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ABSTRACT

The instantaneous population densities for the excited levels of hydrogen-like
ions in an optically thin plasma, which is not necessarily in equilibrium, have been
calculated for a range of elefgron teTger%turE of 4000 Z° %K to 256,000 2% K ana
electron density of 10° Z! em ~ to 107 Z" cm 7, where Z is the charge of the bare
nucleus. The population densities depend linearly on the ground level population
densities and tables are presented of two coefficients representing this relation
for some of the lower excited levels.

The calculations include the processes of excitation, de-excitation, and ioni-
zation by electron collision, spontaneous radiative decay, three body recombination
and radiative recombination. Processes involving the absorption of photons are
neglected and it is assumed that the free electrons have a Maxwellian distribution.

The validity of the calculations in the extremes of the ranges is discussed,

The calculations illustrate the transition from high densities where all the
excited levsls have nearly a Saha-Boltzmann population to low densities where the
radilative capture-cascade model is valid, |

From the population density of the excited levels, the power lost by line
radiation by hydrogen-like ions, radiative recombination of electrons onto the bare
nuclei and bremsstrahlung of the free electrons in the field of the bare nuclei is
calculated.

Since energy is lost by radiation, the total energy dissipated during the
lonization of one hydrogen-like ion may be much greater than the simple ionization
energy of the ion. This has been calculated for electron tempesratures between

16,000 z® K and 256,000 z* %.
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1. Introduction

The spectral line rediation emitted by a plasma is a powerful source of
information about the conditions inside the plasma., 1In an optically thin
plesma, the line intensities are proportional to the population densities of
the excited levels and in this paper these population densities have been
calculated for a plasma, composed of hydrogen-like ions, which is not nec-
essarily in equilibrium, The calculations for hydrogen atoms have been done
by Bates and Kingston (1965). Tables of two coefficients are presented which
represent the linear relation between instanteneous excited level population
densities and the ground level population density for a given electron tempera-
ture and density, for the levels of low guantum number,

Since the line intensities depend on the instentaneous population density
of the ground level, the variation of the line intensities with time requires
the calculation of the variation of the ground level population density.

This involves the collisional-radiative recombination and ionization coefficients
which have been calculated by Bates, Kingston and McWhirter (1962) using the

same atomic model as that used here. This paper will be referred to as paper 1.
The atomic model includes all inelastic electron collisions involving bound

and free electrons and all radiative processes that do not involve the absorp-
tion of photons. It is assumed that the free electrons have a Maxwellian
distribution.

The calculation of the population densities of each of an infinite number
of excited levels is avoided because at a sufficiently high quantum number the
excited level has & Saha-Boltzmann population density, and the contribution of
these high levels to the lower ones is then easily calculated.

It is assumed that level 20 and above have a Saha-Boltzmann population
density, and it is found thet this assumption is justified for electron

densities greater then 1052/ cm™?,



From the instanteneous population densities, the power loss by radiation
and. the totel energy required to ionise one hydrogen-like ion are calculated as
s function of electron density and temperature.

2 The basic equations

The collisional and radiative processes which are included in these
calculations are the following.
(1) Excitation of a hydrogen-like ion of charge Z-1 from a level p to

a level g by electron impact, end the inverse process of de-excitation.
N () ve @ () v (1)

The rate coefficients for the forward and backward process are given the
symbols K(p,q) and K(q,p) in units of om’ sec .
(2) Ionisation of the ion from a level p and its inverse of three

body recombination.

W2+ (p) v e N ie s (2)
Their rate coefficients are given the symbols K(p,c) and K(c,p) respectively
in units of cm3 sec_1.

(3) Sponteneous radiative decay from a level p to a lower level q.

W2+ (p)on(Z1* () 4 ne (3)
The trensition probability is A(p,q) sec” V., The inverse process of photo-
excitation is not included, so it is assumed that the plasme is optically thin.
(4) Radistive recombination of an electron with a bare nucleus to form
an ion in level p.
Nt L e n(Z1)+ (p) +h¢ (%)
The rate coefficient is ﬁ (p) om- sec~!.  The inverse of this process,
photoionisation, is not included.
Tt is assumed that the bound levels are adequately specified by their

principal quantum numbers end that the sub levels are populated according to

their stetistical weights. Generally the electron collision rate between
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the sub-levels is sufficiently large to ensure this,
With all these processes included, the rate at which the population

density n(p) of level P chenges is given by the differential equation

dn(p) _ ~n(p)d n()[K(b,c)+2 K(pg)|+ > H(P,‘l)
dt q¥p =P

tn(c)2 n(g)K(g,p)+ > n(g)Alg,p)
9+p I>p

+ 'li.c_)l{K (c,b) +p (F’J} (5)

where n(c) is the number density of the free electrons and X is the ratio of
n(c) to the number density of bare nuclei of charge Z. For plasma neutrality
X must be equal to or greater than Z since ions of charge not equal to Z may
also be present.

