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ABSTRACT

This paper discusses a rotating, incompressible fluid enclosed
within a rigid boundary which is a surface of revolution. It is
shown that if viscous forces are negligible then, in the presence
of magnetic fields, the fluid can execute slow, steady relative
motions only if the magnetic force satisfies a constraint. In
cylindrical polar co-ordinates this constraint can be written:-

F g = §)¢ d$ dz = 0
r'=T4
that is the couple exerted by the magnetic forces on any cylinder of

fluid coaxial with the axis of rotation must wvanish.

Furthermore, subject to certain restrictions on the shape of the
container (which, for example, are fulfilled by a sphere but not by a
cylinder), it is shown that if the field satisfies the above condi-
tion then the fluid velocity is completely determined by the instan-
taneous value of the magnetic field (together with that of the
density if buoyancy forces are important). .This. velocity is such
that the necessary conditions on the field will continue to be satis-
fied. Analgorithm for the determination of the velocity is given and

its application to the earth's dynamo problem is indicated.

U.K.A.E.A. Research Group,
Culham Laboratory,

Nr. Abingdon,

Berks.

February, 1963.
(C/18) IMG



CONTENTS

INTRODUCT ION
THE DYNAMO PROBLEM

SLOW MOTIONS
Theorem I
Theorem 11

NECESSARY CONDITION FOR SOLUTION
SUFFICIENT CONDITIONS FOR SOLUTION
DETERMINATION OF u¢(r}

DISCUSS ION

ACKNOWLEDGEMENT

REFERENCES

11

12



1. __INTRODUCTI ON

1. This paper is concerned with the influence of magnetic forces on the
behaviour of a rotating, incompressible, conducting fluid. It is well known
(PROUDMAN 1916, TAYLOR 1921) that in the absence of external forces the slow
relative motions of a rotating, inviscid fluid are confined to planes at
right angles to the axis of rotation. BULLARD and GELLMAN (1954) have
pointed out that if the rotating fluid is contained in a rigid spherical con-
tainer then the restriction on the motion is even more severe, in fact the
only slow free motions in a rotating fluid contained in a ri gid spherical
envelope are those in which cylindrical shells rotate like rigid.bodies

about the axis of the main rotation.

2. The present discussion concerns theorems of a similar nature to that of
PROUDMAN and TAYLOR, but which refer to the influence of external forces,
such as the Lorentz (j x B) force in a conducting fluid. Specifically the
present results will be derived in the context of the earth's dynamo problem

since this is an application in which they may be particularly useful.

THE DYNAMO PROBLEM

3. It is widely believed that the magnetic field of the earth is produced
by a self-excited dynamo action resulting from convection in a rotating, con-
ducting fluid such as the earth's core. (See for example the recent review
by HIDE and ROBERTS (1961) which contains references to earl ier work, in

particular that of BULLARD and of ELSASSER.)

4. One .approach (BULLARD and GELLMAN 1954) to the problem of calculating

this dynamo action is to take the fluid velocity, v, as given and to compute

from it the magnetic field, B, by the equation

0B L
3t = curl(¥yxB) + = VB (1.1)
where 1 is the resistivity of the core. In this approach the dynamics of

the motion is entirely ignored.

5. A more exact procedure would be to solve equation (1.1), together with
the equations of motion, continuity and heat generation, for v and B simulta-
neously. It is customary to use a model in which the changes in fluid densi-

ty depend only on temperature and the problem can then be reduced to one of



incompressible flow by the Boussinesq approximation (CHANDRASEKHAR, 1961,
JEFFREYS, 1930, SPIEGEL and VERONIS, 1960). In a co-ordinate system rotat-

with the earth at angular speed & the equations can then be writ ten:

Dv
- ek Up® + (jxB) + p'V¢ - 2p(2x¥) + pyViy (1.2)
divy =0 [ 1.3}
%% = - (v+V)p'- S + ®V3p° (1.4)
9B _ I g2
3t = curlly x B) + z= V°B {1.5)
D s)
where 57 denotes 37 + (v V).
6. In these equations p’V¢ is the buoyancy force due to changes, p’, in fluid

density and the potential ¢ includes both gravitational and centrifugal
forces:

Vp = g + V[%(; X g)a] (1.6)
Equation (1.4) is derived from the equation for temperature: S corresponds to

a source of heat and % is the heat diffusivity.

