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ABSTRACT

The problem of equilibrium and stability of plasma confined in
certain magnetic fields of combined mirror-cusp form is discussed.
These fields have the properties that they are nowhere zero and
everywhere increase toward the periphery. Attention is drawn to
the importance of the existence of closed surfaces of constant ’B|-
the maganetic isobars. The conditions for plasma equilibrium are
derived and interpreted; then by exploiting the existence of
closed magnetic isobars certain low- B confined equilibria are con-
structed. These equilibria are shown to be stable according to the
fluid (double adiabatic) energy principle and according to the small
Larmor radius limit theory. A direct proof of stability against
motions which preserve the magnetic moment is given. These equili-
bria have the property that there is no current along lines of force

so that they are also immune to several drift instabilities.
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1. INTRODUCTION

(1)

It is well known that the adiabatic invariance of the magnetic moment

of a charged particle provides a mechanism whereby plasma may be contained
within magnetic mirrors; however mirror systems are usually hydromagnetic-
aliy unstable(z). It is generally believed that a hydromagnetically stable
situation is provided by fields which increase away from the centre(é), as
in the spindle cusp; in these systems the adiabatic invariance is usually

destroyed by a weak field region near the centre so that they are not

genuine containment systems.

Recently there has been renewed interest(4) in magnetic field configura-
tions which might provide both the inherent plasma stability attributed to
fields whose strength increases towards the periphery, and the possibility

of adiabatic containment.

One way of creating a field configuration of this type is by the addi-
tion of a multipole cusp field to the basic magnetic mirror (ths stabilized

mirror), as in the experiments of Ioffe(4).

Another method is by the inser-
tion of a central, current-carrying, conductor along the axis of a spindle-

cusp, thereby removing the weak field region which otherwise prevents

adiabatic containment in the simple cusp.

General magnetic fields of the desired type can be identified by their
two basic features, namely that there is a region in which

(a) the field is nowhere zero, so that adiabatic containment is

possible, and

(b) the magnetic field strength |B| 'increases outwards'.

By this second property of IB| 'increasing outwards' one means that
there exists a point, or in some cases a closed curve, which is a local
minimum of B®. In the neighbourhood of this point, or curve, the contours
defined by B® = constant form a set of closed, nested, surfaces and a sur-

face of larger B? encloses those of smaller B2

Since these surfaces are
closed one can unambiguously refer to inside and outside; then one can say
that the magnetic pressure is lower inside any given surface than outside

it. It is in a region such as this that one hopes for stable plasma ccn-

finement and in this paper we prove that there exists at least a class of



stable equilibria in these 'non-vanishing outwardly increasing' fields.

It should be emphasized that these surfaces of B? = constant (which may
be termed magnetic isobars) are not flux surfaces. A line of force will

general ly cut a magnetic isobar twice (or not at all) and the points of
intersection could, for example, form the turning points of particles con-

tained on that line by the mirror effect.

In section 2 a brief description is given of an example of a 'hybrid!'
mirror-cusp field configuration having the desired properties (a) and (b),
while the main body of the paper, sections 3 - 5, is concerned with finding
low - B equilibria in such fields. Using a fluid description of the plasma
the necessary and sufficient conditions for equilibrium are derived and are
then interpreted in terms of individual particle motions. By exploiting the
concept of closed magnetic isobars a class of confined low -8 equilibria are
then constructed which satisfy these equilibrium conditions. These have the

property that p, and p,, are themsslves constant over a magnetic isobar.

In section 6 the stability of this class of equilibria is discussed and
they are shown to be stable against interchange instability (which is the
only form of magnetohydrodynamic instability possible at low - B) according

to both the double adiabatic energy principle of Bernstein et a1(5]and the

(6)

small-Larmor-radius-limit energy principle of Kruskal and Oberman

Finally this stability is demonstrated in a more direct manner.

