuations arise from flow across the magnetic

field lines then by conservation of particles in this two-dimensional

plane XYY
0= /'/V/<n(x135) n(xzpw) > dx, dxp dy, dys
000
XY
. 4// (x - p) (v - &) J(p,E) dpde
00

if the system is isotropic and homogeneous. As X, Y = ® the

dominant term, after transformation to polar coordinates, gives
R

/ rJ (r)dr ~ 2 L®/R and so

b R

R /rJ{r)dr m%-»o ve. (16)

o
thus the correlation J(r) should change sign at large r. Our
results do not support this and suggest instead that density fluctua-

tions arise from motions along the lines of force.

- 17 -



Measurements made in the direction of the magnetic field indicate
that the correlation length in this direction is at least 30 cm as
we would expect from previous measurements on the electric and magnetic

fields (ROBINSON et al., to be published).

The correlation curves in Fig.14 do not exhibit perfect correlation
at small separations. This may be due to some small scale density
effects with lengths in the region of some millimetres or to some

possible probe interference effects at small separations.

An independent check on the density correlation has been made
(KING, to be published) by measuring the correlation function of
the emitted visible light, which is a function of density and

temperature. If the light, 1 = f(n,T) then 51 = A én + B 8T + B 5T

and as OTC <« &n, (61)2 = AZ on- + B §T"2 ,  hence if §T" is neg-
ligible (the laser results on SndT suggest that it is) then &1
reproduces the properties of &n. It can be shown in the simplest
case that if I(r) is the measured intensity correlation function then
I(r) :/J(p)dp//mJ(P)dP
r o

and also

fI(r‘)dr‘ =[ pJ(p)dp// I(p)dp .
0] o]

(o)

Thus equation (16) implies ‘/C;(r)dr =0 so I(r) must also change
sign at large r, and becausé)of the weighting with r in equation
(16), observations of I(r) provide a more sensitive test of
equation (16) than direct measurements of J(r) itself. The results

indicate very strongly that J(r) does not change sign.

The intensity fluctuations are related to the density fluctuations
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by

5§ 2L nZ2
Iz = TT — —i A

where D is the length of plasma emitting the light. The observed
I(r) curve is in reasonable agreement with our measured J(r) in
particular L for the intensity fluctuations is 4 cm at 5 mtorr
which is a 1little larger than that given by Fig.14.

The Taylor microscales Rn of the density Tfluctuations defined

62
as i% = (5;%) , may be small(ROBINSON et al., to be published)
r->0

and our usual method of measurement of this quantity fails in this
instance because of the imperfect correlation at small separations.
This lead us to consider shadow-graph techniques (UBEROI and
KOVANZNAY, 1955; TATARSKI, 1961) which are sensitive to the double
derivative of the density. It can be shown that the resultant in-
tensity fluctuations in this case possess an integral scale which is
essentially the microscale of the density fluctuations. If diffraction
effects are avoided then the intensity fluctuations are related to the
size of the density fluctuations and the spectral index of these
fluctuations through a combination of the large and small scale lengths.
Measurements have been made (GONDHALEKAR, private communication) with
a laser beam working at 10 p and give values of }h comparable with
L at high pressures as we would expect (ROBINSON et al., to be pub-

lished) , though significantly smaller at lower pressures.

The auto-correlation function of the density fluctuation -
{ n(x,t)n(x,t + T) > has been measured for a delay of up to 40 us
and is shown in Fig.15. The large scale oscillation is due to the

10 kHz filter used. By studying a simple frequency spectrum which is
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cut off at 10 kHZ and otherwise resembles the measured spectrum we
can calculate the auto-correlation function which we compare with the

(=]
experimental curve to obtain the auto-correlation time, L =./ J(x,7)dr.
o]

This gives a time of about 14 ps. Using this time scale and our known
integral scale of 3 cm at 1+5 mtorr, we can construct a velocity,
which gives 2 x10° cm s~%, This figure is smaller than the figure ob-
tained from direct measurements of the electric field and constructing
a velocity using the mean field strength. A comparable calculation
with the magnetic field auto-correlation function does give a velocity

directly comparable with the electric field one,

Delayed correlations of the type < n(x,t) n(x + r, t + 1) >
have been measured for T = 10 and 30 ps and the results at 1°5
mtorr are shown in Fig.16. If the density fluctuations arise from
across magnetic field lines then the integra; scale of the delayed
correlation should be greater than that of the ordinary radial cor-
relation and given by an expression of the form

L2 =12+ 27,

where L% is the integral scale of the delayed correlation, Lo the
usual integral scale, Dr is the radial diffusion coefficient and T
the delay, which must be greater than the correlation time for the
expression to be valid. The results show no significant broadening in
contrast to the results obtained for the radial magnetic field fluctua-
tions where a significant broadening is observed and Dr can be cal-

culated (ROBINSON, 19¢6; ROBINSON et al., 1968).

