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ABSTRACT

The equilibrium equations are solved, including resist-
ivity, parallel viscosity, and a radial electric field. A
resonance effect occurs when the frequency of the electric
rotation about the minor axis approaches the frequency of a
natural plasma mode. For arbitrary steady electric fields
the ion and electron diffusion rates are unequal, and the
space charge inevitably builds upuntil the two rates equal-
ise. In most conditions of interest this ambipolar electric
field is close to the resonance value, and the ambipolar

diffusion rate is much larger than the Pfrisch and Schluter

rate,
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I. INTRODUCTION

In many toroidal confinement devices the observed fluctuating
fields appear to be insufficient to account for the measured diffusion
across the confining field, This suggests that the diffusion is a fea-
ture of the equilibrium, rather than a result of the instabilities

predicted by linear stability theory.

That finite resistivity can lead to a steady diffusion in a toroi-
dal plasma, additional to that in a comparable straight plasma column,
was first shown by Kruskal and Kulsrud', Assuming a simple Ohm's law,
E“ = nj”, they found a steady diffusion such that the decrease in
compressional energy balances the Ohmic dissipation by the currents
necessary to maintain equilibrium. The guiding center drift of ions
and electrons in a toroidal field produces a charge separation which
must be neutralised by current flow along the magnetic field., Pfirsch
and Schluter® evaluated the Ohmic dissipation by such currents in an
axisymmetric torus, and obtained a diffusion rate which exceeds that
for a comparable straight column by a factor 1 + 4%2/L2 (where
is the rotational transform)., They also analysed in detail the azi-
muthal dependence of all the equilibrium variables and found a net

outward fiux equal to that deduced from the energy argument, Their

result was rederived more concisely by Knorr®,

In all the above treatments the equilibrium density is constant
over magnetic surfaces, This is a consequence of the neglect of ion
inertia and viscosity, It was recently pointed out by Stringer*® that
in the presence of a radial electric field the rotation of the plasma
about its minor axis introduces an inertia term, This must be balanced

by a density variation along the magnetic field lines, Such radial



electric fields are observed experimentally. The diffusion was found
to be inversely proportional to the plasma dielectric constant for a
frequency equal to the electric rotation frequency about the minor
axis, vo/r where v = (1/8)(83/0r). The physical explanation is
as follows. Although the charge separation currents are stationary
in the laboratory frame, relative to the plasma frame they rotate with
the doppler-shifted frequency - vo/r. The response of the plasma is
analogous to the forced oscillation of a stationary plasma column to
an externally imposed charge separation rotating at this frequency,

i.e. it is inversely proportional to the dielectric constant.

The ion and electron diffusion rates in a time-invariant electric
field were found to be generally unequal®. The condition that they be
equal, which is necessary for a steady equilibrium, was satisfied only
when ¥, = O i.e. zero radial space charge field. The diffusion rate
then agreed with that derived by Pfirsch and Schlﬁter2 . However,
this ambipolar state was found to be unstable in the sense that any
departure from charge neutrality produced a difference in diffusion
rates which increased the charge imbalance. The electric drift would
thus be expected to increase with time until - vo/r approached the
frequency of a natural mode of the plasma, The dielectric constant
then tends to zero and the diffusion rate becomes very large, so large
that the linearised treatment breaks down. It was proposed that a
non-linear treatment would show an ambipolar state close fo this
resonant condition, with a diffusion rate much greater than the

Pfirsch and Schliter rate.

In this paper this analysis is extended to include the viscous
force parallel to the magnetic field, Stable ambipolar states are

now found for well-defined values of the radial electric field, and



the corresponding ambipolar diffusion rate is evaluated,

Section II defines the coordinate system, the simplified magnetic
field used in the analysis, and the ordering assumed. Treating the
zero order radial distribution of density and electrostatic potential
as specified, the azimuthal variation in density and potential is
derived in Sec.III. The corresponding radial diffusion rate is evalu-
ated in Sec.IV. In a steady equilibrium in which there is no other
loss process, the ion and electron diffusion rates must be equal,
Equating the two diffusion rates gives a cubic equation for the ambi-
polar radial electric field, whose solution is discussed in Sec.V.

