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PART I

1. Introduction

The object of kinetic theory is to extract from an exact and detailed
deacription of a complex physical system that information needed to describe
its gross behaviour.

For example, consider a system composed of many charged particles having
mass m;, charge e; and velocities ¥i: then in a volume V large enough to

contain many particles, we may define a macroscopic density p, velocity V,

charge, Q, and current, Jd, by:-

<p=
<l~

2 e. =Q;

1

<
<l
T

It is often convenient to write:-

v o =¥+e i I=QV+j

1
The macroscopic variables p, V etc. satisfy equations of motion that may be

deduced from the laws of motion for the individual particle, i.e. from:-

mv =F ==¢e. (E+ v xB) +F.
1 = —i - =int

where: -

Z F. =0
i =1int

from conservation of momentum. Then %% is determined by equating the rate

of change of density to the flux into a volume; i.e.

L4y .pY) =0 (1.1.1)
The rate of change of momentum is similarly:-

0 a ) 3]
a?i‘p!”‘a'a_:-’f’"!i!i-:ﬁm!“a; (p¥y) + £ . Zme e,
=3FE =2e (E+y, xB) =QE+Y xB) + j xB

i ~i i
and defining the stress tensor p = 2 mc, ¢, , and using the continuity
rs i ir’is
equation (1.1.1).
av
PlGT+Y-Y¥) =-VYp+Q(E+V xB) +jxB (1.1.2)

In a similar way, we may equate the rate of gain of energy to the rate of

doing work, i.e.



o=

é% (3 mvf) +9Y .%v: 3mv2=3F. .v, =3%v .E=J.E
i =t g = A s = ="

or

pY D
E-(Dﬁ;*‘?.p)+ Bt ?

mc? +2 z mc? .0+ ¥.p).x+¥ o3cimc® = QV.E + j . E
i , L =

N

and defining the internal energy:-

U =2 3mec; = 3 nkT
i
and the heat flux:-
q=32c¢ 3mc?
DU ,yv.v + (V.p)V +V.q = j.E (1.1.3)
Dt V.Y v.pl¥ V.g=j.E N

For an ionized gas, the charged particles are of two sorts; electrons and
ions, and the interdiffusion of these parficles gives rise to a current; the
electrons and ions moving with speeds:-

YV+Aay-, Y+ AE+ .
By considering the two gases separately the quantity AV- is found to satisfy:-

pY¥ . DAY 1 _e- F-
-D—E+W+AE'YAE+AI'I+ lV_p-_m_(_E_:-P_Y_XE*'A_Y_xE)"'-

1f this and similar equation for AV+ are multiplied by a product of density

and charge there results:-

Dj , e- e+ -9 Q* . e® e 2
B'E +-l'1-1"z' P- +m+2'2+ pz'pT + [p [n_ (m+)+n+(M+} ]-
2
. [E+ ¥ x B] + = (j x B) - [n (E:) A V- + n+(ﬁ+)2 A V+] xB =0
m- Pl  m- ; ;
Hegﬁi-;e_[y.E_-_le]+[§+!x§]-n_l'-'—‘o (1.1.4)

where: -

njs= %é2 [ Eﬁ: F- + %?: F+]

A more formal treatment of the relation between the microscopic and the
macroscopic can be effected by employing a distribution function f; a quan-
tity which describes the statistical evolution of the system, in which case
the underlying microscopic dynamics of the system is embraced in an equation
of motion for f, the equation of transport.

There are several sorts of distribution function f, ranging from the

Liouville function F(xi, X2 = - - Xy, Y1 - = ~ XN) to the Boltzmann single

-2 -



particle function f (5,2). The Liouville function is a function of the
complete set of micro co-ordinates, and satisfies the equation: -

oF

= 4 [ H(§1- - Xy V- - XN)' F]l=o0 (1.1.5)
which is completely equivalent to the microscopic dynamics, H being the
complete Hamiltonian. This can be written introducing the acceleration

field éi (x1- - - xN)

oF
ot T Wiegg, v A (x- -myt5) =0

The equivalence of Liouville's equation and the equations of motion is
established by observing that if the system is given as in the state speci-
fied by:-
51(0), x fo) = =~ - m.la), y (o), x (o) - - - vy (o)
so that:-
F(o) = d (x. - x. (0) ) &(v.-v.(0) )
=i =i =i =i

its subsequent evolution is described by: -

F(t) == 6(x, -X,(t) ) &(y. - V,(t) ) (1.1.6)

=i 1 -3 -]

where Ei(t) and Ki(t) are the relevant solutions of the equations of motion,

Lol
—_
[l
—
I

x (o) + [LF dt"y (t°)

(t7) )
! (1.1.7)

The Boltzmann function on the other hand satisfies an equation of the form:-

af af of _ of
£y T + A [x,¢) . 9y - Jt int (1.1.8)

The transport equation for the Boltzmann function may be obtained by
repeated integration of the Liouville equation, for f itself is defined
by: -

f(x—1’ zi) =Y fF(’—ﬂ' T Xy Xyt - Xy d%x,- - daxN Py - - davN
If there were no interaction between particles so that the acceleration
field éi could be factored as §1 (x,, v2) - - etc., then a closed equation

for £ could be obtained by integrating over the Liouville equation as:-

af of af (1.1.9)
Jt Y. ox t 4. 0



the collisionless Boltzmann, or Vlasov equation.

If, however, there exists an inter-particle potential ¢(xi, xj) the
final integral cannot be evaluated in terms of X, ¥, and f alone, instead
it becomes: -

V 3 d

m, "j oy,

i - - . 3, _ 4% d%« . 43

or, introducing the two particle function:-

e oo 3, _ _ 48 3, _ . 48
£(1,2) =V ,fF(§1, x EN] d®x, d®xy d%v, d’vy
_a__£ _l _a_ gﬁ (1:2) 3 3

5t |int = Vm, v, . 651 £ (1,2) d°x, d%,

and the general equation of transport for f becomes:-

af af € _n 8,2 5, 4@
'Tt*'!'a_"'éo'a_\; m, a‘_‘r.‘[‘az1 ¢(x1,x2) f(1,2)c1x2dv2
or:-
%{ + Vv . 3& +A . %% + I(f) =0 (1.1.10)

The first major problem of kinetic theory is to find an approximate
form for I(f): the second being that of solving 1.1.10 for a given form of
I and deducing the moments required for a macroscopic description of pheno-
mena.

For diffuse gases in which a strong but localized interaction occurs

between the particles, a course-grained equation for f may be obtained in
which the interaction term I is represented by the rate of change of f
produced by impulsive collisions between particles; (g = Rl / 6 =

- !

scattering angle):-

Q

f
t

=fdeJad’, golg,0) [fly,) f(gz) - fly) flx) ]

Q

int

where ;1 v, are related to v,, vV, and O, being in fact the negatives of the
velocities resulting when a collision between v, and v, occurs with a
scattering angle 6. Our later work will be devoted to showing that, with
certain corrections, this result is a valid approximation for an ionized gas
where the forces of interaction are weak, but long ranged. At present we
will concentrate on the second problem, that of solving Boltzmann's equation

and determining the transport coefficients.



2. Hydrodynamic Equations from the Transport Equation

As a preliminary to any attempt to solve the Boltzmann equation we will
use it to form the hydrodynamic equations. To do this we use the defini-
tions of 8§ 1, which, expressed in terms of the distribution function f
becomes the following moments of f:-

p = JSfmd®; »p Y= fmyd®; ¢ = v-Y
P= Jfmec e d3v; % kKT = ff 3 m c? d3v; g =/ f 3 mc2c d3v
Since the B.E. forms a representation of the dynamics of the system, the
macroscopic equations for the moments may be formed therefrom, i.e., from:-

d d

[

+ A, %— - I(f) } d®v =0

h

l

Sm |

+ v .

(7]

[
5]
12

g—% + div. (p¥) = 0 (1.2.1)

since /m I(f) d®v = 0 from mass conservation.

From: -

J'dsvmzi 1:0

o] g% +V .p-F =0 where F

and (1.2.1) has been used. Finally from:-

I
<,
=]
>
ety
[=H

©
<

(1.2.2)

[

~—
[

Sd3v 3 mv?

B% +UdivY +p:VV+divg=0 (1.2.3)

and
U =5 n kT

For an ionized gas, there are similar equations for each component,
although now the interaction integral does not vanish, but leads to terms
representing the transfer of energy and momentum between the two components,
Alternatively, these equations may be combined and as in S 1, the mean
velocity may be defined as:-

PY = (py + p.)Y = p,V +p.V_,

and p, T etc. defined relative to V, whereupon:-

2 4+ div . oy = 0 (1.2.4)
DV ;
Pt t¥Y.p-QE+Y xB) - jxB=0 (1.2.5)



and

Gr tUdivy+p:VV+divg- i.E=D (1.2.6)

To illustrate important methods used in solving the B.E. we shall first
consider some simple representations of a simple gas, and only gradually

approach the complexities of the ionized gas in a magnetic field.

3. The Normal Solution: Hilbert's Procedure

To derive meaningful hydrodynamic equations it is useful to restrict
attention first to those situations in which the rate of change of the
distribution function is slow so that the collision frequency is much
greater than any hydrodynamic frequency, i.e. if we introduce a macroscopic
time scale T, length scale, L, and a characteristic velocity, V = L T 1
then, if the external forces are small, so that T 2 ¢ 1; the L.H.S. of the
B.E. scales as T '. We can also define a collision time by © ' ano,V,
where Ogis a mean cross section, whereupon the condition, collision
frequency is much greater than hydrodynamic frequency, becomes t/T = e« 1,
and the B,E. may be written:-

I(f,f)zeia_at'l'zqai'l'éooga_v'l£=ED£ (1-3-1)

(H]

It now makes sense to seek a solution expanded in powers of € :-

f=f°+€f1+...

which on being introduced into (1.3.1) reduces it to:-

1(f,, fo) = 0 (1.3.2)

o?