As the equilibria have the additional property that there is no current
along the lines of force they should also be immune to several of the non-

magneto-hydrodynamic instabilit ies such as the drift instabilities.

2. MAGNETIC FIELD CONFIGURATION - AN EXAMPLE

As an example of the type of magnetic field under discussion we may

4 ; i
consider the configuration employed by Ioffe( ). Our object is merely to
indicate some of the main features of this arrangement, particularly of the

magnetic isobars.

Near the centre of a mirror machine the field strength increascs as one

moves along the axis toward either mirror, but decreases as One moves

= .



radially away from the axis. A method of creating a field having the proper-
ty that B® increases both axiaily and radially would therefore appear to be
to superimpose on the mirror a second field which increases as one moves

from the axis but which is constant along the axis. Such a field is the
'multipole' field provided by 24 straight rods parallel to the axis of the
machine, adjacent rods carrying current in opposite directions. Near the

axis the multipole field is approximately

I*fr ¢-1
(-) cos €0

ws}
L]
I
1
w|ss

R
v (25 1)

By = + %*(-E)&_lsin €6
where R is the distance of the rods from the axis and I* is a measure of the

current in each rod. (The relationship of I* to the actual current I depends
on the way that the current is distributed over the cross section of the rods
and on the shape of this cross section; for thin rods I* = 21.) The original

mirror field can be approximately represented by

ZRr)COS(Zﬂz)}

B, = Bgll = alyf

z L L
..(2.2)
2Rr, . 2Tz
B, = - aBDI1(—ﬂ—)s1n(—E—
where I, and I, arz modified Bessel functions. The mirrors are situated at
z = * LL/2 and the mirror ratio is
l+4a
By = 1-a ..(2.3)

The formation of closed magnetic isobars of the required type can be
illustrated easily when £ = 2, for then near the centre of the machine,

z =0, r = 0, the field is given by

2 2 21 2
; I%2], all -a)
B? = B2(1-a)? + 4x®B2fa(l1-a)3; + = - 1.(2.4)
o o I L2 K2B§R4 2

If the current in the multipole rods is small, so that

2n4
fe= <"‘2LI"; a(l-a)Bj sl 2g, 5)

then the isobars form a family of hyperboloids. However, as the current in

the multipole rods is increased so that

24
12 >R 4(1.4)82 .. (2.6)
2L

these magnetic isobars become closed (ellipsoidal) surfaces of the type we

desire.



Before leaving this topic it is worth while noting that the situation is
not so simple when ¢ > 2. If € > 2 then sufficiently near the axis the
multipole field is always too weak to compensate for the radial decrease in
the basic mirror field. In this case clossd magnetic isobars are still
formed but instead of a single minimum at r = 0, z = 0, there are 2¢ minima

situated off the axis.

3. 1OW-pB EQUILIBRIA

We now consider the problem of plasma equilibrium in a magnetic field.

For equilibrium the pressure tensor P must satisfy

iXE:v'E ..{31)

where j and B are connected by
x E = 47(_.1 (3.2)
- B =0 s 54 3::3)

A full solution to the problem of equilibrium would involve solving
these equations subject to boundary conditions such as the given currents in
the external conductors. However, apart from the impracticability of such a
programme, it is our present aim to derive general results independent of the
detailed arrangement of conductors, and so applicable to all fields possess-
ing properties (a) and (b) of section l. We therefore seek low-f solutions

(where B is the ratio of plasma pressure to magnetic pressure).

At zero B the magnétic field is the vacuum field due to external
currents; this is easily calculated and will be considered as given. The

first order perturbation in the field, due to plasma pressure, is given by:

dqy *Bg =V ~ B »el(3s4)
V x B, = 4%}, wlliB B
vV .-B, =0 &

where j, is the plasma current density, B, the original vacuun field and B,

the perturbation in this field due to the pressnce of plasma.

