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ABSTRACT

Previous calculations of collisionless, axisymmetric, adiabatic,
P =1 cusp losses are extended to cover separately a simple trans-
verse electric sheath field and arbitrary . Expressions are given
for the point cusp loss rate from aémonoenergetic plasma for arbitrary
electric field strength, E. The K‘/é enhanced scaling with applied
mirror ratio found previously for E = 0 is shown to decrease with
increasing inward electric field, vanishing for a potential greater
than about kT/e across an ion gyroradius in the sheath at maximum
plasma radius. Useful analytic expressions are also given for the
loss rate from a Maxwellian plasma of arbitrary B  through point
and line cusps. Decreasing P leads to a rapid increase in loss
rate, with a corresponding decrease in the net mirror enhancement.
The enhanced mirror scaling is shown not to be expected in theta-
pinches; the effect is however valid for spindle-cusp and other

devices over a narrow range of parameters.
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I. INTRODUCTION

In a recent paperi, (paper I), the author has extended earlier
theories®™® of cusp losses from a collisionless, steady-state, axi-
symmetric, f =1 (P being the ratio of plasm pressure to total
pressure) plasma in which the electric fiecld was everywhere zero. If
the motion of only those particles trapped in the sheath was every-
where adiabatic, that is, if there existed a third invariant, p, of
the particle motion in addition to the energy H and momentum, Dgs
then the spindle cusp particle loss rate at both line and point cusps
was shown to scale as A7 with the magnetic mirror ratio A at
the holes. 1In addition, such devices with non-mirror symmetric point

cusps were shown to be rotationally unstable.

In this paper, the above work on an axisymmatric cusp will be
extended firstly to include a transverse electric field of a parti-
cularly simple assumed profile in the sheath, and secondly, to con-
sider the effect of reducing B by the introduction of trapped
parallel magnetic field. In both Cases, expressions are given for
the particie loss rate from both adiabatic and non-adiabatic systems,
it being shown that the mirror enhancement in the former occurs only
over a narrow regime of weak electric fields and high {, and thus
is not to be expected in simple theta-pinches. The onset of rotation
by the mechanism of paper I is shown to be delayed by thess electric
fields, a sheath width much less than the ion gyroradius being

required for stability, however.

It was shown in paper I that the end loss rate of any quantity

Q(H , pg » 1) from a plasma represented by the distribution function

f(H, pp ,1) is given by



F(Q)=47tj-Uf-Q-d]-l-dpe du vee (1)

integrated over the loss cone, that is, over the accessible region
of phase space at the cusp hole, taken as the plane of maximum mag-

netic field.

The invariants of the particle motion are the energy,

H

]

%(Vi+v%+v§)+e 3(r , z)

the angular momentum,
pg = rvg+¥(r, z)

where U = % r+Ag, and A 1is the vector potential, and, where

relevant, the adiabatic invariant®

1
M :E}p_'_d'gl

integrated round the closed orbit in the RL_-&¢ phase plane, <,

being orthogonal to both B and 6.

We further restate the fundamental assumption of paper I, that
all particles present which are able to contribute to the end loss
have access to the central, high p plasma reservoir which is taken to

be non-adiabatic. We can then write the distribution function
f(H, pg, k) = g(H, ps) «h(H,pg, 1) vee (2)

where g is the distribution function in the central contained plasma,
and h is 1 or O depending on whether the escaping particle

(H, Pg , ) at the cusp hole penetrates the high P plasma or remains
trapped in the sheath on reversal of its velocity. An 'adiabatic'

cusp is nowv one in which P is invariant for any particle orbit whilst

trapped in the sheath, penetrating orbits having been assumed



non-adiabatic remote from the hole, an assumption valid except, per-
haps, in theta-pinch geometry, where the plasma radius may be slowly
varying everywhere. In a non-adiabatic cusp, H and pPg are the
only invariants, h and f then being independent of p but

