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ABSTRACT

Solutions of the wave equation are obtained for
TEomn and TMEmo modes in cylindrical cavities contain-
ing a co-axial, annular plasma column. The radial elec-
tron density distribution is assumed to be of the form
ng = N {1-v (r/a)® - ¥ (a/r)?}, where ns Yo Y,
are constants and ‘a 1is the outer radius of the plasma.
The results can be used to determine the effects of den-
sity gradients onmeasurements of electron densities and
collision frequencies by the cavity method. Some illu-

strative examples are presented.
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I. INTRODUCTION

Measurement of the resonant frequency  and the Q-value of a
microwave cavity partially filled with plasma enables information to
be obtained about the electron density ng and collision frequency
v in the plasma(]). When the electron density is low and the skin
depth is large compared to the plasma dimensions, the change in reso-
nant frequency and the Q-value can be determined by a perturbation
analysis. This procedure is valid for Wp < w for most experimental
situations (mb is the plasma frequency), although the method can be
extended to higher plasma frequencies when the plasma occupies only
a small part of the cavity volume, If wp > W, the presence of the
plasma significantly changes the distribution of the microwave fields
in the cavity and exact solutions of the wave equation for the plasma
medium are required, Such calculations have been carried out for
(2,3)

cylindrical cavities with a co-axial, uniform plasma column If

the plasma spatial distribution is non—unifonﬁ and the plasma density
is low, then the perturbation theory is still applicable. For high
densities the effects of density gradients are more difficult to
determine; in general, numerical solution of the wave equation is
necessary. In some special cases, the solution can be expressed in
terms of tabulated functions. Examples are given by Bunnan(4) and
by Allis, Buchsbaum and Bers(s) for cylindrical dielectrics which

(6)

have radial variations in dielectric constant., Agdur and Enander

have considered the effects of a parabolic density distribution for

the TMOIO mode by obtaining a power series solution of the wave
equation,

In this paper we consider an annular plasma column with a radial

electron density distribution given by ne==nO{I—Ti(r/é)zﬂTg(a/r)z},



where n,,y; .Y, are constants and a is the outer radius of the
plasma. Although the radial density distribution is assumed to have
this particular form, the results illustrate the main features of the
effects of density gradients on cavity resonances. The distribution
chosen does give a good approximation to the electron density distri-
bution in a low pressure arc plasma, when the wall sheath thickness

i3 much smaller that the tube radius.

IT. THEORY

In Section A, exact solutions of the wave equation are obtained
for TEgm, and TMgp,, modes, allowing the resonant frequency of a
cavity-plasma system, such as shown in Fig.1, to be determined.
Results for cylindrical plasma (y, = 0) are given in Section B
and some illustrative examples are presented in Section C. The
effect of density gradients on the cavity Q-value is discussed in

Section D.

A. Annular plasma, ng = Dy i1 —Y1(r/a)2 - Yz(a/r)zl

Consider the case of a cold plasma so that the effects of elec-
tron thermal motion on the plasma conductivity are negligible. At
microwave frequencies the motion of positive ions can be neglected
and the current equation in the absence of a magnetistatic field is
given by -
(me/heeg) %% = B = (mev/neeg)j » waw C1)
where v is the effective collision frequency for momentum trans-

rer(1) (electromagnetic units are used).



Maxwell's equations give

= BB
VXE - at ] LN (2)
o e 1 éE
VB =4nj + —5 =7 » < en- (3)
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Assume time variations of the form el®t and consider only

TE modes for which the electric field is perpendicular

omn’ mw€m0

to density gradients and VeE = 0 (the subscripts £,m,n refer to
(7)y

field variations in the 6,r and 2z directions respectively

Take curl of Eq.(2):

VE = iwVxB ,
and using Eq.(3),
' s ~ R o
V?E = 4niwj - — E . ees (4)
C2

Froms Eqs.(1) and (4),
vE = { [%ﬂneeaiuyme(iw+vi} - (m/C)z] E s LDY

For an annular plasma with dimensions as shown in Fig.2, and
n, =n, {I—Ti(r/a)2 - Tz(a/r)2} , we require solutions of Eq.(5) for

the modes under consideration,

1. ““Emo modes

We look for solutions of the form E = (0,0,E,(r) cos €6 oty

and B = (Br’ Bgs 0). Taking the z-component of Eq.(5),
d®E dE a 2

z 1 z Ebo 2 2

. R iy, 55 - £ =0
ax® T x dx ( c ) < 1w+v> (1-7,%-Y,/x%) - ( R 2N E;=0s

ees (6)

where x = r/a and wgo = 4xn0e202/h .

