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I. INTRODUCTION

This paper analysis the equilibrium of an axi-sysmetric toroidal
plasma., The range of collision frequencies considered, which will be
referrzd to as the intermcdiate collisional regime, is bounded above
by the resistive regime, and below by the weak collisional regime
where some particles are trapped in the toroidal. variation inmagnetic
firld strength,

This problem was first investigated by Galeev and Sagdeevi.

They used the guiding center kinetic equation with a collision term,
When they included an arbitrary radial electric field in their equi-
Librium they found the ion and electiron diffusion rates to be gene-
rally unequal. They conciuded that the radial electric field would
quickly build up to the ambipolar distributiony, for which the diffu-
sion rates are equal at all radii. This result has been challenged
by Kovrizhnikh®, who claims that when a more exact collision integral
is used the ion and eleciron diffusion rates are always equal and are
explicitly independen® of the radial electric field.

The above authors neglect any electrostatic potential variation
over magnetic surfaces., Their solution for ths azimuthal variation
in the ion and electron densities violates charge neutrality. As
will be shown in Sec.III a consistent equilibrium requires thse
existence of an azimuthal electric field; which is uniquely deter—
mined by the quasi-neutrality condition, Its inciusion leads to a
significant modification of the diffusion rate obtained by Galeev and
Sagdeev, The resulis of the analysis have already been outlined in
reference (3). This paper gives thz detailed analysis, makes one
correction to the earlier results, and examines the ambipolar diffu-

sion rates more fully,



The treatment starts from the guiding center kineiic equation
without a collision term, The fact that the expressions derived
earlier for the diffusion rates in the intermediate collision rzgime
are independent of the collision frequency at first appeared surpris—
ing, In fact, the following treatment shows that collisions can be
dropped from the Galeev and Sagdeev analysis withoui affecting the
diffasion, The diffusion results from Landau-type terms arising from
integrals over the velocity distribution. These integrals have a
form similar to those entering the standard theory of waves in a col-
lisionless plasma., As will be explained in Sec.VII the particles
responsible for the diffusion may be regardad as resonant particles

in the azimuthally varying equilihrium,

In a later paper the solution of the guiding center kinetic
equation will be given including both azimuthal electric fields and
collisions, The transition from the intermediate collisional regime
to the resistive/viscous regime considered in reference (4), which
occurs when the dominant source of dissipation changes from Landau
damping to parallel viscosity, will be discussed. The analysis will
confirm that collisions do not affect the diffusion rates within the

intermediate collision range.

Section II defines the coordinate system, the ordering assumzd,
and the role played by collisions in maintaining a local Maxwellian
velocity distribution. Treating the radial distribution of density
and electrostatic potential as specified, the azimithal variation in
the poiential and velocity distribution is derived in Sec.IlI. The
radial diffusion rate, which i3 a second order effect, is evaluated
in Sec.IV., The values of the electric field at which the ion and

electron diffusion rates balance, which is a necessary condition for



steady equilibrium, is derived in Sec.V, together with the corres-
ponding ambipolar diffusion rate., The time taken for the space charge
poiential to build up to the ambipolar distribu-ion is discussed in
Sec.VI, Sec.VII gives a physical explanation of the most important
features of the analytic solution, An attempt is made to exolain why
collisions, although they affect the drift of individual particles,

do not influence the overall diffusion. The parameter range of great-
est experimental interest is stated in Sec.,VIII, although detailed
experimental comparisons are deferred until after the general treat-
ment covering the transition between the intermediate collision
regime and the resistivé/biscous regime, The extension of the analy-
sis to include the helical variation in the magnetic field of a

stellarator is outlined in Appendix A,

IT. THE MODEL

The co-ordinates and magnetic field are the same as those des-
cribed in reference (5). r, © are polar co-ordinates centred on
th? magnz=tic axis, and ¢ measures angular distance along the axis,

as illustrated in Fig.,1. The magnetic field is taken to be

RO
B =§—Lo, Byg(r)s Boq)] eee (1)

where R, is the radius of the magnetic axis, R = RO(1+acuse),
and & = r/Ro. The plasma cuarrent required to produce this field
flows everywhere in the ¢ direction®, The magnetic surfaces are
r = coastant., In a real toroidal field the magnetic surfaces are
displaced relative to the axis. To take this into account would
increass the analytic complexity, without appearing to affect the

results significantly,.



