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ABSTRACT

An experimental and theoretical study has been made of the hydro-
magnetic instability of an axisymmetric bulged region in the midplane
of a theta pinch 8 metres long. The bulged region was generated
adiabatically after the initial implosion in such a way that it ful-
filled most of the assumptions of the theoretical model; in particu-
lar, it was free of end effects for the time of observation. At a
filling pressure of 20 mtorr D, and with a peak magnetic field of

20 kG the plasma, which was collision dominated, had values of tem-

% and

perature, density and beta on the axis of 120 eV, 3x 10*® cm™
0.7 + 0.2. The predicted m = 1 instability was observed and for a
range of bulge amplitudes its measured growth and propagation along
the column agreed to within a factor of less than two with the
theoretical values. It is concluded that the m = 1 instability of
such bulged plasmas is well described by ideal MHD theory. Modes

with m2 2 were not observed during the m =1 growth and their

absence is attributed to finite Larmor radius stabilisation.
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I. INTRODUCTION

Several years' study of the theta pinch has shown that deuteron
temperatures of up to a few keV can be achieved at densities in the

range 10%*% - 107 cm'a(lns). Most work has concerned the mechanisms

(2,3) (6) (2,4,5,7)

, energy loss and particle losses . Observa-

of heating

tions have also been made of the naturally occurring instabili-

: 2,4,8-1 . .
tles( ,4,8-12) which fall into three categories. The first is the

Rayleigh-Taylor instability, commonly observed during the implosion

phase in low temperature theta pinches(s’g); it is damped in higher

(10)

temperature discharges o« The sécond is the m = 2 rotational

instability(ls), and the third is the resistive tearing mode observed

(11)

in the reversed field configuration .

Also instabilities in regions of adverse magnetic field line
curvature have been studied in short coils with magnetic mirrors(i4_16),
in a long corrugated coil(17), in reversed field theta-pinches with

(18-20) (21,22)

closed field lines and in the toroidal M & S Theta Pinch .

Short wavelength (high m-number) instabilities, expected to have high
growth rates for thin current sheaths, were rarely observed in these

experiments, At low filling pressures(IFS) their absence may be due

to finite Larmor radius effects(23-25); in addition, diffuse current

sheaths were usually observed for which ideal MHD theory predicts the

(26,27,29) to be approximately equal to

that for m =1 with a thin sheath(28). Thus, although the length

growth rates of all m—modes

of the pinches studied had been progressively increased to two metres
the MHD growth times for all modes become comparable to the transit
time of a hydromagnetic wave along the system, so that end effects
such as plasma or heat flow, line tying or the favourable curvature

of field lines outside the coil can no longer be neglected. These



end effects are expected either to reduce the MHD growth rate or to
give stability.

(27-32)

Theoretical work based on the ideal MHD model has been

carried out; when f is sufficiently high a theta-pinch of finite

(29) due to the regions with favourablé curvature

length can be stable
at the ends. In infinite columns with either periodic bulges or a
single bulged region and B < 1, the plasma is predicted to be un-
stable to all modes m > 1, for both sharp and diffuse radial pres-
sure distributions in the absence of conducting walls. All modes can

(29)

be stabilised by conducting walls , but only for values of P near
unity, and for low compression ratios.

In the experiment described here an MHD unstable axisymmetric
bulged configuration was generated adiabatically in the midplane of
the coil and the growth of the observed m :71 instability was com-
pared with calculations based on ideal MHD theory. This configuration
(which is the linear analogue of one bulge of the toroidal M & S

(33_35)), was chosen because it is amenable to theoretical

system
analysis and it can be set up experimentally in such a way that the
assumptions of the theory are adequately satisfied. With the 8 metre
long coil the plasma was uninfluenced by the ends for many instability
growth times and its length was thus effectively infinite for the

time scale of the experiment. The growth rates of the observed m = 1
instabilities agreed with the predictions of ideal MID iheony. Higher
modes did not grow and are believed to be damped by non-ideal effects.

(36)

Measurements of the plasma temperature and density and its radial

. 37b
diffusion(37a)are reported elsewhere( ).
II. THEORY

This Section deals with the theory of an m = 1 instability in



a long initially axisymmetric plasma cylinder with a single bulged

region. The initial equilibrium configuration is shown in Fig.1.