= ¢(x)/x and E =1 < _Eh2> (1 1éz?u> % x? , then

ct+

Pu



Eq.(6) becomes
. 2 ”
g1 [41 (3] (29)- ()12 (et
a 2 -
+ [72 < :‘m) (ii:}‘) - (82—1)]/452] ®=0.

(),

This is Whittaker's equation with solution

(P(g) = AlM ’,P’(g) + A2 WK’,H’(g)

i

where Al, A_ are constants given by the boundary conditions at

n[ (59 () @) () ()
a o (2 (@) )

M B [0,0, T?%ET o(E) cos £0 - eiwt} . www CT)

1l

The Br’ B components of the magnetic field are determined

6
from Egqs.(2) and (7).
2, TEomn modes

Assume solutions of the form B = (Br’O’Bz) and

E ={0,E(x)-sin(kz)-¢"*,0}, where k =nw/L, with n =1,2,3 ...

Using this relation for E in Eq.(5),

0 o (23 ) o

a o N
Substituting E(x) = o(x)/x, & =1 (ﬂ) (’Y —.-l-‘l’—> x® we obtain

c 1 jwv



Whittaker's equation as before, giving

E = [0, (p7-j'a A, Mx,p(ﬁ) + A, WK’P(E,)] sin (ﬂl-:"f z> . elot 0} ,
| sus: [8)

where Ay and A4 are constants,

aw_ N2 5 aw o
o [ (S (o) e [ (S0) ()Y

and

ofion (S (9]

Again B, BZ are determined by Eq.(2).

The ™ and TEomn resonant frequencies of a cavity system

£mo
such as that shown in Fig.1 can be found by appiying the appropriate
boundary conditions to the fields in each medium. In general this
results in rather cumbersome relationships and to illustrate the main
effects of plasma non-uniformity we will treat a much simpler plasma-
cavity system in the following section. In practice the MMy, modes
are not so useful at high densities where the perturbation theory is
not applicable. The plasma sheaths which arise at the end walls of
the cavity may invalidate the assumption that V-E = 0 for these
modes, or if the plasma extends through the end walls of the cavity,
then the fringing fields cause some uncertainty in determining the
plasma parameters(s). These effects are not so impoirtant for the
TEgnn modes since the electric field is azimuthal and ]Eel

approaches zero at the end walls of the cavity. In the remainder

of this paper we shall consider TEdmn modes only,



B. Non-uniform cylindrical plasma, ng = nj {I—Yl(n/a)z}

We now determine the TE,;, resonant frequencies of a cylindri-
cal cavity (radius R, length L) containing an axial plasma column
of radius a, The electron density distribution is assumed to be
My, = n0 {1-?1(n/a)2}. Initially the effects of collisions are neglec-

ted, so that v « w, and the region a < r <R 1is assumed to have

a constant dielectric coefficient which we take to be that of vacuum.

For v «w, « and E [c.f. Eq.(8)] are imaginary quantities
and B =% (since Y, =0 in this example). It is now convenient
to express the Whittaker functions in terms of Coulomb wave func-

(8)

tions giving,

—i . iwt
Ee = Tia—)- ASFO(T],P)'S].H(I(.Z) L -

[ -t (),

k% <a—‘c”-°-9>wr} (r/a)? .

U - )

where

o
il

From Eq.(2)

VA aw C

1 .
_ ALY, % ( awbo> ) FL(H,P) . sin(kz) - %% |
ess (10)

B.=-A, (%}) . ﬁa‘ ¥ FO(TI,P) « cos(kz) - el |

The vacuum fields are given by Eq.(5) with n, =0,

=3 : iwt
Eg = Eig {As J,(a,r) + A, Yi(air)] - sin(kz) - e
' : iwt
B, = {As I (ar) + A, Yo(air)} . sin(kz) « e, ees (11)
k iwt
B, =~ G; [As J,(a.r) + AT'Yi(air)} . cos(kz) - e'



where

2 1
aa = [(%?5 - (ak)z]é ,

A_, A, are constants,

67 7

and Jp(x), Yb(x) are Bessel functions of order p.

