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ABSTRACT

High frequency (o » wqj , wpi) electrostatic waves which
propagate in a non-uniform plasma in the presence of a uniform mag-
netic field are described. The analysis is carried out in a cylin-
drical geoﬁetry and both perfectly conducting and vacuum boundary
conditions are included. Solutions of the dispersion relation corres-
ponding to waves propagating perpendicularly (even for a uniform plasma
column) and obliquely to the magnetic field are obtained. For the
case of oblique propagation there are two branches to the dispersion
relation for a given value of |€| where £ is the azimuthal mode
number. The relationship of these waves to the low frequency
(0 « wci) drift waves of a non-uniform plasma and to the lower branch
of the modes discussed by Trivelpiece and Gould (1959) is considered.
The attenuation of the waves due to collisions is computed. In the

appendix the validity of the electrostatic approximation is examined.
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LIST OF SYMBOLS USED

electric field

magnhetic field

magnetic induction

vector potential

scalar potential

current density

average velocity of electrons
number density

mass of electron

charge of electron

Boltzmann's constant

electron temperature

mean electron thermal velocity
collision frequency

wave frequency

ion cyclotron frequency

ion plasma frequency

electron cyclotron frequency
electron plasma frequency
azimuthal mode number

axial wave vector

plasma radius

dielectric constant of free space
magnetic permeability of free snace
velocity of light in free space
ion sound velocity

Alfven velocl ty

ratio of plasma pressure to magnetic pressure
radial coordinate

azimathal coordinate

axial coordinate

time

e bl s



1. INTRODUCTION

The study of waves which can propagate in bounded or non-uniform
plasmas in the presence of a magnetic field has attained great impor-
tance owing to their connection with the low frequency (w « wci)
drift instabilities. Thesé instabilities arise in a non-uniform
plasma where there is a temperature gradient, a current flow, resis-—
tivity or finite ion Larmor radius (Mikhailovskii (1967); Kadomtsev
(1965)). Under certain circumstances some of these low frequency waves
are predominantly electrostatic and they can be described by an
electrostatic potential ¢ where E = - Vo. In this paper we shall
consider the high frequency limitl w.; € @ € Wee, wpj € W of these
electrostatic waves such that the ions can be considered as stationary.
For short axial wavelengths these waves are just the electron plasma
waves.

In this analysis the presence of a magnetic field is essential.

We must also include the effect of a finite electron temperature

since the low frequency drift waves have phase velocities which depend
strongly on the temperature of the particles. We restrict our atten-
tion to frequencies well below the electron cyclotron frequency

w « wee and consider densities and magnetic fields such that wje « W
However, there is also a lower bound on the parameter wpe/wce which
is given in section 4.2, The frequency condition w « WDog is also the
range in which helicon waves propagate. However, for helicon waves to
be excited one requires a large enough concentration of electrons such
that the first order currents are sufficient to perturb the zero order
magnetic field. The limitation we have imposed on the parameter
wpe/wce excludes the helicon wave from the analysis. The precise

conditions for the neglect of magnetic field perturbations (the valid-

ity of the electrostatic approximation) are given in the appendix.



The analysis given in this paper contains the lower branch of the
modes discussed by Trivelpiece and Gould (1959) in the special case
of a uniform plasma.

In section 2 of this paper we derive the dispersion equation for
the electrostatic potential ¢ for an infinitely long cylindrical
plasma in which the plasma density depends only on r. In section 3
we consider the boundary conditions which together with the dispersion
equation determine the dispersion relation for the wave. Solutions
of the diSpersionrrelation which correspond to waves propagating across
the magnetic field and, obliquely to it, are given in section 4. 1In
section 5 the attenuation is considered and in section 6 the conclu-
sions of the work are given.

2, THE DISPERSION EQUATION

As previously mentioned, we consider a frequency range  » Wejs
w » wpj such that the motion of the ions can be neglected. The ions
simply provide a background of positive charge. We also restrict the
analysis to frequencies such that ® « wce and take wje « afe. For
this range the motion of the electrons perpendicular to the magnetic
field is adequately described by the electron fluid equation. We also
use the electron fluid equation to describe the motion parallel to the
magnetic field, a procedure which is justified by the final result.

The equations needed for a complete description of the wave are

the following:

dv g7 = e
Ermm+tW=-gE-g¥«k = B
0
_esr_tl-l-v.gzo, ---(2)
V.E=-=(n-n), en (3)



where equations (1), (2) and (3) are respectively, the electron fluid
equation, the continuity equation and Poisson's equation, in MKS units,
We assume that the electric field is derivable from a scalar potential
¢,
E=-Yp. eee (4)

The conditions under which this is justified are considered in the
appendix.