The corresponding ambipolar diffusion rates are also evaluated. The
diffusion in a time-varying electric field, and the time taken for the
ambipolar field to build up, is evaluated in Sec. VI. In Sec., VII
the form of the ambipolar potential distribution and the magnitude of
the corresponding diffusion rates in typical experimental devices will
be discussed. In Appendix A the analysis is extended to include the
helical component of magnetic field in a stellarator. It is found that
in most conditions of interest the effect of the helical field is small

compared to the toroidal variation,

The analysis is based on guiding center fluid equations, Fluid
equations are valid only so long as the mean free path is less than
the connection length i.e. the distance measured along a field line as
it encircles the minor axis once, LC E ZﬂrB/Be. For longer mean free
paths the kinetic equations must bé used, This condition was first
considered by Galeev and Sagdeev5. An improved analysis, which in-
cludes the effect of azimuthal electric fields, was outlined in
reference (4) and will be given in more detail in a later paper, to-

gether with a treatment for the transition between this and the



resistive regime. Since in many existing stellarators the connection
length varies over the cross section from greater than to less than
the mean free path, the comparison between theory and experiment will

be deferred to this later paper,

II. THE MODEL

The co-ordinates and magnetic field used are the same as those
discussed in reference (3). r,0 are polar co-ordinates centred on
the magnetic axis, and ¢ measures angular distance along the axis
as illustrated in Fig.l. Relétive to these co-ordinates the magnetic

field is taken to be

R
E ='11_0|:0, Boe(r), BO(P] es e (1)

where R0 is the radius of the magnetic axis, R = Ro(l + gcosb),

and & = r/Ro. Eq.(1) is intended to represent a field of the Tokamak
type, or the toroidal variation of a stellarator fielde The plasma
current required to produce this field flows everywhere in the ¢
direction®. The displacement of magnetic surfaces relative to the
magnetic axis in a realistic toroidal field could be included by using
instead of the r co-ordinate the radius of the magnetic surface pas-—
sing through the point. Since this increases the analytic detail
without appearing to affect the results significantly, the toroidal

displacement of magnetic surfaces is neglected.

When terms of order & are neglected, B is azimuthally symmetric
and consequently the equilibrium density and electrostatic potentia.

must also be independent of ©. For a large aspect ratio torus all



equilibrium quantities may be expanded as a power series in e , e€.8

n(r,8) = no(r) + n(r,0) + «o., &(r,0) = QO(P) - ®1(P,6) + oo
o000 (2)

where nS(r,e) contains all terms of order asno. A zero order radial
temperature gradient will not be included in the following analysis.

It is hoped to include this in a later paper.

The analysis uses guiding center fluid equations. The same results
can be obtained using MHD fluid equations, but then finite Larmor
radius terms must be included in the parallel equation of motion, and
the analysis is rather longer and less physically transparent. When
guiding center equations are used the effect of finite Larmor radius
corrections is generally small, and will be neglected in the follow-
ing analysis, The mean guiding center velocity of a particle of the

jth species may be written in the form

¥y = % B/IB| + Vpj t doj t Yot X, t ees wos (3)
where
275 g
=bj ~ B2R (Btp L Ecp)’ Yej T T Yjk @pn
_hV@OX_B_ 3 Ve, xB
-0 - B2 ? —] = B_.

g, and E@ are unit vectors in the vertical and ¢ directions,
xbj is the mean curvature and VB drift. 'ch is the average

guiding center collisional diffusion of the jth species resulting
from a density gradient across the field, where ¥ ik is the colli-
sion frequency with the other species. This term contributes a
diffusion equal to that in a straight plasma column®, ana for brevity

it will be dropped in the following analysis,



It is convenient to express the order of magnitude of these

velocities relative to the diamagnetic velocity of the jth species

KT, 1 dn0

U. =——'1—-""" ° eeoe (4)
Jn ejB n, dr

It will be assumed that the zero order electric drift is no larger

than the diamagnetic velocity, i.e€. Yo ™ an, which implies

do dn
o «kT "o
e —dr '—no ar ) V_I vbj e UJn. ° oo (5)

The rotational transform t will be assumed of order unity, i.e.