1(£,,£,) = Df, (1.3.3)

The first equation here is satisfied by the locally Maxwellian distribution;

i.e. by:-
3

- m 2 -
£, = nlx,t) (§, (2 o*p |

m[¥ - Yix,t) 1%
2 kT(x,t)

where n, T, V are undetermined functions of x,t.
Hilbert observed that by writing f1 = io ¢, (1.3.3) may be written:-
Fd%v 1 (v) folv’) |y-v'| oly-y",0)[#(T) +$(¥") - ¢(x)- ¢(x") ] = Di,

1oaiBe

J Klv,y’) $(y*) d°v* = Df,



an integral equation in which conservation laws require that K should be

-

symmetric in v, v’.

that a solution can be obtained only if Df

h(v) of the homogeneous equation:-

J K (y,v") h (v7) d®°v’= 0

for:-
S dv [ dv'h(y) K(v,v") ¢(v")

Since

This has the following interesting consequence:-

is orthogonal to the solution

0 = /S dv h(y) Df, (v)

J K(v,v") ¢(v") dv~

gives the rate of change of ¢produced by collision, the solutions to the

homogeneous equation are the collision invariants, m, my,

and the constraints on Dfo become
Since for a Maxwellian distribution:-

pij n kT 6ij"9'

these become:-

Q
=]

+ V. Vn + n

Q)
o+

oV
3t

[

1
+ nm

I<

. VYV +

a 3
T3 (E n kT) + V

Furthermore, since f_, depends on x, and
with ¢ =v -V
_ 1 ;0 3
i, =l (F+L.Dn-
+1I<1E"(73§F+Y-'2)1'

¥

3
2(3 nkT) +

t

1 2
2 mv ?

the zero order hydrodynamic equations.

0, U=2nkT,
.¥Y=0 (1.3.4)
(nkT) - F ] =0 (1.3.5)
5 okT div ¥V = 0 (1.3.6)
through n, and V, we may write,
1 mc 1 ;0
2 T ) T (5? + N . ¥)T
mc
oAl £

The time derivatives may be eliminated with aid of 3.4-6 and:-

2
m 7))V 1 mc
Dfo = 4 [kT g.le.¥¥~3 kT

4.

Mean Free Time Theory for a Simple Gas

div_\[]—[%-

1 mc?q1
g lgle . T ] £

o
(1.3.7)

A good many of the features of the B.E. may be retained by replacing

the collision integral by a simple relaxation term, i.e. retaining only

the tendency for a distribution function

i

to relax back to the



Maxwellian, and representing:-
1
I(f) by 7 (£ - £

whereupon (1.3.3) becomes:-

or

and using (1.3.7)

2 2
= - 1=z - 3 B g s (2= 4 EEL
£=£ |1 e - (e YUY 3de1VE] (5 -2 ¢ )TE.ET(i-tl)

We need this to form the moments:-

Py; = I £ mc; e d®v, q =/ f 3 mc?c d®
since (E) and (% c%g} = 0 . Carrying out the integrals yields:-

= T i . Ny . 2 4 = -X

Py = 3 n(eT) [0 + 50d - 3 divy 6,1 =-3plYV]
and
g=-27 & wr



PART I1I

Transport Processes in Fully Ionized Gases - Normal Solutions.

1. The Linearized Equations

When instead of a simple gas, an ionized gas in a magnetic field is
considered several new complications arise, many of which may be clarified
by a consideration of the simple m.f. t. theory. In the first place,
instead of a simple gas, an ionized gas is a mixture of two gases, ions and
electrons, which interdiffuse. As a result, even starting from a common
Maxwell distribution the elimination of the time derivatives produces some
new results, since neither component moves exactly as does the mixture,
Next, for many plasmas, the gyro frequency w = %? is comparable to or
larger than the collision frequency, and the technique used for splitting
up the terms in the B,E. becomes inappropriate. To handle the magnetic
term it may itself be split into two parts, one involving the mean velocity
ﬁ Y x B which is small, and a second involving c(= v - V) the "peculiar"

velocity ﬁ & x B, which is not necessarily small. The B.E. may then be

written as:-

d o) e d e of _
[ Tt + v . E-E +;1(E +Ix§) v a——z ] f +E(Ex§) = a—! - I(f) = 0O
[l [l e i L 1
A 5 © {zua.1)
A: B: C: : l1: wT: T/t . Different orderiﬂgs are possible for these

terms, e.g. T may be ~1 while T/t is large, whereupon the ordering valid
in the non magnetic problem becomes useful. T and T/t may be of the same
order, or finally, in a magnetic field, hydrodynamic behaviour is possible

when T >» 1 > T/t . In any case, it is possible to start with a

Maxwellian distribution:-

3/
o _ m 2 _ 1 _ 2
£7 = n(x) (3575 exp [ - 2 m (v-V)2/kT ]
where as before n, T, V are functions of position and time:- and where v

is the velocity of the fluid as a whole. Now as in I, we may write the B.E.

as.; -

[1(£) - 2 ¢ x = [ b£°]; (2.1.2)

e}
Q1m
I<
=y



and in forming the R.H.S. observe that space and time variation arises only
through n, T, V, and further, that the time derivatives may once more be
eliminated by use of the zero order equations of motion. Now, however,
certain complications arise, for in the equation for each component there
appear terms such as Vlog n, + Vlieg T, which no lpnger is equivalent to
Vlog p; moreover & Fi is no longer eliminated by the equation of momentum

nm=—

conservation. Instead Df takes the form:- 5

o _ 0 (Wi 1 2. é_}_mic n
[Df7]; = £3 7 [e. (e. DY -5 cdiv vi-[3-7 1= Je .V log T+ “iE" gi] ]
(2.1.3)
where: -
P T W . 1 njmi q
d; =Y +3 -5 1¥p -3 [ney- 5= "1 [E+¥xBl21.4)
or more (anti!) symmetrically as:-
n,n,(m, -m,. n,m
g s d =%y 24 1.2 2 1 - 12 -
£11 =2 L a t npp <P PP (e1m2 e2m1) [E B x(% g 5)

The problem of finding the normal solutions to the B.E. then reduces to that

of solving the linear integro-differential equation:-

lm;c?
[1(f) -2 exB. 2L ), =P . exp [ - 2 ] (2.1.6)

2. Mean Free Time Model

As for the simple gas, the general form of the transport coefficients

may be obtained by studying a simple model - one in which the collision

integral is replaced by a simple relaxation term; I{f) = % (£° - ).
Furthermore, we may introduce axis OX || the magnetic field and represent

the peculiar velocity c by:-

Cy = c” b o= e cos ¢, c, =c, sin ¢ (2.2.1)
whereupon: -
ﬁgx@.%:-w-g% (2.2.2)
and the equation to be solved becomes:-
£ - wm%: £° [1 - wP] (2.2.3)

and on introducing the abbreviation:-

N[

w =

I3]

kT



av; ., 5 1
P=2] axJ - 5 div . V 6ij] wiwj - [(f - wi g # d;

(2.2.4)
In terms of ¢, the differential equation contains terms ~ l, cos ¢, sin ¢,

cos®$, sin®p, sin ¢ cos ¢, and the periodic contributions due to these

terms are:-

1: Tﬁgfﬁa (COS 95 - WT sin ¢) 2 -1-%6212 (sin ¢ + WT cos ¢)]
-3+ 3 Ii4w2 2 [ (cos? ¢ - sin® ¢) - 4 wT cos ¢ sin ¢
-3 -3 11+4w2 2 [ (cos? ¢ - sin® ¢) - 4 wt cos ¢ sin ¢]

and

li4w2T2 [ cos ¢ sin ¢ + wT (cos? ¢ - sin? ¢) ]

f =16, [1-7 {2 [(div V), wft+% (div ¥), wi- 3 div ¥V w2 ]

av
[{% - w2)l V,, . T - ﬁ dll] c + —l—z 2 [EI(%X¢ + gii)c” -

= (% = wz)% ¥ T %i d (g +g xDbwt)+
+ —T—44m 2) [(v ¥) +bx (W) xb l: ww +
+4m[(V)xb-bx(VVJ]ww} (2.2.5)

. kT d +bxd)
d = nye.gy + R8c, = ney /-;1;1 v, 4, + T3 21:5 ]1

+ ne /—I T [QI +dy tbhxd) ] (2.2.6)
2 ¥ my 2 °T T + 0272
3 ko7
=== === n T v, T+ _1 VT+bxV, T ]
1572 "m, T LYy Tigend & a1
3 k5T
-imznsz)[_“T+1+w2T2_'LT+beJ_‘I‘]
d| +bxd| L d b x d
+ & T2 §{ 4 |4, + =12 + =% |d &L+ 2 *x ol
2 nlETI= ¢ 1[—" Bl R T e ]
2
(2.2.7)



- - i -l i
Py = po - [ Tom t e, ] [y - da v ] e

- ["Uip1 + 2pe] [z (div V]L - 3divv] [1-bb]
1 1 .
- P, § Trawec2(YY, +bx¥V x b ] +207[TV, xb-bx ¥V, ldiag]1+2
1 Ip Egl _:” EEL EEH
t 1 Tiw2g? “ax“ o = Bl R (ax” : ax—L) b142
Ll p
t 8 Traw3c? [EJ_XJ_ + b XE.YXP_] +ZWT[YlEle—Ex_?le]1+2 (2.2.8)
From these expressions it is clear that, for two reasons:- (1) because

the centre of mass of the total system does not coincide with the centre of
either component, and (2) because trajectories are curved by the magnetic
field, the transport processes are considerably complicated; the heat flux,
for example depends on the vector d : which could be eliminated in favour
of the current; or the pressure gradient and electric field. The current
itself depends on temperature and density gradients as well as on the
electric fields - moreover, currents either of heat or electricity, are not
in the direction of applied forces. Hall currents flow; and conductivity
is anisotropic. These complications persist when attempts are made to solve
the integral equations posed by the Boltzmann equation. Note that this
model has proved incapable of describing the explicit dependence of j on

yT.

