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ABSTRACT

Previous work has shown the P = 1 theta-pinch to be stable for the
mode m = 1 and unstable for m > 1, In this paper it is shown that a
periodic theta-pinch having a radius R(z) = RO(I + 8f(z)), where & « 1,

can be dynamically stabilised for m « 1/8,
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1. INTRODUCTION

As a result of the unavoidable end losses from a straight theta-pinch, estimates of
the length of a possible thermonuclear power reactor are of the order of several hundred
metres., It is possible to remove this loss and to reduce the length by forming a toroidal
pinch. The conditions for such toroidal equilibria have been described by Meyer and

(1) (2)

Schmidt , and Morse, Riesenfeld and Johnson . In such a system the plasma surface has
a corrugated form and therefore stabilising and destabilising regions alternate. This
configuration is rather complicated theoretically and it is useful to consider a linear
analogue. This is provided by a straight axisymmetric pinch in which the pinch radius

varies periodically along its length thus introducing regions of favourable and unfavour-

able curvature,

This linear configuration has been studied theoretically in some detail. The most
important result(s) is that such a configuration is unstable to a given mode m(> 0) if
B <1 /(l + (R/Rw)zm) everywhere along its length where R and R are the radii of the
plasma and the surro;nding conducting wall, In practice it is almost impossible to avoid

the instability regime for m > 1 and the condition is very stringent even for m = 1.

The purpose of this paper is to describe in detail a method of stabilising low m
modes for a P = 1 plasma, the principle of which was outlined in an earlier publica-
tion(4). The method may be described as follows, Consider a linear pinch with a periodic
external magnetic field which produces a surface profile given by R = Ro(l + 8 1r(z)),
where f(z) is a periodic function and & « |, In the absence of wall stabilisation this
systeﬁ is unstable for m > 1 and marginally stable for m = 1(5). Now consider a system
in which this magnetic field configuration and surface profile are made to propagate along
the pinch with a velocity V.. It will be showa that if ]vwi > val then modes m <« 1/&
are stable, where V; = Bg/p, B being the mean value of the magnetic lield at the surface

of the plasma and p the plasma density.

In order to demonstrate this result it is convenient to consider the problem in the
frame of the propagating wave. In this frame the magnetic field is static and the plasma
appeérs to flow. This configuration forms a stationary state. For a given plasma profile,
described by specifying the plasma radius R as a function of the axial coordinate 2z,

it is then straightforward to determine the magnetic field and the plasma velocity field.

We shall consider systems in which the variations of the plasma radius along the

length of the pinch occur over distances large compared to the radius, For simplicity we



assume an incompressible hydromagnetic model for the plasma. We note that in the analysis

of the static pinch the most unstable modes were found to be incompressible.

In Section 2 we consider the propagation of the wave along the pinch. This is done
using an expansion based on the small quantity & ~ R é% . The wave is described by speci-
fying the radius of the plasma as a periodic function of z and t. In the frame of the
wave, whose velocity is Vw, R is a function of =z only and in leading order the axial

flow velocity V is then given by the flux conservation equation
RV = constant.

The magnetic field at the surface of the plasma is given by the modified Bernoulli equa-
tion

v? + B® = constant,

where the density has been taken as unity and we use rationalised units. The radial velo-

cities and magnetic fields are determined in terms of V and B and therefore of R,

In Section 3 the equation for linearised perturbations for which R é% « 1, is
derived. This is done by linearising the modified Bernoulli equation for the plasma sur-
face and applying the surface boundary conditions to the solutions for the perturbed
plasma velocity and magnetic field. The equation is derived in terms of the radial sur-

face displacement of the plasma, &, and may be written in the form
d 2 _ y2ype 4E ) dag
dz [}B VAR qz | - 2w R?V dz
. . V= dR
2p2 _ 2 2
4»[}» R - 4.2 + BQ) v (EE)

_p &R
dz? (

m4>w+(wmvﬂj £ - o. e ()

For a specified plasma profile R(z) and the 'Alfven speed', B, and flow velocity, V,
given at some value of z, there will be an infinite set of mode numbers m and each of

these will have an infinite number of axial modes corresponding to solutions of Eq.(1).