_ &b _

UJI G)w

¢

If the resistivity is too large, the expansion scheme breaks down.
As will be seen later from Eqs.(16) and (17), remembering that @=0(e),

the condition for consistency is

—_— =< U. oceo (6)

i.e. the Pfirsch and Schluter diffusion velocity must not be large
compared to the diamagnetic drift velocity: when this condition is
violated, the predicted diffusion rate exceeds the Bohm rate, which is

thus an upper limit on the validity of the prediction,

I[I. EQUILIBRIUM ANALYSIS

The basic equations are the quasi-neutrality condition and the
continuity equations for the ion and electron guiding center densities.
Guiding center density differs from particle density by terms of order
(aj/r)g, where a; is the Larmor radius of the species®., Since such

finite Larmor radius corrections are neglected, quasi-neutrality



implies equality of the ion and electron guiding center densities,
Rather than separately evaluating the two densities and equating the
results, it is easier to satisfy quasi-neutrality by writing

n, = ni =N in all equations,

The guiding center continuity equation is simply V. (ngj] =
As defined in Eq.(3), Y, has a weak azimuthal variation due to its
dependence on the exact magnetic field. We first evaluate the com—

pression due to this electric drift.

’ (VxB) - 9 s
V'X(,:"V( ) (Ve xB)+—-—-§§—-—— —R'Voe sinl
see UT)
Since VxB is in the ¢ direction, (VxB) - 0 =0, Thus V- .
U, U.
is of order ¢ ;%9 s Wwhile Vo v, is of order &2 _iqo The magnetic

drift, although constant to order &, produces a density variation by

convection of the non-uniform plasma

2T EE 2kT . EQ dn0
Ve (I‘[XDJ) = - ——lleJR B2 —a— = ——'—‘leJR B2 _(.i?'— S.].ne eoe (8)

Retaining only first order terms in the continuity equation gives

avJ. 2n0 B
I . -
(XO- V) n+ (!1- V) B M Sl s e (an + vo) sind
se o (9)

where

2 _1(g.y) 03 93

os B '— “rB o6 " rad °

B

Since Bg = 0(e B@) is assumed, the factor i? =1+ 0(e®), and it

is unnecessary to distinguish between v06 and Vo' Subtracting
Eq.(9) for the ions and electrons, and integrating with respect to 9,

gives the current required to neutralise the charge separation drifts

j = == —= cos6. ses (10)



Since the mean guiding center motion parallel to the magnetic
field Vj is identical to the corresponding fluid velocity, the
i
fluid equation of motion and the generalised Ohm's law may be used to

describe this motion.

v, vy 3p azviu ) apL v, v,
nmy o= - R, e B vy e (5 )
ere (1])
KT
. _8 9 | _ _£
T]‘]“ —r ae[ @1 + noe n‘l] . es e (12)

Eq.(11) differs from the usual MHD fluid equation where the inertial
term on the left hand side would include the diamagnetic velocity, i.€o
v,

nm.(v + U, ) —Ll, while the right hand side should include the

i o in" rab
finite Larmor radius corrections to the pressure tensor’’®. These

o wls\ oV, o

corrections include the term g <'_Eﬁf B ° which just cancels
the diamagnetic inertial term. When Eq.(11) is obtained directly from
the guiding center kinetic equation with collision terms, as will be

done in a later paper, neither the spurious inertial term nor the

compensating pressure correction arise.

The parallel and perpendicular coefficients of viscosity are given

by_/g 8

““ = 1.28 9 lJ-_L = 1'2 aT— sen (13)

n«T nkT. ,¥.. \2
(0] 1 11

g . ( Q >
11 Ll

i
where Yii is the ion-ion collision frequency, and Qi the ion
cyclotron frequency. The relative magnitudes of the viscous terms

are

- 82Vl ‘Jii \2 ai LC 2
—_—tl) = fo | e e
(HJ.VJ_viH) (l-l“ aSQ ) ( Qi y |: r zqt'hmfp :| . ese (14)

The most common experimental condition is a; « r, while Lc although

greater than A is not much greater. The terms resulting from the

mfp’



perpendicular viscosity are then relatively small., These terms will
be dropped, but they can be included by replacing v in the following
analysis by v, + v _L@-Qr-zvf_- When the radial variation is neglected
this is simply v, + v /6. The condition where the perpendicular vis-
cous coefficient is dominant has recently been investigated by

Rosenbluth and Taylor®.