Now it might appear that these equilibrium equations should have solu-
tions j, and B, for any given plasma pressure P and that there is, therefore,
no problem. Indeed in axi-symmetric configurations such as mirror or cusp

this is true, but in general these equations will not possess a solution and



our first task is to determine the conditions which P must satisfy in order

that a solution should exist.

This is perhaps most easily done as follows: Equations (3.5) and (3.6)
are simply the magnetostatic equations which are known to have a solution if
Jy exists and V *Jy = 0. Our procedure therefore will be to solve equation
(3.4) for j, and then to examine under what conditions V - Jy = 0. (As we
shall be concerned only with J; and By we may henceforth suppress all sub-

scripts, provided we remember that B is always a vacuum field.)

To illustrate the argument consider the case of scalar pressure when

equation (3.4) reduces to

ji%B=N ; s {3.7)

The first necessary condition on p is clearly

B-Vp =0 or -a-E=O o Bs 8)
= ds
i.e. p 1is constant along a field line. Given that (3.8) is satisfied we

can then solve (3.7) for lL (the component of J perpendicular to B),

-Vp x B
iy = = . 3.9
i B2
and therefore
e N (3.10)
j = + - .
Jd B2 =2
where A is an arbitrary scalar.
The requirement div J = 0 then gives
Vpx B
B-W:div{px—} . (3.11)
=) B2
or
-2VB . (Vp x B)
B+ VA = 5 = w3 121
. - B
Equation (3.12) can be written
QRatiis ) an  -2VB * (Yp x B)
T = — ..(3.13)
s B4
where s is measured along the line of force. A necessary condition for

this equation to possess a unique single-valued solution for A is clearly

/VB.(Vpxgl(js=o ..(3.14)
B4
(7)

where the integral is taken along any closed line of force. Newcomb

has
shown that this is also a sufficient condition.

In the case of scalar pressure, then, equations (3.8) and (3.14) are



the necessary and sufficient conditions which the pressure must s;tisfy if
the plasma is to be in equilibrium. We now turn to the situation of immediate
interest, namely when the pressure is anisotropic, and seek the analogous
conditions on the pressure tensor.
B Anisotropic Pressure
In a co-ordinate system with the principal axis along the magnetic field

the pressure tensor can be written
P=p I+ (py- p,)nn ..(3.15)
where n is a unit vector in direction of B and Il is the unit tensor.
The momentum balance equation is now
jxB=V-P ..(3.16)

and from the parallel component of this equation the first condition on py

and p,, 1is obitained,
n-vp, +n- divi(p,, - p,)n n}l =0 L (3.17)
or
aaps"+(P*];p")%E-=o ..(3.18)
where s is measured along the magnetic field. This condition specifies a

relation between p, and p,, along a field line, replacing the simpler condi-
tion dp/ds = 0 of the scalar pressure theory. However, if (3.18) is satis-

fied then equation (3.16) can be solved for j, as before,

. -Vp,xB8  Bxdivilp, - plnn
"ll_ =7 B2 - F B2

v [ 3219

and so

Bxdiv((p, - p/)n nl .. (3.20)

2Vp, * (B x VB}
Bﬂ B2

It can be shown that because B is a vacuum magnetic field the last term can

Ve, = +div{

be transformed to give

Bxdiv[(p,, - p,)n nl] ¥ - . (B x VB)
div {= P S %_ (i, - Py)-(BxVB) .. (3.21)
B B2
Therefore we finally obtain
V(p +p,) " (B x VB) ¢ w3 $2.2)

Vej, = —
oL Bo
Then, just as in the case of scalar pressure, the vanishing of V- j requires

V-j, =B:W=-9:j vl 25

so that



E VA = - "\T(p‘L + pll) * B ..(3.24)
As before this can be written

d (B x VB)

ES. = = V(PJ-+ p”) ] B4 (3.25)

and if the lines of force were closed this would lead to the condition

(B xVB) :
fV(p_L+p“). _B4 ds = 0 «o (35 26)

In the system we are considering the lines of force are not closed within
the plasma volume but leave the region of interest. In this case, provided

the plasma is surrounded by a region in which no current flows, we must have

(B x VB}
fv(pJ_er“)- =——— ds = 0 o s | BEH]

B4
where the integral is taken from the point where the line of force first
enters the plasma to the point where it first leaves it. (If this condition
were not satisfied A would not be zero when the line of force left the
plasma and there would be currents flowing in the plasma free region,)
Furtheruwore it is clear that if this condition (3.27) is satisfied a unique
A can always be constructed from (3.25). The condition (3.27) is therefore

both necessary and sufficient.

