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ABSTRACT

The propagation of high frequency electrostatic waves is consi-
dered in a plasma in which there is a zero order temperature gradient
perpendicular to the uniform magnetic field. The frequency range is
such that the ions do not respond to the perturbed fields (w » Wei s
W > Wph§ where w.; and wpj are the ion cyclotron and ion plasma
frequencies respectively). For o « Wee , KL » pe and a specific
form of the temperature gradient the differential equation for ¢ is
reduced to an elementary form where W, W,e are the wave and electron
cyclotron frequencies and KL and Pe the wavelength perpendicular
to the uniform magnetic field and the electron Larmor radius respec-
tively. ¢ 1is the electrostatic potential. For A\, « a where a
is the scale length of the temperature gradient the exact solution is
very close to the local solution of Mikhailovskii and Pashitskii(s)
which neglects the effects of the boundaries, However, for A Sa
the plasma is unstable to shorter axial wavelengths than predicted by
the local theory. It is shown that the instability is due to the
interaction of a positive energy wave with a negative energy wave.
When the phase velocities of the two waves are different the plasma
is stable. However, when the non-uniform plasma is adjacent to a
cold resistive plasma, instability may again result. This 1s analo-
gous to the resistive wall amplifier of Birdsall et al(lo). The
relevance of these results to the stability of low frequency waves in

a non-uniform plasma is pointed out.
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1. Introduction

There is a class of plasma instabilities which occur only in a
non-uniform plasma in a magnetic field. These instabilities are

(1)

usually referred to as drift instabilities and are of great import-
ance for research on thermonuclear fusion. If such instabilities are
confined to the interior of the plasma due to the unstable wave grow-
ing to non-linear proportions faster than it can propagate a scale
length in the direction of the non-unifonmity(1) then the effect of
the boundaries will be unimportant. The condition for this to be the
case is that the wavelength transverse to the magnetic field be much
less than the scale length of the noh—uniformity(T). Waves in a
cylindrical plasma, of low azimuthal mode number, do not satisfy this
condition and Chen(z) has shown that the growth rates obtained from a
non-local solution (i.e. solution of boundary value problem) are
markedly different from the growth rates obtained from the local solu-
tion,

In this paper we consider a high frequency drift instability

(3)

discovered by Mikhailovskii and Pashitskii in which only the elect-

rons respond to the wave fields. Whereas Mikhailovskii and Pashitskii
made use of the local approximation(1) we obtain the non-local disper-
sion relation taking into account the effect of the boundaries.

In section 2 we derive the dispersion relation for semi-infinite
slab geometry and obtain a generalization of reference 3. The instab-
ility is shown to result from an interaction between a positive energy
wave and a negative energy wave. In sectipn 3 we consider the effect
of a cold plasma adjoining the non-uniform plasma. Finally, in

section 4 we summarize the main effect of the boundaries on this

instability and the probable effect on other instabilities.



2. The Non-Leccal Dispersion Relation

We consider a slab model in which the non-uniformity is taken to

be in the x-direction and the steady uniform magnetic field points

B,
along the z-axis. The plasma extends to infinity in the y and z
directions. The situation we wish to consider is such that

VT/T » Vno/ho where T 1is the equilibrium electron temperature and
ny the equilibrium density. For the sake of simplicity we neglect

the small density gradient and assume a uniform density. For such

large temperature gradients the corresponding drift frequency

kJ_KT 1
Wy = By S satisfies the conditions w, » Wej 2 Wy » Wpj where
uEi and wpi are respectively the ion cyclotron and ion plasma fre-

quencies. a 1is the scale length of the temperature gradient, k,
is the wave vector perpendicular to Eo,q is the electron charge and
k¥ is Boltzmann's constant. Since we shall be interested in frequen-
cies w ~ w, we assume that the ions do not respond to the wave field
i.,e. they just provide a uniform background of positive charge. We

also assume that w « Wee and that the steady magnetic field is suf-

ici t
ficiently strong such that Woe * Upe where W and wpe are the

electron cyclotron and electron plasma frequencies respectively. If

we are concerned only with wavelengths perpendicular to Eo much

greater than the electron Larmor radius then we can describe the

motion of the electrons by means of the Vlasov equation in drift

(4)

space . The distribution function for the electrons is expressed

as follows
f= f(,I:'G’ My Uz, t)

where Ta is the position vector of the electron guiding centre, p

2
; 1 mup
is the magnetic moment (u =73 3

) and u, and u; the velocity

(o)



of the guiding centre along B, and perpendicular to Bp, and t 1is
the time. (f has been assumed independent of the azimuthal velocity
co-ordinate.) If we split f into an unperturbed part fo and a

perturbed part fy the linearized Vlasov equation becomes:

%_+Z:O_E1XEQ+ 6821 uz"r'?’ gEzzo ) (1)
I BQO uz m

where we have used the fact that

d
o

d
G _ExRB
dt 2 z 'z
< B
0
and
d
Tz _a
dt m %
where 7T is a unit vector in the z-direction and where we have

Zz

assumed that the electric field is derivable from a scalar potential

¢,(E,=-V 9). The conditions for the validity of the electrostatic

approximation in this frequency range are

2
w 2. 2
e 2
_g.- & .9_].{._ § w & czkz
w wmce pe
ce

and B « 1(5) where [ is the ratio of the electron pressure to the
magnetic pressure. A subscript o indicates an unperturbed quantity
and a subscript 1 a perturbed quantity. Looking for solutions of
the form ¢, = qﬂx)ei(kyy + Ky —-wt), we solve equation (1) for the
perturbed part of the distribution function fy and hence calculate

the perturbed electron density from

n:L = / fi duZ e (2)

giving



k, of g dug
m o, (wkuy)

ers (3)

duz

v —_
m“’ce /( foxzq)i)z (w-ku,)

Substituting this expression for n; into Poissons equation we obtain

the equation for ?,

2 of
VB _ k2 q l 0
L ®~ %z @ L_l+ egm kg du, (w—-k 2

iq? du
L i Z =
i [ @t TRy

eee (4)

which is the same as that given by Mikhailovskii and Pashitskii.

€ and m are the dielectric constant of free space (MKS units)

(o}

and the electronic mass respectively. fo is the unperturbed electron

distribution function and k, 1is the z-component of the wave vector
k. We assume that there is no equilibrium electric field and take
fo(uz,x) to be

ee. (5)

1, ~mus/2kT(x)
folug,x) = ng { 55%%?;?}6 e

where ng is the equilibrium density, and T(x) is the equilibrium

electron temperature which is assumed to depend only on the co-

ordinate x, 1i.e.,



For the equilibrium distribution function Ty given by equation (5)

the integrals over velocity space occurring in equations (3) and (4)

(6)_

can be expressed in terms of the Plasma Dispersion function We

1,
look for solutions such that uykz > (E%;)%nd therefore make use of
(6)

the asymptopic form of the Dispersion function . Assuming a linear

form for the dependence of T on x, i.e.
X
T="T, (1-F) ss 18]
equation (4) can be written

2 w2 _w,
2 Ee*
a9, _ g2 P+ k: %gf ¢, - k3 ¢ =0

dx=2

een (7)

where kK2 = k§ + k3

kTO

wcemL

- k_y

and W

The dispersion relation is now obtained by solving the boundary value
problem specified by equation (7) and the values of ¢ at x =0
and x = L. Assuming the non-uniform plasma is bounded by a perfect

conductor at x =0 and x = L the boundary conditions are
¢,=0 at x=0 and x=1 eos (8)

The general solution of equation (7) is

¢,= A sin Bx + B cos Px eee (9)
wze a EEQw*
where g2 = kg '£'.'a -k, 3 k®
w

Applying the boundary conditions (8) we obtain B =0 and BL = nx

resulting in the dispersion relation

2 2
2 2 k k
3 n-gm P Z A
w (1 = P 2 = .o (10
(1 + -EEEQ) wpe & w + ];ﬁ ubeu@ =0 (10)
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This equation has three sets of roots two of which correspond to the

electron plasma wave and the third ~w, which we refer to as the

(7)

drift wave . The condition for this equation to have complex roots

is
B3 X VF_ o)
n°n 3¢ 3 _ C
k,< (1 + kBLg) > wpe k = kj eee (11)
For short wavelengths i.e., 28
_.Tt_« ‘I
K3L*?

condition (11) tends to that given in reference 3. The local solution

gives a critical axial wavelength below which the plasma is stable.

n2ﬂ2

k2L*
lengths. The finite geometry introduces an infinite set of unstable

< 1, instability can occur for shorter wave-

However, for

harmonics of decreasing axial wavelength. The conditions for the
validity of these solutions are similar to those given in reference 3,

namely

n®n* )%

d « 1/(1L + 37

Ky ... (12)

where d is the electron Debye length and ky » k, and

2 _2 1

n®*z? % Ype (13)

kK, L « (1 + =) s
% k~L Wee

(8)