For a large aspect ratio torus the equilibrium velocity distribu-
tion function fj and elecirostatic potential ¢ may be expanded as

a power series in €, as in reference (4),

szfoj{r,vll,p_L)+f1J-(r,6,v”,pJ_)+..., @(r,e)zéo(rhéi (ry0)+eas

ese (2)
where @S(r,e) contains all terms of order sséo. Here v” is the
particle velocity parallel to the magnetic field, p, is the perpen-
dicular momentumy; and (r,®) is the position of the guiding center,

The temperature will be assumed uniform,.

The basic equation is the guiding center kineti: equation.

of . of . dv of ; dp
—J ) J I e
Tt Wy e ®m e & 0 v (8}

This may be derived from the continuity equation for the distribution

furction in guiding center space®, Since we are investigating equi-
libria, 9/dt = O, Y5 is the gu’ding center velocity of a particle
of the jth species, which may be written in the form

¥i=v, B/|B| + Ypjt Yot Yyt oees ees (4)
where

m v”+p2/2 ( )

. & —J—-—B ,Be

Ibj e B®R z=9

J
BB VB xB
¥ = B2 -t B2

v, . is the sum of the curvature and magnetic field gradient drifts.
e, and .g¢ are unit vectors in the vertica' and axial directions.
Finite Larmor radius corrections to the guiding center drift have

becn neglected, as their effect is small,

-4 -



The ordering assumed is the same as in reference (4). The zero
order electric drift is assumed of the same order as the diamagnetic

velocities an, where

R 1 T
jn ejB n0 dr
This implies
dd dn
0 T 0
eF"\‘n—o dI‘ 9 v_[ VbJ Ean- eoe (5)

The rotational transform  will be assumed of order unity, i.e.

t::uluu
@

el
e o(e) »

B(p I:I + 0(52):, = Bo<p |:1 - & cosb + 0(52):, .

The zero order distribution function is assumed to be locally

<

Hence

B

1]

Maxwellian, It is convenient to write it in the form

1 —pi/?m.KT.

PRI [ J J
foj(r,v”,gL) = ijKTj e Foj(v“) woe (B)

where

nb(r) -Vﬁ/bi 2«T
Foj(vn) - , &= ——;J, n =.[/ fdv dp? .
J

-
=2

This assumes that collisions are sufficiently frequent to maintain a
Maxwellian distribution in spite of the preferential loss of a certain
class of particles. The condition for this is the same as the condi-
tion that no particles are trapped in the toroidal field variation,
i,e, that the collision time for scattering out of the trapped velocity
band is less than the transit time be‘ween reflection points', It is

this which imposes the lower limit on the intermediate collision



%

1 : ;
range', 1i.e. T\ mfp < Lcs where Kmfp is the mean free path and

Lc = 2% P B/Be is the connection length measured along a field line
as it rotates once around the magnetic axis., The upper limit, above
which the collision term can no longer be neglected in the kinetic
equation, is of urder of magnitude ﬂhmfp—v Lc' A more precise

evaluation of this limit will be given in the later paper which in-

cliudes a collision term,

ITT. SOLUTION OF THE EQUILIBRIUM EQUATIONS

The azimuthal variation in the distribution function will now be
derived from Eq.(3). The variation of p  may readily be obtained

from conservation of the magnetic moment p = pi/?mB.

ﬁf;i:%%:(i%@%+vu%>B=<v—oe—;%>sine cer (7)
where
S 1.y - %o S _829
0s B = rB8 a6 r a6
Since v o = v0[1+0(e2)], the subscript 6 can be dropped. We

obtain dv, /dt from the conservation of particle energy,

1

v, =[(E - e - HB) 2/mj:|

dv e.0 08 p°® \
1 > 1 :
L . N R T - A R
i = v, (v+V) (e.®+uB) nr 5 = { - VoV ) sind
v

sna LB)



where we have used

; 0% (p?/2m_+m_v3)
VO e il e el
r B ad ejBR

sinf, vy = v + @v, + 0(e).,
seoe (9)

Linearising Eq.(3) with respect to e, and integrating with

respect to 6, gives

P :
1 0
(o0 )00y =| &, =& (% + b ) om0 |21

ap2 e. p?0 of .
- - kil 9]
KTJ (v +®v ) cosf f 0] +[: - @@1 e ( 2m§ vov“> cosé] g

T 2m.

eee (10)

We must now integrate £, 1j over velocity to obtain the density
variation, The integration over pi is trivial., Before integrating
over v it is convenient to express the © variation in exponential
form, i.e, replace cos® by exp(if) with the understanding that only
the real parts off the equations have physical significance., The integ-

rals over v, have the form familiar from micro-instability theory

(v )v W
__/ dv, = KS(E‘;> . eee (11)