In Section (4) we consider the stability of a periodic plasma defined by
R = RO(I + 8f(z)) where 1 » & » e. The case of small & is considered and the stabil-
ity of modes m ~ 5% is determined by an expansion in & about the cylindrical system
& = 0. The normal modes of this system have the form eikz and since there is no de-

stabilising mechanism it is positively stable for all k > 0 and marginally stable for

k = 0., Now, for the type of problem we are considering the eigenvalue w 1is given by
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an equation of the form

Lw? + 2Mw + N = 0

where L, M and N are real, Thus

=M (M? - LN)lﬁ

w L °

The necessary and sufficient condition for stability for a given mode is, therefore, that
the discriminant

b=M*-1LN>0.
For a given mode, A is expanded in various small parameters and we note that the first
non-zero term in the expansion determines the stability of that mode, since the addition

of higher order terms cannot affect the sign of A,

Now, for a cylinder A >0 for k>0 and A =0 for k = 0. For finite & and
kR » & we can expand A in & and it is clear from the argument just given that these
modes will be stable to all orders in &, Thus, referring to Fig.1, the region marked 1

on the (kR, &) diagram is stable.

We next investigate kR ~ &, that is region 3 in Fig.l, by considering the larger
regime 1 » kR » e. With this ordering Eq.(1) becomes

2
(B2 - v2) gz% ~ 2i0V %% +w?E =0,

If R were a constant this equation would describe the stable waves of a cylindrical
pinch, their frequency being given by w, = - k(V * B)f With R a function of 2z, then

to leading order in ¢, w,_ 1is given by an average of this frequency along the pinch and

2
is still real. Since A is given by %f—(uL - w)? it is seen that A >0 to leading

order in & and therefore to all orders in e, Thus for 1 » kR » € the system is stable
to all orders in & for all &,

It is seen from Fig.1 that the two regimes shown to be stable, namely kR » & and
1 » kR » ¢ overlap. Furthermore the region kR « & overlaps 1 » kR » € so0 that the
stability of the kR « & region determines the stability of the system. This is not
surprising since it is this region which is unstable in the case of a static plasma.

Thus we next consider kR « & and expand A first in k and then in 6. The lead-

ing term is of order k°32 and is given by



where A 1is a positive constant and

{(m-:) v (m=3) (Y)Z}E
Vv 4 v 2 B
t=a) - [0+ ) @ ]- :
v 2
| (§)

where V and B are zero-order quantities in & and therefore constants,

T may also be written in the form

_ 1 ay® _1y2 , 83 1 vy®, ] V)27
=3 [}4(3} - e — (m-1) + (m-3) (E) sl =zl ) |-
1 - (g)
It is clear that if V2 > B® then T >0, A, _ > 0 and therefore & >0 to all orders
?

in ®. Thus for kR « & the system is stable to all orders in & and e,

This result therefore shows that for & » & the plasma is stable to m « 1/6 pro-
vided V2 > B?, In physical terms this means that a static plasma with a periodic profile,
for which all modes m > 1 would be unstable, will be stable for m « 1,/6 if the profile
is made to propagate along the plasma as a wave with velocity greater than the 'Alfven

speed’,

Owing to the simplifying assumptions made and the neglect of certain modes the pre-
sent proposal must be regarded as tentative, In particular, although all low m-modes which
were previously unstable appear to have been stabilised it is possible that. new modes may
have been introduced. Because of the assumed sharp boundary the higher m-modes, which
have not been considered, do not fall within the practical range of validity of the pre-
sent model., It is probable that these modes are not important as they are not observed

(6)

experimentally in the static configuration .

The result of this paper suggests that for a toroidal theta-pinch the equilibrium
profile, necessarily periodic and therefore unstable, may be stabilised if the profile is

made to propagate round the torus with sufficiently high velocity.

2, DESCRIPTION OF THE WAVE

In this Section we consider the variation of the properties of the pinch as an azi-
muthally symmetric wave is made to propagate along it., The plasma is taken to be axi-
symmetric, perfectly conducting and incompressible. The assumption of incompressibility
is made to simplify the calculation but we note that the worst modes in the static system

were found to be incompressible. The plasma is completely separated from the confining



field which has no azimuthal component,

The wave is defined by specifying the plasma radius R by
R =R, (1 +8r(z -V ),

where R0 and & are constants and f 1is a periodic function of period A, Such a wave
may be produced by alternating the current in the coils producing the magnetic field with
a frequency VW/K and with an axial wavelength X. The wave is most simply described by
moving to the frame in which the wave profile R is static, and the rest of the calcula-

tion will be carried out in this frame. We then have
R =R, (1+ 8r(z))