Hasegawa has recently given a method for obtaining the condition

for instability in terms of the longitudinal conductivity defined as

) imqm
(o3 =

—VE(Pi oo o (]4)

where n; is the perturbed electron density. The conductivity
obtained here 1is

w'c
. pe, a _ Wy
lweo =57k, (L —==]

8.8
)
L2
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For instability to be possible c£ must be active, as defined by
Hasegawa. The ot in equation (15) is purely reactive and the con-

(8)

dition for this to be active is
- (Imc?) >0
dw

for some real w. This gives the condition

w < Zw*

as a necessary condition. The occurrence of a reactively active con-
ductivity corresponds to a negative energy wave(s) and such a wave
can only be unstable when there is some sink for it to lose energy.
For the instability given here the sink is provided by a positive
energy plasma wave which for the condition (11) is in resonance with
the negative energy wave i.e. the phase velocities are equal and the
interaction of the two waves is analogous to the travelling wave
tube(g). The occurrence of the roots as a complex conjugate pair is
characteristic of this interaction. For axial wavelengths which do
not satisfy condition (11) the plasma wave goes out of synchronism
with the negative energy wave and the three roots are real even
though the conductivity is still reactively active,

3. Non-Uniform Plasma Bounded by a Uniform Cold Plasma

We next consider the configuration shown in the diagram

Perfect Conductor 1 2 Perfect Conductor
\.._Vh_/
Ly
Lo
x-—)

where region 1 denotes the hot, non-uniform plasma and region 2

denotes the cold uniform plasma. As before, the non-uniform parameter



in region 1 is the electron temperature. The electron density is
taken to be uniform in both regions and the density in region 1 is
aésumed to be equal to the density in region 2, As before the system
is infinite in the y and 2z directions and the steady magnetic
field again points along the z-axis. The equation for the perturbed
electrostatic potential in region 1 is given by equation (7). The
dependence of T on x is again given by equation (6) except that

L is replaced by Li. Since the plasma in region 2 is assumed to be
cold we can obtain the equation for ¢, from a fluid description,

For this we use the following equations

d»!g_ q
— g
ac T Y mE1+mXﬂ.XEO ees (16)
an 4
e ot . — L 7
a5 +Y%3, =0 (17)
n,q
E-E = —h—i ' (18)
~g €9

which are respectively, the equations of motion, continuity and
Poisson. v, 1is the fluid velocity, Js the perturbed current
density and the effect of collisions has been included through the
collision frequency v. With the aid of equations (16)-(18) and the
electrostatic assumption we obtain the equation for ¢, in region 2

2

2
Po, 12 o, k2 Yhe
axE Tt o(w+iv) 1= © e KT}
The solution ?, in region 1 is
T
¢, = A cos.B4x + B sin Bix ... (20)
and in region 2
I1
?1 = Ccos Bex + D sin Bux .ee (21)



where 2 2
B2 = kg BE 1z e 2 _ 2 ... (22)

and

Il

B2 = k2 Zpe g2 oes (23)

A variable with a superscript I or II indicates that the corresponding
quantity refers to region 1 or 2 respectively. The dispersion relation
is obtained by matching the solutions (20) and (21) to the boundary
conditions at x =0, x=1L; and x = L. The boundary conditions

at x =0 and x = L; are

(P.ﬂ. =0 at X=O eas (24)
917 =0 at x =L cer (25)

The remaining two boundary conditions are

I
P, = ¢fI at x = Ly ;
a I a II ) e e s (26)
e = b £ at x=1L4 )
ax ox )
Applying these conditions we obtain the dispersion relation
By
tan Bali + tan Bz(Lg=Li) =0 sss (27)

B2

Equation (27) reduces to equation (10) when Lz = Lj.

In the example in section 2 (equation (11)) we found a critical
value of Kk, such that for kz > kz the positive energy plasma wave
went out of synchronism with the negative energy wave and stability
resulted. For v =0 and k, > kg -we can find real solutions to
equation (27) such that m < 2w, Thése solutions represent negative
energy waves but are stable since they are out of synchronism with

the positive energy wave solutions. However, if some dissipation is

=0 -



present in the system due to a finite collision frequency in the cold
plasma in region 2, then these negative energy wave solutions will
lose energy and hence become unstable. This is a plasma analogue of
the resistive wall amplifier discovered by Birdsall et al (10).
Figure 1 shows just such a case where Im uyh% is plotted against
v/w, for k, > k. For v=0, Imw= 0O but when v has a non-
zero value Imw > O indicating instability. We observe that Imw,
after its initial rapid increase, is almost independent of v.