3. Methods Used to Obtain the Normal Solution

We will now consider the procedures that have been developed for
solving the integral equation (2.1.2) which, on introducing f1 = fo ® may

be written as:-

1(£) = fa®v° f dg|v-v’| o(|v-v7| ., ® {f,(x) [1+2(x)] £,(x") [1+2(x)]

i, ® [1re@] £y @ [ 1 +eE) 1]



or

Ja®v o sd e |y-v'| o |x-v|, 8) [f (v) £,(xv") [B(v) + &(v*) ]
- f(v) £ (v [ e (W) +2 (¥) ]} (2.3.1)

We must now consult the dynamics of a collision in order to discover the

values of v, x' . On a collision, the centre of mass motion is constant;

i.e.
m, ¥ + m v’ m¥v + mV
! = 1m = mg— = 1= s 2= (2-3-2)
1 2 rn1 mz

and on removing this, the collision is described as the motion of a

particle of the reduced mass:-

-

moving with the relative velocity g = v'- v. Conservation of energy on

collision requires that only the direction of g Dbe changed, e.g. that

g'is:-
Og=(x-y (2.3.3)
thus, the final velocities and the E are given by:-
- % = - - ; , SR ..
Yy =% g7 X 4 m, + m, (g - 0.g); L Bl m_+m,, (g-0. g)
(2.3.4)
From conservation of energy also:-
= m1v2 + 3 mzv'2= - m1¥2 + 7 m27'2
hence: -
- =. L 52 +1 =2 .
f (v) £ (v") ~ exp [ -2 mV 2 m,v ] = £ {v) £.(v")
o = o= o = o'—=
kT
and
1(£,,2) = f d®v" fd e|yv-v'| o(|y-x|,0) f(v) £ (x") [@(y) +
+ 8(v°) -2(¥) - 2(¥v) ] (2.3.5)

Observe that I{v, ¥°) is unchanged by interchanging m; v and m v’for
since this changes the sign of g, (2.3.4) is unchanged, while all other

terms are symmetric in these quantities, and the integral equation may be

written:-



S d%v’ S d e|lv-v” 0’1(|v—v'l,@) £ (v) £1(v')[éj(v)+@1(v')-@1(;'l - 2 (V)]

+ fa3v s d @|v-v’| 012(lv-v' ,0) £ (v) £,(v)[e (v)+2,(v*)-2 (v)-2_ (V)]

B, AV L . 5 .21 n
+Q fO 651 = fO ZZ {ax: = 3 div V 61J)W1WJ [('Z"'W )T VT ';i. dl] . G 11

(2.3.6)

with a similar equation for @2
One technique for solving these equations is a development of that due

to Chapman and Cowling, and exploited by Landshoff and Marshall. In it,

the function ®, which must be proportional to a linear combination of the

forces on the right is written as:-

iVi,j} { [Wiwj - % w? ] ®1 (v3) + [(b x w)iwj] @2(v2)

+[bxw (bxwj-308;; (bxw?]e_ |

+ (@, (v¥)w + @5(v2l bxw+®(v?) b (b.w}. (ViegT+d)

and the scalar quantities ®;(v") determined by a set of scalar equations.

Approximate solutions to these equations may be obtained by expanding

in powers of certain polynomials:- the Sonine polynomials,
. : -x? n .
which are orthogonal with e x : i.e. such that:-
—x2 1 1 '
ol s: ™ S: L] dx = Bilmmt) Ai%;ﬂl_;

If the magnetic term is absent, a simple variational principal exists,
which aids in obtaining approximate solutions. In a magnetic field,
Marshall treated the differential term by using a complex representation of

P 3/3¢ then interchanged real and imaginary parts:- this, however,

reduced the variational principle from a maximal to a simple stationary
form. Simple rational expressions were obtained for the transport co-
efficient, the simplicity being enforced by the trial functions used.
An alternative method has been employed by Bernstein and Robertson.
They first observe that if the limit m/M - O is taken, conservation of

energy permits a separation of the two equations for the perturbations &_

in the electron distribution and @+ in the ion distribution; the equations



becoming: -

£ [ 29V : (ww -

W
€
n
=
+
)
1
I
0
<
—
o
oa
Y\
0
=9
1
Slo
[us)
®
o
a1m
lo ‘:el

and: -
o _1 2 2_ 5 - &+ 024
£2 02V (ww-35 w?I) + (w2- 3)c. Viog T m, = * 2 3¢ I- I
=l 1, - 5 xB.cf°-22¢c.a¢]|-0 (2.3.7)
= +- TnkT L ¥ = - £ TRTE - 2 A T o

where from conservation of energy, the R.H.S. vanishes. Further, in their
analysis, Bernstein and Robertson use a Fokker Planck ' representation of
the interaction term which introduces some slight simplification. They
now represent the solutions ¢ as linear combinations of the forces as does
Marshall, but instead of his simple complex representation, represent the

angular dependence by a harmonic expansion, i.e.

- x o sin no
= ﬂinz} T&tn (0,9) = Nﬂ,n P, (cos B6) cos nd
where
NE o 2871 (£-]nl)
T 2w (L+[n|) ! 1+6[n]

is a normalizing factor.

If now the @'s are substituted in (2.3.7) and the contributions to the
various sources are separated, integro-differential equations are derived

for the separate contributions to @ - e.g. those arising from d become:-

o] - o _
£2(d, e, ,-1_(2 , ,T1,0,N1'0)] =0 (2.3.8)
. o o =
£2 [ d, © T1’1 L4 i T1,1, N1,1} twe N1,1 T1l1 ]l =0
and
([ d cT -1 (2 T N ) - wd N T ] =0
- x 1,-1 - 1,1 1, - 1 -9 LIV I R

w being the gyro frequency.

Now since the integral operator I_ is invariant under rotation the

spherical harmonics are eigen - functions thereof and;
I(2 TN) =K% TN=XA. (c?)®& TN ,

where A is a function (unknown!) of c¢® ; and K is an integral operator



acting on the functions © (c?). If now we consider d ” 0Y, the second

two equations take the form:-

d,c
= -K@ + w0 =0
N, 1 11 1,1
- K@ -wd, =0 {23+ G)
R »
By setting w = 0; and replacing N by N and dy by dz, the first
1, ;1 10

’

equation in (2.3.8) may be reduced to (2.3.9). The problem of solving this
equation is however still sufficiently formidable that recourse is had to
a variational procedure - which is a suitable modification of that intro-

duced by Hirschfelder et al. for normal pgases, and used by Marshall.

4, The Variational Procedure

In the absence of a magnetic field, the equation to be solved takes on

the form:-

¥y (c) =K @ (c) (2.4.1)
where | is a known function and K the integral operator representing the
change in ® produced by collisions. A variational principle may be
derived by observing first that K is a symmetric operator, hence for any
two functions of ¢, m and E& ,

(n, K &) = J d%c nlc) K E(c) = (&, Kn) (2.4.2)

Further
(E; K E£) € 0s

To obtain approximate solutions to (2.4.1) consider:-

N (x) = (W2, K XD, (2.4.3)
If now, we insist that A be stationary with respect to X , then:-
- _ (x.,¥)
sn -2 [[0GKRx) ¥ - (W) Kx] 2 ggye 8 x ] (2.4.4)
which vanishes if:-
(%, )
Y o= ALV1
XK X
satisfies (2.4.1). By carrying the variation out to 2nd order in & x, A

is shown to be a maximum at the solution.

In a magnetic field, we must consider a pair of equations:-



¥le) = v g7 0, (c) + K (2, (c)) - (2.4.5)

(c)

0
= m—a-a.@_l(c) =KCD2

.A partlal lntegratlon ShOWS.-

Now consider:- 5
. . (X, ,V¥)

1

(2.4.7)

) 2
[ %K x,) + (%, 35 X2) /(X2.k )]
If x, is fixed, this is a minimum with respect to X, when:-
e, 02 X )2/(%, K X,)
2 o Xy oot Xa

is a maximum, re ¥, :

This, however, by comparison with {(2,4.3) holds if:-

a
(x, w X,
= ® g% X, =K : a2 X2
( X.2 » K X’E )

If,on the other hand, X, is taken as fixed, A, is stationary when:-

2(x,,¥)
[0 K %)+ (%, 35 %) 2/ (X2 K %) ]2

%
[(x, K %)+ (X,, @ jﬁ})zl(xg.K Xp) ¥

Lo

X, F.)
- O (KX, + 0 52X © 53 %50/ (X, K xg)]J =

i.,e. when:-

(X4 ,¥) 7 ( b

’ Xq W B'X.

e - I K X, +— F . 55 (2.4.8)
[0 3 %) + (X © 5202/ (X2,K X2) ] (X2, K X,)

This second stationary point may be shown to be a maximum, hence

constants may be chosen so that X, and X, satisfy (2.4.5) if A is a

maximum re. X; and a minimum re. X,. At this stage trial functions may be

introduced (usually polynomials!) and constants selected to determine the

extreme, Bernstein and Robinson evaluated this result by considering a

which may be solved exactly, and claim

Lorentz gas (in which I _ _ _ = 0),
10% accuracy for all results.
The results of these rather elaborate calculations differ from the m. {.

time theory in two ways; a value is given for T, which depends on the

e T =



particular cross section considered, and the simple rational functions:-

i3 ;_ wt?
1 + w2t? 1 + wt*
are replaced by more elaborate quantities of roughly the same form. In

addition j contains a term ~ VT, the thermal diffusion effect which is
missing from the m.{.t. theory.

Marshall's results are given in the accompanying table (Table 1); a
comparison with the numerical results of Bernstein and Robinson is effected

in the curves shown. (Figures 1-4)

5, Alternative Approaches to Solving the B.E.

In addition to the methods described above for obtaining the normal
solution some other approaches have been used. One, due to Rosenbluth and
Kaufmann, alters the ordering of the three terms in the B.E. The order
selected is:-

B >» A > C,
an order which is valid for rapid motions in strong fields. By selecting
as a zero order distribution the Maxwellian, this is also valid for slow

motions in strong fields. The distribution function is written as:-

o 1 2
where: -
ch,:m-é%f1
so that:-
= 2. 2 - o
f1 =3 fo [ (w 2) cxb.VlegT - {7 (c xb) . d

iz is now determined by:-

. ma% £ = 1(£°, £)
where I = I(£°, @) and @ = £1/fo , and the problem is then reduced to that
of calculating the integrals appearing in I. There is a happy agreement
between transport coefficients calculated this way and the strong field
limits of those calculated by Marshall. (As corrected by Haas and Vaughan
Williams).