and the plasma and magnetic field appear to be in a stationary state, the plasma now hav-
ing a flow velocity in the opposite direction to that of the wave. It is now necessary to

determine the magnetic field and plasma flow velocity in terms of R,

The physical quantities are expanded in the small parameter g ~ R/K(s)’(s), It is

assumed that Rw/l « 1 where Rw is the coil radius so that € « 1, Thus we write for

the magnetic field

where the subscripts indicate the & order.
In zero order V-B =0 gives

B e

h(z)
ro r

where h(z) is an arbitrary function of z. Since, at the interface, we have

~ & ve. (2.1)

it follows that Bro(R) = h(z)/R = 0 and hence Bro(r,z) = 0,

From ¥V x B = 0 we have

B = Bzo(z) and B, =B (z).
To first order V-B gives
' dB
1 zo glz) 5
BI‘:.'. > 2 Ly dz_ + r 2o (2- )

where g(z) remains to be determined.



The motion of the plasma is taken to be irrotational and since we assume incompres-—
sibility

Tx¥y=3v=0.

In zero order V.V = O gives Vro = H(z)/r so that Vm = 0. From ¥ x V =0 we have

Vs, = Vzo(z) and VZl = V21(z) .

To first order V.V =0 gives

1 dvzo
Vv = e o= T ee—— . sau (2-3)

w VR
dz VZIRS
now gives
1 1 dszo 1 dvzo
- — R2 LA - — ——
g_2R520<B i e ) eeo (2.4)
Zo Z0

From the conservation of flow we have

R
j. r Vz(r,z) dr = constant
0

or to leading order

R®V__ = constant . waw [245)
Z0
Since pressure balance at the inferface is given by

p(R(z)) = 3 B, (R(2)) ,

we obtain a modified form of Bernoulli's equation

1 2
v? + = B® = constant . an s (2.6
z0 p zo ( )

Thus, for specified values of the constants in Eqs.(2.5) and (2.6), Vzo and BZO are

determined as functions of R,

3. THE PERTURBED MOTION

Having described the propagating wave as a stationary state in the frame of the wave,

we shall in this Section consider perturbations to it and obtain an equation for the



perturbed motion of the interface. It will be shown in the next Section that, for the
modes of interest, the perturbed motion of the plasma is irrotational. We shall also

find that we only need the equation of motion for the case in which the variation df
perturbed quantities along =z is slow, so that R gz ~ g « 1. The quantity & as
defined here is not necessarily the same as that for the equilibrium quantities, However
it is convenient to use the same symbol for both cases and to keep terms to the same order
in both quantities. If then conditions are chosen such that the two g's are of the same
order the equations will be valid. If, on the other hand, conditions are such that in a
particular equation any terms are much smaller than the others the renaining equation will

still be correct. The case of R é% not much less than unity will be discussed in the

next Section., Since the plasma is incompressible it is convenient to set p = 1,

The velocity potential ¢ satisfies the ordered Laplace equation

19 (98¢ _m _
r ar (r ar) rz $ =V

where perturbations are taken to vary as exp i(mé + wt) and we only consider m > Q.

We shall take m ~ eo and we note that for higher m the present sharp boundary model

would not be appropriate , The bounded solution is

(P e A(Z)r‘m eas (3.])
and hence
T ' E m—1
v, = vP(R) F
and
dv’
R r m-1 dR _,
1 B, — H=1 4N
VZ\R) == ( T i vr>r—R’ e (3.2)

where é% means the total derivative with respect to z of a quantity evaluated on the

surface r=R.

Similarly the scalar magnetic potential has the form

v =clz)r™
giving
' opt Rym+1
B = BP(R) (r) ’
and
!
gy - R Sr, meaR
Bz(R) T m ( @z TR az Br R s (Bx5)

- F=



We note that v/ ~ ev’ and B! ~ eB/.
A | i z T
The normal velocity of the surface, u', is given by

’

1<?

u'=p'e N+ ney , eo. (3.4)

where

"+ EW,

1< ?
1
1<

and n is the unit vector normal to the surface. Its perturbed z component is given by

=
]
I
;:.ln.
N gy

where & = EP(R) and n; is of order €°.
Writing Eq.(3.4) in its explicit form, we have

av

. ri
u' = iwE + O(we2E) =n’ V.. +n' V. +n v/ +n v +n <
£ + 0(we®€) = ny V., z ' Zo r'r z z r 5 TIr

Retaining leading order terms the equation becomes

oV
e fiwrv, L -o—2)¢ (3.5)
Vi = lw+ V.o dz or 2 te .