We choose a system of co-ordinates in which Bgp is parallel to
the axis and the plasma has cylindrical symmetry. Perturbations of
quantities about their equilibrium values are assumed to have the

following form

F = f(r) exp i(kz + €6 - wt) . ewn 18)
We may write the relevant variables of the problem as a sum of a con-

stant part, suffix o and a perturbation, suffix 1 :

Y=g . ¥a s

0]
where —«T 1 dn0 N
Yo = €B, n, dr ‘0

(the diamagnetic drift velocity) and 36 is the unit vector in the

O-direction,

jt
1]
|t

B=

!Dbj

We have assumed that the plasma is neutral in equilibrium and there-
fore there are no zero-order electric fields. The absence of magnetic
field perturbations is a result of equation (4).

In order to derive the dispersion equation we obtain the compo-

nents of v perpendicular and parallel to the magnetic field from



equation (1) (neglecting terms of order V/wee and w/Wee), substi-
tute them into equation (2) using the definition of g(: - ne x) and

then use equations (3) and (4) giving*,

(%)
1+ ==
© el

2 2
V2(p+— ! dno(p+ : knoe e =0
122 we,By r dr . 1E V2 somcu2
14 L2 T { pil
* - a2 o w2

iow [6)

An equation similar to this has been solved by Barrett, Franklin and

Jones (1967). However, they only considered the case £ = O when

dn
the term in —= vanishes. Since we are primarily concerned with the

dr
high frequency limit of the low frequency drift waves we are not
interested in propagation purely along B, and therefore, we consider
only non-zero azimuthal! mode numbers £. Furthermore, since high £
values should be fairly adequately described by slab geometry and

since the low £ values are of greater relevance to experiment we

consider only low values of £ (mainly *+ 1).
Equation (6) is the required dispersion equation for the potential

¢. We now assume a specific form for the density profile, i,e,

(r) =N, (1-aX) =N, £(5) (7)
IIO I‘ —_ 0 - CL az — 0 a 9 e e
where o 1is an arbitary dimensionless parameter whose value lies
between O and 1. With this form for n; and introducing the

dimensionless variable & = r/a the dispersion equation becomes:

* Since we have neglected the off-diagonal elements of the pgessure
Vi

or

since the contributions from these terms are of the same order of

tensor in equation (1) we have also neglected the term vg .

magnitude.



iv
= 2 2
G o = wi K*a’w’ £(z)
Lo - 248q + 0
iv K2V wlw | ¢ K2v2y ¢ )
1 + — = ce 0)2 iy T
L (8)
where
1 d d Z 22
L == = - -k a
e da(gds) 2
and w2 is the electron plasma frequency referred to the axis of the

P

plasma cylinder.

3. THE BOUNDARY CONDITIONS

We consider two sets of boundary conditions, (i) the plasma is
bounded by a perfect conductor, and (ii) the plasma is bounded by a
vacuum. For case (i), the requirement that the electric field paral-
lel to the wall should vanish gives the condition

¢() = 0 at & = 1 wan £9)
When the plasma is bounded by a vacuum the boundary conditions are
the following (Stratton (1941))
E; and Eg continuous

and
g

where o is the surface charge density and (E.),,. and (Er)p are
the radial components of the electric field in the vacuum and plasma
respectively. The surface charge density is obtained in terms of

the potential ¢ by expressing n, in terms of ¢ with the aid of
equations (1), (2) and (4) and then integrating the resulting expres-
sion for n, over a small volume at the surface (Stratton (1941)).
There is only a surface charge if the density changes discontinuously
at the boundary i.e. the density gradient is infinite at the boundary.

The boundary conditions for case (ii) can now be written



Pyac = cpp at = oe. (10a)
do dop e (1 )( i‘)
ag THCs = __P 2 (1) .. (10b)
E=1 18=1 " wlogel (1 T v%>
w

The term on the RHS of equation (10b) is due to the surface charge and
disappears if o = 1. This is to be expected since for a = 1 the
density goes to zero at the boundary and there is no discontinuity.
One further point about the surface charge is that it also depends on
the azimuthal mode number £ . In other words, for a surface charge
to occur, not only must the density change discontinuously at the
boundary but also there must be a radial flow of electrons. The pre-
dominant motion perpendicular to Bgp 1is the E x B, drift and for
this to have a radial component we require an azimuthal electric field
Eg, i.e. a non-zero azimuthal mode number.
In order to specify the problem completely we must also obtain

the solution to equation (8) in vacuum. The solution is

¢ =BKy (k ag), owse (11)
Where Kg is the modified Bessel function of the second kind of order
£ and we have rejected the other solution since it divergzes at infin-
ity. With the aid of (11) the two conditions (10) can be expressed

as one condition

2 iy
d¢p 6 ](ka) Lw (1 —=a) {1+ =
—_—._, == ({l¢] + ka + P (1)
dE |z =1 K,(ka) ~ olo] ( - n 12 ) %
1
w

L ves (12)

The solution of equation (8) which satisfies the conditions given by

either equation (9) or (12) specifies the relation between w and k



for perfectly conducting or vacuum boundaries respeétively.

