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ABSTRACT

It is pointed out that the problem of estimating a function from
the values of a finite number of functionals is often posed, at least

partially, as an aesthetic problem rather than as a mathematical one.

A particular problem of intepretation of experimental results,
arising in the study of radiation source distribution in a plasma, is
formulated mathematically in two different ways. Although the two
formulations are different in character, they both rely on the idea
of imposing a relative likelihood distribution on an appropriate func-

tion space; this is particularly fruitful when observational errors

are taken into account.
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1. INTRODUCTION

A problem which occurs very frequently in the experimental
sciences is that of estimating a function from given values of a
finite number of discrete observations., Thus, for-example, one might
assume the existence of a functional relation f(x) and attempt to
estimate it from observations on the quantities {f(xj) v.i = 158 aes Mk
The work "estimate" is used here instead of the word "determine"
since, firstly, the observations may be subject to experimental error
and, secondly, even if the observations were known with complete
.accuracy, there may not be enough of them fix a unique function f(x).
There is an important distinction between the two cases where

(a) the form of f(x) is known, apart from the values

of a finite number of assignable parameters; and

(b) the form of f(x) is unknown, although its existence

may be assumed.
In case (a) it would be possible in principle to fix f(x) uniquely
and precisely by making a sufficient (finite) number of exact obser-
vations. In most real experiments, of course, the observations are
inexact, when it is customary to regard an observatibn not as a
single number, but as a sample from the probability distribution of a
number. By this means it is often possible to estimate the most prob-
able vaiues of the assignable parameters which could have resulted in
the observations. In this context the technique of '"least

squares fitting" is so well known as to bz used almost automatically!

We shall not consider case (a) in this paper, but will examine
case (b) with a view to devising a workable mathematical formulation

for the problem. For the purpose of illustration we shall consider a



specific experimental situation, described in the next section, which

‘requires the estimation of a non-negative function.

The concept of a relative likelihood in function space is intro-
duce in section 5, where a particular form is developed. This form
is used in section 6 in order to construct the first formulation of
the estimation problem. Since this first formulation results in a
solution with singular first derivative, in section 7 a criterion of
smoothness is introduced which is used in the- second formulation of
the estimatioﬁ problem, and it is shown how the smoothness criterion
rrelates to an alternative relative likelihood functional, analagous to
that used in Wiener integration. In'section 8 a generalisation of
Wiener integration is introduced in order to provide a basis for the
computation of the means and variances used in section 9 for statis-

tical improvement of observations subject to experimentalAerror.

2, THE PARTICULAR EXAMPLE

A problem arising in the study of radiating cylinders of'plasma,
both astronomicél and in the laboratory, is that of estimating a radial
source density distribution from a limited number of integrated, edge-
on measurements. Fig.1(a) illustrates the situation diagramatically.

A total of m measurements are made, the jth reading being the inte-
grated value of all radiation originating from the shaded region,
bounded by the values Xj and xj+1 and the circumference of the
plasma cylinder. Thus, assuming a radial distribution f(r) for the

source density of radiation, the observations are really attempts to

determine the quantities

R
f(r). rdr .
¢, =2 dx-[ ¢ 3 = 1,2, coumy R B
X



where f(r), being a physical source density is non-negative on [0, R].

- More generally, we could consider the quantities

R

— . rdr
(pj_Z/qj(X).dx/ r—-——jx ’
0 X

where the functions {Fj(x); Ji = 1525 e } are characteristic of
of the measuring technique,

R
i.=, 9 =./.Qj(r)' f(r) . rdr

0
1,2 oos m, can {2)

(3%
1l

r
where ; q.(x). dx
—_

e

In the special case described by equations (1) it is easily veri-

fied that, for j=1,2, ... m,

Qj(r) ={ 2,Cos™? (

2 .{Fos—i (

Futhermore, as m = ® and the points { X y 3= 132y wee m} become

) s X, Sr&x

)-—Cos'i<fiil§} x., Sr<R
J+1

Ic..?.d S L.:)4

X

-

J
more and more closely spaced, let
®
: > y(x.) , say, O<x, <R, ... (4)
X, .-X.) J J
J+1 J

defining a function 1V (x), which is actually an Abel transform of

f(r). Thus, we have R
f(r) (5)

V(x)=2 \r_____ s



which may be inverted by means of the formula (e.g. Titchmarsh, 1948)

R
1 [ aly(x)]
= = - =g ee e 6
f(r) T »\’?—-_1‘1— ( )
T
provided we make the assumption
f(R) =0 sas A7)

Since we assume that the source density vanishes identically for r > R,
condition (7) simply expresses the requirement that f(r) be continu-

ous at r = R.