The bulge is characterised by &, the bulge strength, given by

(r, = ry)/2r, (where r, is the plasma radius in the midplane of

the bulge and r; the radius in the uniform column) and its length, L.
When the plasma is displaced a small amount & from the equili-

brium position the variation in potential energy of the system is neg-

ative, showing instability. The variation comprises three terms; the

surface magnetic energy, which drives the instability, volume magnetic

energy, which is stabilising but small, and plasma energy. For the

(28)

latter it has been shown that the most unstable displacements do

not change the plasma volume and therefore not its energy.
A normal mode analysis is used to describe the growth of the

instability. Each axial mode is expressed in the form
Ealz . 8) =502 e¥nt Wiaienilel)

where é‘n is the initial amplitude of the mode n. For the values
of 6 and P in the present experiment one unstable axial mode
dominates in the vicinity of the bulge. The growth rate calculated

analytically for small & (see Appendix I) is

1
% 52 0. Bo(1-B)(3-28,)
_na2 [ 2 Cs "o 0 0

where the sound speed Cg :\[Y k (Te+ T;)/mj (Y is the ratio of
specific heats and Tg, T; are the electron and ion temperatures and
mj is the ion mass), and Po is the ratio of plasma pressure to the
confining magnetic pressure in the region of the uniform column. A
square pressure profile is used in the theory and in order to compare

it with experiment an average beta must be assumed (see Appendix II).



The growth rate has been computed for finite & (see Appendix I and
Figs.10 and 11).

The caleulation takes into account contributions from the regions
of favourable and unfavourable curvature and the mass loading due to
plasma extending axially outside the bulged region. For given values
of &,L and By it follows from Eq.(AI.5) that differently shaped
bulges have the same growth rates if they also have the same values

of

[+L/2
(drp/dz)® d
b 7 p/dz Z

vihere Iy is the plasma radius. This shows that, in the absence of
conducting walls, all axially symmetric bulged high-p configurations
containing both stable and unstable curvature, and bounded by infinite
uniform regions, are unstable. Because of the coupling between neigh-
bouring regions of the column wp_q is always smaller than the growth
rate calculated using only the contribution of unfavourable curvature.
In the limit of small & the growth for the latter case scales as
6% compared with & for a periodic bulged configuration and &% for
the single bulge considered in this paper. For large bulges the
growth rates for the periodic and single bulged configurations are
approximately the same (see also Fig.10 and Appendix I).

The grovth of the instability is accompanied by a propagation of
its amplitude along the column in the directions away from the bulge.

Twis is seen in Eq.(AI.2) which, for the uniform column, leads to a

simple wave equation with a velocity given, for finite ﬁo, by

V=1 = VA'\}z_ﬁO = CS\/2(2—[30)/T[30 ies (3D

where Vp is Alfven speed, defined using the density on the axis and

the external magnetic field. Note that Vm:l is always larger than



the ion thermal speed, usually by more than a factor of two. Thus it
is not expected that in a collisionless plasma the ion thermal motion
will increase coupling between different parts of the column and reduce
the growth rate.

In addition Vp—1 > Vp=0, the speed of the m = 0 rarefaction
wave moving away from the bulge due to its formation (Vp—g = Va A/l- Bals
therefore any redistribution of mass due to plasma flow will not sig-
nificantly affect the inertia of the plasma column in the vicinity of
the unstable region,

The m = 1 propagation velocity can be used to estimate the mini-
mum length of coil, Ai - required to ensure that end effects will not
influence the growth of the instability at the coil midplane. To

observe o growth times, o/wp=i = Amin/2Vp=1, from which

L >ﬁ£ Bo(1 - Bo) (3 - 2Bo) . .(4)

Amin/ a (2‘50)3

In a long coil the most important stabilising mechanism for m = 1

is the effect of conducting walls, which has been analysed for the
periodic bulged configuration assuming small ‘6(29) . When the walls
are close to the plasma the variation of the vacuum field energy (see

above) dominates the destablising surface energy and stabilises if

| Bo > Berit = 1 - (I‘p/l‘w)2 s5s LO)
(ry, is the radius of the conducting wall). For the values of P,
and rp/rw in this experiment with a single bulge, the walls are
unlikely to reduce the growth rate except at very large values of )
where beta tends to unity in the midplane of the bulge. Such wall
effects have been neglected in deriving the theoretical growth rates.
Finite Lamor radius stabilisation, shown to apply for the values