4, THE EIGEN-FREQUENCIES

To obtain the eigen-frequencies we must solve equation (8). We
were not able to find an analytic solution of this equation in the
ceneral case. However, analytic solutions can be found for certain

special cases:

4.1 k+*By =0, ny = constant

Under these conditions equation (8) reduces to

1 d do £3

= — =t - =0 woe (13

E (‘ng g7 ¢ (13}
whose solution in the plasma is

| 2]

P = AEg caw L14)

where the other solution has been discarded since it diverges at the
origin., There are no wave solutions for this case when the plasma is
bounded by a perfect conductor. However, when the plasma is bounded
by a vacuum, the boundary conditions (10) result in the following

dispersion relation

1 £ .
Ww=-75 Ta27T P (15)
2 e loce
where ng = constant corresponds to o = 0 and Kk is of course zero.

Equation (15) corresponds to azimuthal waves where the eigen-frequency
is independent of mode number and electron mass. This azimuthal wave
has only one sense of rotation and results in a mode similar to that
discussed by Trivelpiece and Gould (1959) for negative £ but having
a finite cut-off for k = O instead of passing through the origin as

was indicated in Fig.8 of their paper.



4.2k .By =0, ny # constant

For this case the dispersion relation becomes,

1 d dop) £° __fp__
g d—g@ £>_%§¢“2emwlw Icp:O eeo (186)

ce
As for the previous case, there is no solution of equation (16) for
£20 , which satisfies the boundary conditions (9) or (12). However
for £ < O the solution of (16) is

¢ = A Jp (pg)
where A is a constant and p® = 2|6|auﬁ/b|wce| and Jg 1is the gth
order Bessel function of the first kind. In contrast to the previous
case we can now find a wave solution which satisfies the boundary con-
dition (9). If =z,g is the s zero of the €™ order Bessel

function then the eigen frequencies for a perfectly conducting boundary

are

2|e| aw?
W= —t (17)

) Zzs l‘”cel o
where the eigen-frequencies are again independent of the electron mass
but where the waves of different azimuthal mode number ¢ are no longer
degenerate. Equations (15) and (17) give the condition for neglect of
m

ion motion i.e., EEE » Ef i

Comparing this wave with the low frequency drift wave (0« w.j)
which propagates perpendicularly to By we notice that whereas the
phase velocity of the low frequency wave is proportional to the tempera-
ture of the ions (Mikhailovskii (1967)) the phase velocity of the high
frequency wave is independent of the electron temperature. The high
frequency wave also propagates in the same direction as the low fre-
quency drift wave i.e, opposite to the electron diamagnetic drift

and the ratio of tha phase velocity of thz2 high frequency wave to the

- 8



diamagnetic drift velocity

v 2
i =——‘2 iz ... (18)
(0]

Z@s D

where M\p is the electron Debye length. 1i.e. |vp| » |v0|

We can obtain a similar solution to equation (17) for the case
when the plasma is bounded by a vacuum except that the quantities 2zpg
are replaced by Yes (say) which were obtained graphically. Comparing
the solutions for a vacuum boundary for ng constant or varying we
see that the effect of the density gradient is to split the degeneracy
of the different azimuthal modes.

To compare the eigen-frequencies for perfectly conducting and
vacuum boundary conditions the ratio of the eigen-frequencies has been
tabulated against £. w refers to a vacuum boundary and w' toa
perfectly conducting boundary. The large factor between the two sets
of results can be understood by the result for a constant density
when ® is finite for a vacuum boundary and zero for a perfectly
conducting boundary. In Fig.1, w has been plotted against a. The
different dependence on o is due to the fact that there is a surface

charge at the vacuum boundary but not at the perfectly conducting

boundary.
& w/w’
1 5-8
2 446
3 44
4 445

for @ = 05 and EE- = 0-1



For a constant density, equation (8) is identical with the dis-
persion equation of Trivelpiece and Gould (1959) for  « wge and
wSe « wge' Thus our analysis contains the Trivelpiece and Gould modes
as a special case™.