3. THE CONSISTENCY CONDITIONS

It is important to note that the given observational values

i@j; J = lg2y aue m} must be self-consistent. Using the functions

defined in equations (3), and remembering that f(r) is

strictly a function of radius, it is not difficult to see from Fig.1b
that, if ¢, is given a non-zero value, a constraint is imposed upon
the values which {qaj 5j=1,2, «uey, m—1} may attain. Specifically,
we must have

given, of course, that
X

_m+1
_/ Qf. Tdr = ¢«
X

m

Similarly, as each succeeding value ¢j is prescribed, in order of
decreasinz j, further constraints are imposed upon ¢-values corres—

ponding to suffices of smaller order.



Self-consistent sets of the i?jz are simply characterised by

the following result:-—

Theorem: A necessary and sufficient condition for the given

values {¢ J = 12y wus m} to be consistent with the existence

j ;
of a non-negative, integrable function f(r) is that the quantities

fo, 5 k=1,2, ...m} , satisfying the linearly independent

eggations
m ;
ZGK- Qj(xk_'_‘l):tp‘j ; j:I,2, LA m, oo e (9)
k=j

should all be non-negative.

Motivation for this result is provided by considering the suffi-
ciency of the conditions of the theorem. We merely point out that

the function

m
*(r) = E1_1)m0+. Zak- 6(r-xk+1+ e)r ... (10)
k=1

where the {mk] are given by equations (9) and &(x) is the Dirac
§-function, satisfies all the requisite conditions. Thus, the set of

non-negative, integrable radial functions consistent with the given
{¢j} is non-empty.
The proof of necessity is by induction. Note first that Qj(r)

is monotonic increasing over the interval (Xj’ xj+1) and monotonic

decreasing for r > xj+1. Suppose that f(r) is non-negative and

define a by means of the equation

Xm1
<pm=f Q,ferdr =Qx Joa,, eee (11)
Xm



s0 that a is obviously non-negative.

Now define a1 by
%m+1
P =] Q_qf.rar =0Q _,(x).a .+ Q-1 K)o
X
m-1 '

e (12)

whence, by substitution from (11), we find that

xm xm+! (r)
- — 1 r) - Qm(f') £
5{/ Gne 1 exar ¥ QmHI{me)x/ [Qm—1(xm+§) Gey) rer
m-1 m

= Qm—l(xm) S ' sue (13)

By the monotonicity conditions and the non-negativity of r(r), we
now see that A1 must be non-negative. Proceeding radially inward,
this argument may be repeated to demonstrate that all the quantities

{ak s k=1,2, «su m} must be non-negative if f(r) is non-negative,

thus completing the proof of necessity of the conditions of the theorem.

4, SOME FUNDAMENTAL CONSIDERATIONS

If the function ¥ (x) were known, the required function f(r)
could be found from equation (6). Several authors (Bracewell, 1956;
Bockasten, 1961; Barr, 1962: Gorenflo and Kovetz, 1966) have described
procedures which involve constructing a differentiable function i *(x)
by fitting it somehow to 'smoothed' values of the observations
{?j i = l,2,...ﬁ}. Birkeland and Oss (1967) have used a technique
similar to that of Gorenflo and Kovetz, while allowing the plasma
cylinder to absorb some of its emitted radiation. A disadvantage of

this approach, pointed out by Gorenflo and Kovetz, is that equation (6)



represents a process of %-order differentiation, which may greatly
amplify any errors present in the fitted function V¥ *(x).

However, a more serious defect of this constructive approach
stems from the fact that the problem: "given the exact values
{¢j £ 4 = 1,2,...@}, determine ¢(x), and f(r)", is not well posed.
Clearly, there are very many conjugate pairs of functions ¢(x) and
f(r) which could have resulted in the obsérvations{?j}, and the mere
presentation of a method for constructing one particular pair begs
several important questions of a mathematical nature. A constructive

_ process may produce an answer, but one also needs to be clear about

what mathematical problem is being solved!