Yet another method is due to H. Grad. Here it is observed that what is

- 18 -



desired from the B.E. is not the solution f, but the value of the moments

Ci CE Eg? which have hydrodynamic significance, and further, that what is
obtained is not the solution, f, but some rather crude approximation to the
normal solution. This being so, it might be appropriate to consider not

the equation for f, but the equations for the moments of f. The moment
equations do not, of course, close unless forced to: but they may be forced
to close by choosing a trial distribution function of the correct form. The
first five moments, 1, V, % mc?, yield hydrodynamic quantities of immediate
interest, while the hydrodynamic equations involve a further eight, the

remaining five components of m ¢y cj, and the three 3 mc?c. Grad's method

involves writing the distribution function as a linear combination of these
moments: 1, V, T, Pij and q, chosen to be consistent. The moment equations
then are forced to close after the first 13, and differential equations are
obtained for the time dependence of the moments. This method has been

applied to the ionized plasma By Kolodner, and by Lyley and Herdan; it is

not noticably simpler than the normal solution procedure.



TABLE I

Transport Coefficients for a Fully Ionized Gas in a Magnetic Field

(Marshall, corrected by Haas and Vaughan-Williams)

Current density

£=0112u+0 El+°~3x9+¢nYnT+¢J_YJ_T+¢ﬁBxE T
where: -
V.= .b), ¥ = Yi- Y
for any vector V:
B=Bp
and
D = E+vxB+ L Vp
~ ~ ~ ~ ne =~
Heat flux:-
g= - LT U TR XYT Y, Y g+ YR x
or
2=-K11211T-KJ_EJ_T-KHBXET—Bu. nDu‘B_LBJ.“BH E=§
Stress tensor is most intelligible in component form. If OX ” b and:-
av; ov :
= 1 (271 _—d . & :
Sij -4 (ax. * axi 3 6ij div v)
Py =P - 208
- 2 1_2
PYY =p T;%E { SYY + 2T (SYY + Szz) + my SYz }

zZ 1+r

o
"

Lo
[]
I

+

n
A
[N
H

(SY +S )-r S }

3]
N
+ N
<
3]
N
+
=
N

2 | L ;
Pyy © Pyx =~ 14Ty { Sxy tar, S, ;
= — 1
Pxz ™ Pax = 14317 [ Xz 204 Sxy ;

P.. =P =—2rEz{S - 3T

Yz zy 1+zr+ yx + (Syy B Sz ) I

Z

To define the coefficients in these expressions we introduce the following

collision frequencies.
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v =2 il of 2 wi al2/ 3 3
_ =% == n e® log A/(kT)? with A = 2(kT)3/2/e3(xn)
_2v2
v, = %= \/m_/m+ . v

the gyro frequencies

®_ = (e B/m)_ 9+ = (e B/m)+ ,
and the ratios:-
r =R /v_ r, = 9+/v+ p
the mass ratio:-
Mo=m_/(m_+m) |,

the unmodified transport coefficients,

= nez/m_v_ A= 0. k2T/e? , ¢o = OO/e , wo = kT/e

o Q o

o]

and the r dependent factors,

A;1 r* + 6.28 r? + 0.93 A;‘ = r* + 16.20 r? + 44.3

A7 = r® M_ + 9M_ + 3.39/M_ + 0.32 ALY = r? + 3,48, ALY = r® 4 12.72

The transport coefficients for a magnetized plasma then become:-

O = 0g.1.93/2 $ = 0.777 ¢,
1
0) =0, 2(r?* +1.8) & $) = - $o 0.75(r® - 0.966) 4
- L 2 =
G =0, % r(r® + 4.4) A1 p = - ¢y 2-15 1 A1
A= 1,02 A Vo= 3.30 Vg
- ' 2 .
A= 1.25 AG[(3M_+ 0.56vM,) B + (5.43r%+ 36.1) A_ - 3.56 A_]
¥, = Vo [2.57% + 11.5] &,
A = 1.25 A, [rM_Aa - 9.28r A - r As] Vo= ¥, 1.57 A,
9 = ':'_'nkT/V_*.

The second form of the thermal conductivity may be written in terms of the

first, thus:-

K =\ -9V B =-0 V¥
K_L :7\.J_+ ¢ r - (}S_Lllll BJ. = 0 ] - OJ_ W_L
K = A = gsllp = ¢ ly,_l_ [3 = -0 lb_L- OJ_III
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limit of strong magnetic fields r,r,
0.8 g, P =
-2
0.5 GO r ¢J_=
r OJ.. ¢ =
Ao Vo=
(@) A’ v =
0.7 Y E_ of =
2 = =
- 0.5 lo (0.4 + 1 m_/m+) ¥ =
Py = Po - 2 U Sxx
pYY ] PO - }.L(Sw + SZZ) =
Po
= = S = -
Pxy = Pyx g xy
Po
= - = s S -8
Pyz sz 4Q+ ( Yy
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2.13 ¢, r
3.3 ¥,
2.5 ¥,
1.5 ¥ ¢
Prz
P, =-P
)



1 1 | 1 |
0-2 04 06 0810 20 3 45

0T —
CLM-P 18 Fig. 1 Comparison of the results of Marshall and of Robinson and Bernstein.

Thermal diffusion ¢ L' by

\\_‘_ Blo,y,

0-2 0-4 06 08 10 2 3 45

wT

CLM-P 18 Fig. 2 Comparison of the results of Marshall and of Robinson and Bernstein.
Thermal diffusion Bl—& By






— 2‘

iy 22

-20

-116

1 1 L1
02 04 0608 10 20

W ——

CLM-P 18 Fig. 3 Comparison of the results of Marshall and of Robinson and Bernstein.
Electrical conductivity o ,
¥ % o4

1 i

L1
02 04 06 08 10

5
WT — —
CLM-P 18 Fig. 4 Comparison of the results of Marshall and of Robinson and Bernstein.

Thermal conductivity K

0 oy






PART III

KINETIC THEORY OF PLASMA

The Transport Equation

1. Introduction

Having shown how the Boltzmann equation leads to the appearance of
transport coefficients and to phenomena associated with "real'" fluids, we
turn to the prior question, that of determining the correct form of the
transport equation. Our procedure is first to show how the Boltzmann
equation can be expanded for small angle scattering, which dominates the
collision process. Having done this we are free to discuss the effect of
long-range corelations on the small angle scattering and to develop forms
for the transport equation which are valid in this region. We may then
compare the expanded B.E. with the long range equation of transport, and
from this justify our use of the B.E. in those situations for which the
meaning of the transport coefficients is unambiguous.

2. An Expansion of the B.E.

Consider the Boltzmann collision integral for an ionized gas of like

particles (for the moment). Using:-
=0, = ()2 b oy =
g = GR = (Zm) (g sin 2)

where g = v - v° and further, using the result(2.3.4) to write:-

¥Y=y-zbg

- b O |

y=x+z4g
where Ag = change in g on collision, i.e. E - g = Ag, enables this to be

written:-

2
‘ 3.1.1

If m, n are unit vectors orthogonal to g =g E, we may write:-

Ag = 2 g sin (g)f- é sin g sin ¢+ mcos g cos ¢ + n cos (%)sin ¢} (3.1.2)

Now we may expand the quantity within the square brackets thus:-



£y + 2 Ag) f(y - 3 Ag) - £(v") f(v)
[t L - e S d g b [ THED 4 aen) ZEN.
I afé;":') af(VJ] Ag Ag+ 0(hg)?® {¥.1..3)

I1f we are interested only in scattering at small Ag, i.e. small angle
scattering, this Taylor expansion may be substituted in the collision inte-
gral (3.1.1) and if the series is cut off at the second term, the expansion

(3.1.2) used for Ag and the integral over ¢ performed, there results:-

2 Ld
18 %(5 )7 fa%v' /M2 ) cos () [~ —hay L (1) - gy 20
3 —

|e=

+ 3 [f(w) %;—}L‘g;l + £(v") %%l 2 2 2 |
1 £3 .0 1 1 B
~glgz sing+3 (mm+an) (— -sing) ] ] (3.1.4)

2
Now: -

{szd(%) cos (g) sin (g) = 1, while ﬁf/2d[%)cos (g)/sin(g)zlog sin(-g-)]:/2

diverges; however, the divergence arises from the lower limit 6/2 = 0,
and this represents just those long range effects where co-operative
phenomena may be important. The scattering angle at long ranges may be

related to the impact parameter b, indeed, using the impulse approximation:-

YL o &3 -1 =1
Vo~ sin 0 = v, JF dt = Vg J F dx
_e* , e b dx = 1 e o dt /. = 2e?
meVo -Lm (x*+b%)°%/2 b mpv,? j‘ (1+t 137" 2 bm_v2
- 00
- sin (Q} a2 1 sin 0 =~ ——Efg
27 T 2~ - bmrv0

To approximate the maximum impact parameter for which collective effects
are unimportant, we may observe, in the most primitive fashion that the

Plasma acts as a dielectric medium, for which, roughly,

UJ2

?
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where: -
w2 = 4 % n e?/m
is the plasma frequency. 1If also, we Fourier analyze the potential due to

a particle passing the test particle at a distance b, i.e.
1mt
1 wb
¢ (w) j [b v212] dt = v Ko (T) '

this is exponentially small for values of w > v/b. However, frequencies

< W, are not transmitted, but exponentially damped in the plasma, hence

if v/b < W, the interaction is screened. This gives:-

bmax o v/wo

and

i 8 e e?% nne® H
> log (sin'3) i, = log A ~ log [b—m@va] = logl—3=) = log [ TiFye ]

32 als i
log (2 v T [ nk;] ] =~ log (2 vV (_T_)afz} (3.1.5)

where V and T are the average interparticle potential and the average

1»

kinetic energy. The parameter A or better (V/T) is usually small and plays
an important role in our theory.