With anisotropic pressure, then, the necessary and sufficient conditions
for equilibrium are (3.18) and (3.27). Before discussing some distributions
satisfying these conditions we will first interpret these equilibrium con-

straints from the point of view of individual particle motions.

4. PARTICLE MOTION

The first constraint (3.18) is simply the requirement that the particles
be in equilibrium along each field line considered individually. This is
entirely consistent with the basic idea of adiabatic mirror containment:

for if the magnetic moment of a particle

V2
= e
m T L. (4.1)

is constant as it moves along a field line then

ub
P) e« Solu,e) - dude szl iz

r+

p,, = JP(k,e) (e - uB) dude .. (4.3)



where p is the local density of particles of specified magnetic moment L

and energy €. This is proportional to (i) the number of such particles on
the line = f(u,e,L), (ii) to the density of lines = B, (iii) to the fraction
of the time each particle spends near the point of interest.

dt oc —r—m—u1 L. (4.4)

Therefore, for particles contained by the mirror effect,

2
p, = Sfip,e,L) —EB—, dude .. (4.5)
= 2(g - uB)?
1
p, = Jf(u,e,L)B (& - uB)? dude .. (4.6)

It can be verified by direct substitution that these expressions satisfy

(3 T8Yw

The second constraint (3.27) may be interpreted in terms of the guiding
centre drifts of the particles on a field line. As is well known(z) the
first order guiding centre drift of a particle in an inhomogeneous magnestic

field 1is

2 ”
(L + v, ) L. (4.7)

where v is the velocity perpendicular to the field and v, that along it.

The total current associated with this drift is then

) (B x VB)
-'lDz__BS — (pJ_-l-p”) ..(4.8)
and the divergence of this expression is
; (3 xVB)
Ve dp = V(pL4-p]|]- e ..(4.9)
so that the second condition for equilibrium can be written
, yds _
SV 'JD)?; =0 ..(4.10)

The meaning of this is made clear if we consider not the integral along a
field line but the integral over an infinitesimal flux tube. This can be
obtained by multiplying (4.10) by B d A when we have

SV . lD)dT =0 o (2.11)
Flux tube

So that the condition found for the existence of a solution to the magneto-

static fluid equations is equivalent to the statement that the divergence of

the current associated with the guiding centre drifts should vanish when



averaged over any flux tube. Of course, the current due to the guiding
centre drifts is not the same as the total current but the difference
between them can be expressed as the Curl of the magnetisation per unit
volume, whose divergence vanishes identically. The constraint might there-

fore equally well be applied to the total current or to the drift current.

5. A CLASS OF EQUILIBRIA

Now let us consider some particular solutions of the equilibrium con-
straints (3.18) and (3.27), appropriate to the type of magns=tic field under
discussion. It should first be noted that the second constraint (3.27) is
not serious in systems of axial symmetry such as the mirror or the spindle
cusp. For in these systems the symmetry ensures that Vp, VB and B are
coplanar vectors (lying in the r,z, plane) so that the expression

Vipy +p;) VB x B 5608 1)

vanishes identically. Similarly in any cylindrically symmetric system Vp

and VB are both radial and (5.1) again vanishes.