7. The problem of the earth's dynamo, therefore, is one incentive for a
study of the motion of incompressible, rotating fluids under electromagnetic
and buoyancy forces and we now turn to a discussion of this problem as

defined by equations (1.2) to (1.5).

SLOW MOTIONS

8. The solution of the full equations (1.2) - (1.5) is a formidable task,

even for a modern computer, because they admit the possibility of rapid oscil-
latory motion. For many purposes, such as the dynamo problem, these rapid
oscillations are unimportant and one therefore tries to set up equations
which adequately represent the slow, longterm, behaviour of the fluid but
which eliminate rapid oscillations. Fortunately in the case of motion in the
earth's core the inertial p g% and viscous force vv2! are small (BULLARD
1949a, HIDE 1956) and may be neglected. This is the approximation of 'slow!'

motion which is also made in the PROUDMAN-TAYLOR theorem.

9. Such 'slow' relative motion is overned by the equations:-
g Y Q

2p(2 x ¥)=(j x B) -Vp"+ p'Vp (1.7)



div v = 0 (1.8)

ag 7 2
3T = curl(v x B) + i VB (1.9)
-g-f:}=, (veV)p” + S+ % V2~ (1.10)

The question now arises: under what conditions can these equations have

pPhysically meaningful solutions? We shall prove two theorems relating to
this question; the second provides an algorithm for the solution of (1.7) to
(1.10) and might form the basis for a more realistic attack on the dynamo

problem than any hitherto made.

Theorem I

10. TIf the rotating fluid is contained in a rigid envelope in the form of a
surface of revolution then for there to exist a veloci ty I.compatible with
our equations it is necessary for the magnetic field to satisfy a constraint
which can be written, in cylindrical polar co-ordinates (r,¢,z):

J (j = §)¢ d¢ dz = 0 (1.11)

r = constant
i.e. the couple on any annular cylinder paral lel to the axis of rotation

must vanish,

11. If this constraint is not sati sfied then rapid motions occur(in which

Dv ;
the acceleration term 5? cannot be neglected) until such time as the couples
producing this motion satisfy (1.11). The possibility of the magnetic field

producing rapid motions was noted by BULLARD (1949 a,b).

Theorem II
12. The constraint (1.11) is not only necessary for the existence of v but
~is also sufficient, at least if the bounding surface is a sphere or any sur-
face of revolution in which the normal directions at each end of a line paral-
lel to the axis are not themselves parallel. (This restriction excludes a
cylindrical container.) By sufficient we mean that if one is given a density
p° and a magnetic field thch satisfies (1.11) then the fluid velocity is
completely determined by our approximate equations (1.7) to (1.10), also
this velocity ensures that (1.11) will continue to be satisfied. In demon-
strating this we will be providing an algorithm for the determination of v in
terms of B and p°, showing that this involves only space quadrature and the

solution of an ordinary differential equation. For the dynamo problem the



importance of this result lies in the fact that, having expressed y in terms
of B and p‘the time dependence of the problem is then contained only in the

simpler equations (1.9) and (1.10).

2. NECESSARY CONDITION FOR SOLUTION

13. To derive the necessary condition (1.11) we first abbreviate equations

(1.7) and (1.8) to:-
2p(8 x v) = A - vp’ (2.1)

where
A= (jxB) +p'Vp,

and

div v = 0 (2:2)
14. Introduce cylindrical polar co-ordinates(r,p,z), the z-axis being the
axis of rotation and consider a cylinder of radius ro co-axial with the axis

of rotation (Fig.l).