(3.1.4) may be reduced to:-

2
e’ 2 3_ . B Af(¥*) #  BI(X)
D=an@)%loga fadvr - B [ gy AEL o) 2L
1 =L (V") oy 02f(¥) _ , 9f(¥") 3f(v) |]e p mm + nn
T3 [f(V) v ov. + 8z dvaov 2 d v ov o 2 g
mm + nn is the unit tensor normal to E, i.e
gg.+ nn = (1 - gg)
If:-
1 - on + po d d
== (1- B = =— = (3.1.6)
Ll (1-gg) = w 3z 9g gl
and
d
EE e W = -2 éa

I may be written:-



I=8“(':'12) 1°EA/d3v‘%%.[fi%%-:l-f( ) ag(v)]
1 5} . 0f(v) Af(v*)
[ o)

-+
B
=

[ £(v) 32 f(; ) _ 9f(v’) 3fly) ]
¥ oy dv

the last term here may be integrated by parts, and if we use :-

dw _ _ Ow |
g %"

there results:-

- e?, o _a_ 3. » . of(v) _ af!v'!
I =2 % (E ) log A avj J/d v [ f(v") —5;;— f(v) avi i

(3.1.7)

(c.f. Landau ). This may also be written as:-

d af(v )
I=-2 'JE(- )2log A == da\f{ - f(v") —U} f(v) ]
% |/ :
+ 2 w232 logA-g;_av [/d%' [f(v') wij] £(v) } (3.1.8)
i%;

which has the form: -

i .

I(£f) = . (Df) + 35=5, & (Df) (3.1.9)

12

of the Fokker-Planck equation.

3. The Fokker-Planck ‘Equation

The form of I, (3.1.9) may be approached by a somewhat different route
and arises from a study of the rate of change of a Markovian probability
distribution. Suppose that P(x,t) represents the distribution function for
a quantity x at time t: and suppose moreover, that during the interval
t +t + 0t, x changes to x° with a probability w(x,x’- x). Then, P(x,t+ 6t)

may be expressed in terms of P(x",t) as:-
P(x, t + 6t) = fdx’ w(x", x - x") P(x",t)

= JdE w(x - E, E) P(x - &,t)
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If w is a rapidly decreasing function of &, i.e. if P develops by small
steps, then we may use a Taylor expansion on the R,H.S., so that:-

P(x, t + &t) = SdE w (x,E) P(x,t) - j—x JAE E win,E) Pix,t)

o8

1 9 ;
3 = 5 J d8 E E w P(x,t)

Now, the first integral here = 1, since [fw(x,E)d®E=1, the second = <E&> ,

the third <&EE> , thus:-

%% o Elomd ¥ Sti‘ Bl gl . é% [D,P(x,t) ] + 3 g%ax [D_P(x,t)]+ ...
where
D, =2 <&, D =258}, 7= ot
For I(f,f) we write:-
I(£,f) = - g% - D f(v) + 3 Ejzz ! D, f(v) (3.2.1)

where

For an unmagnetized plasma the quantities D,, D can be expressed in terms
=1 =2
of the fluctuating microfield within the plasma, i.e. the change in velocity.

in a time T of a particle initially at x having velocity vy is:-

t
Av g jf E(x”, t7) dt°
a1 &
Jt-T

© = oxg +er(x',t') dt”’

where

I
n

and

AT E ’ 2y .
Z(x,t) = VO + = \/‘E_ (x ,t : dt

If (e/m)E small, we may expand Av thus:-

otf t”
t
Av. = 2 dt* JE.(x +v t°,t°) + 2B at” | L E. (x_+v_t7 ,t")dt”
i m S i 7o "o ox . m j o o
b Jt-g t-T (3.2.2)

while to the same order in eE/m:

e 2 t . r & )
v Av = £ J[ dt E(x_+ v t",t°) jf
t-T t

t dt” E(x + v_t7 ,t”)
(a] o

=T

t T

- 22'1‘ dt”’ Jf ds E(x + v_t",t") E[x +v (t-s),t - s]
S m? it o ol - o =L %" ’ ,
(3.2.3)

T



This equation may be derived in an alternative way which requires, however,

a return to the Liouville equation.

oF IF
e Y¥ - FRY

=1

3l

3 _
E. - 3, F =0 (3.2.4)

Now, the Liouville function F can be written :-
IF . L L4 ;
F1(x1) (xz N x1]
and by integrating over X, + - Xy, an equation for F (xi) may be deduced.
1
Since:-
d

_ _ 9 ) e
Ei - 7 Ox. @i T oOx. 2J X: = X3
1 =i J

1"

depends upon the fj’ however, the integration cannot be carried out expli-

citly, but involves a term of the form:-

2
2.
J

3o

d
ax X

1 ,zj) ¥ ix w.s Xy %) Fo(x ) dx ...dxg,

2

o

1
2
iLe. = 2, . EF
m dv
For any given complexion:-

F=10 6[x -X%x ()] 8[y, -¥. (t)],

1 - | -1
is a rapidly varying function, and we prefer to work with a smoothly
varying quantity, f , which represents the probability of a particle being
1

at x., v, given some initial probability distribution :-
po(x1 - . x-N! V1 L I VN)
for the entire distribution.

Then, F has the form:-

. Py (x0 ... X ¥5 oo v Io8[x - x (0] 8y - ¥, (0)]
where
X(t) = x7 + S ¥, (t7) dt’
V(t) = v(o) + 2y E(X(t*),t*) dt*

From this we may form Fi’ again by integrating over dx ... de and noting
2
that if p, is smooth, we expect F1 to be a slowly varying function. In

fact we expect F1 to satisfy an equation of the Boltzmann type, and to
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change significantly in times of order T the collision period. This
means that instead of considering the equation of motion for F1 we obtain

an adequate description by considering the motion of the coarse-grained

. [t
f =z / F (t")dt”’
t-t 1

where T « T,. This satisfies:-

distribution:-

mlm
+
1<
I
+

Slo

12l

t
%f E(t”, x(t7)) . F1(t‘)dt'= 0
t

%+E.a—i+§-a%-%d33_c dax‘/ dt'E(t;x) & [x-X(t")]6 [y -v(t")]F, (t-7)
- - t

=T
(3.2.5)
where the last term is explicitly:-
2 t
-2 2 1 . 43 8 43 3 3%
m 3T J[ df" @ %, «as dy d Ve d N ? 6_1(51’53)
t-T

Vix,.ooxg YooYy ¥,) F, (51 v, t-T) O [51-1[1({)] 6 [v,-v,(t")]
(3.2.6)

Now the electric field may contain some mean part Eo' but will certainly

contain a rapidly fluctuating part Ef . Eo is easily handles, contributing

a term :-

Q
[

Hlo

E .
o]

2

and to treat Ef we may observe that for most plasmas, where the ratio of

kinetic to potential energy is small, the field dependent quantities X and

V may be calculated in perturbation theory: thus:-
1(t)=vo+EtE(x SEy € JdE

X(t) =x + 1t+—f f tTElx, + v t°7, t77)

and the 0 functions in (3.2.5) may similarly be expanded, thus:-

6(x - X(t"))o(y - V(t7)) = &(x - X, -y t7) oy - v)

t’
- O0(x-x, -y, t") a (y-y t",t7). fg (x + vot”,t"')dt”

t
= 6(!' !o)*é?;' 6(5-50— j dtf dt/// E(x +V‘ t/z/ m)



These may now be handled, as usual, by a partial integration, and use made
of the fact that F, is slowly varying, so that F (t-7,v) = f(t,v) whereupon

(3.2.5) becomes

3f af | e af _e2 a3 (1 [ . 3 ,
- tank -3 " w 6;3§:Ebjﬂ I et (%o + ¥p t7,t7)
- - J
. " t-1
t t t
" " opeyg - £ B 9. f1 . < b
J[ dt /[ Ej(zo * xot , ¥ 1 m?2 avi dv.J] T dt Ei(§0+-xot )
t-t Jt-m J t-T
t'
dt” E(x, + v t* 7Y 1) (85, T]
t-t

an equation of the Fokker Planck form with the coefficient given in (3.2.2)
and (3.2.3). These expanded forms may be written exactly as those in

(3-2-3)p i.e.
t " .
L4 - 3 3
<§/ Edt)—fd %+ -d%xy, @ ...d%y 3
t-T

w(XQ...XN, Vz..’VN,xT)

Ata

ot
3% (x, ,x.) . ®(x ,x,.)
—ax‘J/dta;1k
. t-T i

i.e. as mean values <Ei Ej>

Now, the correlation functions:-
t
<®(t)f <I’(t'Jdt'>=(/t¢(t) @(t-s)ds> (3.2.8)
t-T o

may be simplified somewhat by assuming a property of (é(t) E(t—s)} which

we will be able to demonstrate, namely, that the fields are strongly co-
related for small times, but that the product E.E becomes small and
fluctuates about zero for long times; indeed, in times ~ lfwo the correla-
tion is already small. This suggests that if the upper limit of integration
is taken as T >> w;1 , which implies T, » w;1 , a condition which is
usually satisfied: then the upper limit in (3.2.8) may be extended to

infinity and the required quantities become:-

(j; o (t) @(t-s)ds>

and if the field is derivable from a potential :-



9% aP
(i E5Y =3 o)
1 J
The correlation function may be expressed in terms of the spectrum of &

for if:-

¢ (x,t) =J/Fd3k dw gilf « X eiwt ¢(k,w)

then: -

(/m@ (x,t) @ (E‘XS,t-s)dS> = R(/dak d w/dak' dw’ /w ds
o o

elE . X e1wt ot k% (x-vs) Q1w (t-s) o(k,w) @(E.,w,)>
=R</ds/d3k dw e ilk. v +w)s jdak' dw’ eilk+k™ ). x ilw +w)t

2 (k,0) o(k",0")

The inner integral however, is the energy spectrum.
(@(E,w) ok, w))

hence, the correlation function:-

{o(x,t) d(x-vs,t-5)) = R/ d°k do ®(k,w) @(k,u) e i(k-y-wls

= T%%)4_</fd3k dw ®(k,w) @(k,w) cos (k. x+—w)s)
is the cosine transform of the energy spectrum, (the Wiener - Kinchin

theorem). 1t follows that:-

< //m ds ®(x,t) @{z-xs,t—s}> =<J/rd3k dw ¢ (k,w) & (k,w)d(w+k. x)>
o (3.2.9)