25)

" of beta appropriate to the present exper‘iment( , will not affect



m = 1 when there is no deformation of the column. However, it is

(23)

expected to stabilise m 2> , i.e. modes which deform the plasma

cross section, when

(ag/r;)? > 51 e (8)
i &

where aj 1is the ion Larmor radius, wp the ideal MHD growth rate

and ; the ion gyro-frequency. Damping of modes nn}iz due to a

1
"collisionless viscosity" when the ion mean free path is much greater
than the plasma radius and beta is almost unity over most of the

(38)

plasma is neglected in this work since these conditions do not
occur.

ITI. EXPERIMENTAL DETATLS

A. Parameters of Experiment and Plasma Properties

The 8 metre experiment was operated in conditions already des-
cribed(36’37). For the instability studies a bank voltage of 34 kV
was used at a deuterium filling pressure of 20 mtorr, which gives a

9 and ion and

peak electron density on the axis of about 3 x 10° cm
electron temperatures of about 120 eV. The peak magnetic field of

20 kG was reached in 5.5 psec and it decayed in 160 usec. The value
of beta on the axis is about 0-7. The plasma is collision-dominated,
with a mean r'ree path comparable with its diameter, and the Larmor
radius of the ions is about 1 mm. The plasma is therefore expected

to be well described by the MHD model.

The principal parameters of the experiment and some of the
measured plasma properties are summarised in Table I. Thomson scatter-
ing was used to measure both the electron temperature and density;
in addition, the latter was determmined independently from the visible

continuum emission(SB’ST).



In the absence of an unstable bulge the plasma remains close to
the coil axis along its whole length for 25-30 usec; thereafter an
instability, which is a combination of m=1 and m = 2, associated
with a rotation of the column, is observed to grow simultaneously along
the length. The measurements discussed in this.paper were all obtained
before the onset of this 'residual instability'. During this time
there is a small amplitude (much less than the plasma radius) lateral
motion of the plasma, which was due to small differences in the cur-
rent and geometric arrangement of the independent coil sections; how-
ever, this low amplitude motion was not found to have any effect on
the plasma behaviour,

B. Generation and Growth of the Unstable Bulge

In order to preserve the cylindrical symmetry of the plasma at
early times the unstable bulge was generated after the initial implo-
sion. The coil is divided into 32 separate sections each 24 cm long,
with its own crowbar switch., One section, known as the field shaping
coil, is short-circuited, an interval At =t, - t, (see Fig.2) before
peak magnetic field and the field, B,, within it rises more slowly
than the field, B,, elsewhere; plasma flows into this region and a
bulge develops. The method is illustrated in Fig.2, where oscillo-
grams of the magnetic fields are shown; there the discontinuity in
B, at 2¢5 pgec shows the start of field shaping. A minimum field
ratio B,/B, = 05 can be produced with At =4 usec and the ratio
can be continuously varied by changing At.

The structure of the vacuum field was studied using a low volt-
age analogue(42). An axial gap of 0-5 cm between coils allowed the
required field ratio to be obtained with the crowbar circuit oscilla-

tions in phase in adjécent coils. Distortions of the magnetic field



due to the collector feed slot gave rise to a small non-symmetrical
radial component (~ 1% B,) in the bulged field towards the feed slot,
which was not expected to cause a measurable lack of lateral equili-

brium' 50 +40)

during the formation of the bulge and the growth of the
instability (see also Sec.VI).

The bulge amplitude was determined at its midplane as a function
of time from streak camera photographs which gave the average radii
((rp> in Appendix II). Values of & are plotted as a function of
time in Fig.3 for various field shaping ratios, B,/B,. It can be
seen that 0 increases with time and the bulge reaches equilibrium
only when B,/B, > 0-75. With smaller values of B,/B, equilibrium
is not reached(4l).