Using the boundary conditions that the fields are continuous at

r=a, and E,=0 at r=R, the resonance condition is obtained

9
from Eqs.(9), (10) and (11):

3 (aga) Y (a;R) - J,(o;R)-Y (aqa) F4(n,po)
(@qa) {J—i( asa)Y,(a,R) = J,(a;R)*Y,(a,a) } - ZPOW ;

aes (12)

where aw 1
0
PO — 15 ( Cp ) Ylé s

This result is to be compared with the corresponding expression
for a uniform plasma of the same radius (let Y, >0 in Eq.(12) and

use the asymptotic values of the Coulomb wave functions),

( | Jo(asa)Y,(a,R) - I (a,R) Y, (a,a) Jo(B,a)
%) {Ji(q,ia).Yi(a,iR) = J,(a,R)+Y,(a,a) }" 5,6,

LN} (13)
where 2

(b2 = (3,27 - (2

and w; = 4ﬂﬁeezc2/me, ﬁe being the density of the uniform plasma.

ee. (14)

Eqs.(12) and (13) have an infinite number of solutions for given
plasma parameters and a fixed value of k(=nn/L). These determine the

resonant frequencies of the TE,,, modes. Some special cases are of

interest:



(i)  Empty cavity

Eq.(11) shows that Eg = constant - Ji(a.ir), and since
E. =0 at r =R, the resonance condition is a,R = Xm, where Xh

th
is the m root of Ji(x) = 0. From the definition of Qy s

2 2
X = (%? - (nmR/L)?, so that the resonant frequency W,

is given by
2

w? E; [X; + (nﬂR/L)z} .

1l

o R

(ii) High density limit, W, » o

For very large values of electron density, the resonant
frequency of the plasma-cavity system approaches the value obtained

when the plasma is replaced by a perfectly conducting cylinder of the

same radius (i.e. w = w, say);
2 c?
2 2
wizg{xm + (nmR/L) } ;

where X' is the o™ root of Ji(% XY, (%) - Ji(X)'Yi(% X) = 0.
These roots are tabulated(s). The frequencies ub and w, deter-
mine the lower and upper bounds of the TEyy,, mode resonant frequency

of the plasma loaded cavity.

(iii) Plasma-filled cavity, a =R

Eqs.(12) and (13) become,

0] non-uniform plasma,

F (n!P)
o o vee (15)

Jl(BiR) 0 uniform plasma

C. Numerical Examples

To illustrate the effects of radial density gradients more

clearly, the TEQq1 resonant frequency of a cylindrical cavity has



been calculated using Eqs.(12) and (13) for the following conditions:

L = nR/2

and | . =

For comparison of these results, the plasma frequency ub is

defined in terms of the average electron density
. 2 _ 157 2,2
i.e. wp-4xne e?c /me .

- _ e _ 2 — 2 .
With ¥ = 1.0, n, = n0/2 so that wb = ubo/Q. Fig.3 shows
the dimensionless resonant frequency uyhb expressed as a function

of the normalised average electron density w;/mz for Y =0 and

Yi = ]-Oo

The results show that, in this example, the non-uniform plasma
gives a smaller frequency shift than a uniform plasma with the same
average density and radius. This is as expected, since the electric
field is zero at the axis and, for the assumed density distribution
and a/R = 0.5, the electron density in the region of highest elec-
tric field is smaller than the average value. For smaller values of
a/R this behaviour is more pronounced. When a/R approaches unity
and the plasma density is low, a parabolic distribution produces
a greater frequency shift than a uniform plasma of the same average
density. In this case the electron density in the region of high
electric field (r = R/2 for the TEOI] mode and small densities)
is larger than the average value., At high plasma densities however,
the fields are confined to the outer regions of the cavity and the

frequency shift is again smaller for the non-uniform plasma.



This is illustrated in Fig.4, where we have chosen R = a, L = R/2

and the resonant frequencies have been calculated from Eq.(15).