These integrals may readily be expressed in terms of the plasma dis-

persion function I(z) wusing the recurrence relation

W\ w
Ks <'E7 ) - wKs—1 ( C. ) B Js
J J

where J_ = (5=2) (54) oeo 1 (ci/’2)(s"”/2 when s is odd, J_ =0

when s is even,

(5)-4EE)- ) 8 (8)1(3)



and
Z

i(z) =1 - 2z e_Z2 ] et2 dt + ivx z e_zz. awn L1Z)

o

In this way one obtains

n . e.o U, T U.n
_1_=-J—1[—Jl‘ [H=L,) = I.:|+ e e’ (1 + —‘L>[I.(1+2Z2.) = 1:’
. J J v J j

no KTJ. V0 a
[ -] (]3)
where
vo
ot I = 5
%3 ;8 Ties)

Uen_uj.n
. <_v_)] veo (14)

- . / - . -
where F+il = (1+Uer/v0)Ie & ¢(1+Um vo)Ii, and T = Te/Ti. Split

ting Ij into its real and imaginary parts

2
J
-2 [ t2 —-z2
Iojzl—ZZje J] e dt,Jj=A/a_tzje i’
0
F = (1+Ue=,1/v-0)1oe - ¢(1+Uin/v0)101 ons (15)
-2 - A (v +U )e_Z?.
L=-Arx (v+U ) e “e e R ese (16)
—— "0 en c.0
ce® i

IV. EVALUATION OF THE DIFFUSION

The net outward flux across a magnetic surface may be obtained

by integrating the radial velocity multiplied by the distribution



function over v pi and 6., The surface element is®

ds = rdé R0(1+8c056)d<p

27 =) oo
= - 1 - 2 0%, £ 2
mrd‘j . 271B0rf d@f av, j dp, (foj+fij) |: % T e; (mjvll
o —og o

2
+ = ) sind |« (1+eco30)?
2mJ.

27
- - dBEEL(2 6+n,) + — sind | dv | dp? ( m.v?
= - 578 T ae BHOCOS +n1 + ej sin V“ pl HU i
A

0o
+—mJ') f1j:] sse (17)

The required moments of f1j may be obtained from Eq.(10)

1 e.d U.n
1 v [P v f . =—-—Lt|1+22 (1 +=2L)1,
n, I Lo 1 m; J ¥ J

ekT U.rl i0
+ —l (1 + —\1'-> 272 | 1 + <1+2z%>1 ] e
m, vy J 3/
eee (18)

U
1 5 3 o A0 _jn _
= fdv”[dpJ_ P f1j=2mjKTj n ge 1 =2 (1 IJ.)

[0} Q
sun 119)

Before substituting into Eq.(17) one must, of course, take the
real parts of the expressions for & , n,, and the moments in Eq.(17)
and (18). The result of performing the integration over © can be

expressed in the concise form

- 2 2y 2
szfarj (1 an> " |:1 . [F(1+2z2j) ﬁjl’] +[L(1+2zj) ij] ]
J

Vv =
i 2 2
dj 2rejB Vo F° + L

san (20)

where

.= (e./e T ) for ions and -1 for electrons,
By = (ej/0) (T/T)) ==

P and Q are proportional to the real and imaginary parts of the



right hand side of Eq.(14), defined by

ekT . ;
3 e P+iQ ib
8, (r,0) = — [-——-—-FHL] e . ana (21)

In all conditions of experimental interest ze=O(an/ce®) <1,
and hence Ioe = 1. The expressions in Eq.(20) can then be expressed
as follows

2 — — —
(1+22i)F P 1+T+2221(1+Uen/v0) S

F+P

(1 + Uin/vo) (1 + 1+ Zzi) Lys ™= (1 + =) Uin/v0 =G

sam (22)

(1 + ZZi) L-12Q==aA7%(1+7+ Zzi) (V0 + Uen)/ce@

...22

i
_ o
+Q==A7 (1 + 71+ Zzi) (VO 3 Uin) e /biG.

=g

Eq.(20) may be expressed in a form similar to earlier expres-—

sions for the diffusion.