In other field configurations the constraint (3.27) can be a severe
restriction; for example, the condition (3.27)(or rather (3.26) which is
then the appropriate form) can never be satisfied by any confined plasma
distribution within a circular torus. For in such a configuration, symmetry
ensures that the integral (3.26) can only vanish if the integrand vanishes.
As (VB x B) is in the direction parallel to the symmetry axis of the torus
this means that p must be constant in this direction, thus the plasma is
not confined. This, of course, is the well known lack of equilibrium in a

simple toroidal field.

If we leave aside for the moment the question of whether it represents
contained plasma or not, a restricted class of solutions to the equilibrium
constraints can always be found by demanding that (5.1) should vanish. This
is certainly achieved if (pL-Fp!ﬂ is a function only of B, then, since the
'parallel' equilibrium equation (3.18) gives P, ia terms of p, this will
make Py and P,, individually functions of B alone. Making p, aad p;, func-
tions of B alone means that the surfaces of constant B, the magnetic isobars,

are also surfaces of constant p, aid p,, .



The significance of magnetic. field configurations which possess closed
magnetic isobars now becomes apparent. Equilibria in which p and p,, are
functions only of B exist in all field configurations, but only in those
which possess closed magnetic isobars do these equilibria correspond to

confined plasma configurations.

This class of low- B equilibria, which have
p, = PL(B)’ By = p,JB) s wil D =2

and from (3.18)
Bp!, = P,y - PL ..(5.3)

where the prime denotes differentiation with respect to B, is one whose

stability will be proved in the next section.

An example of this class of equilibrium distribution is

p, = C B(Bo- B)"

if B < Bg
p, = nC B2 (B, - B)™7! .. (5.4)
p,=p, =0 if B>Bg
where n, By are arbitrary parameters. These equilibria correspond to plasma

confined within the contour B = B, which by the basic property of our fields

can be a closed contour.

Particle distribution functions corresponding to the equilibria (5.4)
can also be written down in terms of the distribut ion in U,e space (see
section IV). A particle distribution function which leads to the pressure

distribut ions (5.4) is

3
£(,e) = (uBg- )" 2g(u) £ < WB,

1

n
o
™
T
o

fiu,e)

where g(u) is an arbitrary function of the magnetic moment.

6. STABILITY OF THE SPECIAL EQUILIZRIA

To examine the stability of the equilibria described in the previous
section let us first continue with a fluid description and consider the

(5)

double adiabatic hydromagnetic energy principle derived by Bernstein et al

According to this, the stability of a plasma configuration with



anisotropic pressure is determined by the sign of the minimum of the energy

integral.
owy = faclol® - jaxg + (V- 8)7 + (V. £)(g - Tp))
+3[V-E - 3q]% + qv - [E(p,, - p,)]
-py-pP ) (a-VIE+a-(n  VIE-492]..(6.1)
where
Q =V x (§ x B)
qQ=n-(n-V)Eg 2i{6.2)
a=(n-V)E-(E:-V)n
and £ is an arbitrary displacement vector. OWyin should be positive for

stability.

Examination of the energy integral shows that only the first term IQEI
i3 independent of B so that at low -P it must dominate (and so make OW posi-
tive) except for those displacements which themselves make Q zero. Physic-
ally these displacemenfs are t.:.ose which do not change the vacuum magnetic

field - the so called interchange modes.

Hence, at sufficiently low B we can deteraine stability by examining oW

ior displacements which satisfy

Q=Vx (ExB) =0 ..(6.3)
and for these displacements
vog 2P
q_ §+ B
e .4
5 o 5 (6.4)
a= (Vg + =——)n
f b B L

With the aid of (6.3) and (6.4) the energy integral can be greatly

simplified. In fact

W, :fdﬂ?’pn d® + ds(5p,, - P ) + SQ(P_L + 2py )
'l"d(g_-vP”)'f'S(E'V{P“-P_;_))i v § 5 5)

where, for brevity, we have written
g . VB

V+E =d; e = B
89 far this is quiﬁe general. Forlthe equilibria found in section 5 namely
those which’ have the properties.
p. =P (B), p, =p,(B), Bp)=p, - B «:16:6)



6WD reduces to .