Eq.(1) being otherwise still valid,

IT. LOSSES WITI A TRANSVERSE ELECTRIC FIELD

The influence of a transverse electric on B =1 cusp losses
is firstly considered. We assume an electric field such that the
magnetic flux lines are equipotential and that the electric potential

is given by

'Om

@(p,z)=§

==}

R l¥(r,2)] vee (3)

where E, 1is a constant, B, the magnetic field strength required
to contain the P =1 plasma, and R the maximum B =1 plasma
radius. Also assuming, after previous authors*’®, a discontinuous
step in magnetic field at the sheath from zero to its vacuum value
Bps this potential gives a near uniform electric field Eop at maxi-

mun plasma radius, and a linearly increasing field at a point cusp.

A, THETA-PINCH LOSSES

We consider initially theta-pinch geometry in which Bp « By,

giving for r > ro,r, being the local B =1 plasm radius,

V(r, z) = 1lq (r®*-r?)

2
Eo B
@{r,z):z—-;B—o(r‘gnré) eee (4)

where Q = %? - We now calculate p for arbitrary rqg, B, both the

loss cone and the function h(H, pg, £) then being given in thz

appropriate limits,



A.1 Adiabatic Invariant for Trapped Particles

For a particle gyrating entirely within the sheath

1
p?:?(— C:l‘|'C2 P2_03 [‘4) - LN (5)

where

Q2
1

= (pg +% r 0)?

1 1
C, = 2H-P3+pg Q+7 T O (”E 2)

QZ
"
Q 2
e = 1+a-§> ... (6)

4eE
and a = TROZ is introduced for later convenience. Straight-
(¢}

forward integration now gives
1 % (1 % _o
l-'-=‘2'j£13rdr=§'<"2'cz'ca "d:?. -ee (7)
subject to the following conditions that the orbit should both exist
and be trapped:

(1) pi < 0 somewhere, giving from (5) to (7), on elimination

of p,
l_l.>0 ee (8)

(2) p3 > 0 giving similarly

R e (1-)7 [ ko v (9)

(3) r>r, everywhere giving both

”27_2[";":%‘1‘30(1—8)-8pe:|+uo ver (10)

and 2
T Po 1
pé‘fﬁ[s—;_-z-'ro'n'“‘e):l*llo

s C11)



In Eqs.(9)-(11)
Ho = O for pg > -%-ri0

1

For eEg < O, E may be imaginary, in which case the particle spirals

outwards continuously.

A.2 Loss Cone
The loss cone is the accessible region of phase space at the
cusp hole, and is simply given from Eqs.(8)-(12) by putting r, = O,

0 = M. In this case, (10) and (11) are automatically satisfied,

whilst (8), (9) and (12) give the loss cone

‘ i 2H ’
O<p<p>=-=3|:g:.f6; pe(i—s ):I for pg >0

I
nla
1
m‘!
>
S
+

p9(8'+1):l for pg <0 ... (13)
%

where e’ (1+%)
This loss cone is sketched for eEg > O in Fig.(1) as the cross-

hatched area ADE; the upper limit py,, may bz greater or less thaa

% .
R(2H)“, For Eo < O, the loss cone is no longer truncated at large pge

A.3 Distribution Functions

Firstly we consider a device in which all trapped orbits are
adiabatic. The region of phase space for ry =R, Q =1,, corres-
ponding to the central plasma, which simultaneously satisfies all of
Eqs.(8)-(11) is shown cross-hatched in Fig.2 for eE, > O, ani is
that region of phase space which is occupied by particles which no-
where penetrate the [ = 1 plasma, For H sufficiently large the
second intersection of (10) and (11) occurs for pg > -R- (2H)%, in

which case an allowed region also appears for pg < O corresponding



to particles whose gyroradius is greater than the plasma radius.

These particles are neglected.