Substituting Eq.(10) for diy A0 Eq.(12), and integrating with

respect to 6 gives
kT n dp

——&_1 28 "0 .o
3 == he t 3 ar Sinde aii (15)
Before eliminating v;, Detween Eq.(11) and the ion continuity equa-

tion, it is convenient to express the azimuthal variation in complex
exponential form i.es sin® is replaced by - i exp(if) on the under-
standing that only the real parts of the equations have physical sig-
nificance. Since the equations are linear, all the first order
variables must vary as exp(if). The resulting equations are then

readily solved for @1 and n, to give

2
[I +Uen_czs® _ ive? (I +Uen>:'@
v v T, v, 1

0
kT
_ _2e i & nvp’
= Voe [—-e (v0+Uin)+ 5 :l

2~ o
; c<@ kT v@
. i6| gp'r s e
- 2ic e (1 ) - - (vo + Uin)]
o}

sse (16)

) 0 ) ()
= - 28 e‘16 v + U, n—;E- 28
Vo 0 in BSV n
2ig _i8 [ np'r n’ ve°
Vo © 1:132@'2 n o rv, (Vo * Uin) was (17)



where v = p“/h m, is the kinematic viscosity, Cg is the sound
speed [K(T + T )/hl]é and a dash denotes differentiation with

respect to r.

IV. EVALUATION OF THE DIFFUSION

The radial guiding center flux will now be integrated over a mag-
netic surface, r = constant, to obtain the net outward flux. The

surface element is® d$ = r do R, (1 + € cosO) do.

nij - .[ (n +n, ) [: + e sind :l(l + & cosB)< db
i a@ ZSKTJ
= 2er0 [ ae (zsn0 cosb + n, ) + ej n, sind :]de

0 ees (18)

Although it would be hard to visualise a particle diffusion which
differs from the guiding center diffusion, the fact that the local
fluxes are different may raise some doubts. The identity of the two
fluxes will now be demonstrated. Integrating the radial velocity,

obtained from the two fluid equations of motion, over a surface gives

. on
= 1 __J.__L 2
n VDj 2%PB f‘ ‘:(n + n ) + e 35 (1 + scose) de

1 0d ZexTJ on
— —— F— —_ 1
2ﬂPBo f 35 (25n cosd + n,) + ej 35 cosb :]de

(8]
vee (19)

An integration by parts converts the last term in Eq.(19) into the last

term in Eq.(18).

Before evaluating the products in Eq.(18), n, and &, must first

be expressed in real terms. If the coefficient of &, and n, in

= 10w



Eqs.(16) and (17) is written as D = |D| exp (-ix), then the real

parts of the expression for @1 and n, are of the form

D] @1(1',6) = =N cos(6 + x) + P sin(® + ¥)
ID| 21_ ==Q cos(® + %) + S sin(6 + %)
o

Substituting into Eq.(18) gives

en_ KT, «T j NS-PQ
nVDj =-W (N+"é3‘Q) Slrrx+<P+ ej S) COSX'+2SDOIDI

ese (20)

Substituting for N, P, Q, S and ¥ from Eqs.(16) and (17) gives

ci@gp'
Vpi = - ‘ﬁDE[V‘Q+vU -—c )ci@g- == (v0+Uin)J

- (Fe)z m]

ees (21)

v
_ _ _ps - o202 2 .
YDe = = FpT [(vzo + Vo Uy, — 20 ) [CQS@) + v, (U, Uen) J

0
2D = — 2
+ K c2@ {(Uin Uen) (vO & Uen) CSQQ/J]:,
@90 (22)
where
2
2
J =0 pB2e* ; Ko 8,
M (rp’)? rcs
2
2 _ _ ~202 2 2
v‘:)D ‘("f,*"o“en %@> +Kc’;® (VO-:—Uen)
2 !
Vg =~ &Bg—ﬂ.@g- = Pfirsch and Schluter® diffusion velocity.

When v = O the above equations reduce to those derived in
reference (4) for a purely resistive plasma, The physical origin of
D 1is the same as in the resistive case*. Relative to the plasma
frame the toroidal magnetic field and the resulting charge separation

currents rotate at the doppler-shifted frequency -v 0/r. The response

- 11 -



of the plasma to this externally driven charge separation should be
inversely proportional to the plasma dielectric constant at the appro-
priate frequency and wavelength. The factor D on the left hand side
of Eqs.(16) and (17) agrees with the dielectric constant of a station-
ary resistive/viscous plasma column for an electrostatic oscillation
whose frequency is —vo/r, whose wavelength parallel to the magne tic
field is LC and azimuthal wave number m = 1. The diffusion rate is

inversely proportional to D? .