For the case of a square pressure profile it can be shown from
pressure balance and internal magnetic flux conservation that radial
equilibrium is reached when
2[(&)
Py B, > 1= Bo §‘t 2

2

a5

s L)

Note that Eq.(7) predicts no simple equilibrium for (B,/B,)? < Bo.
For the measured equilibrium values of & Eq.(7) is satisfied by
Bo = 03 to 04, The experimentally measured P(r) is of Gaussian
fom(36’37) with a Bo on the axis of 07 * 0-2 and the corres-
ponding average value of g (i.e.. (B> defined in Appendix II) of

0+4 ¥ 0-1 1is in satisfactory agreement with the above observation.



IV. EXPERIMENTAL RESULTS ON THE INSTABILITY

Fig.4 shows a series of stereoscopic framing and streak camera
photographs taken in the neighbourhood of the unstable bulge. The
arrow (S} on the framing photograph shows the position viewed by the
streak camera; the arrow (F) on the streak photograph indicates the
time when the framing photograph was taken. (A) and (B) correspond
to cameras viewing the plasma 45° above and below the plane of the
collector feed slot (see also Fig.5). The four pairs of photographs
in Fig.4 correspond to different field ratios B,/B, from 1 to 0,64,
The framing photographs are on the left hand side of the figure and
show the shaped region and the neighbouring section of the column,
These were taken 6 usec after the start of the discharge with 1 psec
exposure time. The extent of the bulged region can be clearly seen.
For strong bulges there is a marked reductioh in the intensity of the
light coming from the very end of the shaped region and this is due
toan m =0 rarefaction wave moving outwards from the shaped reg-
ions along the column, as plasma flows in to fill the bulge(4').

Corresponding streak photographs (right hand side of Fig.4) taken
through the gap between the shaped and unshaped coils show the m = 1
instability. The growth rate increases and the time at which the
plasma strikes the walls decreases as Bo/B, is reduced. The low
amplitude lateral motion present with no field shaping is seen in the
top photograph. Modes with m 2> 2 did not appear in the available
observation time before the plasma hit the walls due to the m =1
instability.

Fig.5 shows the motion of the plasma axis during the growth of
the instability. The instability drives the plasma in a plane inclined

at about 45° from the plane of the collector plate feed point.



Although there is some variation in the motion of the plasma from
one discharge to another, the tendency to move in the same general
direction, even for BQ/B1 = 1, indicates that some initial distur-
bance of the plasma from its equilibrium position determines the
direction in which it will move. This may also explain tﬁe observa-
tion that during the formation of the bulge a rapid displacement of
up to 4 mm occurred which was independent of B,/B,. This was
followed by an exponentially growing displacement to the wall for
B>/Bs < 0-75. For B,/B, > 0-75 however, the plasma did not reach
the wall and its motion was damped or even reversed at large displace-
ments.

The displacement, &, of the plasma axis from its initial aver-
age position is plotted as a function of time in Fig.6. The values
of E(t) were not corrected for the residual motion observed with no
field shaping. A well defined exponential growth of &(t) can be
seen which becomes faster as Bz/'Bi decreases. (The apparent
difference in time scales between the growth of the bulge (Fig.3)
and that of the instability is because they were measured at differ-
ent axial positions (see Fig.4)).

Because the bulges continue to grow while the instability
develops an average value of & must be used. The theory is likely
to be most accurate for small & so we take the effective value,
defrs to be that reached after 1-3 growth times cf the instability,
chosen since after that time equilibrium is reached for the weak
bulges. This is shown in Fig.3, where points corresponding to 1¢3
growth times are marked. These fall on a straight line because for

the values of & studied wp_q « d.

it T o



Growth rates are plotted against the effective & in Fig.7,
where each point represents one discharge. The errors shown on Sepp
come from the measurements of r, and r, and do not include the
uncertainty in its definition (see above). Also shown are growth

1

rates calculated from theory assuming Cg = 1:4 x 107 cm sec™,

{BY = 038, and L = 25 cm,

V. EXPERIMENTAL RESULTS ON THE m = 1 WAVE

Fig.8 shows a streak photograph of the m =1 motion of the
plasma column for three different values of the axial distance, 2z,
measured from the midplane of the unstable bulge. These streak pic-
tures are used to evaluate the onset time of the m =1 motion as a
function of =z, as plotted in Fig.9. The onset time for z =0 was
deduced from Fig.4.