Measurements of the fluctuating magnetic field parallel to the
mean field have been made. These show that the ratio of the r.m.s.

fluctuations to the mean field is small ( ~ 0°3%) and much less than
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the relative density fluctuations. From the pressure balance equation

we must have
1 Em—
r(a%)?p  2(by?)?

n0 B

where ¥ is the ratio of specific heats and P is the ratio of plasma
pressure to magnetic pressure. This relation is well satisfied by

the measured fluctuation quantities, as is demonstrated in Table II.

Estimates of density fluctuations and scale lengths bésed on
microwave transmission (WORT, 1966) agree reasonably well with our

results.

6. WAVE MOTION

Measurements have been made to detect any wave motion shown by
the density fluctuations. Drift waves (BOL, 1964; GALEEV et al.,
1964) may be expected in the 'edge' region of the discharge where the
mean density gradient is important. Initially two probes were inserted
15 em in from the outer wall with a separation of 6 cm and the
correlation measured as a function of the time delay; however it is
apparent that one could also fix the time delay and measure the cor-
relation as a function of position. Both methods will give rise to a
velocity which will only be identical if we have a pure wave propagat-
ing and not superposed on some 'background' turbulence. If there is
no propagat.on then the first velocity will be infinite and the second
zero. A similar situation has been examined by Briggs (BRIGGS et al.,
1950) when interpreting the reflection of radio waves from the iono-
sphere. If it is assumed that the correlation contours in the r -t
plane are ellipses then if V'’ 1is the first velocity and V the
second then VV’ = Vg where VC is the velocity derived from the

basic correlation length and time. V is the required true velocity
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i.e. the velocity of an observer who has adjusted his motion so that
in comparing two signals T, apart, has maximised J(g,r) where §g

is the distance apart.

KT

If we calculate the drift velocity — g% using the results

1
eB n
of Fig.4, we obtain values in the region 0°+3 - 1-0 x10° cm s~ * and
the direction of propagation should be in the electron drift direction.
The results obtained for the fixed spatial separation are shown in
Fig.17 and indicate a velocity V'2 1:5x10° em s”%. If this is com-
bined with an estimate of VC as mentioned in the previous section
then V £ 5x10% ecm s~*. The measurements for a fixed time delay of
5 us are shown in Fig.18 and give a velocity V < 1 x 10° c¢m s~
which is in the electron drift direction. These measurements are not
meaningful until corrected for a velocity arising from the radial
electric field in the plasma. This is in the same direction as the
electron drift and of magnitude < 7x10% cm s™%. Consequently with-

out a further improvement in accuracy of the experiment it is not pos-

sible to say that we have detected such waves.

Such a wave has its electric field vector 900 out of phase with
the density perturbation and thus the cross correlation should be zero.
We have mecasured this cross correlation directly with two probes placed
close together and obtained a value of 0°32 % 0:04. We can then use
this directly to estimate the containment time of the plasma using

the data of Fig.4 and the following reasoning. The radial loss current

is ,
i
o (o> et ()
.]r.—<Pur.> By =a(p)——ée—

: ; : )
where a is the measured correlation. Identifying this with D 5%

where D is the diffusion coefficient and then using a® = 2Dt
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where T 1is the containment time and a is the distance from the

central core region of the discharge to the wall ( ~ 15 cm), we can
estimate 7. Values in the region of 50-150 us are obtained and

are consistent with values obtained by other methods (BURTON and

WILSON, 1961).