Perturbation Theory Results

(1)

For small densities the perturbation theory can be used for

both uniform and non-uniform plasmas giving (with v « w),
2 2
Iv(wp(r)/m) EZ 4V

AT

where ub(r) is the spatially dependent plasma frequency, E0 is
the electric field in the cavity in the absence of plasma and the

integrations are over the volume of the cavity.
Since Ee(r) = constant J,(3.8317 r/R) for the TEq,; mode, and
using the density distribution n, = no{l—Yi(n/a)z},
a R

;(:)-—l =% (w o/‘”)af {1-v,(r/a)*}J32(3.8317 r/R)-r-drfJi(3.8317 r/R)-r-dr

o
o

(o]

The average density is Ee = no(I—Yr/z), and so w = (1- T'/Q)w

2 2
CeE o= 2(%/0})2(5‘/1‘) 'f(l—wr x?)72(3.8317(2)x) -x- dx
Wy (2-Y1)J3(3.8317) e R
NOW(Q),
j‘x Jg(x) dx = ——I: J3(x) - Iy (x)J (Xi}
and
fxa 52(x) ax = X [Ji(x) . Jg(x)] ,
so that

" (o /w)2 (a/r)? . .
~1=0c = J32(3.8317) {[ (a)-J (a)+J (a,)] [ (a)+J (cn)]}

s L 18)

where a = 3,8317(a/R).

- 10 =



Some special cases are:

(i) Small plasma column, a <« 1

Eq.(16) gives,

[#}]

no

©w o, _ (3.8317)% 2,
0 i = 24J§(3.8317) (a/R)* (ub/b) {

"212}
=Y
1

A uniform plasma (Y, = 0) with density ﬁe gives a frequency
shift which is 1.5 times larger than that produced by a non-uniform
plasma with ¥, = 1.0, i.e. n = no{l—(r/h)z} . This result has been

(6)

Ziven previously by Agdur and Enander -

(ii) ¥, = 1,0, i.e. n, = ny{1~(r/a)?}

By putting Y, = 1.0 and ¥, =0 in Eq.(16) we see that
a uniform plasma with density Ee gives a frequency shift which is

f(a/R) times that produced by the non-uniform plasma, where

o) = 1/2 (1 - 2@ 7@ || 52 -3,@-1a | |

For densities such that the perturbation theory is valid, ﬁ% -1
_is proportional to Ns for a uniform density distribution. Cogse—
quently we can regard f(a/R) as an 'effective density factor' so
that a uniform plasma of density ﬁe/f(a/R) gives the same frequency
shift as the non-uniform plasma of the assumed distribution. The
function f(a/R) is shown in Fig.5, and it can be seen that the
'effective density' of the non-uniform plasma is less than the aver-
age density for all values of a/R less than 0.77., As discussed

earlier, this will be trué for densities outside the range of the

perturbation theory.

- 11 -



The perturbation theory results are shown in Fig.4 for a plasma-

filled cavity, and in Fig.6 for a/R = 0.5.

D. The Cavity Q-value

When the effects of collisions are included, the cavity fields
can be calculated from Eq.(8) and the power dissipated per unit volume
found from j+E, with j given by Eq.(1). In general these calcula-
tions are rather cumbersome and we restrict the following discussion
to low plasma densities and to the case v « w, The change A(1/Q)
in the 1/Q value of the cavity can then be obtained from the per-

(1)

turbation theory expression (to first order in v/w),

a(é) =7‘;j (wp{r)/w)2 E; dv/f E; av , . (17)
Vv V

where v is assumed to be constant throughout the plasma. The
integrals in Eq.(17) are identical with those used in Section C when
determining the change of resonant frequency produced by the plasma,
Again we find that a uniform plasma with density Ee gives a change
in the 1/Q value which is f(a/R) times that produced by a non-
uniform plasma with n, = n,{1-(r/a)®} , where f(a/R) is shown in

Fig.5.

IIT. DISCUSSION

It has been shown that the ﬂwemo, TEOmn resonant frequencies
of a cylindrical microvave cavity loaded with a non-uniform plasma
column may be detemmined for electron- density distributions of the
form n, = nOII—Yi(r/a)2 - ¥,(a/r)*1 . This distribution gives a

good approximation to many laboratory plasmas and can be used to

assess the magnitude of errors caused by the neglect of density

- 12 =



gradients in the analysis of experimental results,

Particular care should be taken when operating in the high den-
sity regime, where the skin depth is much less than the plasma radius.
Only the surface layers of the plasma are important in determining
‘the electromagnetic field distributions and it is necessary to use a
density distribution in the theoretical model which closely matches

the experimental situation near the plasma surface.

The effects of a steady magnetic field have not been included in
this analysis. However for the TE01] mode, the results for an |
annular density distribution can be applied to a plasma with an axial,
current-carrying conductor. The static Be field does not affect the
high frequency currents for this mode and removes the degeneracy with

the T™ mode.,

111

- 13 -
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