When the density variation is included analytic solutions of
equation (6) were only obtained for special density profiles and then
for only one frequency. These solutions provided useful checks for
the numerical solutions.

The eigen-frequencies for the general case were obtained numeric-
ally using a programme written by McNamara (1966). The method
employed was to express the differential equation and the boundary
conditions as a homogeneous set of linear algebraic equations (using
the method of finite differences). Setting the determinant of this
set of equations equal to zero specifies a function whose complex
zeros approximate the required eigen-values.

Figure 2 shows the result of computations for the case when col-
lisions are neglected and the frequencies are.thus all real. The
curves for both vacuum and perfectly conducting boundary conditions
are given together for comparison, both for |€| = 1. The effect of the
density gradient is to split the * 1 modes even for perfectly conduct-
ing boundaries (for a uniform plasma these modes are degenerate). The
occurrence of two branches to the dispersion diagram for finite ka

and given |6| is analogous to the two branches which occur for the

*The boundary condition used by Trivelpiece (1959) is equivalent to
ours since the term ne in equation (11) of that paper is identical

with the term we obtain through allowance for a surface charge.



low frequency drift wave for finite ka and cg « cp (Mikhailovskii
1967), Kadomtsev (1965)). However, for the high frequency wave the
lower branch has the same sense of rotation as the electron diamagnetic
drift whereas for the low frequency wave the upper branch rotates with
the electrons. Figure 2 shows that the phase velocity for both branches
and both boundary conditions is much greater than the electron themmal
velocity (w/k 2 2O.vT). This is just the condition for Landau damping
to be negligible and therefore we were justified in using the electron
fluid equation to describe the electron motion along By. Fig.3 shows
the € = - 1 mode for a vacuum boundary for three different density
profiles. The profile for o = 1 gives no surface charge and results
in the eigen-frequencies being lower. In the experiment (Harding and
Pigache (1968)) designed to check the theory of this high frequency wave
it was found that the density profile correspondsd most nearly to
a = 1.. Consequently the remaining results given will be for this profile.

The curves in Figs.4-5 show the dependence on the parameter ‘“p/“’ce
for the £ = * 1 modes for both vacuum and perfectly conducting bound-
aries. The - 1 curves become flatter as ub/mce increases due to the
fact that for ka = O the wave frequency is proportional to wS
whereas for large Kka, the effect of the density gradient is small
and w tends to become proportional to wp- In contrast to the - 1
branch, which is very sensitive to the boundary conditions for long
axial wavelengths, the + 1 branch is not very dependent on these
conditions since w »® 0 as ka = 0 for both perfectly conducting and
vacuum boundaries.
5. ATTENUATION

The attenuation of the high frequency wave was calculated by

including the effect of collisions on the motion of the electrons

-11 -



along the magnetic field. The damping of the motion across the mag-
netic field was neglescted but this was justified since it is propor-
tional to v/hbe whereas the former damping is proportional to v/w.
The curves of Imk/Rek (Figs.6-7) show that the attenuation per
wavelength is proportional to the collision frequency for ka ~ 1
for both * 1 curves. In this region the damping of the two branches
differs by only a small amount. The biggest difference between the
two branches occurs at small values of ka which is the region where

the two branches are most widely separated. The attenuation of the

+ 1 curve is always greater than the - 1 curve. This is to be
expected since for a fixed wavelength v/w is larger for the + 1
branch.

6. CONCLUSION

The high frequency electrostatic wave described in this paper
requires the presence of an axial magnetic field. The existence of
azimuthal waves for negative mode numbers has been demonstrated, even
for the case of a uniform plasma. In a uniform plasma these waves
can only exist in the presence of a surface charge due to the discon-
tinuous change in the plasma density at the plasma vacuum interface.
In general, these azimuthal waves exist in the absence of surface
charge provided there is a radial density gradient. (In fact, the
azimuthal waves for a uniform plasma are due to the infinite density
gradient at the surface).

When ka £ w/c the £ =0 and positive £ modes can no longer
be described by the electrostatic approximation., Iiowever, the nega-
tive € modes retain their electrostatic character even in the limit

of ka = O,

- 12 -



The electron temperature is found to have very little influence
on these high frequency waves but its effect was included because of
its importance for the low frequency drift waves. The main similarity

with the low frequency waves is that in the electrostatic approxi-

mation there are two branches for a given |6 . llowever, the azimuthal

phase velocity of the high frequency waves is much greater than the
electron diamagnetic drift velocity and the lower branch rotates in
the same sense as the electron drift in contrast to the low frequency
drift waves (Kadomtsev (1965)). Both perfectly conducting and vacuum
boundary conditions are considered and for ka = O the difference
between these two cases is very large for negative £ values. This
is due to the fact that for a uniform plasma the azimuthal waves can
not exist for a perfectly conducting boundary. This fact may be of
significance for the low frequency drift waves.,