As E. increases, the allowed region shrinks about the point

0

I g
pg = R . (2H)?, p = 0, vanishing for
%
e >1+ 2. (2H)%/RQ0
in which case no trapped particles can exist.

For eEy, <0, E > 1 and the parabola vertex occurs for pg < O,
the allowed region the extending into pg < O, and not longer being

truncated at large pge.

The boundary between trapped and penetrating orbits in the region
pg < R (2H)1/2 of interest is seen to be given by (11) which is
readily shown to be a monotonically decreasing function of rg, the
criterion for a particle with the parameters (H, pg, K1) at the cusp

hole to be penetrating thus being given at rg = R as

w1 wy |
p>[.!.mj_n=-2-7-cng|:8 Po- 73 * R-QO'(T—S )]

sem (14)
> 1Lp2 1-¢ .
=0 for. pg 2 ¥Ry 7 respectively
together with
%
pg < R (2H) ees (15)

where

1
EH’ = (I +CL)_/2

For simplicity, we assume a monnenergetic isotropic distribution

g in the contained plasma to give the adiabatic cusp distribution

function

£(H, py i) = 47?2—“;51/2 5(H -Hp) -U(R(zﬂo)!ﬁ- |pl) * UK - bpin) «- (16)

=B =



which includes only penetrating particles, U being the Unit Function.

In a non-adiabatic cusp, the sole criterion for penetration is
(15) the relevant distribution function then being given by delet-
ing the final factor of Eq.(16). It should be recalledS:* however,
that this in general gives an upper limit to non-adiabatic losses,
as an orbit (H s Dg s 1) at the cusp hole is in general to be included
only if it penetrates the plasma in one transit through the device,

a limitation not included in (15).

A.4 Particle Loss Rate

The region from Fig.2 occupied by trapped particles is also
shown superimposed on the loss cone in Fig.1, where, in addition,
various limits required below are defined on the pg axis. We

introduce the dimensionless parameters

T ARZ02 » P = _;6-. y B = -‘QQ

in terms of which the quantities defined in Fig.1 become

P — _HEL_ P _.l:iil Pos = = _EEL_
max ~— |-g’ d 0~ g" ! mn. = = 1 ae’

1
%”{Bl _ 8”+ [(SJ o I)(E' _ 2E:H+ ]) + 25’8”1‘[]4}

P =
whilst
p*' = e'H+ P(e' - 1)
for pe z (0]
= e'H+P(e’' + 1)
and
1
fmin = 57 (&"P+ €” - 1)% ]
or pg320

0

1l

For the adiabatic cusp with eEy > O the particle loss rate is

given from (1) by integrating f over the area ABCD, Fig.1. It can

- =



be shown that P* < R{2H)? for all E,, leaving two regimes. In

the first, P, < Ppax » i.e.
- L - 8”
> U Sa?gg—— ) ees (18)

and the loss rate becomes

p B
F =KU l_,L*' dP j P‘l’mn dp ee (19)
Phin Pq

where

_n-m- R0
8(2Hp)%

which reduces after considerable algebra to

1 2 g e’ (g’ -¢€") g -1 5 s
F:Ko[—-H ° + E” H+_68-T§[3(8'“8") —(8,—1) ]

[/
Sl 8"2

+§(25’ H - (e’ =1)(e'= 26"+ 1)>% vee (20)

Now expanding &' and e” in powers of @, Eq.(18) becomes to
highest order in a

a < Slﬁ- (a/R)
where

%
a = (2Hgy)?/Qy

is the gyroradius in the vacuum field. This ratio a/R 1is assumed
small giving o « 1 over the range of validity of (2). Taking

o~ a/R and retaining only terms of highest order in a/R, (20) gives

’ L

on expansion of & and €

Fo_ 2 ol A%, g1 D)1 g0 1\ 1
FO—ST/;{:I—ZE<1 27\)] +E< ?&) 3E l::S(_?\) s

was L2



for O <E < 2% where

F0=n-7t-R-H0/M'IO

is the zero electric field, non-adiabatic loss rate to this order®s,

and R 4
E==—+0=—
4a LE

where Lg 1is the distance in the sheath at maximum radius R over
which the potential changes by 2H0/e, and as such, is a measure

of the sheath width for Lg < a.
In the second regime, P* < Pys &lving

F

— -I"" for E > .?.-15 es e (22)
without the need for expansion in o as above. In this case, there

is no allowed region for trapped particles which no longer exist.