Golomb and Weinberger (1958) have considered the question of
how much one may legitimately infer about a function, considered as
an element of a normed, linear space, from the values of a finite
number of functionals. In particular, they showed that if the
observations are on linear functionals only, extra information, in
the form of a bound on a non-linear functional, must be supplied
in order to restrict the required function to a bounded region in
the space. 1In our case, the class of permissible functions {?(r)}
does not naturally form a linear space, so we need to re-examine
the question of what extra information is required in order to make
the problem well-posed., In each of sections 6 and 7 below, a unique,
acceptable solution is énsured by insisting that a non-linear func-

tional be minimised, not merely bounded.

The situation may be summarised informally, as follows:-

Physical intuition serves to convince us that f(r), being a



radiation source density distribution, is integrable and non-negative
over the range [0, R]; the class of functions satisfying these con-
ditions we shall denote by F . There is no compelling reason to bar
any fe:? satisfying equations (2) from being a candidate for our
solution, However, many functions occurring in physical situations
are known to be "smooth" in some loosely defined sense so, as a Sepa-
rate exercise, we restrict the class of allowable functions to those

which are "smooth" in a sense defined precisely in section 7.

One of the objects of this paper is to emphasise the fact that
the problem of estimating f(r) from the given observations

{mj j=12, ceom l may be made well-posed in many different ways.

The purely constructive approach is rejected because of the temptation

b

to use it as a substitute for proper formulation of a mathematical
problem, However, the possibilities are indicated below by formulat-
ing a well-posed mathematical problem in two quite different ways,

neither of which reﬁuires the use of the Abel inversion formula (6)o

5. A RELATIVE LIKELIHOOD FOR FUNCTIONS

Although we have noted that a great variety of functions could
have given rise to the set of observed quantities, there is still a
natural inclination to regard some of these as more or less likely
than others. For example, in Fig.2, if the marked points represent a
set of observations on some function, one feels intuitively that curve
1 is much more likely to represent the required function than is curve
2, although either could have resulted in the observed ordinates. We
shall attempt to formalise this natural preconception by associating
with every function feff a number which can be thought of as the

relative likelihood of f, We shall then be in a position to answer



the question : "of all fE:F, which is the one most likely to have

given rise to the observed quantities?"

There are many ways in which a relative likelihood function
p{?} could be defined, but in order to introduce the idea as naturally
as possible we shall make use of an approach which is basic to statis-

tical mechanics,

Regard the circle, radius R, as being dissected into n con-
centric, annular regions, all having the same area A. Now suppose
that N particles are cast onto the circle, in such a way that the
. positional probability distributions of the particles are independ-
ently uniform over the area of the circle. Physically, these par-
ticles may be thought of as the radiating atoms in a unit length of
the plasma cylinder mentioned in section 2; thus N is a very large,

but finite, number.

The number of ways in which N; particles can fall into the
first region (containinz the origin), while N, fall into the

second, etc., is
NT

Nie Nal i Nn.'

so the probability of the complexion N = (N;, Nz, N3, ... Nn) is

given by

P(M) = .o (14)

Assuning that

N.»1 ; j=1,2, ... n eee (15)
and using Stirling's formula for the factorial, we find that
equation (14) may be written n
log [P(E}J ~ N. log(N) - F\NJ ; log(NJ.)-N. log(n) ... (15)
L

J=1

-9 -



We now define a histogram function fN(r), associated with the

complexion N, by means of the equations

cN. r.  S<rdr,
ro(e) = —t=r. , say , | 97 J e (17)
N A J :
s J=1’ 2, see I
where ¢ 1is constant for a given value of N, and rj_1 and rj

mark the inner and outer boundaries, respectively, of the j th an-
nular region. Also, since we shall require fN(r) to be integrable

over [O,R], note that equation (17) implies
R

¢ \ N.=cN=A . =2x [ f. - rdr=k , say, ... (18)
J J N
(0]

=1 =1
thence, equation (13) may be written in the form

: i Af R
~ _N | _J\ _ _ 2mN A, .
log {P(H)} - Alfjlog<k>_— ” /fﬂ.log (k f‘@ rdr
J=1 o
eeo (19)
where
A = TR® = nA. ee. (20)

Thus we can assign a relative likelihood to fN(r) by means of the

P{fﬂ(r)} =P {_1\1} = exp{— Z—EN- fE . 1og< % fﬂ) P rdr} vea (21)

Although the above construction of functions {fN(r)}, and their

relation

associated relative likelihoods, does not exhaust the whole of the

function space F, by taking n and N large enough subject to
1«n«N<w eee (22)

it does enable us to construct an fN(r) whose mean deviation from

any given non-negative, Riemann integrable function on [O,R] is as

small as desired.