15. Let us integrate the ¢-component of equation (2.1) over that part of the
cylinder which lies within the f{luid (for simplicity we consider the fluid to

be enclosed in a sphere but it will be apparent that the arguments of this

section can be extended to apply to any surface of revalution). Then:-
20 J (Rxv), rdp dz = [ r A d¢ dz (2.3)
r=Tg — —(,'b r=rg (4]
or
20 S r vy, dpdz = J ThAy d¢ dz (2.4)

T=Tqg r =TIp

which can be written:

208 [ v - dS
r=TIp

SrAg d¢ dz (2.5)

16. At this stage the integral on the left of this equation is only over the
cylindrical surface, but since the normal component of v is zero over the

spherical caps B'NB and A°SA we can extend the integral to cover the closed

surface formed by the cylinder plus the polar caps: then using Gauss' theo-
rem:
20R f (div v)dt = [ rAg d¢ dz (2.6)
r=r~rg
and since div v = 0 we obtain a necessary condition for a solution of (2.1)

and (2.2), namely:-

J Ag dp dz = 0 (2.7)
r=Tgy

or finally:-



S (1x§)¢ dp dz = 0 (2.8)

since the buoyancy force has no ¢ -component.
17. This condition can conveniently be interpreted as stating that the couple

on any annular cylindrical coaxial with the axis of rotation must be zero.

3. SUFFICIENT .CONDITIONS FOR SOLUTION

18. We now show that if the condition (2.8) is satisfied then the equations:

2p(Rxyv)==- Vp° + (jxB) + p'Vp (3.1)

and
divy =0 (3.2)
together with the boundary condition (¥ «n) = 0 on the surface of a sphere,

are just sufficient to determine v when p° and B are given. We prove this

by giving an explicit demonstration of the manner in which v might be

calculated.

19. Taking the curl of equation (3.1) we obtain

= curl A {3:3)

e

where a constant factor -2p2 has now been absorbed into the definition of A,
(-2pRA = j x B + p’V9). We would like to show that this equation possesses

a unique solution when A is given and condition (2.8) is satisfied.

} 4
! N | £

| I /B‘

A _/A

Fig. 1 : Fig. 2

20. Consider a line parallel to the axis of rotation, intersecting the fluid
boundary at A,B (Fig.2). Introduce as axes the normal directions at B and A
(by defining unit vectors E,1n), then we can resolve any vector into compo-

‘nents in the £,7 directions, thus:



vg = vp cos O + v, sin 6 (3.4)
.vn = vp cos 6 - v, sin 6 (3.5)
where +0 and -0 are the latitudes of B and A respectively. Then we can write:
VE + Vn VE_" = VI].
Vr "2 cos 6 * Vz= 2 sin O (8.6

and the boundary conditions are Vg = 0 at B; Vq = 0 at A. By using (3.3)
Vg and Vy may be expressed as integrals along AB from B and A respectively,

then from (3.6) one finds:-

Vp = E—E%E-g [%ﬁ(Curl é)g dz + &f(curl é)ﬂdz}
° (3.7)
Sp— { z(C rl A), dz - fz(c 1 A) _dz} |
Ve = 3 5ind  f (Curl A)pdz- J (Curl 4),d=

Since A is given, these equations clearly define v, and v, along AB and the
construction may be repeated until vy and v, are known everywhere. This fact
does not depend on a spherical container; a similar but more complicated con-
struction would be possible if the container were any surface of reveolution

provided that the directions é,n were not parallel. It is only necessary,

therefore, for the container to be a surface of revolution in which the nor-
mals at B,A are not parallel. Thus any surface which is everywhere convex is
permissible but a cylinder (which has plane ends) is excluded. In a spheri-
cal container the axis is a particular line on which g,n are parallel but t
this causes no difficulty as the construction can be continued arbitrarily
closely to the axis; it can also be shown that the formulae (3.8) and (3.9)

below lead to properly behaved velocities as r - 0.

21. We can express (curl A)E and (curl é)ﬂ in terms of cylindrical co-

ordinates by means of equations (3.4), (3.5): then:-
1¢ 2 z B
vy = 31/ + [ (curl A), dz - tan 6 [ (Curl A), dz} (3,8)
A B - A
with similar expression for v,,
1 Z z B
v = 3 + -
z 3 {£ é (Curl é)zdz cot O &L(Curl A) dz} | (3.9)

It might appear at this point that v, is not well behaved as r - 0 (and thus
tan 6 —» o). However by considering the necessary condition (2.7) as r = 0 it

can be shown that it leads to:



B
S (Curl A), dz - 0
A

as r =» 0 in just such a way that vy has the correct behaviour as r —» 0.