If eEg < 0, Py < O, and the lower limit of integration in (19)
lizs in the region 0 < P < Pnine However, as this case is primarily
of relevance to electrons in a narrow sheath, the greatest negative
value of E expected (corresponding to an electron gyroradius sheath
width”) is of the order -1, for which Phin ~ @R Ppax. The lower
likit is therefore taken as zero to order a/R, giving for P* > O,

1,
i.eo’ fOl" O>E>—7\/2’

F 1 3 .
—_— Bl -, e A
R, = F'+ 3 E ..._(ZSJ

where F' is 5; given by (21).
0
1
For E < = A? the loss cone is filled entirely by trapped

particle orbits and the end loss falls to zero.

The non-adiabatic cusp loss rate is obtained by integrating f

%
over the area ADE (Fig.1), noting the region pg > R(2H)”? to be



1
empty. We now have Pp.y 2 R(ZH)é giving respectively

I—E+O<%> for E <

=— for E > % ees (25)

eer (24)

o=

E
FO

which is just (22) for large E as expected from the disappearance

of trapped particles from the loss cone.

These results (21)-(25) are plotted in Fig.3 as a function
of E and A. The reduction of the loss rate at E = O by a fac-
tor 2/'573/2 is in agreement with previous results®. However, it is
apparent that the enhanced mirror scaling rapidly decreases with
increasing transverse field, vanishing for a potential about equi-
valent to the ion energy across an ion gyroradius in the sheath at
maximum plasma radius. This reversion to normal A1 scaling is a
consequence of the'disappearance of trapped particle orbits from the
sheath. All particles must then enter the B = 1 region where the
distribution is assumed isotropic and hence independsnt of W. The
critical electric field is observed to be too‘weak to decrease signi-
ficantly the sheath width, and a factor (m;|;,,/'rrte)1/2 less than that
required in an electron gyroradius sheath?. This disappearance of
the enhanced scaling will not therefore be much dependent on the
assumed field profile, whilst similar behaviour would also be expected

at a line cusp.

As a result of the absence of trapped particle orbits for Ez>1
we now require only that

£ » LN

when & is the mean-free-path and L the nozzle length, as

w00 =



distinct from plasma length L. In this case collisions may consist-
ently provide the assumed non-adiabaticity in the f = 1 regions of
the theta-pinch remote from the hole if € «L. The f = 1 asump-
tion is, however, rather more stringent, it being required that

Pmax De large relative to the total trapped magnctic flux, V(R),

giving, for L. % a,
’ E il Lk
1, a
-B)2 o« L (E

B. SPINDLE-CUSP

It is assumed that, as in the theta-pinch geometry above, the
limiting criterion for a particle to penetrate the P = 1 plasma is
given at the maximum plasma radius, R, a result demonstrated in

paper I for E = O, At the maximum radius, B =~ B, and
III(R, Z) = Qo'R *Z

giving from (3)

3R, z) = Ey- |2]
For a trapped particle

Py =C,+C,+ z+ 05 2°

where
G, = 2 pf.—(ie)2
and
C, = 20, %-%Roﬂo-a)
giving

1 T 2 2
K= E-fpz dz = S—Qg C2 + 400 Ci:’
subject as before to the conditions pa=>0, p220 and z >0,

leading respectively to

w 1§ =



and

LY
pe>4RQG.

which to order a/R give the same allowed region of phase space for
trapped orbits as (8)-(12), except that in this case the neglected
class of particles with pg < 0 and a >R are no longer allowed,
as is obvious from the geometry. The results (21)-(25) are therefore
equally applicable to a spindle-cusp point cusp. Calculations using
the same sheath structure in plane geometry also give very much the
same results for a line cusp, except that marginally strunger elec-

tric fields are now required to eliminate the enhanced mirror scaling.