= N0 =



6. THE FIRST FORMJLATION

.We are now in a position to cast the original, loosely worded
requirement into mathematical form. As our estimate of the function
which could reasonably have resulted in the given observations, we shall
chose that fﬁpction f(r) which minimises the
functional ‘/‘f « log (f) - rdr subject to the conditions of equations
(2) and the %ondition that

f(r) 20 ; OSr<R .e. (23)
(Note that the factor 4 in equation (21) only contributes a constant

k
factor to the relative likelihood of fN(r) Vo

Posed in this form we have a non-linear programming problem in the
function space ﬁ . However, the situation simplifies considerably if
we make the additional assumption that the given observations
{93 3 FE 1,2 v } are such 2s to support a strictly positive

solution f(r); in that case it can be determined by a standard varia-

tional technique, as follows:-

Using Langrange's method of undetennined multipliers, we minimise

th= functional R - R

S(f) = /'f » log(f) - rdr +Zgjsj { /ﬂ QJf * rdr - @j}
0

0 =1
ee. (24)

The Euler-Lagrange equation for th.s problem, which does not

involve derivatives of f, is simply
m

1 + log(f) + Z{}j Qj =0
=1
€-8- f(r) = exp{— 1 —iej -Qj(r)j can (26)
J=1

where the constants {Ej : 3= s 2,...m} are determined by the

- 11 -
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ZEKQK

auxiliary conditions
: R -
1 i
‘PJ = E-/ Qj . e k=1 - rdr H J = 1,2, =0 el K (26)
o]

It is worth noting that the variation could have been performed

subject to the normalising condition
R

27 g[ f « rdr =B , a constant, oo (27)

thereby introducing an extra multiplying constant into the right-
hand-side of e-uation (24). However, condition (27) is superfluous
in the case of current interest, since the functions

ﬁzj ;- J= 0, B, s } derined by equations (3) already imply

m

R
27c/fdr = ZZ@J ... (28)

o] J=1
Fig. 3 illustrates in graphical form the result of using the
above method on a particular set of observations, taking the special
form given in equations (3) for the functions {éi 2o Jo= Vs By aas m}.
Numerical values of the input quantities for this example, and for

the following ones, are given in Appendix IIT.

7. THE SECOND FORMULATION

It is at least partly an aesthetic problem to ask for the most
likely smooth function f(r) which could have resulted in the given
observations {@j g =, 2y e m}. Our next task, therefore, will
be to formulate mathematically what could reasonably be meant by

'smoothness'.

In a particular experimental situation there might be some a
priori indication of how the smoothness of functions might be com-

pared. However, in the absence of such guidance let us regard a

— 2 =



constant as being the smoothest kind of function, and if a function
deviates more and more from being constant we shall regard it as
being less and less smooth. Thus, a reasonable measure of the lack
of smoothness of the function h(r), over the circle of radius R,

is the functional R

£ [hj = 2ﬂ/<%j.rdr e (29)
0

We might immediately attempt to find the smoothest function, in
the sense just outlined, which could have resulted in the observations
{% 5 j=1,2,.“1@,tmmnuMmmhgtmeenmrmmnfnmmnn
noted in section 4. However, a technical point arises here, because
there is no reason to restrict h(r) in equation (29) to being non-
negative, although it will have to be piecewise differentiable. The-
space F is no longer necessarily a good source of candidates for
the solution to our problem. A natural way out of this difficulty
is to express the required, non-negative function f(r) in the
form

f(r) = {h(r)}2 ous (30)

~

where h  is allowed to range over the Hilbert space H of real-
valued, pizscewise differentiable functions on [O,R] which satisfy
h(R) = 0) e (31)
and have an inner product defined by
R
(g,h) :/(Vg) “(Vh) -+ dA = Zﬂ/g‘h’o rodr ... (32)
A 0

and norm given by

|| h [[? = (n,h). oo (33)

Formally, then, we are seeking a function hélﬁ, which

- 13 -



minimises the functional E{h} subject to the constraints

R
9 = [Qjohz, rdr ; Jj=1,2, ...m ee. (34)
)

Using the method of undetermmined multipliers, the Euler-Lagrange

equation for this problem is

m
1 d dh
= = ( d%) + h e Qj =0, ..o (35)
=1 —
with boundary conditions
h’(0) = 0 = h(R) , ... (36)

B
where the constants {Ej 2 J=1, 2, vuu mj are determined by

equations (34).