= 2 2, 12 2 2
. Nre ajc, . :ﬁl. . z; 1anf, S +Je(]+Ueﬂ/vo) (1+1+22i)
di— 8r@ Uy n dr F2 + L2
e e (23)
-.2.2 - 1.1 204 2
. o NTe aC, . v, . zi Ll 02+Ji(1+din/v0) (I+1+2zi)
de 8r@ U, n dr F* 4 I®
sse (24)
where a, = cJ./Qj is the Larmor radius. Equation (24) differs in

one respect from the correspdnding result given in reference (3). In
deriving that result the dpL/dt term was omitted from Eq.(3)” . As
a result a term proportional to (1 + vo/Uin)Ji incorrectly appeared
in the electron diffusion equation,

The result which would have been obtained if the azimuthal
electric field had been neglected in the foregoing analysis may be

found by putting P = Q = 0. As may be seen from Eq.(20), the

. [P



xpressions in the square brackets then equal 1 + (1 + 2z§.)2 « This
gives a diffusion rate for each species which is exactly one quarter
of that obtained by Galeev and Sagdeev' if z5 < 1 (which seems to
have been tacitly assumed in reference (1))s The reason for this

numerical discrepancy is not understood.

V. THE AVBIPOLAR CONDITION

As may be seen from Eqs.(23) and (24), for arbitrary values of
¥y the ion and electron diffusion rates are unequal, their ratio
1, _3
being roughly (mi/me)é T 72 exp[ - (vo/bi®)2]. The differing diffu-
sion rates may be expected to increase the space charge potential
until an ambipolar distribution is reached, defined by the condition
vdi(vo) = vde(vo) at all radii, This ambipolar condition may be
written in the form
1 2,12 2 2 2
(l , v0n> ) (1 X vo‘) e—z2j_ ('“i)é,r—%r +L +G‘2+Ji(1+Uin/v0) (I+q:+22i)
U = ] e 2. 12,2 B 2
% U, Mg F2+L%+S +J2(1+Uen/vo) (1+1+2zi)

v (25)

The ratio in the square brackets in Eq.(25) will generally be
of order unity. Thus the most obvious solution is either ¥ - Uin
or -U_ ., depending on whether (mi/he)% exp (—zi) is greater than
or less than unity. For a hydrogen plasma this corresponds to z;

less than or greater than 2 or, since Uin/cie = ai/2rn®, ai/rnQ less

than or greater than 4,

We will first consider the case ai/rn® > 4, and hence
Vi = Uen and z; > 2t. In this parameter range the ions tend to
have the slower diffusion, and so they determine the ambipolar rate.

This will now be estimated. Since I(z) falls off for large =z

w P



as - 1/22z°, F + iL = (1 + Uen/bo)le' Thus for the ambipolar condi-
tion v, &= Uen’ both F and L are small. It might be expected
that the ambipolar diffusion rate would be correspondingly large,
However, when the numerator in Eq.(23) is evaluated, one finds that
in leading order it also is proportional to (1 + Uen/vo)z. In fact,
the ambipolar diffusion rate

2 2
. - N e (1+'1:)aici a, \4 . : a; \2 1 dn
da 2rnQ 2r © xp 2+ @ n dr

n

asw (26)

shows no significant enhancement as a result of the resonance with the
electron drift wave.

We now enquire whether there are any other solutions to the
ambipolar condition when ai/rn® > 4, It may readily be confirmed
that solutions exist near Yo = + ZCiG < an. For these solutions,
lzil ~ 2 and hence Ji & Je' The corresponding ambipolar diffusion
rate is

" Eaaici mb s o P 1 dn
Vian = = 0 ( m.T > ’:% + (2+71) :} T ar iis [27)

That there are no other ambipolar fields can be seen from Fig.2, which
illustrates the variation in the diffusion rates with vo, when
ai/rne > 4, This shows only-the qualitative behaviour, The differ-
ence in magnitude between the two rates will generally be much greater

than shown in Fig.2.

We will now consider the case ai/rn® < 4, One solution of
Eq.(25) is v, ® = U, , for which z, < 2. The evaluation of the
ambipolar diffusion rate is rather easier if we assume z; « 1is

although the result given below is, in fact, valid for z; ~ 1.

= [ =



Then F~1+11,L«1,S=2G=1+ 1, Substituting into Eq.(24)

gives i "

NT e2a2c. t2(141) s m A2
i e

_ e\ 1dn
Vda = 4r0 ( m; > ndr ° eee (28)