In reference (4) the expressions for the plasma response and diffu-
sion rates become infinite when v% L U, = di@g = 0, The doppler-
shifted frequency then coincides with the frequency of a natural mode
in the p;asma, i.e., a drift/ion acoustic mode. Viscosity introduces
damping, which limits the response of the plasma when driven on

resonance,

V. THE AMBIPOLAR CONDIT ION

For a steady equilibrium the ion and electron diffusion rates must

be equal. Equating Eqs.(21) and (22) gives the ambipolar condition

V(2 + Vg g €20%) + 267 | K(vy + Ugy) + (v, + Uin)] -0
ees (23)

This relation may be used to express Eqs.(22) or (21) in a rather more

convenient form for evaluation of the corresponding diffusion rate

2 202
. R J(v0 + Uin) + CO K/J -
Da ps 0] 2eM + vV2K(v_+ U_)? ’
S o 0 en

where

M = J(v0 + Uin) + K(vO + Uen)'

s TR e



No simple analytic solution to the cubic equation for A Eq.(23),
is valid over the wide range of values of the quantities K and J of
experimental interest., The parameter range will now be divided into
sectors over each of which simple analytic solutions exist, and these
expressions for ¥ will be substituted into Eq.(24) to give the cor-
responding ambipolar diffusion rate. The boundaries separating the

different sectors of parameter space are shown by dashed lines in Fige.2.

The basic parameters chosen are lmfp/Lc and ai/rne » vwhere r_
is the density scale length n/n’. The second parameter equals
2U. /c.®. When viewed from the plasma rest frame the azimuthal varia-
tion in the equilibrium fields looks more like a drift wave or an ion
acoustic wave, depending on whether this quantity is greater or less

than unity. The quantities J and K are both proportional to
2
(hmfp/Lc) . :
1 280 C] 2ﬂl
() - ] (2] e
rCq TYji ©
2 2 1
_vp B¢ 1.28 % n? MoV et 2[ Pwrp | MVE[TO2
n(rp’ )2 1496 v, myq; T ) 2¢T 3 LC m, a;

1
where a; = (ZKT/miQi)é is the ion Larmor radius, The ion and elec-

tron temperatures have been assumed equal to avoid introducing another

parameter. For brevity the ratio 2ﬂlmfp/Lc will be denoted by .

Case (a) (a;j/ry®) > (m;/m,)

In this range the term proportional to J may be neglected
in Eq.(23) . The three solutions for the ambipolar electric drift )

which are sketched in Fig.3a, are approximately

. o _ 202 242
(i) when A < rnQ/ai, v, ® Uen c @ /Uen’ cs® /Uen’ KUen

- 13 -



(ii) when X > rﬂ@/ai, v, ® = U,, two solutions imaginary.

The corresponding values of the ambipolar diffusion rate are respect-

ively
3 1 4
(1) Yoo ¥ s (ﬂﬁ)é (ik) eee (26)
Vps J(v0 + Uen)2 N rp®
=] 1
“Da _ ol ~ 8 (f'&)é (27)
Vps (v, + U )2 MM
Vv % sa. 2
22~ K1 (30) (=) - e (28)
va m]_ n
(ii) 2 ] 4
Ypa (E!}) 1.3 <'_"§>"5 (ﬁ_) (29)
Vps Cs@ J 8}\2 mi I‘n®

All the above rates are higher than Pfirsch and Schlﬁter, the solution

corresponding to P Uen giving the most rapid diffusion.

1
Case (b) 1 < aj/rp® < (mi/h@)é

In this range the term proportional to K may be neglected

in Eq.(23). The three solutions, illustrated in Fig.3b, are approxi-

mately
(i) 14 C2®2 c2®2
?\<(E>,v~— - 2, U
m; o] en Uen Uen in
(ii) when
4 AT 1
C-'ia-><l<<’—"-i><-—]'->,v =z —=U ,ic@Jé
m; m. r® (o] en s
n
(iii) when

% sa.\?
% e 1 P o 3 ¢
> (== 5 * vo - Uin’ two roots i1maginary.
1, n

2 ol o



The corresponding values of the ambipolar diffusion rate are

respectively
(i) 1 4
Yoo _%F 3 ("‘e)’5 (_a_.‘l. (30)
ps  Jo+ Up) a2 \my r.e
1
Ypa_ /Yo 1 3 /Me\? YDa _
= ,...—c--®- 3"\-'—5]“— 9 and -V_Nl --.(31)
ps s N i ps
(ii)
1
vDa - (L‘en)2 l - 3 (:‘2)4 ( aj.>4 (32)
~ S— —2 s ] oee
vps cs® J o ane \m; rn®
VDa
v ® 2 for the other two roots. ese (33)
ps
(iii)
Ve * vps'

In ranges (b) (i) and (b) (ii) the Vo R - Uen solution again

gives the fastest diffusion,

Case (c) ay/r® <1

The solutions of Eq.(23), illustrated on Fig.3c, are

approximately
(i) when )
s 4 a
A< (Tf> -, v =x%*c@, Ju,
m 5 r 0 S in
n
(ii) when

e % 3
x>&> —‘?é’ vo::—Uin(l+1/J),

and two imaginary roots.