VI. DISCUSSION

The data presented in Figs.6 and 7 showed that an exponentially
grming m=1 instability can be induced by forming a bulge. The
growth rate agrees with ideal MiD theory for small bulges; but
appears to become independent of ® for large bulges. The m =1
wave due to the instability was found to propagate along the column
at the predicted velocity (Fig.9). In order to assess the validity
of this comparison we now discuss some of the assumptions which were
made.

Firstly there is the assumption that theory for an infinite
column may be used, i.e. that the ends do not influence the instabi-
lity. End effects can occur in four ways: (i) propagation of the
m = 1 wave outwards to couple to the favourable curvature outside
the coil; this takes more than 20 psec (see Fig.9); (ii) propagation

of hydromagnetic waves in from the end takes 20-30 usec, as evidenced

-1 =



by the onset of the residual instability in the theoretically expected
time; (iii) axial loss of particles from the midplane at thermal
speeds; the line density was observed to be constant for at least

25 psec and theoretically should remain so for t = A/2Cg = 35 sec(4’7’43)

(6) (36)

and (iv) loss of heat by thermal conduction' ', expected after 400 usec £
experimentally there was no measurable heat loss for 25 psec. Since

the growth rates were all measured before 15 psec none of these end

effects was expected to influence them.

The detailed distribution of the mass along the plasma has only
a small effect on the growth rate, as found by computing Wp.q With
various axial mass distributions. The assumptions of constant total
mass, suggested by Vp-1 > V__g, rather than constant density, sug-
gested by thermal conduction and flow (see Sec.II) is not a signi-
ficant source of error. The present experiment contrasts strongly
with those in short coils, where axial equilibrium is never reached
and flow removes mass from the system,

The theory is for a plasma with a square distribution of fB(r)
rather than the observed Gaussian distribution. The consequent use
of an average <P in the comparison is not an important source of
error since the grovth rate is insensitive to beta at the values in
the experiment and the errors in the averaging procedure are less
than those in the measurement of beta on the axis.

The most important assumption concerns the extent‘to which the
experimentally set up bulged region is in equilibrium, i.e. with no
tendency for any lateral motion due to a local "toroidal'" curvature
and with no pressure gradients or flow along the field lines (i.e.
axial equilibrium)., The measured vacuum field distribution (Sec.III.B)

is expected, for the low value of <{B> in the present experiment,

& 12 w



to give a reliable indication to the field asymmetry with plamsa
present, which was not measured. Since the axial average of this
asymmetry is negligibly small, the assumption of lateral equilibrium
is justified.

The largest difference between the theoretical model and the
experiment is due to the continued growth of the bulge as the
instability develops. Experimentally we require that the unstable
configuration should develop sufficiently slowly to give axial equi-
librium but in a time short compared with the instability growth time.
However, since the growth time becomes smaller for larger bulges these
requirements are incompatible and a compromise was chosen. In all
cases O increased with time due to the bulge growth and this,
together with the axial flow, has not been taken into account in the
theory., For comparison with theory we have replaced &(t) by an
effective value Oqpp (see Sec.IV).

We shall now examine the comparison between theory and experi-
ment. Firstly, for large bulges (i.e. B,/B, < 0:75) wp_q tends
to become independent of &gpr (Fig.7) and to be independent of
time (Fig.6) during the growth of the instability, when the bulge
itself is still growing (Fig.3). The choice of Jeff, as defined
in Sec.IV, while appropriate for small bulges is an underestimate
for large bulges (see Fig.3); thus the above-mentioned trend for the
growth rate to saturate is even more pronounced than ié apparent from
Fig.7. Although the condition of Eq,(5) for wall stabilisation is
not satisfied, for large bulges beta becomes close to unity(4l) and
rp/nN increases so that the walls should be taken into account. In
addition, although no data was included which had been taken after

the plasma visibly touched the tube walls, the wings of the diffuse

- 15 =



radial density distribution may have interacted with the wall to
give "line shorting" or to modify the external magnetic field shape.