The numerical solution of this generalised eigenvalue problem
is dealt with in Appendix I. The result of using this second form-
ulation of the problem of estimating a radiation source distribution
from exact observations is shown in Fig.4; this is directly com-

parable with Fig.3, which resulted from the first formulation.

8. FUNCTIONAL INTEGRATION

Of course, many measures of lack of smoothness, other than that
defined in equation (29), could be used. However £(h) is of part-
jicular interest to physicists because of its analagy with Wiener
integration. In its original form (Wiener, 1924)

Wiener integration enables one to compute expectaction values of fun-
ctionals over the space of functions continuous on [0,1] and vanish-

ing at the lower limit. One definition of the expectation value of
1

F{h}, if it exists, is dh*\2
NG

o oo dr

EEF} :fF {h(r)} dh = éﬂ * B [ [F{h*(r)} e o dxydx, ... dXg

S . )0 =—oo —oo
Mase (b 5) cen (37)

- T -



where h*(r) is a piecewise linear, interpolatory approximation to
h(r) over the range [0,1]

J

O=r < Ir'q € Pg < 40 <" < =
0 3 = g1 STg =1

i.e. h*(r.) =h(r.) =x., ; j=1,2, «..5,

J d } o G58)
and E% is an appropriate normalising factor. Notice that the expon-
ential factor in equation (37) plays the role of the relative likeli-

hood of h*(r).

Our situation is a radial variant of that considergd by Wiener,
with functions vanishing at R instead of at 0. Later on we make
- use of an expectation definition analagous with (37) in order to make
statistical improvements to inexact observational data. However, for
the relatively simple situation when the given observations are exact

it is sufficient to note that, ia
2
dh
exp [— l/(dr)' rdr‘]
o]

is regarded as the relative likelihood of h€fﬁ, a maxdmum likeli-
hood estimate of h(r), subject to conditions (2) results in the

smoothest function satisfying these conditions.

It is worth pointing out that the general inn2r product defined
in equation (32) is not limited to the case of radial dependence of
the functions in H . Clearly, the development may be extended to
the situation where ﬁ comprises the set of suitably differentiable
functions of two (or possibly more) variables, which vanish on some
convenient boundary enclosing the region of interest. This more gen-
eral formulation would, in principle, allow one to estimate the
'most likely' function of several variables consistent with given

observed functional values.

- 15 -



Preparing the way for computation of the means and variables
necessary for section 9, we now introduce a generalisation of Wiener
integration.

~

Let !g.) be a complete sequence of distinct elements in H ,
J

~—

and F{h} a functional whose domain includes H.

) -l n |17
Let / F [hn} e s dxg dXp ... dX
E F) =
“U ® —alln |2
[_e 'd'}{l dXo ssee dxn
| e §B9)

- where each of the n-folded integrals ranges over (-o, ), and hn
is that element of H with least norm which satisfies the conditions

Yy = (gj »h) 5 i=1,2,...n. ... (40)

Then, we define the expectation value of the functional F[h] to be

E{F}zrllﬂ -En{F] ce. (41)

if the limit exists. It may be shown (Larkin 1968) that if this
limit exists it is independent of the particular complete seguence
[gj} used in its construction. In the present example we have

EEWJ} = E{/QJ (r)o h2 (r). rdr'] = q (r).r. E {hz(r)}. dr

"0
... (42)

Now notice that E {h(r)} for a specific value of r, depends only
upon one single, bounded, linear functional h(r) ; thus the mult-
iple integrals in equation (39) reduce to single integrals if we in-

clude the representer of h(r) in the sequence {gj}.