There are no other obvious solutions to the ambipolar equation when

ai/rn® < 4,

The ambipolar diffusion rate in Eq.(28) differs from that
derived by Galeev and Sagdeev' only by the factor % already referred
to. Their tacit assumption that vo/ciG < 1 for the ambipolar Vs
is valid only when ar/rn® < 4, The more common condition in stella-
rator experiments is ai/rnQ > 4, The ambipolar diffusion rates for
this case, Eq.(26) and (27) differ from the Galeev and Sagdeev result
mainly because vo/ci® > 1, rather than the effect of the azimuthal
electric field., Although a consistent treatment demands an azimuthal
electric field, and in spite of the fact that it can markedly change
it

the electron diffusion rate over a range of Vs close to -~ Uen’

does not change any of the ambipolar diffusion rates by a large factor,

VI. BUILD-UP TIME FOR THE AMBIPOLAR FIELD

The initial radial space charge field will depend on the plasma
formation process, and will not in general be ambipolar. The differ-
ing diffusion rates of the ions and electrons will cause the space

charge to build up towards an ambipolar distribution,

An estimate of the build-up time and the diffusion during the build-
up phase may readily be obtained if the rate of change in the equilib-
of,
rium distribution is assumed slow, such that —5%5 < O(SXJ.V)f1j- The

omission of afj/at from the linearized form of eq.(3) is then still

valid, The time variation introduces an additional term into eq.(4)

- 13 -



for the guiding center velocity

avo 1

1 _d _ 1 _ 3
Yej“@Bdt 0, ot =r O.B ot (v,x B)+ cas (29)
J J J
where Qj = eJB/hﬁ and e  is a unit vector in the radial direction,

The assumption of a slow rate of change on the equilibrium quantities

impli e8o 1 ~ ~ U,
implies that avo/at <0 (eﬂivo), e.g. if 3/0t avo/r and v UJn,
then v 0,/ ot ~ einoai/r'Q. Thus the inertial correction Vi does not

contribute to the first order quantities retained in eq.(10). Hence
the first order expressions for the azimuthal variation in potential
and velocity distribution functions derived in Section III are un-

affected by a slow time variation,

Since the radial flux vanishes to first order when integrated over

a magnetic surface, th must be retained in the evaluation of the

diffusion. In lowest order th is independent of © and contributes
a flux —'g? %%? . The other components of the radial flux are still
correctly described by the expressions in Sections III and IV. Thus
the diffusion in a slowly varying equilibrium, denoted by ij, can
be expressed in terms of the diffusion expression derived assuming a

steady equilibrium, v,., as follows

dj
ov
_ 1 o
VDJ = vdj T .0e (30)
J
Quasi-neutrality requires that Vpi = vDe at all times i.e,
avo
"'a-t_zni (Vdi-vde) ° ooe (3})

From eq.(30) the time variation is seen to have a negligible
effect on the electron diffusion rate, Thus it is given by eq.(24)
even during the build up phase., The inertial correction to the ion

rate is such as to bring it to equality with the electron rate.

- 14 -



in Fig.2, the ambipolar

As may be seen from the sign of v i~V

d de

condition Yy Ro- 2Ci@ is unstable in the sense that, if ¥ is
initially close to this value, it will steadily move further away.
The ambipolar conditions v0 ~ 2ci® and —L%n are stable, If
initially Vg > - 2ci® the radial field will move towards the condi-
tion LA 2ci®. If initially Vi X Zci® it will move towards

¥y = —IJen. In the first case, Vai ? V4e over most of the non-

ambipolar phase. Hence

2

e 2

av C

Yo, _dx %% 1an (a5}
at m 4 ro ndr ° o

; : - ; ~ 2
The time to build up to v 2¢;0 is t, (SPPn/f\G:aiCi)(L/th) :
In typical experimental conditions this is of the order of tens of

microseconds,

A weakness in the above analysis is that the initial assumption

is invalid for the resonant particles v, ® - vO/G. If we replace
af1j/at by quj’ the effect on f1j of a slow variation is formally
similar to the effect of weak collisions, These are known not to sig-
nificantly affect the microscopic behaviour, which gives some confi-
dence that the above analysis should provide a valid estimate of the
diffusion process. Eq.(32) should be checked for consistency with the
initial assumption of slow rate of change in the equilibrium parameters.

Assuming Vv c;0, the condition avd/at < evi/b requires ©° > ai/rn'

VII. PHYSICAL EXPLANATION

It will first be shown how the diffusion process can be interpreted

as a resonant particle phenomenon, It is therefore not surprising that

= 15 =



it results analytically from Landau-type terms. A heuristic deriva-
tion will be given showing how collisions, although they affect the
motion of individual particles, do not influence the net flux. This
is not intended as a substitute for a rigorous treatment, which will
be given in a later paper. Finally the physical origin of the de-

nominator F2 + L® will be demonstrated.