For small bulges (B,/B, 5 0-75) the effect of the walls is
negligible and equilibrium is reached in about one m = 1 growth
time; thus a reliable comparison between theory and experiment is
possible; this shows that for a collisional plasma the m = 1 insta-
bility of such bulged theta pinch configurations is in good agreement
with ideal MHD theory. In addition, since M&S experiments(ss_ss)
are expected to operate at values of & ~ 0.2, the results given
here should be relevant to the instability of such systems.

Finally, we consider the observed absence of modes with m > 2
for all values of 0. The considerations given above that neither
end effects nor wall effects should influence the instability apply
for m 252. Since such modes are expected, on ideal MHD theory, to
grow at about the same rate as m = 1 (see Sec.II), it follows that
thare is a damping or stabilising mechanism. This is most likely to
be the effect of finite ion Larmor radius, since (a;/r,)? = 1072
and wp/Q; & 107%(see Eq.(6)).

VII. CONG.USION

The observed growth rates of the m = 1 instability of an axi-
symmetric MHD unstable bulged region in the midplane of a long theta
pinch have been compared with theoretical predictions. The initial
equilibrium was set up experimentally in such a way that it fulfilled
most of the assumptions of the theoretical model. In particular, the
midplane was found to be free of end effects during the observation
of the instability growth, and the collisional plasma (n = 3x10'%m™ 3,
Te = Ti = 120 eV) was expected to be well described by MID theory.

The growth rate was calculated for the measured parameters of the

- 14 -



bulged region and was found to agree with the observed growth rate

to better than the overall uncertainty of a factor of two. The
ohserved propagation of the m =1 wave due to the instability
along the plasma column also agree with theory. It is therefore con-
cluded that the m = 1 instability of such bulged configurations
agrees with the predictions of ideal MHD theory. Higher modes, with
m 2 2, expected theoretically to be stabilised by finite Larmor

radius effects, were not observed for several ideal MHD growth times.
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TABLE T

PARAMETERS CF THE EXPERIMENT

Circuit Parameters Electrical Characteristics
Stored energy = 0-8 MJ Peak external field Bg = 20 = 1 kG
Bank Voltage = 34 kv Initial dB/dt = 6+5 kG psec™*
Bank capacity = 1382 pF Initial Eg =200V cm™
Total Inductance = 89 nH Ringing half period = 110 pus=c
Crowbar 1/e time = 160 psec
Crowbar ripple = 20%

Coil Dimensions

Total length (32 sections) A = 771 cm
Length of shaped section L =24 cm
Bore of coil =11 cm
Bore of tube = 83 cm

Measured Plasma properties on axis at peak field in the uniform column:

filling pressure: 20 mtorr D,

Electron temperature Te = 120 * 15 eV

Sound speed Cg = (144 £ 0+1) x 107 cm sec™
Electron density ng = (3 £ 0:5) x 10*® cm @
Beta Bp = 07 £ 0-2

Mean free path A =1 cm

Electron-ion equipartion time teq = 2 Msec

Averags values (see Appendix II)

Sound Speed Cs = 140 * 0-15 x 107 cm sec™

Beta (Eq.(ATI.3)) (B> = 038 * 0-12

I

Mean plasma radius (Eq.(AII.1)) (rp> =10 % 01 cm

_16_



APPENDIX T

Using a model described previously(zs) we shall calculate the
m = 1 motion of a theta-pinch on the assumtpion that (i) the axial
(z) motion is negligible and (ii) the distortion of the plasma in
the (r,8) plane is negligible. This means that the displacement is
of the form E = gr,e(z) where 5r,6 is the displacement in the
(r,6) plane. Furthermore, since the m =1 instability is a long
wavelength instability we can assume R é% « 1 where R(z) is the
radius of the square density and pressure distributions assumed in
the theoretical model. (This distinguishes the plasma radius, R,
in the theoretical model from those defined for the experimental
plasma (See Appendix II). R, refers to the uniform region). This
means that the characteristic length for axial variations is much
greater than the plasma radius.

The kinetic energy of the plasma is given by
2
_ %
T-é/P<at av ,

and using the above assumptions

T EN
T.—_E/Rzp<73€> dz .