Similarly, since the surface must remain a stream surface,

n'+B + nB =0, ... (3.6)
where
E=B'+2%B,
so that
aBri
! ! ’
n Br1 + n BZO + anr + nsz + anr‘ = = 0

Thus to leading order

B’ =B d__E_‘, aBl"l

r zo dz ~ or *°° een (3.7)

Since we are considering irrotational motion Bernoulli's equation can be applied to

the surface of the plasma which must be a stream surface, thus
. 1y2
%t +p 3 Ve = 0.

Linearising and using the pressure balance relation

p’ = BB



the modified Bernoulli equation is

_i‘E+B-

ot =1

1<

loa?

+ V-

We now consider the orders of the terms which comprise this equation. It can be

written in the form

3B,. v
. s 1 ; ri
—lug” + B, (Bz * Er dz )+'vzo(vz & Er dz )
eee (3.8)
B oV
s ri , P .
+ Bri(Br * gr Jr ) + Vri(vr * Er ar YD
From Eqs,(3.5) and (3.7) we observe that R ~ evzo and B; ~ g& respectively.
Using the equation for the total derivative at the surface,
w(R(z) _ [y, @Ry
dz 0z dz or ?
r=R
and the surface equation
V
4R _ Efi ot (3.9)
dZ —B -—-V ? s .
Z0 Z0
Eq.(3.8) becomes
dBp,

] r ' I
Loyt + Bzo Bz * Bzo dz Er + Bri Br

ve. (3.10)

V. v +V dv”g V. v =0
* Voo Vz v V20 Taz S T Vr Vr T '
Since v; « ™' we have
R
ro_ ’ = e el
= j‘ oo dr = VF{R) .

Substituting for v; and B; from Egs.(3.2) and (3.3), and using Eqs.(2.6) and (3.9),

equation (3.10) becomes,

4%

2

4

RV’ 4 (rs’ ' B YR = 0. el (3011
iwRv' - B o= (RBr') +¥ o 5 (er) + m(BZO + Z0) o E=0 ( )

Using Eqs.(2.5) and (3.9), and

( avpi) Vr1
ar R R



and

Eqs.(3.5) and (3.7) become

B B el
er = LoRE + 7 (RVZO E)

and

d
RB G (RBzo E) .

'
r

Substituting these into Eq.(3.11), we obtain after some algebra,

4a 2 _ y2yp2 495 : 2 4dE
e ((B VZ)R & - 2iw VR T2

2
+ l:ngz + BR L @> - R(V® + B?)(m-1) %—E:l E =0,

dz dz z

where the suffices on V_, and B have now been dropped. Using Egs.(2.5) and (2.6)

this equation can be written in the alternative fomm

D-iCL
LR

da 2 _y2yp2 QBN _ 5 42
o ((B VZ)R ﬁ> 2iuVR

+ [ngg -4 (2 + ‘;—2) V2 (giz‘)2 - {(m—l)BQ + (m—s)vz] R 3—2%] E =0 . ... (3.12)

Given the values of V and B at some 2z, their values are determined everywhere as a
function of R from Eqs.(2.5) and (2.6). Thus for a specified R(z) Eq.(3.12) describes
the perturbed motion of the surface of the plasma, In the next Section we shall use this

equation in analysing the stability of the system.

4, STABILITY ANALYSIS

We are concerned with the stability of a pinch having a profile which, in the frame

of the wave, is given by

R:RO(l'i'éf{Z))’
where T is a periodic function and & « I, Although Eq. (3.12) is valid for higher
order in & we shall restrict our attention to m ™ &°. Stability will be determined

by an expansion in & about the cylindrical system 5 = 0, The normal modes of the

cylindrical system have the form elkz and since this system has no destabilising

- 10 -



mechanism it is positively stable for all k > 0 and marginally stable for k = 0(7).
Now, for the type of problem we are considering, it can be shown(s) that the eigenvalue

w 1is given by an equation of the form
Lo? + 2Mw + N = 0

where L, M and N are real. Thus

2 %
- M * (M® - LN)
w = L .

The necessary and sufficient condition Tor stability for a given mode is, therefore, that

the discriminant
A=M*-LN>0.

In what follows we shall be making use of expansions in various small parameters, We
note that if A is expanded in these parameters then the sign of the first non-zero term
in the expansion determines stahility since the addition of higher order terms cannot

affect the sign.