4, Calculation of the Spectrum

To calculate the spectrum we can again assume that the electric field
within the plasma is weak: and the interactions are small. At the same
time, the effect of the field on the distribution function must be retained
in any calculation of the field, which otherwise diverges. Our first object
then must be to calculate the response of the plasma to a field in that
approximation in which the particle interaction is neglected. This, however,

requires a solution to the Vlasov equation:-

= 3] =
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of f

(aF]
1M
Slo

+ E = ) (3.3.1)

and since the fields are assumed small, we may use a perturbation solution
of this about some distribution f,, assumed knbwn,- whereupon, on Fourier

trunsforming: -

ad
E (wk).5z f
_ . . __ e '= " dv "o
f=f,+1", £ (0k) = - = R (TR — {3.342)

or if E is derivable from a potential:-
E = -ikd
_f'—_6. —_—
“m (w+k, v)

The charge induced by a potential ®, then becomes if f_] fo+

are the unperturbed distributions of electrons and ions:-

(w,k)

d®v - k
9ind (wtk,v] = " 9y [ m_ "o ¥ m ‘o

9 [ £2 ¢ - g ot E
= - k* K(w,k) @ (w,k) (33 3)

If now, a test charge e, is introduced into a plasma, the charge produced

is: -

q¥(w,k) eijfe-i(wt tk.x) O(x-v. t)d® x dt

2 e Slwik. v) (3.3.4)

and the induced potential may be written, from:-

k*® = 4 q=4=x (qind+q*) = - 4% k® K@ + 8x? e, S(w+k.yv)
(3.3.5)

whence: -

_ mal S(wtk,v) o 2 & d(w+k,¥)
2 =8 e Iy - 2 e(w,k)

introducing the dielectric coefficient:-

1 + 47 K(k,w)

, 7
Wo dv d
I + 1z TV,?J\T';)' m,{gﬂ

e (k,w)

o5

e, (3.3.6)

= 32 =



where

1 i -
By =% J/dQVL folv) , ¥ipe g - Wy, E, Vo = k. v (3.3.7)

To handle the singular integrals in (3.3.6) requires some care; however
several different arguments, e.g. solving an initial value problem, con-
sidering a perturbation which is adiabatically switched on, or considering
a mode! of residual collision process as in (2.4.1), all lead to the con-

clusion that, with P/ = Cauchy principle value,
/dt -1 R Pfdt BLE), o 5n slsl =£ at 8t} (3.3.8)
t=x t-x t=-x

hence € is complex. In normal systems an imaginary part to € represents
the loss due to collisions; here the loss process is Landau damping.

The field at a charge e, introduced by its own presence is:-

'd®k do 2 : ik -vt+wt) O(wtk.Y)
RE W 8x €, 1.]:5 e m (3.3.9}

E(vt,t)

2 k
%ﬂg 31/5 Im 11222(3’2) > O(wtk.v) d°k dw (3.3:10) .

The fluctuating field in the plasma may be calculated by noting that each
charge in the plasma itself produces a polarization, like that of a test

charge; hence, if particles are distributed at points X;(t)

gix, t) = b e; 6(x - X;(t))

b

qlw,k) = 21 3 e, /::11: o1 kX, (t) - it
1

-ifk.X, (t) +ot ]

&(w,k) = 8x33 eifdt £ (3.3.11)
1

k%e(w,k)
The motion of each particle is approximately constant for times of order

Tc provided the mean field is small, i.e.

RS I kT,
and provided no close collision occurs; hence if:-

»

t” =t + s, x(t”) = x(t) + vs



and

2
& (1,108 (67, k) =E%%;lﬂk'2e(w’l—"w j/’dt‘/ds oi Uk X; (8] +wt) ik (X, () + Vs ]
L i i,

T (t+ s)

Further, because the correlation between any pair of particles is small the
random phase approximation may be used to reduce the double sum to a single

one: -

<3 exp [i(k” +k) . x (t)] >
1
and the mean value of this (only quantity involving x;)

= . 3 .
%/d"xi ST+ K L oxg = (2m)° 6(k + k)

further: -
<‘/;—i{w o)t dt 7 =2 %6 (0w + w")
fds 10" +B¥)e _ on alg + k-v)
while
3 (y,) =ﬁ15v £(v) ¥lv)
1.
Therefore: -
(2 (k,0) 2(k",0)> = (27)°(87) % bk +k’) dlwtw’) eE/dav 6w+ k-v) f(v)
Ikzetw’k)lz -
The power spectrum is then:-
3

(3.3.12)

and the diffusion coefficient; using (3.2.7) and (3.2.9) becomes:-
_ s e2 [ 5 .fd°kduwk; k.O(w+k.v) _— 2 :
Dij = 32% m2‘/h v [ Tzay? JTEzETETGle S(w+k-v") = er 1, (v") |
(3.3.13

The friction involves a term of the form:-
2 ]
e a ’ -~ &
- S <§;j Eifdt /ét E;(t )

in using the property that the quantity under the first integral sign

€ = function of t - s, we may write this as:-



e? 3 e? 3 3
- ;5<J'dsEj(X,t)Saijl(E"_\:s,t-s)> - -'m—2 73-;3<fdsEj(§,t)Ei(lc-xs,t-s)> = -éT:]-DiJ"

5. The Dominant Approximation

The integrals required to evaluate the Dij take the form:-

5. ;g3 5 Slwtk v) d

Jd%gSd "k dw &k o (ko 6 (k g) k v f(v + g) from(3.3.10)
. 5 6(w +k v)

Jd%gld®k dw Ok k ——————— &(k g) f(v + g) from(3.3.13)

T ke (k0 |2

-’

where g=yv - v,

The integral over dw is trivial, and on splitting d®k = k®dkd®2 these become:

~ ~ 3
Jagrag o (k,g) k k dk ———2= (3.4.1)
ke (1, kew) |2
Now dv 2
2 - 2 2 11 . ) —
k% (k,0) = k% + W &4 ey = WD) av“ ig_-f w3 g+l
1.2 2 0 1Y (=2
= k% + k) [x(kva) + 1Y(kve)] (3.4.2)
[1+ (kg)x]h Y2
k2 X

3 - '1X ™
dk k = log (-E;“—‘H 3 log - gltan™|F|- 31 (3.4.3)

2, koX) kY X2 + y2

In this integral kmax is an upper limit which is forced upon us by the
existence of close encounters, for which the field strength becomes large,

and the linearisation in E underlying this treatment breaks down. Since:

1 1 2
22 % et 1 2™e _ 1T
kD 4xng2 2R Vae? 2RV
1
3 T
& > 3 3 /
hence if kmax Zz n” the large value of the ration /vy ensures that (kmax/k)
is large. In the dominant approximation only this term is retained; and the

integrals became:

ifd® a2 k 6(k- glk- 2L (v + g) 4 1oga (3.4.4)
2rdlgrd R E E o) (E- g) flv + g) 3 log A (3.4.5)
Note that (3.4.5) = -53—-!. (3.4.4), » SLE=- 3%- D while in (3.4.4) the

angular integration merely selects those parts of E E orthogonal to g, i.e.

Jd 2 k k o(k.g) =§ (1 -

gl=w c.f. (3.1.6)

loa>



hence e? 5 .
Dij = 2 ’!E(—m—) log A fd°v le f (v")
Now, using the relations displayed between the integrals, the F.P.E. may be

written:

aD. . 2
o bl O 9 ij B
dv, dv, ov ( ] ) £+ dv, ov, (Dij f)
1 J 1 J
2
- o 97D;; f e —Dij o, Wiy ¥ 32§
- ov ij dv av. dv. ov. dv d ov ij ov, ov,
J 1 J 1 J
. af  9Di; ¢
ij ov. ov. ov av .,
j i
_ e?,? 3 a 9f(X*) .y 9f(v)
= 2 'ﬂ:(—m—) log A gﬁ SJda°v wij [——5;-;— f(\_/_) - f(z ) -g\T] (3.4.6)

This however is Landau's form (3.1.8), which thus represents the dominant
approximation to a kinetic equation which includes both the Static correla-
tion effects which produce screening with the dynamic effects that represent
the production of plasma oscillations. It is of particular interest to
observe that our approach to this has required that fo be substantially
uniform over time > wé‘; thus, if we wish to discuss the attenuation of radio
frequency oscillations propagating through the plasma, the usual Boltzmann
treatment is inadequate; instead correlation effects must be determined for

the distribution function perturbed by the incident r-f field.



PART IV

The Kinetic Equation in a Mapgnetic Field

1. Fokker Planck Equation in a Magnetic Field

As in the absence of a magnetic field, it is possible to use the
Liouville equation to describe the dynamics of a complete system, and again

one may integrate this to obtain the Boltzmann equation

Q
-
Q
[

[E+=xB]+ “JE,, flyy,x,,¥,,x,)d%x, d®v, (4.1.1)

|
oll<
el

2o

+v -

Q)
%]
+
Slo

Q

t

where now the interaction forces F,, include, in general, terms of the form:

v
-2
d e, A a__ %2 /e
3 and = xar X = =
Ly 51 ® g =1 |—1 —2r

the first representing electric and the second magnetic interactions. Note
that the ratio of the 2nd to the 1st is v?/c?, hence the 2nd is negligible
except for relativistic systems, for which the Coulomb representation of the
field is inadequate; thus retardation effects becoming significant wherever
the (local) magnetic interaction matters. For temperatures T > 500 keV the

entire calculation should be made relativistic - a complication I propose to

avoid.