The corresponding ambipolar diffusion rates are

v % a; \?

Da 1 3(“e) ( 1)

——— P P e [ — ———— fOI‘ Vv =i c e oeoe (34)
vpS J 2 \my lrne 0 s

V., =V for v_=JU.
Da ps o in®

- 15 =



(ii)

V. ®V__.
Da ps

In view of the number of terms in the expressions for the ambi-
polar potential and diffusion rate, it is not surprising that there
are no simple approximations which are universally valid. The most
consistent root is Vg B = Uen’ which satisfies the ambipolar condi-
tion in regions a(i), a(ii), b(i) and b(ii). The corresponding diffu-
sion velocity is given by Eq.(26) throughout. This can exceed the

Pfirsch and Schluter diffusion by several orders of magnitude.

VI. BUILD-UP TIME FOR THE AMBIPOLAR POTENTIAL DISTRIBUTION

In a practical confinement system the initial radial variation in
potential, determined by plasma injection or formation processes, will
not generally coincide with one of the ambipolar distributions found
in the previous Section. The subsequent build-up of the electric

field towards an ambipolar distribution will now be considered.

The time variation in the electric field will introduce a new term

into Eq.(3) for the guiding center velocity i.e. the inertial correc-—

tion
dE ov
1. =__1_o L I« 5
Ttj © B at - " q; 5t L QB (!1 X -B-> eee (39)

where Qj = eJ.B/mj and Er is a unit vector in the radial direction.
The rate of change in Y should certainly be slow compared to the
ion cyclotron frequency, i.e. avo/at <0 (eino), in which case Ve
does not contribute any first order terms to the linearised equations
for the azimuthal variations.

The rate of change of n, and Vi with time should be included

w: T v



in the continuity equations and the parallel component of the fluid
equation of motion, respectively. However, if the rate of change is

EVO

assumed slow, i.e, % <0 --;—-) s these terms do not enter any of

the first order equations of Sec. III.
Since the radial flux vanishes to first order when integrated
over a magnetic surface, the contribution of the inertial correction

to the net flux can be significant. Eq.(18) is modified to

1 27 98 2T, 5 Y% 02
nvdj__ﬂr-"ﬁ;f (n0+n1) ﬁLae"'_dle. s.1n6+Q—jR- (1 + & cosB)= d
o
n_ av
0 _ 0
= I'I,O VDJ '—Q—j 3t 9 o s (36)
where v . is the diffusion velocity calculated on the assumption of

Dj
a steady electric field, as given by Eq.(21) and (22), This still

gives the net flux due to the E x B and magnetic drifts, since n,

and <I>1 s are unaffected by the time variation,

Quasi-neutrality requires that LTl at all times., Hence
avo
5 =% (g~ Vo)
v_c2 dn

pss 1 _o 2 _ =2
vtp 2 L, dr Vol Yo F VOUen CS®2
0

+ c?s(%)’2 [K(vo+ Uen)-t- J(Vo+ Uin)}] .
ees (37)

The corresponding equation in reference (9) differs from the above in
that v is replaced by v /8" in the definition of J, since only
the perpendicular coefficient of viscosity was included, and terms

proportional to y2 are omitted in D® and in the numerator,

s T



As may be seen from Fig.3, where there are three ambipolar electric
fields, one is always positive, one is negative, while the middle one
can be of either sign. From the sign of Vpe ~ Vbi shown in Fig.4,
it may be seen that this middle solution is always unstable in the
sense that, if Vo is initially close to this ambipolar value, it
will steadily move further away from it. The outer two ambipolar
fields are always stable. Thus ¥y will move towards that stable
ambipolar value which lies on the same side of the unstable solution
as the initial Vol When only one ambipolar electric field exists,

this is always stable, and the radial electric field will approach

this value irrespective of its initial value.