Note that the value of the cross correlation obtained here is
somewhat greater than the upper limit obtained from the asymmetry
determination of Fig.13. This may be due to the fact that An/n is
not negligible in this region and fluctuating density gradient terms

contribute significantly to the probe current fluctuations.
7. DISCUSSION

We can distinguish three ways in which the density fluctuations

may arise:-

(1) By convection in the presence of a density gradient, e.g.
equation (7) or &p = g -Vpo where & 1is the plasma displacement
and Py the mean density. Following the usual mixing length theories
(KADOMTSEV, 1965) we might identify & with such a length or the
transverse correlation length. Such an expression does not fit our
results since &p exhibits no minimum at the discharge centre where
Vpo vanishes. However, we cannot exclude the possibility that £
should be a Lagrangian correlation length which could be long; which
roughly means that the density within a 'turbulent element' remains
equal to the mean density at the point where it was formed, even
though it may wander through most of the discharge in its subsequent
life. Experiments on turbulent gas flow in a discharge (GRANATSTEIN
and BUCHSBAUM, 1965) do agree with an expression such as equation

(7) for the energy containing eddies but not for the smaller scale
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eddies where the observations are similar to ours.

(2) From the divergence of the flow normal to the magnetic field.
As we have already seen this case can be distinguished experimentally
by the form of the correlation function normal to the field lines -
equation (16). The results showed that there was no change in sign.
In addition, our theoretical model for Kz = O could only give rise
to small density fluctuations, equation (4), unless the value of L
is anomalously high, as might be the case if plasma motion across the
field lines were due to Bohm diffusion rather than classical finite
resistivity. Thus it seems probable that this motion is not the

origin of the density fluctuations.

(3) By flow along the magnetic field, for example, by acoustic
waves. We have examined such a situation with our theoretical model
with Ksf O and found that density fluctuations of a magnitude
similar to those observed can be obtained for values of Kj ( ~ 0.02)
which are not too small and classical Valugs of Ve If Ks; is
very much smaller than this then the model can only produce density
fluctuations of the correct magnitude by again involving an anomalously
high vmr(or turbulent conductivity). Pure acoustic waves should be
isothermal — which agrees with our results at lower pressures but not
at high pressures where the discharge is radiation cooled. As
Ti 2 Te these waves are very heavily damped and may be difficult to
detect as acoustic waves. Note that the theoretical model does give
a filling pressure variation which is similar to that observed ex-

perimentally.
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8. CONCLUSIONS

Fluctuations in the current to a Langmuir probe in a turbulent
plasma have been measured for various filling pressures, frequency
bands, probe separations and positions in the discharge. The measure-
ments were found to be quite consistent with the probe theory. At
high bias the fluctuations are predominantly due to plasma density
fluctuations. Information about the temperature fluctuations was
also obtained, notably that the fluctuations are adiabatic at high
pressures and at low pressures it is apparent that the density and
temperature become negatively correlated, requiring a differential

heating mechanism,

The origin of the fluctuations has been considered and from results
on the radial correlation function, the radial variation of the density
fluctuations and the variation with filling pressure it was concluded
that they arise from flow along the magnetic field. A theoretical
model was able to predict the correct size and pressure variation
for these fluctuations, though it may be necessary to assume Bohm
diffusien rather than finite resistivity. Convection due to a mean
density gradient and flow across the magnetic field lines do not account

for the observed fluctuations.

Measurements of the fluctuating magnetic field in the mean field
direction confirm the pressure balance relation. Confimation of the
radial density correlation function was also obtained from two other

independent measurements.

Attempts at detecting drift waves in the edge regions of the dis-
charge by measuring the delayed correlation function resulted in no

conclusive evidence for a drift wave though a motion with the right
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sort of velocity and direction was observed. The cross correlation

function between the density and electric field was measured at the

edge of the discharge to yield an estimate of the containment time,

which was found to be consistent with that obtained by other methods.
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TABLE I

Density fluctuations in various limits

HE » Co® »vm. . dissipative
Y 2
Field limit (§v+ vm )k * (’2 » Hg wam. vm(-;-'v + vm)K*
.0 4
strong field (5v+vm)k $Co° 5 H5
Ho = 0 - - e R
HE k3 « v\.-mk‘1
2 2 2 2 2/ 2
two-dimensional u®/Hg u®/Cq u®/C,
H§ k3 » (v + vm)vmk*
2 2 2 2 2 2
1. C& k2»(v +v m)vmk? u®/Co u%/Co u%/Co
ok d
2 2 4 2 2 2 2
2. C§ ki3 «( v+ vm } vmk _— u /CO u e,
TABLE II
Pressure : B = T O 1 B = i”f;m
mtorr n % (ev) %
% 0-83 | 0 24 2+6 42 2+7
1 O 9 0. 12 15 12 1.7
1 0-98 | 0. 07 2+4 10 2-3
5 1-67 0-065 34 6 27
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APPENDIX
As the total positive ion current must equal the total electron