If the magnetic interaction is omitted 4.1.1 may be coarse grained as

before, and the last term written:

% %If:‘t' SE (x7t7) 8[x - X(t)] 6[v" - ¥(t")] d®x"d®v f(v) (4.1.2)
T t-T

m
and again the 0 functions may be expanded to first order in E, (4.1.2)
becoming: -

= = -%1- Sdt fd®x"d®v - 8[x - Xo(t”)] 6[v - v (t)] - [E(x7t")

ov
a Ll ” a. LR
t 3z 8 xE(x', t7) + 3304 v E(x"t")] (4.1.3)

The complications introduced by the magnetic field are two-fold. In the

first place Eo(t), Eo(t) are no longer linear, but represent helical moti ons;

i.eq, if ¥(O) = (Vy . V, cos @, V, sin ¢)

V(t) = [V, V., cos(Rt + @), Vl sin(Rt + @) ] (4.1.4)

1 1



and if X(0) = (z_, x,, y,)

¥Ll: . : Yi
Xo(t}z[zo+-ﬂlt, x + 2 (sin(Rt +¢) -sin ¢),yo— Er{cos(9t+-¢)- cos ¢)] (4.1.5)

Furthermore, the quantities A v, A x must be determine by:

=]

v +Q bxv ==E(x,t)
i 2 X il
i.e.
av, = £ rtE dt”
3] m *“o
3 t e . 2 . .
A v, = Re exp 1Rt-_£ a(§l+ i b x E)lexp-i1Qt” dt
e .t : . .
=—J E cos @(t-t] +b xE sin @(t-t")- dt (4.1.6)
and #
e Lt . t "
Ax“= ;lulr(; dt J{; dt E“
c Lt . . . . . .
A XL‘E% dt E_L(t )sinR(t-t")+ b x E(t")[cos R(t-t") -1] (4.1.7)
Now, if the correlation time T « @ ', the term introduced by the field
eth x# 1, and these expressions reduce to those in the absence of a magne-
tic field. Since the correlation time ~ T ~ m;1 this will be true whenever
wp » Q i.e.hD(« £ (as might be expected!) - i.e. whenever
4xne® e?B? _ 4momc? % 1
m m2c? B? ’
For a field of 5 k.g. this holds for electron densities > 5.1010 and ion
density n > 2.108, thus for most problems in which kinetic theory results

are useful, the Landau form of the F.P.E. forms an adequate description. For
very di ffuse plasma, however, modifications are required. (4.1.3) may be

written:-
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ey2 9 O gy2 9 9 ¥ ; :
+ (2% = EE,dt) £+(2)2 5= = _L<§f Ejcos@(t-t)+ bxE sin@(tit)f> (4.1.8)

now the term

. a » t‘ tr /
<§x—“ E fdt st at” g, (t ’)> £

may be handled by using a Fourier representation of E, i.e:

g o'B X E,vis aecgat’ B, ol F X B vilEt ikl e A
11



On integrating by parts

D e il L - I . A
EE ox,, Sh i dv * ox, EJAti(t - t1)E, = oy 5;: ESE, dt

and (4.1.8) becomes

Sla

L LeD1+LE %-<3—3-£-§J'dt'§l sin@(t- t°) + bxE(cos(t-t")-1)) £
B2 0 _a_
+ 2(3) =< <Efdt E Y f

e a a . - . »
+ (5}2 -a—_-E<_]§ Jdt EJ_ cosR(t-t")+ bxE sinQ(t-t )>f (4.1.9)

As before E may be expressed in terms of a potential ®, and @ may be Fourier

analysed, whereupon the required correlation functions become:

(EJ E(t-s,x(t-s5))ds> = & (2 )455<¢>(k )8 (k,0)>e fas e ikAx(s)  -iws
y1s
=R Bk ,w) R(K,w)
(2m)*
and
<E mi: E(t-s) ei%(t-s)y_ . d% dy kk P(k,0) R(k,0+8)
(2m)#
The term
_58_ <E . E x b(l- cos®s) - E sin®s ] ds
may be written
_ 9 dﬂk dw d°k’dw’ () ilk+k’ ) x ilw+w )t
dv <:ax (2%)*  (2%)* 2KIB(L7) e ¢

-

Jds k k*x b exp i(k-Ax+ ws) (1 - cos®s) - k k| exp i(k- Ax+ ws) sin9€>

since <ei(_ls+5')-5>'= (27[)36(_15-}-1(_ )

this vanishes and (4.1.9) becomes:

29 .5 f4a15)2 i__‘-i._fﬁ_lf_d‘i)p(k w) R(k,w) k k,, f
m oy = m vov," (2x)*

3
+(2)2 Ea: {I:f%ﬂ% Plk,w)[$(k+ i bxk)k R(k,w+8)
t2(k+i bxklk Rk, w-2)] f (4.1.10)

The problem now is reduced to that of evaluating R and P and of course,

carrying out the required integrations. Now:-

-39 .



R(w,k) = fds exp i(k,Ax + ws)

k :
Sds exp if(ky vy + w)s + —E;é [sin(Rs + ¢)- sin @]

+ Elg-i [cos(Rs +¢)- cos @]} (4.1.11)
Write k =k cos ¥, k, =k sin ¥, then
R = fds explilk,v,, + ©)s +i kJévl [sin(Rs +¢ - ¥) - sin(¢ - ¥)]]
_ El oo i kJEaVJL sinld - ¥) - exp 15(d - ¥) - Fae Jn(%)ei(k.m,+m+nms
=n3'mJn(k"évé)Jm(kl;l-e““'"‘]w““-[21cé(w+n§a+k,,v.,)- m] (4.1.12)

We will evaluate the power spectrum exactly as in the non-magnetic case,
except that now our test particles must be allowed to move along helical
orbits instead of straight lines; and the dielectric coefficient becomes

complicated by the presence of the magnetic field.

2. The Dielectric Coefficient of a Magnetized Plasma

We will require the field induced in a plasma by the presence of charge,
g, and as a preliminary, we may ask what charge is induced in a magnetized

plasma by a potential & This can be discovered from the relevant Vlasov

equation:
of of L e (X .9 _ege dfo
3t tXY §E+E[cx§) v s 63_0
This has as its solution:
£°= & pdt” o ik -22 (4.2.1)
m - oy &
i.e.
w8 ilkex+ wt) a0 ik-Ax(s)+iws of of of
£'=is o(k,w)e [Tds e ke v, kx avx”kY 3-‘};]

To carry out the integrals in (4.2.1), we will generally need to know the

phase dependence of f, for:
3 . of k-¥1 of Ckxyvl af
E- v =R av,,+ v v, TR vif ¢

however, it is usually true that the distribution function f may be described
as only weakly dependent upon the phase, and in the dielectric coefficient we

will ignore this phase dependence; whereupon, using the notation of (4.1.1) 3=



= 38 i(kx+ 0t .00 i . of Cay. 8L
£z 1H]®(E,m)e foexp ilk-Ax +ws)-[k av”+ KLvlcos(Qt-+¢ ¢)atL

= inqu’.(E.w)eiE.x*' YRk, 0k, ‘5?,%+ %[ei(¢'¢)R(w+sa,k)+e'i(¢'¢)a(w-9,k) ey EavL
! 1

(4.2.2)

The induced charge may be written:

%2@ elll-xt Wt) . p40 s, )k, 2L 4 et V(w4 g,K)

q = i i av,

+ e @ - Voo 28

A avi
Carrying out the integral over the phases yields

of 2 i
Jd¢ R(k,w)k, o = & Tnl2md(w+ nR+ kyy v,) - E v Toiag
kv
=32 Jfl (AR%) 270y (w+nR + kv )

k
J‘;J‘) cO4(wH(n+l)R +k,v,)

: - kv
Jd¢ Rk,w+e) e ? V). oxg T (—5ne1
= 2%,2;' JnJp-1 64 (0+nR+ kv, )

Jd¢ R(k,w - Q)e'i(é B llI)=27c E Jn Jn41 O4(w+nR + kv )

hence on using 2n
In+1(x) + Jn. 1(x) = = Iy

kv of Q of
2(—J-§-J—h)-6+(w+nsa+k"v“]'[k“ av,,’f%“ =3

i2%g o ilk-x+wt)
n 17

2
q= -Sfdv, dvyv, - n J

The integral here is singular and must be treated by the Landau procedure, so
that the dielectric coefficient becomes complex; although now, each term has
distinct zeros, and a large number of resonances appear. The potential due

to a test charge q¥(k,w) is then given by:-
4n q¥*(k,w)

kjv
e

(4.2.3)

s af
ov ]

k? - 2miw2 f dvdvivy 3 J2( 1

af
)O4(w+ nR+ kHvill[kH 5;: +

Ffo

3. Field of a Test Particle

We may now calculate the field due to a particle of charge e moving

through the plasma with a velocity:
v=[v,, v cos(Rt+¢), v| sin(Qt +¢)]

and position:
v
x= {zg+ v, t, xo+%[sin(9t+¢)- sing], yo--ﬁ-l[cos(gt +¢) - cos ¢]1}

- 4] -



so that:

q*:e G[X = xo(t)]

k v
k v, t+wt+ Jé']'[sin(&'r’.t +¢-y) - sin(¢p - V)]

ik Xo exp-il

0
o
o

|

k WV
e"ik " Xog 5 ( ll) -in(9-¥) =g im0V g tkv,)  (4.3.1)

1l
o

the potential induced by a test particle is:

e 3 kv il = -
8n%e e i xon,m JnJm(—%?i)el(m n) (¢ w)é{w-kn94-k]y”)
d = — (4.3.2)
2 . o2 i B of ,n® af
k= - Zﬂlwofdv“devlJn( )6+(w-+n94-k“vu)[k“ I {;I E;I

The self-field on the particle requires a knowledge of ik®(x,)

SV lsin(g-v)

1 51N L

, (-i)mIp( lRJ- in(é-¥) —w ikd®kdw

E= g/ 4°kdo iklxo)= 3 £ - (4.3.3)
[kK? - w3 K(n® - k, v, k)]

1

If into this we place k = k,, k| cos Y, k; sin ¥, and note v = (v”,

v, cos &, v, sin ¢) we may integrate over Y, obtaining:

k v
) ik, J3(=%2)
E - g:ReZ‘.
k2 - w2 Kin® = 'k, pr.k)
k| Jn(J + Jp -
E - §;= Re %/fl L (Jn+ 1 n l)]
- wo K
~ kl J (Jn-+l - Jn -1)
E-bx¥ = -Re 3
- wo K

Of particular interest here is the last term, which involves the Hermitian
part of k?e, and is a force normal to the particle trajectory. For an iso-

tropic distribution function f, 5%—||

Vi and this does not contribute to
the F.P.E.
4, The Spectrum
The power spectrum may be evaluated from (4.3.2), thus:-



d®k do, _ [k dw_ " d%k dw’ o
(2 en)*/ “zme - 2lk.0) @ (K7,

kv, 1 k, v j

o I L VL

'dk dw dokdw’ (groyz e 3 JNTEL RN Xy 5 T 0 (PSR )
(z'm)‘*f (2m)* — mm St k2 (w,k)k 26 (0 k")

- O(w+nR+ k Fiﬂé(w +tR + k’ VJ) exp i(m-n)(¢{'¢)+ i(s-t)(¢j- w']¢i (4.4.1)

(PR

and on using the random phase approximation on izj’ and carrying out the
. ?