C. ROTATIONAL STABILITY

In paper I a new mechanism for producing rotation in collision-
less theta-pinches was discussed. It was shown that such a device

becones M = 2 unstable after a time

at 2Homy\
Tinst ~ 0.5' I_)_ *, (rg_ - TC cos (26)
Oz
where 1Tc = 2?}! is the containment time, V the plasma volume and

Eez the average angular momentum per ion-electron pair lost through
the end holes. We consider now the effect of a transverse electric
field on this mechanis@ in a non-adiabatic cusp. The flux of angular
momentum per particle of the ith species is found by inserting an

additional factor pg in the integrals leading to (24) and (25) and

using these results to be

= 10 &



for Ej_ § !ﬁ

where Ej = Eé is the field seen by the ith species. For
Ey « (mI/me)16 the electron contribution is negligible giving
Pog Pg e The stable time therefore scales as
Tinst « (1 -7 Ep)™*
for Ef 2 %
< 6Ey
An inward electric field is thus stabilizing to this mechanism,
For stability for the order of the containment time however we require
Er ~ R/3a; . That is, a sheath width much less than the ion gyro-
radius is required to stabilize this mechanism in the absence of

other factors.

IIT. LOSSES FROM A B < 1 CUSP

The results of paper I were shown to be valid if

(1-B)f <« a/R « £ < 1

%
where a = Lé%il—- is now that R.M.S. gyroradius. The most demanding

assumption was thus that of B = 1, the effect of reducing B by
the introduction of a weak trapped parallel magnetic field being the

subject of this Section. Electric fields are assumed to be zero.

Losses from P < 1 cusps have previously been considered quali-
tatively by Grad®, and with regard to theta-pinches, by Roberts® and
by Taylor et al.® using particle and MHD theory respectively. Both

these authors neglect the sheath, however, their results therefore

! TR



breaking down as p approaches unity. Morse*©2%1 has givea expres-
sisns for the loss from a near-Gaussian radial density profile theta-
pinch. This profile is, however, suitable only for an average

less than about 80%.

Assuming the inside of the sheath to be still sharply defined at

radius rg, the total trapped magnetic flux is

T

o}

Et'RQ cesn (28)

(]

where By = B, {1 -P is an average trapped magnetic field. For a non-
adiabatic cusp, the criterion for a particle to penetrate the high P
plasma inside the critical flux line ¥, 1is now, using (13),

¥y ~R(2:D)®

) 1
R(2H)é4-¢o> Pg 2 for RS ig%lé or e L28)
t

-H/nt

The lower limit assumes uniform trapped field. However, it will
be seen that in the cases of most interest, this limit does not enter

into the loss calculations and is therefore not accurately required.

A. THETA-PINCH LOSSES

In this case, the distribution functions. assuming a Maxwellian
plasma in the central trapped field, is given for a non-adiabatic

cusp as

F(H , pg) = VKT y(r(2m)% + o - po) * Ulpe - pB)

—
(27k) 72 vee (30)

where p§ is the R.H.S. of (29). 1In the region ¥ < ¥, this gives
a complete Maxwellian and therefore uniform density and pressure.