Now, for the cylinder we have A >0 for k >0 and A =0 for k = 0. For finite
& and kR » § we can expand A in § and it is clear from the argument just given that
these modes will be stable to all orders in &, Thus, referring to Fig.1l, the region

marked 1 on the (kR, &) diagram is stable.

When kR « & this argument cannot be used since the expansion of A must first be
made in the smallest parameter which is no longer &. This corresponds to region 2 on the
diagram and this is the crucial region in that it is those modes which are unstable for a
static system, We shall ultimately obtain a stability criterion for this region. However
to prove stability for the system we must demonstrate stability for all k and the region

3, kR ~ &, must also be covered. This part of the proof will be carried out next.

In this Section we shall use the symbol & to refer to the characteristic lengths
of the equilibrium only, so that e ~ R/A where A is the period of f(z). We shall
consider only systems for which 1 » & » € so that the region kR ~ & is part of the
region 1 » kR » €. Eq.(3.12) is valid for this region but before using it we must demon-

strate the validity of the earlier assumption V x v’ = 0,

Curling and linearizing the equation of motion gives

%ll%
+
1<
E\
|
E
12
1
o

- 11 -



where w' = V x v'. To zero order in & and indicating orders in & by subscripts,

. .
iw + kv, Jwi =0,

where the solutions have been Fourier analysed. Thus apart from the uninteresting solu-

tion whk =~ Vzowe have E{’) = 0, Since w':W now has no first order part we obtain
aw "
dt ~ !
where L B3 +V 2 is the time derivative moving with velocity V__. Since the
dt ot Z0 0z o]

system is periodic this shows that there are no instabilities for ‘i; # (0, Thus we

consider only ‘i".; - 0 and then, by induction, w’ is zero to all orders in &.

We now return to Eq.(3.12) and for 1 » kR » £ the equation becomes
2
(B2 - V?) d—% _2i0veE L =0,
dz dz

Defining a new variable k(z) by & =exp i j kdz we obtain

(B2 - V?) (-k2+i%'§)+2wv;c+w2=o.

Assuming that lg—l;' | « k2|,

- W

k(2) =y v B

Since this k, and therefore &, 1is periodic with wavelength A it is necessary that

A
f k(z) dz = 27n
o
where n is an integer, thus

27n

(.l)i = - N y

dz
VB
o

so that  is real. We notice that the neglect of the g% term was justified.

To leading order in & the discriminant is given by

K e

2 2
_4L (w+—m_)

- 12 -



and this is clearly positive. It will therefore be positive to all orders in & and we

conclude that for 1 » kR » & the system is stable to all orders in € for all b,

It remains now to consider the case kR € &. Since we have shown stability for all
other k the stability of the system depends upon this case. First we need to determine

A. Multiplying Eq.(3.12) by E&¥ and integrating over a period in z we obtain

Lo® + 2Mw + N = 0 ,

where

L = j' RZ%E%dz ,

M=-iR¥% j‘gf %E dz
and
dEv 2 V2 dR 2
N = f {(v2 - B?)R? ('&E) -[4(2 +3 ) V@ =)
+ ((m=1) B® + (m=3) V3) R %EEJ 52} dz .
z

It is straightforward to show that the coefflicients L, M and N are real, Solv-

ing for w we have

The discriminant is therefore
A =M%~ LN .

In principle the method now will be to expand A first in k and then in & and to
determine the largest termm in the expansion. Thus we write A = m?n &mn where the sub-
scripts denote the order in k and &, so that %nn e kmbn. It turns out, however,
that there is a non-zero term for k = O and it is sufficient to consider only Ao,n'
Thus, from Eq.(3.12) we have EO = constant and w =0 where subscripts denote the
order in &. To first order in & Eq.(3.12) becomes,

d’g,  d°R,
(B - V2) R ey ((m-1) B2 + (m-3) V7) g =0

and the solution for k = 0 is

(m-1) BZ + (m-3) Vi R,
gi = . . EO .
B® - v® 0
(0] (0]

= 18 =



dg
Using the periodicity of R(z) and noting that :E? = 0 it is easily seen that

A = A = 0. The next term is finite and is given by
2 .2 Vg 2 de R 2
A =f RS £ dz f{4(2 + F) vy (3) E’o

2

d R1 5
2 ((m—ﬂ B0B1 + (m=3) V0V1>R0—d—;2—- £

i

(6]

dle .
2 2
(}m—l) B2 + (m=3) Vé) [%1 T &

4

2

d®R,
- R0 dzz E"0 E":L:l

+

dg, =2
2 _p2 2 1
L (VE - B2) R2 (o ]dz .