22. By using equation (3.3) and the boundary conditions, then,we have found
Vy and v,; however, we cannot find Ve in a similar way because the boundary
conditions do not involve V- Instead we attempt to find Vo from the equa-
tion div v = 0, that is:-

3%%: . i% E-a;(”rh %"ZI (3.10)

|

23. We have already found Vr:Vz 50 the right hand side is now known, but

(3.11) will possess a single-valued solution vp if and only if

1 3 (rvy), 9v,;d¢p _
f{r = +5- 2% =0 (3.11)
where v.,v, are to be considered as given by (3.8),(3.9). It is convenient
to rewrite (3.11) as:-
=19 0Vz .
Q= = X (refpvr d¢) + o d¢ = 0 (3.12)
and from equation (3.3) (which v, satisfies by definition)
vy 1 3 (rT)
fﬁ? d¢ =J(Cur1 é)z d(f) = = 5; (3.13)
where we have introduced
P = fﬂqﬁ dg
Furthermorée from equation (3.8) we obtain:-
_ L o5 A= ol B 1 al(rI)
jrvT d¢ = 2{£-+ £ ol dz - tan © £- iy dz} (3.14)
and therefore from (3.12),(3.13),(3.14)
F,+T
1 3 AT'B B 1 a(rT)
Q = }- IF r{— 5 - tan 6 _); s B dz (3.15)
We now observe that
14 B _ Al (), 9z oz
= s { rI' dz = { = dz + PB(ar)B - FA(ar)A (3.16)

where the additional terms on the right come from variation of the length of

the path AB with r; also

so that finally:-



B
g = =L ilir[tan gl L J D dz]} . (3.17)
r I'A

St dz = [ r Ag d¢ dz (3.19)
A r= constant

and we have previously shown that this quantity necessarily vanishes. We
see now that the vanishing of (3.18) is also a sufficient condition for Q to

vanish and therefore for equation (3.10) to have a single-valued solution v¢.

24. We have thus far shown, then, that if (2.8) is satisfied we can solve
equation (3.3) for v, and v, and we can solve (3.10) for vg. The solution

of this last equation contains an arbitrary function u¢(r,z), but (3.3) deter-
mines the z-dependence of Vg 80O we are left only with an indeterminate func-
tion u¢(r). At this stage therefore we have

v = (vp, v + u¢(r), v,) (3.19)

where vy, vg, vz are now explici tly known, but u¢(r) is still to be determined.

4. DETERMINATION OF ug(r)

25. In this section we complete the determination of v by determining up(r),
the only remaining unknown. In fact we show that ug is determined when we
require that (2.8) shall be satisfied not only at a given instant but for all
time, that is we now demand that as B develops according to equation (1.9)
the necessary constraint (2.8) shall continue to apply. For this is suffi-

cient that:-

aa_t J"(_j_xg)gbdgbdz:O (4.1)
r=Tg
or aB ‘
S (Curl 57) x§]¢ d¢ dz + S[(Curl B) x %—%J¢ d¢ dz = 0 (4.2)
where
oB T o2
3% = Curl (v x B) + e VB (4.3)

26. Now v consists of a known vector v¥ (= v, Vs v,) and an unknown part

(o, u¢(r}, 0) which we will denote by u. It is obvious that if we insert
0B

v = v* + u into equation (4.3) to obtain 57 and then substitute this into

(4.2) the resulting equation will be of the form:-

S (Cur1?(ux B))x §]¢ d¢ dz + f[(Curl B) x Curl(ux g)]¢ d¢ d=z

= JG(r,¢,z) d¢ dz (4.4)



where G(r,$,z) is a function which depends only on the known part y* of v and
on B, and is therefore itself a known function. At this stage in the argu-
ment, then, the right hand side of equati?n (4.4) is a known function of r,
say G(r). Furthermore recalling that u has only a ¢-component and varies
only with r, the left hand side of (4.4) can be evaluated and the equation

then becomes:-

a,(r)—-—(—f‘-’) + B(r) () - & (4.5)
where
a(r) = fr Bi d¢p dz (4.6)
B2
B(r) = (B« ¥ By +2 L) dp dz (4.7)

27. We have now shown that u¢(r) must satisfy a second-order, inhomogeneous,
ordinary differential equation with known coefficients. Thus we have finally
determined u¢(r) apart from the two scalar constants which must appear in the

solution of (4.5).