The description of the variation of the populations of the bound levels
is represented by an infinite number of such equations, one for each bound
level.

3. The atomic coefficients

The values of the coefficients K, A and P used in these calculations are
the same as those described in paper 1 for Z greater than one, The coefficients
K(1,c) and K(1,2) were evaluated by the numerical integration of the Goulomb-
Born approximation for the cross section for Z of 2 over a Maxwellian electron
distribution (Burgess 1961). The effect of 1s-2s transitions was included in
the K(1,2) coefficient by increasing the values by 15%. This is the average
ratio of the 1s-2s to 1s~2p cross-section according to the ordinary Born
approximation for hydrogen (McCarroll 1957). K(1,3) and K(1,4) were obtained
by adjusting Burgess' 1s-2s and 2p cross sections to the appropriate threshhold

energy and fitting to the Born approiimation of McCarroll at high electron energy.
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The values used for these four coefficients are given in table 1. The rate
coefficients of the inverse processes to these four were obtained from detalled

balancing.

Table 1. Values of the ground level collision coefficients.

®) 22K(1,2) 27K(1,3) 29K(1,4) 2°K(1,¢)
4,000 | 3.207%° 2.81722 1.977% 9.07726
8,000 | 6.207% 8.41716 1.57718 4.90"17
16,000 | 7.5 4.00712 9.9071° 1.32712
32,000 | 2.3 2.0, 10 7.4~ 1 2,357 10
6,,000 | 1.207° 1,757 5.9071° 3,3870
128,000 | 2.587° b5~ 1,587 1.3,78
256,000 3.66‘8 6.9877 2,567 2.63'8

The indices glve the power of ten by which the entries in the coefficient

columns must be multiplied.

The oscillator strengths for transitions up to level 20 used to calculate
the rate coefficients were taken from Green, Rush, and Chandler (195?). Beyond
level 20 the esymptotic expression for the oscillator strength given by Uns61d

(1955) was used.

F(R%):

-8
2_é 11 11 (6)

——9d T T3 F (323 442
37 (P1) PP
The coefficients K, A andp all depend on the nuclear charge Z. With

the values used for these coefficients the dependence of the equations on Z

and X may be included by substituting the following reduced parameters.

electron temperature @ = | /Z * (7)
electron density 1)((:): n (C) /Z7 (8)

population density 'r) (P)___: X ”(P) /Z 11 (9)

A1l the results will be given in terms of these reduced parameters.

Since X, the ratio of the number density of free electrons to the bare
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nuclei is included, the calculations give the population densities of the
excited levels for given electron and bare nuclei population densities and
electron temperature. For convenience the values of the first nine integers
raised to the various powers appearing in the Z-scaling laws are given in
Appendix 1.

L, The quasi steady state solution

If the system is in a completely steady state, then the population
densities of the bound levels are determined by the solution of the equations
(5) when %% is zero for every level. Under these conditions the rate at which
electrons are transferred out of the level, which is represented by the term
in n(p) in equation (5), equals the rate at which electrons are transferred in
to the level, which is represented by all the other terms,

Suppose now that the population of level p is perturbed by a small amount.

The return to its steady state value is given by

n(P)= A 1- E’_{:/T(P) 10)

where e K( r +Z K(Pr? _,_Z H{Pﬂ) (11)
Tl (9 P)‘Z%P ) g<p

Values oflzr(p), the relaxation time constant for level P, have been
calculated for a range of conditions. The relaxation time is inversely
Proportional to ZA, end the values of ZAQT(p) are given in seconds in table 2.
It is apparent from these values that the relaxation time of the ground level
is always much greater than that of any of the excited levels. The reason
for this is that the electron collision rate coefficients between excited
levels are much greater than the rate coefficients to the ground level and
also that the ground level cannot decay by spontaneous radiative transitions.
Inspection of the relexation time constants for conditions where the plasma is
not near its steady state supports the general conclusion that the ground level

time constant is always much greater than that of the excited levels.
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Table 2. Relaxation time constants thf(p) secs.

@ MN(e) | p=1 p =2 p=3 P =15

4,000 | 108 3.0 2470 1,070 1,478

1,000 10'8 3,1%1 1.1 2.8713 1,216
16,000 108 1,2%% 2,479 1.078 2,178
16,000 1018 1,278 1 815 1.7713 2.5'16
&,,000 | 10° 5. 2,477 1,078 5 0
e,000 | 1018 | 548 74710 25710 49712
6,000 | 108 | sa” a2 25T 4715
256,000 | 10° 1.3 2,177 1,078 5.5
256,000 | 102 | 1.3 247 9.877 9.871°
256,000 | 10" | 1378 930 4410 987
256,000 | 1018 | 4.3 a2 43T 5,810

The indices give the power of ten by which the entries in the time

constant columns must be multiplied.