The function h,(t) which has smallest norm while satisfying

h,(r) = h(r) oo (43)

- 16 -



may be. found by a standard variational technique; it turns out to be

of the form
h(r) ; O0<Lt<r
hj (t) = t e (44)
h(r) - log ()
= ; rs$t<R,
lOg(EJ
s0 that
2
||h1||2=-2—@-—§1—. .. (45)
log(™/r)
__2zh® A
Hence, b log (R/r)
/h2 e - dh
E{m (r}} - = T , ... (46)
®  log (*/r)
/e * dh
R
i.e. B {hz (r)} = LQEE(T& , ... (47)

) R
E {lp-jj = Zat—l_k -/log (R/r) . Qj (r) * rdr. .o (48)
0

The elements ij of the variance matrix H may be found in

a similar fashion. In order not to burden the text the derivation is

given in Appendix II, and here we simply quote the result

R ]
ij = E{Iﬁjwk}-ﬁ{ﬂld .E'{wk]:_ﬁsﬁl}\ ./[mg (%)] -l:QJ.(r) . Sk(r}+Qk(p) . SJ(F)__j s
° .jsk=152,---m
ves (49)
r
5y (r) :/Qj (t) »tdt § J=1; 2, ces Mg <o, (50)

.0

where

- 17 -



9. STATISTICAL IMPROVEMENT OF THE OBSERVATIONS

J
result fron the additive contamination of the true values

Let us suppose that the measured quantities {¢., J= 1s 25 wiwi }

{wj s =1, 2, ... m} by noise components {Th’ J= 15 24 sas m}.

Thus

e wj +my 3 omy = 1 24 wes B —— -1 )
The termms 'true values' and 'noise' have merely a notational sig-
nifiéance, since the n th order vectors Yy and N may be regarded
mathematically as partitionslof a compound stochastic variable vector
of order 2 m. In many practical situations it is reasonable to as-
sume that 7 has zero mean value and that y and @ are uncorrelated;

these assumptions are made in the following development.

Let us define the mean vector i by

T =13[¢j] s =1, 2, ...m, oo (52)

and the variance matrices H and K by

Hip =E[¢J¢k] -E{w J.].E{qfk] eee (53)

and o~

where the expectation operator represents the process of averaging

over the Hilbert space H, as described in ths previous section.

It may be verified (e.g. Deutsch, 1965, p,67) that the expres-

sion

=

=+ HE+ KT (@ - ) e (55)

is an unbiased, minimum variance estimator of Y.

- 18 =



The most information an experimenter is usually prepafed to
giQe about the accuracy of his observations is an estimate of the
'error', by which he means the standard deviation of each observa-
tion from its preferred value. Thus, the matrix K will usually

be strictly diagonal.

An example of the use of formula (55) for 'smoothing' inac-
curate observations, prior to estimating the radial sourbe distribu-
tion, is given in Appendix III and illustrated in Fig.5. Notice
that, in contrast with the situation in which the observations are
exact, the final estimate of the source distribution depends upon
the parameter )\ which, roughly speaking, measures the a priori disper-
sion of elements of H about their mean.\ can be thought of as a
'smoothing parameter', since the measure of lack of smoothness
g{h}, defined in equation (29), decreases as A increases. In the

numerical example A was chosen so as to satisfy the condition

m

L .
ZI-I’FJ = Zq).] * o0 (56).
J=1

J=1
Another reasonable condition might be
m m
Zw.] Z‘Pj
=1 Jj=1

which would necessitaté iterative determination of A.

.



10. CONCLUDING REMARKS

We have been concerned with the problem of estimating a function
f(r), about which we are given a limited amount of experimental infor-
mation., Although the results of experiments are analysed one at a
time, we need to consider the class of all possible results, and be
specific about the class T of all functions £(r)€EC which we can

accept as conceivably giving rise to an observable result.

Our information about f(r) is of two kinds:-

(i) General properties, such as non-negativity, continuity and
integrability of f(r) and/or its derivatives. This information,
which may be genuinely given or arbitrarily imposed, limits a

priori the class d of allowable solutions,

(ii) Specific properties, in the form of a finite number of observa-

tions on f(r). - These observations may be thought of as linear
or non-linear functionals of f, which limit a posteriori the

sub-class of E to which f can belong.

In general, an infinite number of exact observations will be
required in order to characterise a particular fEZE, an impossible
requirement in a real, physical situation. Thus, unless more assump-
tions are made, we can say no more about f(r)than that it is a member
of that sub-class of C whose elements could have resulted in the given
observations - a tautology which is hardly likely to appeal to an

experimental physicist.

A way out of this unpalatable but incontrovertible dilemma is to
express precisely any intuitive feeling we may have that certain mem-

bers of C are a priori more likely than others. This enables us to
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formulate a variational problem whose solution, roughly speaking,
représents the a posteriori most likely member of'E. Furthermore, it
turns out that this approach extends very naturally to cover the
situation in which the given observations are subject to experimental

error.