From Egs.(2.5) and (2.6) we have

R,
V, = -2V — ,
1 o RO
and
v: R
o 1
B, =2 — =
t Bo Ro
so that
4 2 2 de 2 d
Ao,2=}‘E'OBORon(TZ) Z >
where
T = 4U% - ((m=1) + (m-3)U2) _ ((m-1) + (E—s)Ug)a
1 -U
and
2 _ v2/n2
v? = Vb/Bo .

The necessary and sufficient condition for stability is that T > 0. If T > 0 the

system is stable to all orders in & and e. We may rewrite T in the form

It is now clear that for -U® > 1, that is for the wave velocity Vw greater than the
Alfvén speed B, all m~ &> (m #0) are stable. This is the crucial result of this

paper, We can also ask more generally what values of m and U are stable, This is

= I e



easily determined from T and the results are shown graphically in Fig.2,

5. DISCUSSION

In this paper a method of dynamically stabilising the low m-modes of a corrugated
theta-pinch has been suggested. However, owing to the simplifying assumptions made and

the neglect of certain modes, the suggestion must remain tentative.

We have only considered the B = 1 case, but since this was found to be positively
stable, there must be at least a range of B just less than 1, for which the system is
stable. The modes m > &° have not been discussed but this is probably not a serious
restriction since these modes are not observed in experimental theta-pinches. The reason
for their absence is thought to be the influence of finite Larmor radius effects which of
course are neglected in the present calculation. The mode m = 0 is not included in the
calculation and although this is a very stable mode in the static system, it is possible
that it may be made unstable by the presence of the imposed wave. Finally, it is possible
that new modes, not covered by the asymptotic expansions in this paper, may be introduced,

(4)

Following the original publication of the proposed method of dynamic stabilisation,
a letter was published by Troyon(g) pointing out the mistake of the authors in not drawing
attention to the limitation of the calculation to m ~ &° and in wrongly claiming stabil-
ity for all m. Troyon also considers the stability of modes m ~ 1/6 and concludes that
for sufficiently large m there will be instability., In deriving this result it was
_ 10

assumed that ® is real so that the boundary of stability is w . This is not

necessarily, and not in general, correct, since w is .determined by the solution of a full
quadratic. It.is also stated in Troyon's paper that the proposed method depends upon the
fact that the average destabilising force along the pinch vanishes. This is not so since
the average destabilising force along the pinch does not vanish and the corrugated pinch

is unstable in the absence of dynamic stabilisatiun(s). Finally, the relevance of the
linear analogue of a bumpy torus is questioned. This is indeed an assumption, but it is
interesting to note that in the description of toroidal theta-pinch equilibria given by

Morse, Riesenfeld and Johnson(z), the leading order perturbation to the cylindrical con-

figuration is azimuthally symmetric.

= Y =



3.

6.

7.

9.

10,

6. REFERENCES

MEYER, F. and SCHMIDT, H.U. Z. Naturforsch. 13a, 1005, (1958).

MORSE, R,L., RIESENFELD, W.B. and JOHNSON, J.L. Plasma Phys. 10, 543 (1968),
HAAS, F.A. and WESSON, J.A. Phys. Fluids 10, 2245 (1967).

HAAS, F.A. and WESSON, J.A. Phys. Rev, Letters 19, 833 (1967).

HAAS, F.A. and WESSON, J.A. Phys. Fluids 9, 2472 (1966).

BODIN, H.A.B., NEWTON, A.A., WOLF, G.H. and WESSON, J.A. To be published in Phys.
Fluids,

GLASSTONE; S. and LOVBERG, R.M. Controlled Thermonuclear Reactions, D. Van Nostrand,
Inc., Princeton, New Jersey, (1960), p.508.

FRIEMAN, E. and ROTENBERG, M. Rev. Mod. Phys. 32, 898 (1960).
TROYON, F. Phys. Rev, Letters 19, 1463 (1967).

On the basis of this assumption the result given for the region of unstable m
appears to be too high by a factor of 4,
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Fig.1 (CLM-P188)
Schematic diagram of the regions covered by the
various orderings in the (kR , 8) plane
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Showing the stable region in the (m,V;/B%) plane. (Only integral
m have physical meaning and m = 0 is notincluded. Calculation
is not valid for (V,-B,) T 8V,.)