= _l¢ 2 2 pL
6WD —J.dT13p$‘[3p|#d-ks} - pLs] + s [Zpl.-§E||_ Bpi] L. (6.7)

The first term is clearly non-negative so a sufficient criterion for

stability according to the double adiabatic principle is

2
Py ”

% - == - Bp!

2p, 35, pj > 0 ..(6.8)
Some explicit examples of equilibria were given by equations (5.4). For
these examples 2

o _ (n-1) E{—

Bp, = ZPL — =~ .. (6.9)
and a sufficient stability condition is n > 3. (Note that this is also the
condition for f(u,e) in equation (5.5) to be continuous at € = B By).

There is, however, one reservation to be made about the argumeant above.
The last term in the energy integral contains the expression pf_/'p!I and for

some of the equilibria of the form (5.4) this quantity tends to infinity at

the plasma boundary. This will make possible, even at low - B, some insta-
bilities in which the magnetic field is perturbed. These are the 'mirror'
instabilities. As the plasma density falls to zero at the surface it is not

clear whether this particular instability is to be taken seriously, but in
any case it can be avoided by demanding that pi/pII be finite at the surface.

This requirement is satisfied by the equilibria given in (5.4) if n > 2.

B The small Larmor radius theory

The double adiabatic energy principle is open to at least two objections;
firstly that it is based on the assumption that in the plasma motion there is
no heat flow along the lines of force and secondly that although a component
of the displacement & along the lines of force is formally allowed, it is
hard to see what is the real significance of this parallel displacement

(since in collisionless-plasma motion arises from E x B drifts).

An energy principle which is sufficient, though not necessary, for
stability and which overcomes these objections was given by Kruskal and
Oberman(é). This is based on the use of the Goltzman equation in the limit
of small Larmor radius. In this case the appropriate enevrgy integral can
be written

g = SMp 'fd’ffzmq("' E) + (3p, - 2p,)a?} + 1  ..(6.10)

w12 =



where

' af
I =[drrjzmif Vi duda[uzB‘?(—éES)(V-_E_- q)?- -g—;%] } s 06 TT)
B —

U - uB .. (6.12)

and

In these expressions € and U are again the energy and magnetic moment
as in section 5, and f¥ is the perturbation in the particle distribution
function. The quantity foll,e,L) is the unperturbed particle distribution

and in their derivation of the energy principle Kruskal and Oberman require

that
af,
=5 ¢ 0 il . 13)
The minimisation of 6Wko has to be carried out over é and also over f%*
subject to certain constraints, The minimisation over f¥ is carried out

in the Kruskal and Oberman paper but we will have no need of this in the

present discussion.

It can be shown that the minimum of 6W£O is independent of Ellas it

should be, so that Ellcan be taken to be zero.
As before, at sufficiently low-f we need only consider displacements
which satisfy

V x (ExB) =0 -.(6.14)

so that equations (6.4) are again valid. However as € is now perpendicu-

lar to B a further simplification can also be obtained. For (6.14) implies

that
ExB=Vp veo{ibie 18]
and so £ «can now be written
B x V¢

E = §¢ = - ..(6.16)

whence
- VB
V'é:-zéB L(6.17)

With the aid of equations (6.4) and (6.17) the energy integral may be

reduced to

jHT (2p, - BpL]s }

of #2
fl'rzm/ — duda[u Bz(a;’) s2 - %;— } ..(6.18)
(o]

oe

- 13 -



This can be further simplified, {for

2
pL=Zmi[E%- fq dude .. (6.19)
11
and since
av,
I B .. (6.20)
de

a partial integration leads to

» dfs ‘
Py = -2 mg UB= v, —= dedu . (6.21)

Then if p = p,(B), differentiation with respect to B gives

203 faf
Bpi = ZPL.+EIH{[/qu (Tﬁf) dedp o6 22)

and using this result the energy integral is finally reduced to

_ B g2 l
6wk0'_-j;TE'nij]Ln, dpde {5?; J .. (6.23)
de

of,
which is certainly positive if a;)< 0, a condition which is in any case

required for the present energy principle to be valid.