The particular experimental situation discussed in the text has
been chosen deliberately in order to illustrate the various ways in
which a corresponding mathematical problem may be formulated out of
the original aesthetic one. It is, of course, the privilege of the
experimenter to decide, by looking at the final results if necessary,
which of the many possible mathematical formulations he prefers to

use,
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APPENDIX I : NUMERICAL TECHNIQUE FOR THE EIGENVALUE PROBLEM

We define the linear, self adjoint, positive definite operators

{Lj} by means of the relations
2 2
(h,LJ.h) =/th rdr ;3 j = 1,2,...m p— 4
o
from which it follows that

Lh_Zﬂ/ /Q(S) is)esds 3 J= 1,2,0.m ... (2)

R
i.€e Ljh = /‘K(r,s).Qj(s).h(s).sds 3 J=1,2500em eoe (4)
)
dog® ; o<r<s<Rr
Zn 0g 7 H XIS X
where K(P,S) = soe (5)
%-log% 3 0<s<r<R

Our problem now is to find h(r) such that (h,h) is minimised,

subject to
(h’L.h) = (P. N j = 1,2,.'am' ee e (6)
J J
The iteration adopted may be described as follows:

(i) Choose a starting function h0

(ii) Compute normalising constants {?j} such that

(a.h yLa.h ) = ?5

jo'jJjo
P 1
. s .
i.e. . T____aLﬂ_y ;0 J = 1,2,00.m0 eee (7)
J [ ho LJhO ]
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(iii) Construct h, by projecting the origin onto the linear
manifold common to the supporting hyperplanes at the
Imhmsfﬁmﬁ j=1,2,...m

(iv) Construct hy, hz,..etc., as required, by repeating

operations (ii) and (iii) on the most recently
constructed member of the sequence.

Algebraically, the iteration may be expressed as

m
- Z B;L hp cos (8)
J=1

where the vector J satisfies the equation

AB=1 nas (9)

and

A —(Lh Lk) ; j=1,2,...m] swwi( 109

k= 1,2,...]“
%
Ty = { (oL r%

Assuming that the given values {?j : J= l,2,...ﬁ} are self-

- eeo (11)

we
.
1l

consistent, and that the iteration converges to h(r), it is easy to
verify that h satisfies equations (6) and (h,h) has a local minimum

subject to these conditions.
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APPENDIX II : DERIVATION OF THE VARIANCE MATRIX

Consider
R

R
E[llfjll‘k] =E{/()fohz(r).ha(s).Qj(r).Qk(s).rs.dr.ds} aes (1)

R R
i.e. E[q’jwk} =£ OE[ha(p).ohz(s)}.Qj(;r').Qk(s).rs.dr ds ... (2)

Suppose o<r<s«<R eee (3)

then the function hy (t)€ H with minimum norm, subject to the

conditions
ha(r) = h(r) ] | e (a)
hz(s) = h(s)
is given by
h(r) ; o<t <r)
- 1ogl$)
ha(t) =¢h(r) + [h(s) - n(r)]—%{ 3 r<t<s) wes LB)
- Log(2)
h(S)-}Eg—l;—. 3 SStSR
108(3)
2 2
— "halls _ 2n/h(3) = h(r)] 2z7h (s) ews (B)
1og(£) 10g(3)
Now, if we make the subétitutions
27
=, s i R= R
¢ log (%) log(E) e
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it is clear from the definition that, for fixed r and s,

oo oo 2 2
5 {hz(r).ha(s)} _ Y/‘/hs(r).hz(s)’e-k[a(h(s)—h(r)) +B.h (s)] vdh(r).dn(s)
— ees (8)

whem Y_i =_[E_7‘[U‘(h(s)_h(r))2+ph2(s)]-dh(r).dh(s) s (9)

The integrals in equations (8) and (9) may be evaluated explici-

tly, yielding
E {hz(r).hz(s)] = Tgl?- o{log(%}-log(%) + ZEog(E)]QJ ;  o<r<s<R
... (10)
Thus, for 0<s<r<R
E[ha(r).ha(s)} = —6711-2-7\-5 ° [log(%]-log(%) + 2 [log(%) jr}
aew(11)