The origin of the diffusion is the magnetic drift in the toroidal
fielde For the field considered, this drift is approximately verti-
cally downwards for ions, and upwards for electrons. The radial com-—
ponent of this drift is vbj sin ®, The guiding center of a typical
particle rotates around the magnetic axis with angular velocity
de/dt = (vo + @v“)/r', due to the combination of electric drift and
parallel motion along a field line, Thus the magnetic drift alter-
nates between outwards and imwards. The displacement from a magnetic
surface is limited, ©6r = rv, cos 6/(v0+®v“). The exception is the
class of particles for which ¥yt @v” is almost zero. As will be
discussed later, the azimuthal variation in the equilibrium may
equally well be regarded as an m=1 forced oscillation, which happens
to be at rest in the laboratory frame. A resonant particle is one
which travels approximately in phase with a wave, so by this defini-

tion those particles for which ¥y & @v, = O are in resonance with

the toroidal variation.

The radial drift of such a particle may be limited either because
its slow angular velocity carries it into the other half of the cross
section, or because its angular velocity is increased markedly by
collisions. The second mechanism is more important for 'resonant
particles', We first estimate the range of Av = v, o+ VO/G over

which the fractional change in Av due to small angle scattering is

- 16 -



small during one rotation around the magnetic axis., This requires

; . _ 1 /7 Av : P
Scattering Time = v ( EE ) > Transit Time = = . ves (33)

Hence if Av > w, = (rvjcﬁ/@)1/3, we can neglect collisions. Such
particles, which will be referred to as passing particles, describe
circular orbits about the magnetic axis whose displacement from a

magnetic surface is 6&r = rv,_cos6/@Av, If Av < w& the particle

b
rotational transform is so small that it may be considered to remain
at a constant © wuntil small angle scattering changes it into a pass-—
ing particle. This takes an average time < _ = wﬁ/bjcﬁ, during which
the particle suffers a radial displacement vbjwssinﬁ. The flux of
particles across a magnetic surface is

27

1 ;
a1 * 7 dv /- de fo (r-8r) vbj51n6

2

(0]

v, ]. —2 2 2 5in?0

Z or 2 'bj
BO-w.
0/ J o

aF0
"“!ﬁ'gw.vg.<_—) °
sJj bj or .
v = voﬁ@

Substituting a mean value for Vi from Eq.(4), and for TWy gives
a diffusion rate which differs from Galeev and Sagdeev's' by only a
numerical factor. The essential feature is that, as may be seen from
Eq.(31), the time spent in the steady drift condition is such that
Tst = r/®, independent of the collision frequency. The analogous
effect in the propagation of a small amplitude plasma wave is that
Landau damping obeys the collisionless theory even when the time for

collisional scattering out of the resonant velocity range may be less

than the growth time.

= YT s



The explanation of the factor F + il in Eq.(14) for & is the
same as that given for the factor D in the resistive/viscous
plasma®’%, If we transform to the plasma frame, the toroidal magnetic
fi=2ld and the resulting separation currents appear as an m=1 varia-
tion, whose wavelength along the field lines corresponds to a wave
number k = ©/r, rotating with angular frequency —vo/r. The
response of the plasma to such an externally driven charge separation
may be expected to vary inversely as its dielectric constant., The
factor F + iL is identical with the dielectric constant of a station-—
ary inhomogeneous collisionless plasma for electrostatic excitation
with this wavenumber and frequency. Since the diffusion rate contains
products of azimuthally varying quantities, it must include terms pro-

-2
portional to |F+iL| o

For most values of the doppler-shifted frequency, |F+iL| is of
order unity and the above effect does not markedly affect the diffu-
sion., The exception is if -vo/r is close to the frequency of a
natural mode in the plasma rest frame, and if this mode is weakly
damped., Then |[F+iL| « 1, the azimuthal variation in density and

potential is large, and the diffusion rate may be enhanced.

When an > CikH the natural modes are the electron drift wave,
w = mU n/r, and the slow ion wave w=—c2K°r/mU_ . The electron drift
e S en
mode is marginally stable when finite Larmor radius effects are
neglected and the temperature is uniform., This is why the electron
diffusion rate is large when a./r @ >4 and v_= - U_, corres-
i’ "n 0 en
ponding to resonant excitation of a drift wave (see Fig.2). No com-

parable amplification occurs when -vo/r coincides with the slow ion

wave frequency, because there is heavy ion Landau damping of this mode,
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VIII. RELATION TO EXPERIMENT

From the plot of ar/rn@ against Zmefp/Lc for typical operat-
ing conditions in Fig.2 of reference (4), it may be seen that the most
common condition is af/rn 0z 4, Zﬂlmfp/tc < 10, In all the #£=3
stellarator experiments the plasma is in the resistive/viscous condi-
tion at smaller radii, where the connection length is long., Before
the diffusion rates derived here and in reference (4) can be used to
predict the overall confinement time, the transition range between the

two regimes must be established more precisely than Lc =0 (Zﬂlmfp).