Finally, Mikhailovskii and Pashitskii (1966) have shown that there

is a high frequency instability in the range of frequencies we have

d én T

) 8nry)' However, for small

considered when 1 » 1 where n =
temperature gradients the high frequency wave described above is

stable.
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APPENDTIX

THE ELECTROSTATIC APPROXIMATION

The analysis given above was greatly simplified by negl ecting
perturbations of the uniform magnetic field and assuming
E=-Yo
At low frequencies it is the Alfven inode which perturbs the magnetic
field. However, at high frequencies, this mode can be neglected since
the ion motion is negligible. Instead, we must show under what condi-
tions the helicon mode can be neglected since it is this mode which

will cause the greatest magnetic field perturbations. Introducing

the electromagnetic potentials A and ¢ by the relations

Ey = - Vg + iwA ees Al
Hy = v xa e A2
Ho
and choosing the Lorentz gauge
_V_.ﬂ-—iwposOq):O ees A3
we obtain
P'o£1
A= ee. A4
= (i@ + a?fe?) |
where kK2 =K% + K2 .
L A

(NB: The spatial components of the gradient operator perpendicular to

B, have been approximated by i]g_L since we are only interested in

comparing the magnitudes of various terms.)

To discover the importance of magnetic perturbations we simply
compare the part of E4 which arises from these perturbations with
the total electric field. For the field perpendicular to .50 we
n2ed to evaluate

i w_ﬂL
— ey owie AigD




From equation A.4, equation (1) and J = - nev we obtain:

2
E 2 (k2 + w?/c?) Iwcel 2 wr‘[') K=+ @ /¢
where the second term was obtained assuming E = - V¢ . We see

immediately from the first term on the RHS of A.6 that, as expected,

for helicon waves

w = 1
E,|
since for this case
2
K2 =~ “p w w?
N’ E
Cee %
W2
when 0« lwg,l and —P _»1
wlwcel
nOKT
Note also that this term is independent of B where @ = e
1
: 25 g3k ?
Thus, for the neglect of helicons we require wge« m and for

the second term to be negligible fp « 1. For the azimuthal waves
2

E

(kz; = 0) to be electrostatic ki » and  ap £ ckg .

(@]
5]

Finally, we compare the E, fields using equations (1), (2) and

A.4 we obtain ( w2 w  Kp.kp \
5 el ol
w A, ' wp vz " [®ce| kE y.
E, 22 w2 }
1 -
k2 ;
z T
where collisions have been neglected, K, = “lo vV ny, and (EJ_X EO)/EZ

was approximated by (EJ_ X EO) cp/kzzp. Since w/kz »> VT ‘the final

condition for the validity of the electrostatic approximation is

2 2 2
w.«c Kk
P

- ]6_
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Fig. 1 (CLM-P186)

Dependence of eigen frequencies of high frequency electrostatic wave
on a for k.B,=0 and £=-1. The full line - is for a vacuum

boundary and the dotted line - - - -- for a perfectly conducting boundary
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Fig. 2 (CLM- P 186)
Computed dispersion relation for high frequency electrostatic wave for
k.B, # 0. The full line — —is for a vacuum boundary and the

dotted ling = =~ - - for a perfectly conducting boundary



0-03

0-03

0-02

0-01 0-01

IIJI|II|jI1l||]|]|||I||||
AN T T T T A N AT T T T N T A A O T A O A |

Fig.3 (cLM-P 186)
Computed dispersion relation for £ =-1 branch of high frequency wave and
k.By #0. The three curves are for different equilibrium density profiles

and vacuum boundary
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Fig. 4 (CLM-P 186)
Computed dispersion relations for k. B, # 0 and different values of w /@ ,
for 4 =-1 branch. The full line ——— is for a vacuum boundary and the
dotted line - - - - - for a perfectly conducting boundary
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Fig.5 (CLM-P 186)
Computed dispersion relations for k.B, # 0 and different values of wy/w,
for £ = + 1 branch. The full line —— is for a vacuum boundary and the

dotted line - - - - = for a perfectly conducting boundary
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Computed attenuation curves for various values of w,/wc. and Vo,
for a vacuum boundary. The full line—— is for £ =-1 and the
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Computed attenuation curves for various values of w,/w., and v/w.,
for a perfectly conducting boundary. The full line ——— is for

£ = -1 and the dotted line----= for £=+1