(8)

It was pointed out by Hasegawa that when the vacuum con-

£

ductivity is included in the expression for ¢~ the resulting con-

dition for a reactively active conductivity is the same as the con-
dition for the small signal energy to be negative(IT’Iz). In order
to see under what conditions a non-zero collision frequency in the
adjoining cold plasma will give rise to instability we must calculate
the longitudinal conductivity for the total system, including both
the vacuum and cold plasma conductivities. Clearly, it is the hot
electrons in the non-uniform plasma which contribute to negative small
signal energy whereas the electrons in the cold plasma and the elec-
tric fields will give positive contributions.

Since we are now considering a sandwich configuration we must

integrate over unit area in the y and 2z direction and from O to

Lz in the x direction.

Ly, 1 inqu 11 Lg
0—€'= i _.C_IJ—dx + -]—'— - dx - —l— j.(DEO dx
Lo V2 ol L, vz I L,
¢s ¢
0 L,. o
, ... (28)
n411 is obtained from equations (16) and (17) and is
k% Mo 11 (29)
ntt="7"7 %

= 0 =



where we have put v = 0,

The expression for o? becomes

2
w# X 2
2 (1 --)L —gekz L _L
o e iweg Eg?k; — 2 iweg— = L =
2 2 -
(Bi+k ) - (B3 +k°) 2
- j.CUEO eee (30)

where £4 and 2 have the values corresponding to the particular
w - solution and where the last term represents the effect of the free
space conductivity. The condition for o to be an active con-

ductivity (reactively active) is

0 £
ED(ImO_)>O

and this gives

(-1+2%) -
5 _ Ly - L) N S A ST € 15
2.2 .22 TR
(B2LZ + k°L%) L, (BiL;+kL,) Ly ®peksL,

For the parameters shown in figure 1 the quantity in equation (31) is
positive hence the instability when a finite value of v 1is included.
However, for larger values of Lz the expression in equation (31)
becomes negative (the wave is now a positive energy wave) and the
inclusion of collisions leads to damping. This is illustrated in
figure 2.
4, Conclusion

We have considered the stability of a non-uniform plasma in a
strong magnetic field solving the eigenvalue problem specified by a
second order differential equation and the boundary conditions. This
is in contrast to most treatments of similar problems where the effect

of the boundaries is neglected and the solution to the differential

= 99 =



equation is approximated by the WKB method (the local approximation).
For wavelengths transverse to the steady magnetic field which are much
shorter than the scale length of the non-uniformity the exact solution
is very close to that obtained from the local approximation. Instab-
ility occurs for axial wavelengths longer than a certain critical
value. However, for transverse wavelengths *;, 2 a instability can
occur at smaller axial wavelengths than that predicted by the local
theory.

The instability results from an interaction between the electron
plasma wave (which is a positive energy wave) and a negative energy
wave which is referred to in this paper as a drift wave(13). When the
phase velocities of these two waves are in synchronism instability
results, otherwise there is stability. In section 3 of the paper it
was shown that one can find real solutions to the dispersion relation
when the drift wave and plasma wave are non-synchronous but where the
drift wave still retains 1its negative energy property since w < Zw*.
For this case it was shown that the presence of a cold resistive plasma
adjacent to the hot non-uniform plasma could also result in instab-
ility and a condition was given for this to occur. This instability
is a direct result of the boundary conditions.

Since the instability described here does not involve the motion
of the ions and since also it requires large temperature gradients it
is probably not a serious threat to plasma containment. However, the
results obtained are of relevance to low frequency instabilities which
are of importance to containment. The results obtained here indicate
the importance of boundary conditions to stability, especially as the
hot plasma of a fusion device would be surrounded by a colder plasma.

For an instability due to the growth of a positive energy wave, one

- 12 -



might expect that the presence of a cold resistive plasma bounding
the hot plasma could result in stability, provided the éold plasma
could absorb energy faster than the hot plasma could supply it. When
a negative energy wave is present a resistive boundary may result in
instability whepe previously there was stability. This instability
will not occur if there is enough cold plasma to convert the negative
energy wave into a positive energy wave.
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Computed decay rate for hot non-uniform plasma adjacent to cold
uniform plasma when o s passive (see equation (31))