According to the small Larmor radius theory of Kruskal and Oberman, then,
equilibria of the class (6.6} are stable if their corresponding particle
distributions satisfy

of
-2 < 0 .. (6.24)
de

Thus the specific examples (5.4) correspond to the particle distributions

(5.5) and so are stable if

|ea

0

. 172 <0 .. (6.25)

(LBg - €

that is if n > % In this case, therefore, the two energy principles lead

.

to the same criterion.

7. DIRECT PROOF OF STABILITY

The simplicity of the form of the final expression for éWko suggests
that a more direct demonstration of the stability of our equilibria should
be possible which did not make use of the full Kruskal - Oberman theory.
Such a proof of stability can be developed by extension of the argument

given by Newcomb(a) in discussing stability of infinite maxwellian plasma.

Let us consider a general particle motion in which the magnetic moment

s 1 -



of a particle is invariant, -(as in small Larmor radius theory), then a

general constant of the motion constructed from individual particle constants

is
B {
= | o dudedt G{f,p) N 7 AR A
1
Now consider a distribution function f = fo + &f where f5, is the initial
equilibrium distribution whose stability we want to discuss. Then we can
write
2
68 = 0 _f?— dudedt fo'(fo,m. bf + G £q,u) - ‘—ézf—’ ol L2
1
where 3G

I
G (f,u) 37

Now the equilibria we are considering have the property that Py and p,,
are functions of B only and satisfy the parallel equilibrium equat ion.
Such equilibria correspond to particle distribution functions which depend
only on yu and e (i.e. fole,u,L) is independent of the particular flux
line considered). For these equilibria, therefore, the function G can be
chosen so that

G' (f,,u) = ¢ e { P 30

(at least if 0f,/0e is monotonic) and with this choice for G equation

(7.2) becomes

(6f)
L dpdedr - (e6f) = - B gugedr. $ v . (7.4)
V” vil afo
o
de
which may be written
_ B (6£)?
SK = fV” dudedT _a_f-:) + ... ..(7.5)
e

where K 1is the total kinetic energy of the particles,
B
K = f=— dudedt - (ef)
-/;n

If now
af,
de

it is clear that to second order in 6f, 8K > 0 so that any change 6f in f

<

around f will increase the kinetic energy. Furthermore if the equilibrium
has no electric fields and is of such low -3 that the magnetic field is a
vacuum field, then any perturbations can also only increase the field

energies. As the total energy is constant it is clear that Of cannot grow



indefinitely and in particular cannot grow exponentially, Therefore the

system is stable.

Thus it has been shown that any low- 8 equilibrium with f, a function
only of WL, 1is stable against all perturbations in which the magnetic
moment is an invariant. This is certainly sufficient to demonstrate

stability against hydromagnetic motions.

8. CONCLUSIONS

Attention has been drawn to the importance of the existence of closed
magnet ic isobars in certain hybrid mirror-cusp magnetic fields. The existence
of these closed isobars enables one to construct a class of confined plasma
distributions, those with p, and p,, functions of B alone, which satisfy
the conditions for equilibrium. These equilibria are stable against inter-
changes according to both the double-adiabatic energy principle and the more
complete small-Larmor-radius theory. A direct proof of stability against all
motions in which the magnetic moment of a particle is an invariant has also

been given.

It is easily shown that these equilibria have the property that j, = 0,
which ensures that they are also stable against several forms of 'drift'
instability; the large amount of 'shear' and the high curvature of some of
these hybrid fields may also inhibit some other micro-instabilities. One
concludes, therefore, that these non-vanishing outwardly-increasing fields

do indeed offer the possibility of stable plasma confinement.
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