current

i +1i =i +1i =A ‘jie_qji‘Vi + A _jge_%v2
Py Pg €, €z

and
Vd=V1—V2+VC.
A is the area of the probe and j, its respective random electron

current, V,; is the potential across the sheath of probe 1s Vc is a

potential in the plasma, V, the probe bias and ¢ is KJ?
€4
probe 1. The net probe current, in terms of the two saturation cur-

for

rents, is then _ .
i. +1i

s s
id= - ivvz- —i .
Wz @1Vb + (¢ - P1) Vo - ?in " Sg
1+-=—e¢e
Ja
If we then write
A A An AT
(P1=(P+_2(2ﬂ’ <92=(p——2(2, n1:n+7s T1=T+—2"
An AT . . .
assume == , 7T « 1, and use the usual expressions for ig we obtain

1
_ 2KTeé ) . ATe
id=oaAne = o _1_§;"EF-
n 2Te

V1 + V
2

2

As we need only the mean value of we neglect VC , Mg etc,

and obtain

Vv
Vot Ve 1
2

5 fn — + V

1
@ 1 % e‘¢”d 5

where VS is the plasma potential Hence the exponential factor is
e ATe KATe eVD )
--KT——-<VD—VC+VS-T——+——E—EHCOSh-2-RTI:—
e e e e

which gives equation (13).
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Percentage density fluctuations as a function of filling pressure ....... K3=0.02
for a gas current of 150 kA axial field 370G
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Fig.2
Fluctuations in probe current as a function of bias voltage
Upper curve y=5/3, lower y=1, isothermal, §E2=0
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Probe current fluctuations as a function of radius. + 30volts bias
(essentially density fluctuations), §mtorr D, , 150kA axial
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Fig.6 (CLM-P178)
Langmuir double probe characteristic, 0.5mtorr Dj,
150kA, axial field 370G, Te =11.5eV
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Fig.7 (CLM-P178)
r.m.s. probe current as a function of bias voltage, 5mtorr D,,
150 kA, axial field 370 G, 3mm probe separation,
Te=5.5eV, ¥y =5/3, ———— isothermal
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r.m.s. probe current as a function of bias voltage, Smtorr D, , 150 kA, axial
field 370 G, > 25 kHz, 3mm probe, y=1.5, Te =5.5¢eV
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Fig. 9 (CLM-P178)
r.m.s. probe current as a function of bias voltage, 1,5 mtorr D,, 150kA,
axial field 370 G, 3 mm probe, Tg = 7.6 eV, isothermal
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Variation of the r.m.s. probe current as a function of bias voltage, 1.5 mtorr D,,
150 kA, axial field 370 G, 1cm probe, T, = 7.6 €V, isothermal
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(a) r.m.s. probe current as a function of bias voltage, Y mtorr D, , 150kA,
axial field 370 G, 10-25kHz, 3mm probe at centre, T, = 11.0eV,

isothermal , ----- y=0.83,{nTy /nT =-1

(b) v as a function of 12/p
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Variation of r.m.s. probe current for (5n:')/2 s(aEz)/? ; <5n5E>/ nE = 0.3, isothermal
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Fig. 13 (CLM- P 178)

r.m.s. probe current as a function of bias voltage, 0.5 mtorr D, , axial
field 370 G, 150kA, >10kHz, 1cm probe, Te = 8.,25eV, 40cm from
centre, isothermal, ———— v=0.87, <nT>/ nT =-1
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Density correlation functions, 150 kA, axial field 370G
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Auto-correlation function for the density fluctuations,
1.5mtorr D, , 150 kA, axial field 370 G
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Density correlation functions with time delay, 1.5mtorr D,,

150 kA, axial field 370 G
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Fig. 17 (CLM-P178)
Delayed density correlation, axial separation 6 cm, 35cm from centre,
Smtorr D, , 150 kA axial field 370 G

Ho +
+ -08
+
-0-6 +
+
r0-4 +
+
.1
~0-2
- T T T T T T T T
-4 -3 -2 -1 0 | 2 3 4
(cm.)
Fig. 18 (CLM-P178)

Spatial density correlation, time delay 5ps, 35cm from centre,
2mtorr D, , 150 kA, axial field 370 G