(trivial) integrations over the kjw'and w and recalling that ¢, and | are

the phases of vy, and El

] fly) = s ¢ InImJsJt exp i (m-n) ($-+(s-t) (p-¥) ]
P(w,k) = 327E3e2/d3 —— 0 5, (4.4.2)

2
ke (k, —nﬂi-k‘y”)k e(- k, k v, -s%)

The diffusion coefficients now take the form:

, vy’ .
I ) f(v")
d3w “T(k,k)* 3 2 =
(?.ac) k%[k - (rR+ kv, )] - K%e[- k,k v

L A AT s2]
k, v
e % JnJml éél)Zﬂié +[(n-—r)9-+k]|(v“ - vﬁ)]
e exp i(n-m)(¢p-VY)e exp i[(p-q)(¢p™-V) +(s- t)(p "+ V)] (4.4.3)

where the T(k,k) are tensors constructed from k and b.
Some simplification is obtained if we consider the average of the diffu-

sion coefficients over all phase, whereupon they reduce to

"

2 k,v
9 9 . _ 9 i
-a-i—x.gf_aV'Jk“PZJ (9)()_‘_(0)

1

§ 5% (gg—- +;1-J-:)fklk” P20, (Jnp) + Jn- 1)64(0)

i il
P T -(i 9,1,/ p3 J2[6,.(-1) + 6,(1)]
8 avl v L 2 avl v L nt =4 +

b) o
% -—a‘lfki P2 J, (Jny+ Jn-2)[6,(-2) +8,(1)]

1, 4 1
+ 3 + =y
2 av_L v 2 avl

+‘—}I)jkipz Inl[Jn-2+ Jns2][04(-1) - 64(1)] (4.4.4)

with the following abbreviations:



r = S S LS av] dv, v dk A dk, k

‘ de Tk o0 L YHL
72 (klvl) 72 (ELVJ
P = 16,}‘:2 E‘i 3 2 P [* s Q@
m*>  P® kZe(k, - pR-k,v;)k%(- k, k v -s)
24 Tk Wk
k2e = k%®-w2fdv, dv,v, 3 J227i & (w+nR+ k,v,)[k 2.:+_8 _9;]
= o ] 11l 7 ™n + k“ ] i avn vy avl

0,(t)= By[k (v, - v/) + (n-p+ t)R]

The functions involved in this expression have been explored to some extent
by N. Rostoker, who concludes that at worst the screening parameter is
altered, a poor reward for such effort. On the other hand, the analysis
presented here is incomplete; for in obtaining (4.4.4) we have assumed f4

to be phase independent, whereas, in general one must deal with contributions
depending on directions across the B. field. A possible procedure here is to
Fourier expand f in ¢, but the reader will be spared this. A more serious
defect may be the omission of electromagnetic as opposed to electrostatic
interactions, which was rather glibly effected on the first page; for what
co-operative effects may be important here is far from clear, and the rela-
tive inefficiency of the plasma as a current screen may overweigh the (v)? in
the inter-particle force. It is certainly true that in many instabilities,
e.g. the mirror type, the inductive fields are more important than those
produced by charge separation, and similar phenomena may play a role in
particle interactions. This presentation must, therefore, be considered as

a sketch of the process of particle interaction in a magnetic field rather

than as a complete account.



PART V

Correlation Functions and Scattering of Radiation from a Plasma

1. The Correlation Functions in a Plasma

Since our procedure has given a value for the potential produced by a

particle in a plasma, namely (in the absence of a magnetic field)

OLE 4 k- Bho-d B2 B (5.1.1)

®(k,w) = 8xn2e,
= 1 k% & (k, w)

we may now use the Vlasov equation to calculate the disturbance that this

produces in the distribution function, i.e.

=

ot
O(w + k-y) -ik-xj €2 =" 3

e o (K, ) s TZFFET-ET (5.1.2)

£° = 8x?
Now the probability of finding a particle at (51, Vi tl) and a particle at
(%2, Yo ty) is clearly:
P(1,2) = £(vy,x;,t;) f(vz,xz, 0) + f(xz.vz, 0) f(l,Z,xl,vl.tl)

However, the last term is just (5.1.2); i.e. f° the change in f(1) pro-

duced by a particle at 2. hence:-

ik (x)-x;)

S(w+ke vy)e . f

€1€2 1 = =2

£(x;,¥,,t)52)= == —=d°k dw ce'®k. ==2(1) (5.1.3)
1 2% [k?e(k,w)](w + k - 31] -1

Having the (space dependent) perturbation induced in the distribution
function by the potential of a charpged particle, it is possible to calculate
spatial distribution of electrons and ions in a plasma, in this approximation,

If the zero order position of electrons and ions are x, and Xi, then the

plasma potential is:

3 | U-)"'_]:_(_'zi) e_15'§i+e+5(w+£- xi)e-ik'zi
¢ =81 e ‘ (5.1.4)
k* e (k, w)
and
v =ik ox.
ik x; = S(w+ k- vj 15" &y of
n_(E,w):z." o ik x; 6(m+5.xi)+e_—f dav——{— E-Fple k . a‘f’ (5.1.5)
! - k? e(k, w)(w+k:- v) e

From this, the charge density is:-



q, = e_n_ (k,w) + e, n, (k,0)

ik. X

=273 je_ o VEE X d(w+ k- Xi)+-e+ e =721 S(w+k- V)i
2 d®v 9f_ 2 d3v af+
[%fmﬂwkéywﬂm@qgkw
- {1+ = {5.1.,6)
k® e (k,w)
But
2
2 L2 2 d3v of_ w, d8v of,
k® elk,0) = k*- 0 f(“”'E'E] k. s + ng Gk %) k - i
hence

[e_ 0(w+k- y,i)e_i~IS "Xii ey b0tk ‘!i)e-l'ls-zi_l
e (k,0) '

47 q1=87\:22'.

and the calculation is self consistent.

2. Scattering of Radiation from a Plasma

It is of interest to note an observable phenomena which depends on the
details of the electron correlation function; this is the scattering of
radiation by a plasma. To treat this, we consider a plasma in which the
distribution function may be written fg(v) + fl(x,v,t) and consider the
effect on this of an electric field E(x,t). After Fourier transforming we

obtain for the induced currents:-

[E(w,k) - g_fq v+ 3 E2,K- 3 (w-92,x-Ky]
iiglw.k) == =y a® A4 = (5.2.1)
=110 m i(U.) o 1-(. y_)
If the phase velocity is high w/k >» Vg: then
j (w,k) = . Eé {E(m k)-+—L-E A 0?2 (w-2,k-K) E(2,K)]
dina '@ ® = Ax o (21 w2 o : =t
Maxwell's equations for this field become:
2 p . L 2°E _ax 8] :
V2 E - 5 315 C o2 Ot + grad (div E)
or, on Fourier transforming, and using the equation of continuity:-
2 ;
(%5 - %) E (0,k) = - 252 - k(k.E)
= = o =
or 2 4+ 2 2 Aw3
(22 - k®) E (0,k) = [%5 - k k- ]2 —2-(0- 2,K-K)E(2,K) (5.2.2)
c b= e C - = w

Now, if there is incident on the plasma a field of frequency % and wave

. A -



number K (K2 = @2/c?), a scattered wave will be produced given by:-

2_ 2 2 - -
il o o [w?- ¢’k k.] Awd(w- @,k-K)E (2,K) (5.2.3)

- = w2 2
[__iﬂa ] kz]
C2

For scattered and incident waves well above the plasma frequency, this

yields to an expression for the intensity at large distances in the form:-

2 oy .
E_liwig_éLl = I (R,K) 47 ( ez)z A n(w,k)l2 [1- (sin 0 cos ¢)?] (5.2.4)
dwd® = mc - »

where O, ¢ are the scattering angles, with respect to incident direction and
polarization and the last factor = %(1 +cos? B) for an unpolarised incident

beam. If the only polarization of the electron density is that produced by

random fluctuations An is given by (5.1.5) i.e:

k - X.

ik - x: € -1
e IE =i 5((D+E'Xi) +G+ e—+6(w+5-_\_ri)e B xd

An(w,k)= 2(1+G_) (5.2.5)
! 1-G_ -G,
where
2 g Bt kp
e v 3
G+ = 4% (= —_ d°v ~ —= (5.2.6)

Now, to form (An)?, the random phase approximation may be invoked whereupon

|2 ™™ X b(wtk- vi) |2 = S % £(v) blw+k- v)

and 1- G
IAH_(UJ,]C)I2= N{|T—:"E}-—i:—6—| 2f dBV f__(_‘:’_) 6(0.)4-_15- _V__)
- +

G
+ "_—o_lgf a®v £, (v) &(w + k- v)} (5.2.7)

|'1"- G_

The scattered radiation is then given by 5.2.4 and 5.2.7. If (kD/k)2ﬁ>1
several interesting features appear. Since f, is much narrower than f_, the
second term dominates near Aw=0; but since G_ increases with w, the scattered
wave first increases, then decreases, with a half width determined by I+fw/k),
however, at large frequency shifts the first term dominates. When Aw=w, the
dielectric coefficient (1 -G_ - Gy) becomes small over a narrow region and a

sharp narrow peak corresponding to the emission of plasma oscillation appears.

If T_» T, ion sound waves may appear, and to a sharp peak appears at

(Aw/Ak) ~ (KT_/my4) from the centre. If kp « k the G's are small, and only

- 47 -



. the first terms persist.

The interest in this process lies in the possibility of exploring the

correlation function directly; the difficulty lies in the small value of
the Thomson cross section 87m(e?/me?)? =~ 10_25 cm® which determines the scale

of the phenomena. If because of an instability An(w,k) becomes very large
for some narrow range of w,k a much more spectacular effect would be

expected.
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