An order of magnitude estimate will now be made of the time taken
for Vs to approach the diamagnetic drift velocity, assuming it does
not first reach an ambipolar value., Normalising vDi - vDe to the

Pfirsch and Schlﬁter velocity gives

T = Jen_ _M _1 <_’:_>2<‘“> “ps (38)
E avo/at mye; \2% 1+7 (VDi - VDe)

The variation of vDe = Vpi with Vo is sketched in Fig.4 for one

particular range of plasma parameters, such that there is only one

ambipolar field, denoted by LT Over most of the range of Vo?

Ve ~ Vpi ™ 2vps. Taking this as typical, the build-up time given by

Eq.(38) is generally appreciably less than the experimental duration.

A rough check will now be made on the consistency of Eq.(37) with
the original assumption of slow variation on the equilibrium distribu-

tion. Expressed in terms of the parameters plotted in Fig,.2
) &
=5~ 6 (i) (D (& () e e o
vi 0 M Znhmfp a; L Vo vps

= i) -




Typically L L/2qn7x ifp ™ 35 rn®/ai ~ 01, v, - Rl 2va. Hence

this ratio is less than & provided vo/Uen and 1 are not too small.
The inertial correction to the ion diffusion adjusts itself so that
the ion and electron rates are equal. Since the effect of time varia-
tion on the electron diffusion is negligible, the common rate during
the build-up phase is given by Eq.(22). In the typical condition
illustrated in Fig.4, this is comparable to the Pfirsch and Schluter

rate over most of the range of Vs

VII. A TYPICAL AMBIPOLAR POTENTIAL DISTRIBUTION

The solid lines in Fig.2 show the variation in the parameters over
the cross-section for one typical operating condition in each of a
number of toroidal experiments!© (where an experiment can operate in
a number of significantly different modes, a line is shown for para-
meters typical of each mode), The density scale length Ty has been
arbitrarily taken as one-fifth of the plasma radius. The variation
over the cross section is large for £ = 3 stellarators, due to the
variation in rotational transform. The value of the parameters at

half the plasma radius is marked by a cross,

The upper limit on Zﬂkmfp/lc for validity of the fluid results
will be considered in a later paper. They should be valid up to the
value unity, and perhaps some distance beyond. Except for L1 and
T3, the experiments lie at least partly within the range of validity

of the fluid theory,

As an example, the case where the plasma is in condition a(ii)
near the axis, passes through condition b(ii) as radius and rota-

tional transform increases, and reaches condition c¢(ii) near the

= P =



edge, will be considered. Model C and PROTO-CLEO stellarators both
follow this pattern in some operating conditions. The variation of
the ambipolar electric field with radius is illustrated in FigeS.

There is only one solution to the ambipolar condition in regions a(ii)
and c(ii), given by Vi, ¥ = Uen and v, == Uin respectively. In
region b(ii) there are three solutions, the middle one of which is
unstable., At some radius the electric field must flip over from the
upper to the lower stable curves, giving a sharp reversal of the radial
electric field, ABDEF and ABCEF are two possible stable ambipolar
field distributions. In practice the flip-over point will depend on
the initial potential distribution, The ambipolar diffusion rate along
section CDEF is comparable to the Pfirsch and Schlﬁter rate, while

along ABC it can be much greater. Thus the overall diffusion rate will

depend on where the flip-over occurs,.

VIII. CONCLUSIONS

It has been shown that, when inertia and parallel viscosity are
included in the equilibrium equations, radiat electric fields inevit-
ably build up in a toroidal resistive plasma in order to equalise the
ion and electron diffusion rates. The time to reach the ambipolar
potential distribution is found to be less than the duration of a

typical experiment.

There is no simple general expressicn for the corresponding ambi-
polar diffusion rate, but simple expressions have been obtained for
the different regions in parameter space, This ambipolar diffusion
may be much more rapid than the earlier prediction by Pfirsch and

Schliiter®. This is because the ambipolar electric field usually lies

~ 30 =



close to the resonant field. This is the electric field at which the
rotating plasma sees the toroidal variation at a doppler-shifted fre-
quency equal to the frequency of a natural plasma wave, €.,g8. an

electron—drift wave.,

The measured diffusion rates in most toroidal experiments are sig-
nificantly greater than the equilibrium diffusion predicted by earlier
theories. In some cases it is as much as three orders of magnitude
greater'®, Most of these experiments lie at least partly in the inter-
mediate collision frequency range where fluid equations are not
applicable, This range will be considered in a later paper. By com—
bining the predictions for the two regimes it is hoped to come closer

to explaining the observed diffusion.
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APPENDIX