(28)

The potential energy change as given by is
ow-l [p2[ R, (L (re) - 22 R (1p))
8 dz? dz dz

. (143)( L - %)]dz

' 8
where B  is the external axial magnetic field. B(z) = FZE and

e.. (AL.1)

p is the plasma pressure.

=17 =



The Lagrangian is given by

;{:/Ldz =T -&W.

From Hamilton's principle we have the equation of motion

A 2 (_a 2L N\ _,
0t ~ 3z \9(E/dz)) ~at \a(g/at))
and explicitly this is
2y 3% _ 0 2,208 2 (dRY 2 2, d®R
atmp) 5= 2 ((2—ﬁ)B R ) + <4B (dz (1-8%)-28"R 3 (1-@))5
... (AT.2)

To describe the growth of an instability completely it is

o1
it

as functions of z. The motion would then be determined as a summa-

necessary to specify the initial values of & and

tion over all the normal modes én(z)emnt of the system. (For con-
venience we retain the symbol £ to describe the spatial factor,(and
since only m = 1 is considered in this Appendix we drop the sub-
script m =1 used previously). However, we are not interested in
the oscillatory parts of the motion and only need to consider the
unstable modes. In fact we shall only consider the fastest growing
mode and we shall see that, for small amplitude variation in R at
least, this is the only unstable mode.

Consider a pinch whose radius is given by

L L

R:RO Z<—§',Z>'§
L L
R:RO+R1(Z) —E<Z<§

where R, is of order ©® and & « 1,
in the uniform regions

Bg (2-8,) E" -4mpy W& = 0



where the subscript zero refers to the values of the equilibrium

quantities in the uniform region. Thus, for unstable modes

_ 3 _ (%P0 _® % L
E(z) = £ (+ L/2) exp [-ﬁ- (—Bg— -—2_[30> (Z ¥ 2) ] .
eee (AT.3)

and expanding in &,

o

Considering the inner region - % <z <

Eq. (AI.2) becomes in zero order

]
o

BY (2-B,) &l - 4mp, wE,
where the subscripts refer to the order in b.

Now since the cylindrical systemy & = O, is stable we must

expand about the marginal mode w, = O. Thus
o
Eg =0
and in order to have continuity of E£’/£ with the outer solution we

must have

Eo = const.,

To next order

R, (2-By) &4 - 2RY (1-B,) &g = O

and
1-By R,
E‘i = 2 2_‘30 E; E’O .
; : L L. ;
Integration of Eq.(AI.2) between - 5 and + 7 gives
I/2 L/2 -
2 . L ap2 4§ 2 (dR @2
® / 4p£,d,._<(2[3)BR dz) +/{4B (dz> (1-p%)
1/ ~1./2

eee (AL.4)

d®R
- ?EBQR :j? {l-—ﬁ) ] £ dz

where the line mass density p = 7R’p

_‘Ig...



Using Eq.(AI.3) to give the boundary terms and keeping each term

in leading order

WPy LE, = - BRy © ((z_so) ;_LO>'4 £o+B3(1-P3K(R) DL g,

g
2(”3)/dz<0dzi E)dz

where the last term in Eq.(AI.4) has been integrated by parts

and
2 L/2 2
<(§%J > = % ./- (g%) dz.
-L/2

Substituting for &, we obtain

By (1-By) (3-28,)
2(2-po)

dR2
w® Mo L + @ B R, Ho? (Z—BO)% - B3 <(EEJ > L = 0.

The ratio of the first term to the second is of order L/V, where
. wL .
= B3/4np,, and since v« 1 we can neglect the first term,
This means that for small & the inertial effect of the inner region
is negligible compared with the "mass loading" provided by the outer
region. Thus finally we have
VAL R2. B (1-B,)(3-28,)
A <(d > 0

. ... (AI.5)
(2-B,)?

Po\'%
Defining the sound speed Cg = (é}%) this equation may be written

1
o= 3% (B 53”"50)(;"290’ ... (AL.6)
0 (2-Bs) *

This result was obtained by an expansion in & and it is pos-
sible that there may be other unstable mcdes for sufficiently large

b, Considering Eq.(AI.1) we see that the first term is the only
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term which can be destabilising. For this term to be comparable with
the stabilising terms requires ©& to be of order unity. For such
large values of & it is therefore possible that there are further
unstable axial modes but since Eq.(AI.2), as applied to each nomal
mode, is a Sturm-Liouville equation, the growth rates of these modes
will be smaller than that of the fundamental mode.