Thus for equilibrium, we require that either

<%§>2 =(1-B) «1 e 051}

- 14 -



or

B = constant for r < r, was (52)

It is noted that (31) is a considerable relaxation of (27), whilst.if
(32) is satisfied, (30) is valid for all B although no longer
physically justifiable, trapped and penetrating particles now being

lost on the same time scale,

Again assuming uniform magnetic field at the cusp hole, the loss
cone is given by (13) with E = 0. Thus, for A 2 1, the lower limit
of (29) is seen always to lie outside the loss cone. Using this the

loss rate at a point cusp bhecomes

% ¥ oy
F 8 a 8 Yo _
F_O' T + (ﬁ) K'R' + (37{) Q' ‘R,a ss e (33)

differing from the B = 1 result only by the final term, which is

observed to be the rate of free effusion across the area occupied by
the trapped flux at the cusp hole. This simple addition of an extra
term is a consequence of the unchanged loss cone and will not occur

for E # 0. Using (28), (33) can be written

F
F;_ <2m> Py 37: B)T R/a cee (34)

the final term now being just the result of Roberts®, which, for A2 2,

‘.
is a constant factor (47:/3“()"5 less than the MHD result of Taylor
et al,®
For large R/a, it is apparent that the particle loss rate

1
rapidly increases as [ is reduced. However, for (I--ﬁi)’é » a/R

such that the final term dominates, the containment time is of the

order

- 15 =



for steady state theory to be valid, 74 being the ion thermal tran-
sit time through the device. This provides a lover limit on B for
the validity of these results, In this intermediate ( regime, how-
ever, the mean-free-path is only required to be long relative to the

nozzle length.

If particles trapped in the sheath are adiabatic, then the pene-

tration criterion is readily found, as in Paper I, to be

Pg _V N2
i 0 i
vz 20Qq ( R T P > O

togetner with (29).

Appropriate modification of the distribution function is then
found to modify the particle loss rate (34) by a factor 5%2 in the
first term only. The enhanced mirror effect is therefore seen to be
a very high p phenomena, being significant if the ion gyroradius
in the trapped magnetic field is comparable with the plasma radius.
The enhancement thus appears only in a narrow regime of weak elec-—
tric fields and high g, which is just that in which the mean-free-
path was required to be long relative to the plasma length. This,
however, leads to equilibrium*® and rotational stability® problems,
it being concluded that the mirror enhanrcement will not be seen in

theta-pinches.

B. SPINDLE-CUSP LOSSES

These devices are mirror symmetric about the line cusp, the
magnetic field being oppositely directed at the two point cusps.
This is allowed for by the transformation pg = - Pg in the relevant
half, giving the region of phase space occupied by penstrating parti-

cles in a non-adiabatic cusp as

- B -



1
Ipol < R(21)% +

This results in the same loss rate (33) at a point cusp, The line

Cusp loss rate is also readily found, using the loss cone of paper I,

1
E . (2Y Yo
Fo 1 '"\3%) TRy

which is just twice (33) if the small second term there is neglected.

as

If the trapped orbits are adiabatic, then the first term only
is again reduced by a factor Z/SK%. In this geometry, there is no
simple relationship between ¢O and the trapped magnetic field.
However, it is apparent that for enhanced mirror scaling to be
observed, the total magnetic flux inside the separatrix between

adiabatic and non-adiabatic orbits must satisfy.

The further problems of long mean-free-path rotation and
equilibrium do not arise in this geometry due respectively to mirror
symmetry and to the inherent non-adiabaticity of the central region.
Higher order devices in the hierarchy, such as the cusp-ended theta-
pinch®®, may be subject to the former, but not the latter. Their
end losses are readily calculated as above; general results are not

conveniently formulated however,

IV. CONCLUSTON

Previous calculations of steady-state, collisionless, B=1
cusp losses have been extended to include separately a transverse
electric field of a simple assumed profile, and a trapped parallel

magnetic field giving a rediced B. Particular reference has been

= T



_3
paid to the effect of these on the A /2 enhanced mirror scaling

with applied mirror ratio recently found in an adiabatic cuspl.