The complete description of the system would involve the variation with
time of the population density of every bound level from a particular set of
jnitisl conditions. But in practice the time in which the population densities
of the excited levels come into equilibrium with a particular population density
of the ground level, free electrons and bare nuclei is so short that it is
sufficient to give these equilibrium population densities as a function of the
ground level popglation density. This is the quasi steedy state solution, and
it is obtained by setting %% for all levels except the ground level equal to
zero., 1In general the ground level will not be in equilibrium, but its popula-
tion density changes comparatively slowly and the population densities of the
excited levels follow in a time that may be regarded as instantaneous, The
rate at which the population density of the ground level changes is related

to the collisional radiative recombination and ionisetion coefficients discussed

in paper 1.



It is assumed in these calculations that the population densities of the
free electrons and bare nuclei remain constant during the time in which the
quasi steady state is established, When the total population density of the
discrete excited levels is greater than the population density of the bare
nuclei this may not be true because a large proportion of the electrons ‘mey
exchange between the continuum and the bound levels because of a change in the
plasma conditions. Thus for the quasi steady state solution to be valid, the
inequality oo

+
E o(p) < n(z ) for n(1) =0 (12)

p=2

must be satisfied. The evaluation of this sum requires the knowledge of the
level which merges into the continuum. This is outside the scope of this
paper, but the calculated values of n(p) for n(1) set at zero indicate that a
fairly reliable estimate may be made af}i:ﬁ;ﬂ for this purpose, Table 3 is
based on such an estimate and gives the values of Z that must not be exceeded
for a range of reduced electron temperature and density if the inequality is

to be satisfied,

Table 3. The greatest values of Z which still satisfy the inequality

(="a)
Z n(p) € n(z*) when ﬂ(1)= 0
=
ME) K |10 107 1010 4015 ot 43
(W) > 4,000 ZL() 5 12 25
8,000 (1) 2 I 11 23
16,000 3 5 10 17 30
32,000 4 7 1 20 30
64,000 5 10 16 30
128,000 8 13 18 30
256,000 10 14 22 36

This may not be satisfied, for example, under conditions of low

temperature and high density where recombination may be so rapid that the
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excited levels have insufficient time to reach their quasi steady state
populations before the density of the bare nuclei changes by a large fraction.

5., The method of solution

The calculation of the quasi steady state solution requires the solution
of an infinite set of equations, but fortunately the treatment of an infinite
metrix mey be avoided because at high quantum number levels the population
‘density is sufficiently well described by the Sgha-Boltzmann equation

A af h )k E(bc)

where r]E(p) is the Saha-Boltzmann population density of level p, T is the

electron temperature and E(p,c) the ionisation potential of level p.

The upper levels approach the Sgha-Boltzmann population density because
the spontaneous radiative decay rate decreases with increasing quantum number
while the collisional rates increase. When the collisional processes between
the bound levels themselves and the continuum dominate the radiative processes
the population dénsity has the Saha=-Boltzmann value. Tt is assumed that level
20 end sbove have a Saha-Boltzmann population density. Level 20 was chosen
because this is the limit of the tables of oseillator strength of Green, Rush
and Chandler, but for many conditions this is much higher than is necessarye.

The contribution of these high levels to the population density of
levels 19 and below was included by using the asymptotic value of the oscillator
strength to calculate the rate coefficients, The calculation assumed that the
high levels all remeined discrete and successive levels were included until
the contribution of the last level was less then 0.1% of the total for the
levels already calculated.

The microfields due to neighbouring electrons and ions cause the upper-
most bound levels to lose their discrete nature and they merge into the
continuum of free electrons, The level at which this takes place represents
8 possible cut off point for the calculations to avoid the difficulties

associated with an infinite number of levels. However, it is difficult to
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calculate precisely where this occurs and fortunately it is not necessary
since the contribution of the continuum which replaces the bound levels is
exactly the same as the discrete bound levels, In the calculationé the
assumption that level 20 and above had a Saha-Boltzmann population density
was checked by selected calculations assuming that level 16 and above had a
Saha-Boltzmann population density. For the lowest reduced electron density
108 cm_3 the differences were never more than a few per cent. At all other
densities the differences were quite negligible,

The quasi steady state solution of the population densities of the
excited levels is a function of the ground level population density for a
given electron density and temperature, But the equations (5) are linear in
n(1) so that the solution for any excited level population density may be
expressed in terms of two coefficients. The first is the population density
of a given excited level when the ground level population density is zero, and
this represents the contribution to the population density from the continuum
of free electrons. The second coefficient is the increase in the excited
level for a unit inerease in the ground level, and this represents the
contribution to the population density of the excited level by excitation from
the ground level. It is convenient to express all the population densities
as a fraction of the Saha-Boltzmann pqpulation density for the electron tempera-
ture and density involved. Thus the quasi steady state population density of
an excited level is given by |