Numerical calculations of the growth rate have been made for the

case of the single bulged region defined by

_ oz L L
R = R, (l + 0 (1 + cos T )) 5 < z<3

In Fig.10 values of the dimensionless growth rate L are plotted
against & for P = 0.4. It is seen that the analytic result for
small & is accurate to better than 104 for 8 less than 0.1, that
is for %? < 0.2 where AR is the maximum change in R along z.
The computed growth rate for the periodic system

R=Ro<l+6<l+cos—2%§>>

is also plotted. It is seen that it approaches that of the single
bulge case for large ©&. This is due to the fact that for larger &
the eigenfunction becomes increasingly localised towards the unstable
region in z and the form of the region outside this is of less
importance,

Fig.1l1l shows the dependence of the growth rate on- BO for three
values of 6. The theory used would predict a maximum in these

curves below B, = 0.2 but the calculation is not valid for Py « 1.
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APPENDIX 1T

Evaluation of <@ and rp

Average values of beta and radius of the experimental plasma,
i.e. < and rp, are defined as the beta and radius of an equi-
valent plasma with square density and temperature distribuﬁion, having
the same line density, temperature, and diamagnetism as the experi-

mental plasma. This definition, gives for equal line density,

2 'w
5}@>=f 8r) rir .. (ATI.1)
[0}

and for equal diamagnetism

%z[l - m}/rw (1 - \/1_—?(?0 rdr

(ATI.2)

which may be solved for <ﬁ> and Ipe

The experimentally observed plasma has a uniform temperature and
Gaussian density and pressure distributions. Substituting
B(r) = B, exp(-r?/r2) into Egs.(AII.1) and (AIT.2) gives a series

<,B>— L B B t s e a8 s (AII.S)

In the present experiment it is sufficiently accurate to make

the approximation OX By/2. In this limit rp ® V2 r, giving
Blat rp) = 0.14 Bm. Thus r, was taken from measured density pro-
files as the point where n(r) fell to 14% of its maximum value,

When values of <ﬁ> are quoted they always refer to the uniform region

of the column; the values of Ty, in the bulged and uniform regions

are denoted by r, and r, respectively.
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MHD unstable equilibrium configuration, where:
Ip=14 §1+8(1+cos ZLLZ)} for -L/2 <z < +L/2
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Fig.2 (CLM- P 184)

Schematic diagram of the method used for generating the unstable bulge,
with oscillograms showing the time dependence of the magnetic field
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Bulge amplitude, &, as a function of time for various
field shaping ratios, B,/B,
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Fig. 4 (CLM-P 184)

Framing (left) and streak (right) camera photographs showing the

bulged region and the growth of the m =1 instability. The top

picture shows the case of no unstable bulge, for comparison, and

the other three pictures show the plasma behaviour for three
different values of the field shaping ratio
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The motion of the plasma axis in the r,8 plane during
the growth of the instability
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The measured amplitude of the m =1 instability as a function of time
for different field shaping ratios; & is plotted on a long scale
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The growth rate, wp_, of the m=1 instability as a function
of the effective bulge strengths, ¢, showing a comparison
between theory and experiment
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Fig.8 (CLM-P 184)

Streak photographs at three axial positions showing the propagation of

the m =1 wave from the instability axially along the column; z is
the distance measured from the midplane of the unstable bulge
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Fig.9 (CLM-P 184)

Onset time of the m =1 wave of the instability at different axial posi-

tions along the column, measured from the midplane of the bulged region.
The line is calculated from measured plasma properties using Eq.3
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Theoretical values of the dimensionless growth rate D1 L/Cg (log scale)
as a function of the bulge strength, 8, for 8,=0.4. Numerical and analytic
solutions for the single bulged region are shown, with, for comparison, the
computed variation for the periodic system. (Log scales)
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Theoretical variation of the dimensionless growth rate
®y=1 L/Cs as a function of S, for various values of
& for the single bulged configuration