Expressions have been given for the point cusp particle loss
rate from a monoenergetic isotropic f = 1 plasma for arbitrary
electric field E. An irward field reduces the enhanced scaling,
which vanishes completely with the disappearance of trapped particle
orbits when a potential greater than about kT/e appears across an
ion gyroradius in the sheath at maximum plasma radius, a field which
is too weak to significantly decrease the sheath width. This elec-
tric field has a stabilizing effect on the production of rotation in
thata-pinches by the ion loss being asymmetric in pg when the sheath
is broadened by trapped electrons, as discussed in Paper I. However,
a sheath width much less than the ion gyroradius is requiréd for

stability in the absence of other factors.

Useful analytic expressions have also been given for the parti-
cle losses through P < line and point cusps, connecting the previously
available results for P = 1% and 1 - B~ 1%, and extending them to
an adiabatic cusp. Reduction of [ leads to a rapid increase in
the particle loss rate with a corresponding decrease in the mirror
enhancement. This enhancement is then shown not to be expacted in
theta-pinches due to associated equilibrium®® and rotational stability®
problems. The effect is valid in spindle-cusp and other devices,
however, if one simultaneously satisfies E < 1, £ » L, R>» a,
¢0 < Qg Ra, and has mirror symmetric point cusps, adiabatic trapped
ortits and non-adiabatic penetrating orbits. The first two are
perhaps the most demanding, the former being difficult to control
experimentally®®, whilst the latter is inconsistent with Spalding's®*

recent estimte of £~ 0-1 L for an economic cusp-eneded reactor.

- 18 =



ACKNOWLEDGEMENTS

The author wishes to express his appreciation to his supervisors,
Drs. L.C. Woods and T.K. Allen, and also to acknowledge useful dis-

cussions with Drs., I.J. Spalding and J.A. iVesson.

= 18 -



10

11

12

13

14

REFERENCES

A.S. Kaye. To be published.

H. Grad. Prog. in Nucl. Energy, Series XI. Plasm Physics, 2,
189, (1963).

J. Berkowitz, K.O. Friedrichs, H. Goertzel, H. Grad, J. Killeen,
and E. Rubin. Proc. 2nd. U.N. International Conference on the
peaceful Uses of Atomic Energy, 31, 171, (1958).

J.B. Taylor. Culham Laboratory Report CLM-R 58, (1966).

0.B. Firsov, in: M.A. Leontonvich, ed., Plasma Physics and the
Problem of Controlled Thermonuclear Reactions, Pergamon Press,
London, 3, 386, (1959).

W.B. Grossman. Phys. Fluids, 9, 12, 2478, (1956)

R.L. Morse., Phys. Fluids, 8, 2, 308, (1965).

K.V. Roberts. J. Nuclear Energy Pt. C, 1, 243, (1960).

J.B. Taylor and J.A. Wesson. Nuclear Fusion, 3, 159, (1965).
R.L. Morse. Phys. Fluids, 9, 12, 2533, (1966).

R.L. Morse, and J.P. Friedburg. Proc. A.P.S. Topical Conference
on Pulsed High Density Plasmas, Los Alamos report LA-3770,

Paper No.B7, (1967).

R.W. Kilb. Ref.11, Paper No.B5

I1.J. Spalding, M.J. Eden, A.D.R. Phelps and T.K. Allen. Third
I.A.E.A. Conference on Plasma Physics and Controlled Nuclear
Fusion Research, Novosibirsk, Paper No.CN-24/K9, (1968).

I.J. Spalding, Nuclear Fusion, 8, 3, 161, (1968).

= 90 =



Ry —————

Fig.1 The loss cone, ADE, and the region occupied by
trapped particles in the u — Py phase plane.
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Fig.2 The allowed region of phase space for particles
trapped in the sheath for plasma radius ro

|-4 1 1 1

1-24 -
on- adiabatic

0-8-1

atlm

06+

i a

-05 0 05 10 I'5 2:0
E

N

Fig.3 Normalised particle loss rate from adiabatic and
non-adiabatic cusps as a function of the transverse
electric field E and the parameter A.
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