28. It is clear that one solution of the homogeneous part of (4.5) is just:

u¢{r) = rR% (4.8)

where ¥ is an arbitrary constant. One of the arbitrary constants in the
full solution of (4.5) therefore corresponds to the arbitrariness in our ori-
ginal choice of the velocity of.rotation 2 of our co-ordinate system. In
practice it would be fixed by (say) the requirement that the angular momentum
be zero in the rotating co-ordinate system, The final arbitrary constant is

f1xed by the condition that —Q——— be finite as r - 0,

29. We have now shown that if (2.8) is satisfied, and continues to be satis-
fied, the velocity v is completely determined by equations (3.1) - (3.2) and

the boundary conditions.

5. DISCUSSION

30. It has been shown that a rotating, conducting fluid can execute slow

relative motions only if the condition:-

J (] x §)¢ d¢ dz = 0 (5.1)

r = constant
is satisfied, i.e. the couple exerted by the magnetic forces on any cylinder

of fluid coaxial with the axis of rotation must vanish.
31. Furthermore, once this condition has been satisfied then the instantaneous

= § =



fluid velocity is specified by the instantaneous values of magnetic field B
and density p°, together with the boundary conditions of vanishing normal
velocity over a sphere (or other surface of revolution satisfying the condi-
tions in Theorem II1), apart from an arbitrary azimuthal velocity u¢(r). This
azimuthal velocity is itself determined by the requirement that (5.1) continues
to be satisfied as B develops according to the appropriate electromagnetic

equation (1.9), for then it is found that u¢(r) must satisfy the equation:-

d2 u u -
atr) 25 (5B +pg (B - T (5.2)

where a(r), B(r) and G(r) are expressible in terms of the magnetic field.

32. In the course of demomstrating that (5.1) is, indeed, a sufficient condi-
tion for the solution of our basic equations (1.7) - (1.10) we also provided

an algorithm for their solution; it would appear that this algorithm should
provide a basis for a new calculation of the earth's dynamo problem in which

most of the important dynamical effects would be included.

33. The physical meaning of these results is illuminated .by returning to the

full equation of motion:

Dv
Psg = - VP + (i x B) - 2p (£ x ¥) + p Ve {5.3)

Although for slow motions the Coriolis term is so much larger than the iner-
tial g% term that the latter can usually be neglected, there is a class of
mot ions for which the Coriolis force is ineffective. These are just the
motions described by u¢(r); for these motions we can integrate the ¢-compo-

nent of (5.3) over a cylinder to obtain:-

al.I.Q
P =% S dz d¢ =I(Jx§)¢ d¢ dz (5.4)

E=T

o

and condition (5.1) is seen to be necessary to prevent large accelerations in
the ¢-direction. If (5.1) were not satisfied, rapid torsional motion would
be set up in which each concentric cylindrical annulus rotated as a rigid
body. The adjacent annuli are coupled together, as if by elastic strings,
through the magnetic field B.. Because of this linkage, the torsional motion

would modify the fields until a state was reached in which (5.1) was satis-

fied. That this view is correct is confirmed by the form of equation (5.2)

which finally determines u¢(r), for it will be observed that the coefficients



of this equation a, B, vanish when, but only when, Br is zero everywhere over

one of the cylindrical annuli. When this occurs that annulus is free to

rotate independently of its neighbours.

34. We conclude that the equations discussed, together with the algorithm for
calculating v, do indeed give a consistent description of the slow relative
motions of a conducting rotating fluid such as the earth's core and might
form the basis of a method for calculating the 'dynamo problem'. The two
theorems we have enunciated here can clearly be regarded as extensions of the
Proudman-Taylor theorem and a modification of it given by BULLARD and GELLMAN
(1954). The Proudman-Taylor result showed that rotation restricts slow
motions to a plane at right angles to the axis, while Bullard and Gellman
showed that in a spherical (or generally a convex) container the restriction
is still more severe, in fact the only slow, free motion possible is that in
which cylindrical shells move regidly about the axis of rotation. It is

only to be expected, therefore, that when external forces are present they
should have to satisfy a constraint such as we have found necessary and that

when this constraint is satisfied the motion should be specified by the

forces acting.
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