THE EFFECT OF A HELICAL FIELD

The equilibrium analysis given in Sec. III will now be extended
to include the helical field component in a toroidal stellarator. The
field of a toroidal stellarator will be approximated to by the mag-

netic potential

_ 3 -
v = BORol:é + = Ia(ﬁaryk) sin £(0-ao) ese (A1)
fa LB 1 2]
B= W=l 5 ¥p 50 ROZ1+acosej op v eve (A2)

6 and € will be assumed to be small quantities of the same order.
Since only first order terms are required, all equations can be
linearised in & and e

€s80

B Bcp = BO[:I—S cosf - ESIg(ﬁar/R) cos 5(6#1@{] vse (A3)

&(r,8,9) = QO(P) + @58) (r,8) + @56) (ry6-ap), etc.

The guiding center drift is now the sum of toroidal and helical com—
ponents. Its radial component, which enters the continuity equation,

is
2T,

_ _ J 3 2 ;
Vipip = ejIB [} sind + £ 618(6ar7k) sin 8(3—a¢):] sss (A4)

The change in @fe) along a field line is small over one helical

field period. Consequently we may average 9d/ds over the helical

field period giving

53 (¢) a8(e)
1 k|

- cer (85)

_8
s  r
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as in Sec.III. The scale length for variation of &, along a field
line is the helical field period., Over one such period the mean rota-

tion of a field line is small, and can be neglected. Hence,

1 ees (AB)

Rotational transform can easily be included in this derivative, but

merely replaces some a factors by (a-t/2%).

The analogue of Eq.(10) for j, mnow includes a term proportional
to & cost(B-ap), this being the current required to neutralise the
charge separation drifts in the helical field variation, Because of
their different 6 dependence, terms which are functions of & and
those which are functions of 6-a¢ must separately vanishe. The

(e)

resulting expressions for @58) and n, are identical to Eqs.(16)

(8) (8)

and (17). The corresponding expressions for g and n, may be
obtained from Eqs.(16) and (17) by the following substitutions
E > 66215(430,?/11), ® > -cex, O -»£(0-ap). eos (A7)

When the radial flux is integrated over a magnetic surface, as in
Eq.(18), only products of terms having the same 6 variation survive,
The diffusion is now the sum of toroidal and helical components. The
toroidal component is still given by Eqs.(21) and (22). The helical
component may be obtained from Eqs.(21) and (22) by making the sub-

stitutions given in Eq.(A7) . The factor corresponding to Vv in

ps
2
[6&21 a(aa,r/k)]
-2 f

(vps)h = P E np

these equations is

ees (A8)
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This factor is more readily evaluable for specific experiments when
& 1is expressed in terms of the rotational transform  produced by

the helical field. Assuming <£or/R < 1,

5'; = [ﬁaxe(zar/k)] 2(43-1 ) /8o e ees (A9)
2 ! 3
(v = - 2 () 2y eee (A10)

The ratio of this to the corresponding factor for the toroidal compo-

nent is
(v_) 3 3
s 2 4L ad
ﬁ:s () . ves (A11)
vps E 27 £2-1

Here q = ZﬂR/Lw, where Lw is the helical winding period. This
ratio is ¢ 0(10_1) in all experimental conditions of interest. For
an £=3 stellarator it varies as ra, and so is very small over most
of the cross section. The terms multiplying Vps will generally be

comparable for the helical and toroidal diffusion rates. Thus (Al1)

gives an order of magnitude estimate of the two diffusion rates,
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Fig.l The co-ordinates.

2 Nmfp/L

Fig.2 Regions of validity of approximations for the ambipolar

diffusion condition (dashed lines) and typical experimental

parameters (solid lines).

L1 = Lebedev L1 stellarator with gun plasma
WII = Garching Wendelstein II Barium stellarator
c = Princeton Model C stellarator

P.CLEO = Culham PROTO-CLEQO stellarator

Sirius = Kharkov Sirius stellarator

T3 Kl]I‘Cha‘bOV T3 Tokamak CLM-P215
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Fig.3 Variation of the ambipolar electric drifts with mean

free path.
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Fig.4 Dependence of the diffusion velocities on the electric

rotation velocity
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Fig.5 A typical variation of the ambipolar electric field with

radius,
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