This transition will be investigated in a later paper.

IX. CONCLUSIONS

It has been shown that the guiding center drifts in a toroidal
magnetic field inevitably produce an azimuthal electric field. This
was neglected in earlier treatments of the intermediate collision
range’’2, The diffusion rates differ in three respects from those
derived by Galeev and Sagdeev', Firstly, the coefficient of both the
ion and electron rates are less than Galeev and Sagdeev's by a factor
of /4, This difference would seem to be of analytic origin. Secondly,
Galeev and Sagdeev appear to tacitly assume that vo/ci@ < 1, although
the reverse inequality more commonly applies to present experiments
when ¥ has the ambipolar value. Higher powers of z; = - vo/ci®,
absen- from the Galeev and Sagdeev expressions, then become dominant,
Thirdly the inclusion of the azimuthal electric field introduces a
factor which is inversely proportional to the square of the plasma
diclectric constant, evaluated at the doppler frequency ~v0/r. In

general the dielectric constant is of order unity and this factor does

- 19 -



not significantly affect the diffusion. The exception is when —vo/r
is close to the frequency of a natural plasma wave in the plasma rest
frame, in which case the dielectric constant is small and the diffu-

sion may be rapid.

Equating the ion and electron diffusion rates gives an equation
for the ambipolar electric field. When af/4rn6 < 4 there is only
one solution, vo = - Uin' In the condition of most experimental
interest, where ai/rnQ > 4, this equation has three roots, i.e.

v.=x-=U
e

o s = Zci®, + 2019. The middle one is unstable. If the

n
initial potential distribution satisfies o8 /dr > - 4«T ©/ea , the
space charge distribution will move towards that defined by v X 2ci®.
If initially a¢0/ar < - 4KTi®/éai, it will move towards L Uen°
This ambipolar electric drift is very close to that for resonant
excitation of an electron drift wave in the plasma. Although the
electron diffusion is enhanced over a range of L close to _Uen’
there is no enhancement of the ion rate. Thus the ambipolar rate,
which in this condition is determined by the ions, is not significantly

affected by the resonance.

When ai/rne < 4 the ambipolar diffusion rate, Eq.(28), agrees
with the Galeev and Sagdeev rate, apart from the factor of 1/4, When
ar/rne > 4, the diffusion in the ambipolar condition vo ~ ZCjG,
given by Eq.(27), roughly equals the Galeev and Sagdeev rate when
Te — Ti' The other possible ambipolar condition, v0 = - Uen’ has
a diffusion rate, Eq.(28), which is much less than the ambipolar rate
given by Galeev and Sagdeev., This is mainly because z; > 2 and

hence thz ion diffusion rate is greatly reduced by the exponential

factor,
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The effect bf the helical field component of a toroidal stellarator
has been evaluated in Appendix A, still in the intermediate collision
frequency regime. Although in present experiments the magnetic drift
due to the helical field variation is generally small compared to the
toroidal drift, the number of ions whose trajectories are in phase
with the helical field may be much greater than those in phase with
the toroidal variation (i.e. for which d6/dt = 0)s The net diffusion
due to the helical variation may thus exceed the toroidal diffusion.
In the ambipolar condition the electron diffusion due to the toroidal
field variation will then be balanced by the ion diffusion due to the
helical variation. This would give a larger ambipolar diffusion rate

than in a comparable axi-symmetric torus,.
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APPENDIX A

DIFFUSION IN A STELLARATOR FIELD

The equilibrium analysis will now be extended to include the
helical field component of a toroidal stellarator. A vector potential
describing such a field is given in reference (4). The field strength

can be written, correct to first order in & and &, in the form

B = B¢ & Bo[:1—ecosG—BEIz(BanﬂR)cos&(e-awi] eee (A1)

where & 1is a measure of the strength of the helical component,
Assuming & and & to be small quantities of the same order, all the
equilibrium quantities can be expanded in power series in & and 0,
€ofo

(

8(r,0,¢) = éo(r) + @fs)(r,ﬁ) + §16)(P,9—a@) + eso

As we follow a field line Q(S)(B) has a fast oscillatory varia-
tion due to the helical path of the field line, and a slow steady
change due to the rotational transform (. The fast component has

small amplitude, of order &, and can be averaged out to give

aa(e)
1 - EL . == _
ds  2mr 96 r o

(3)