These results may be substituted into equation (2), giving

[ R R
]Enlrf of/log(%)-1og(§)"0j(r).q((5)-r‘5-dr ds
00

8n A

/ R Ir
B {wrjqu} “\+ —tw '-[Qj(r)-r dr f [1og(‘;‘)]2'-qk(s)-sds -
(o] 0

R R
1. BY [P rd9s
4 P o /Qj(r‘)'rdr[[lm}.(;):l -Qk(.») sds
0 r

Referring now to equation (53) of the text we see that

i OB



R
E {ﬂ;jxyk] -E [x[:j} E {_1]: ] = éo-?;-iy Y f[log %]2.. ‘:QJ- (r).Sk(P)+Qk(I‘).Sj(r’z'.rdr
[0}
JiE = 132qaweiiy 0s0(8)

where

Iy
SJ(I‘) =./‘QJ(t)atdt H j = 1,2,---"1, o-l(g)
o)

as required.
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APPENDIX III : NUMERICAL EXAMPLES

For all three of the numerical examples given here the input

parameters are summarised in the following table:

TABLE 1

INPUT PARAMETERS

i *j i1 % %3

1 0+«0000 Qe 2000 32000 10000
2 02000 0 +4000 34000 1 =0000
3 04000 05000 328000 1 <0000
4 06000 0+8000 228000 10000
5 08000 10000 1 ¢6000 10000

Here, m = 5 and R = 1°0. The quantities {cﬁ 3 J= 1,2,...5}
represent given estimates of the mean deviations of the corresponding
observations; thus, in this case the noise variance matrix K
reduces to the unit matrix., Of course, the values of the [Uj} are
only significant in the third example, whose results are illustrated
in Fig.5.

In Figs. 3,4 and 5, the given observations {@5 $ J = 1,2,...5}
are shown as histograms, the area under each segment being equal to
the corresponding observational value. The smoothed values, in the
third case, are shown as a broken histogram in Fig.5. In all three
cases it is clear that y(x), the Abel transform of the radial distri-
bution function, does follow the appropriate histogram quite closely;
although the first formulation gives results which may be less accep-

table than those of the second formulation., Furthermore, comparison

of Figs. 4 and 5 indicates that the double peak in the solution to
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_ the 'unsmoothed case' is probably spurious,
Table 2 lists the computed values of the quantities {Sj 3 g 1,2,..5}
satisfying équations (26); Table 3 and Table 4, respectively, give
the computed values of the mean vector E and the variance matrix

H, corresponding to a unit value of the smoothing paramster A.

TABLE 2 TABLE 3

CONSTANTS IN.1ST FORMULATION SIGNAL MEAN VECTOR

Jj £ J _Eb

1 2314 _ i 0+4307E-02

2 22693 2 0°2916E-02

3 4733 3 0°1743E-02

4 3041 4 0+8076E-03

S 3356 5 0+1705E~03

JABLE i
8 VARI MATRIX

h 1 2 3 b 5
1 | 0.78830519E=0L | (e3305582LE=0L | 0.1116639%=0k | 0,26559307E=05 | 0,21879508E=06
2 | 0.33055824E=0l | 0,2388L418E-0L | 0,9918532%~05 | 0.24719909E~05 | 0,20754065E~06
3 | 0.11168399E~0L | 0,9918532%E~05 | 0.65329588E-05 | 0,20502862E-05 | 0,1830540LE~C6
Ly | 0,26559307E=05 | 0.24719909E-05 | 0,20502862E-05 | 0,1119083%E=05 | 0,13764012E=06
5 i 0,21879508E~06 | 0.20754065E-06 | 0.18305L04E-06 | 0.1376L4012E-06 | 0.39713986E-07

For computational pﬁrposes, the functions employed in the second
formulation (cases 2 and 3) were represented by their values at 101
equi-spaced abscissae, spanning the range [0,1]; all cuadratures were
effected by the trapézoidal rule. The slight discrepancy, in Figs.3

and 4, between Y (x) and the first section of the histogram is a result
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of the discretization. Each of these cases required about 25 seconds

of computer time (FORTRAN program, E.E.C. KDFS machine).



/

LA

NG04
|

R
N
1V

]
|

ot [¥mel

|

Direction of
observation

Fig. 1(a) Diagram of the experimental situation (CLM-P179)

g«m Kool
7

M

in-t Pm

Fig. 1(b) (CLM-P179)
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Fig.2 (CLM-P179)
Two functions which could have resulted in the same
observed data points
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Results from 2nd formulation, after 5 iterations;
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Results from 2nd formulation after 4 iterations ; observations
‘optimally’ smoothed (A = 6-72 . 1074)