1

a';fs)‘ o 22(®)

where now © = et/2n. On the other hand, @& goes through one
cycle during a helical field period. The variation in @56) due to
the change in © over a period is relatively small and can be neglec-
ted., Hence

23(0) a;afs)

. I Sl I
as R 3¢ °

= 0%



We now consider the effect of the helical field on the guiding
center motion, The radial component of the guiding center drift is

now
>
(mjvﬁ+pl/2mj)
v, = -
jr ejrB

|:ssin6 + Beglg(zcur/ﬁ)sirm(e—cucp) ]

1 3 (g) (8)
B (3,77 + 3 )

The helical variation in B and & introduces additional terms into

dv,/dt and dp,/di, e.g.

av, e.0 03€) e.q 258 . /P70

- _ e 1 _ & L _ ;

dt mjr 30 * ij o6 r ( ome vovl ) sin
J

+——_-

r 2m-,

662]:16 ( [JQE{I.
J

i . : -
L % VOV”> sin £(6-ap) .
These expressions may be substituted into Eq.(3), and the equation
linearised in & and 6. Because of their different © dependence,
terms which are functions of © and those which are functions of
0-a¢ must separately vanish, The equation relating @fe) and T

is identical to Eq.(10y. The corresponding equation relating @1

and f1§6) may be obtained from Eq.(10) by the substitutions

@ - = SCL, e - ‘6(6"’{1.(?)’ £ = 6621&(EGP/R). oo e (Aoz)
When the radial flux is integrated over a magnetic surface, only
products of terms having the same 6 dependence survive. In addition
to a toroidal component, which is still given by the equations in

Sec, IV, the diffusion has a helical component which can be obtained

from Eqs.(23) and (24) by making the substitutions set out in Eq.(A.2).

In evaluating the helical component zj must be interpreted as

Fo vo/cjaa. Comparing z5 for the two components

Jgh
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z

jh _ v 8
z.,  2m = 2N
jt

where N is the number of field periods around the major circumfer-
ence., This ratio is typically of order O«1 for an £=2, or O-I(r/'r-o)2
for an £=3 stellarator. Whereas generally Zip > 1 for conditions
of experimental interest, usually Zih < 1.

In comparing the magnitudes of the helical and toroidal diffusion
components, it will be assumed that -vd/r is not close to the fre-

quency of a natural plasma mode having the toroidal wavenumber

(m=1, k

(= 27:/1.C = ©®/r), nor is -EVO/r close to one having the

helical waverumber (m=¢, k =27/field period = £a/R) . We shall take
for the bracketed expressions in Eqs.(23) and (24) the value :

1 + (1 + 2z2)2 which one derives when azimuthal electric field is
neglected. This gives the correct order of magnitude so long as v0
is not near a resonance, To permit direct comparison with experiment,

5 will be expressed in terms of rotational transform

(51;215)2 = (1/2x) e*a®e3/(£-1) .

The ratio of the two components in the ion diffusion rate is then

2 (1 2 2
(VDi)h /a,e ) B 1+(1 r222111) ezit Zih
v_.) £ ’ °
Ypide  \ 2m (£-1) 1+(1+2z§t)2

-2 -
Typically o = N2 ~ 5, t/2n ~ 0:25, ¢ ~ 2 x 10 , giving
(aer/27)° 23 /(6~-1) ~ 1077, However, this small coefficient may be
more than balanced by the large exponential factor, since Zi¢ > 1

and zih < le

The physical explanation is as follows. A particle for which

v, = vo/sa = W LW/Qﬂr, where L is the winding period, will stay

- 25 —~



exactly in phase with the helical winding as it moves under the com-
bined effect of the azimuthal electric rotation and its parallel
motion along a field line. The helical magnetic drift of such a par-
ticle has a constant radial component, until it is scattered by
collisions, It is these resonant particles which are responsible for
the helical component of diffusion. Typically vOLw/Zﬂr is less than
the ion thermal velocity, so there is no shortage of such particles,
Resonance with the toroidal field variation requires v, == Vo 2r/1e.
Tnis is typically greater than the ion thermal velocity, and the
number of such ions is exponentially small, Thus although the mag-
netic drift due to the helical variation may be small, compared to
the toroidal drift, the ion diffusion rate may be greater because the

ions resonant with the helical variation are much more numerous.
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Fig.1 The co-ordinates

——\'/Uen —ZCie Zcie _Uin

Fig.2 Diffusion rates v. electric drift velocity for aj/ rn@> 4
(CLM-P214)