2P (P + a(p) 001 S
Ne(p) Ne(1)
where 11 (p) is the quasi steady state population density of level p,f]E(p) is
the Saha-Boltzmann population density, and V. (p) and ¥, (p) are the two
coefficients,

6. The results

The quasi steady state population densities have been calculated using an

IBM 7090 electronic computer for a wide range of conditions., The results are
2

8lven in terms of the reduced parameters which correspond to a range of L000Z
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to 25600022 °K in electron temperature and of 1082.7 to 101827 c:mm3 in

electron density. TFor each condition, the quasi steady state population
densities were calculated for two values of the ground level population
density. The first was zero which yields the coefficients 4;(;0, and the
second was an arbitrary large value to give the coefficients”ﬁ(p).

Table 4 gives the quantum numbers of the lowest levels havingVy(p)
within 1%, 3%, 10% and 30% of unity. Since a velue of unity corresponds to
the Saha-Boltzmann population density, this table illustrates the way in which
the Saha-Boltzmann populaetion density extends further down the bound levels
from the continuum as the density rises, until at the highest temperature and
density quoted all the excited levels are within 3% of the Seha=Boltzmann
population density.

Tables 5 and 6 give the coefficients ¥, (p) andffi(p) for six of the
lower quantum numbers., ‘f1(15) is also given since it is a guide to the
departure of the upper levels from the Sgha-Boltzmann population density.

The values of ¥,(p) show clearly the transition from the low density
situation typified by the radistive capture-cascade model of Seaton (1959b)
to the high density situation where the population densities approach the
Saha-Boltzmann velue, The coefficients'?b(h) are less than unity for
reduced temperatures less than 256,000 OK, but above this they sometimes
exceed unity, increasing with increasing temperature. At the reduced tempera-
ture of 512,000 °k and a reduced density of 108 cmmB,'fb(2) is 1.7 and Y (10)
is 1.2. These figures illustrate that the population densities can be
considerably greater than the Saha-Boltzmann value, particularly during the
period of ionisation when the contribution to the population density from the
ground level can be large. Departures of this nature have been observed
experimentally (McWhirter, Griffin and Jones, 1959).

The fall in the calculated values of#l(z) at reduced densities greater
than 1016 c:rn"-3 for reduced temperatures of 128,000 and 256,000 °K is caused
by the adoption of the special values of the rate coefficients K(1,¢), K(1,2),
K(1,3), K(1,4). This effect is too small to ceuse concern.
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The values of ¥y (p) are always less then unity., The limiting values of
\h (p) as the density tends to zero could not be calculated because of the
limited range of the computer. For quantum numbers less than 7 extrapolation
to a lower density from the values given is satisfactory,

The calculations show that the populations of the upper levels are
determined predominantly by a balance between collisional excitation and de-
excitation whereas for the lower levels radiative decay and recombination are
more important. By defining the collision limit as the lowest level from
which an electron has a greater probability of making a transition to an
upper level rather than to a lower level, a measure of the level of change-
over is obtained. The values of the collision limit are given in Appendix 2,

The population densities of the excited levels for a true steady state,
that is when the ground level is in equilibrium, may be calculated from the
steady state population density of the ground levellTS(1) using equation (14)
and these are given expressed as a ratio of the corresponding Sahe-Boltzmann
population density in table 7. The steady state population densiﬁy of an
excited level for specified electron and Bare nuclei number densities and
electron temperature always exceeds the Saha-Boltzmann population density,
The ratio between these two is usually closer to unity_than the corresponding
value of ¥, (p), and it falls outside the limits of the ranges in table J in
the top right hand region marked off by the boundazy‘line.

The accuracy of these calculations depends mainly on the accuracy of the
cross sections for the collisional processes, since the radiative rate
coefficients are well established. Seaton (1962) estimates that the positive
ion cross sections near threshhold are accurate to a factor of two. The
slightly modified version used agrees with the Coulomb-Born approximation of
Burgess (1961) for 18-2p within a factor of two, so that the greatest error
in the cross section should be less than a factor of three.

Because the equations (5) are linear in the rate coefficients, changing
one of them by three cannot alter the calculated population density by more
than three. At high levels where the population density is collision dominated

s A



the effect on the population density mey be very small, and since detailed

balancing is used to calculate the rate coefficient of the inverse process the

departure from the Saha-~Boltzmann population density will not be altered by

more than a factor of three.

Table 4. Values of the smellest quantum number p for which Yo (p) is within

1%, 3%, 10% and 30% of unity.

O 000 8,000 16,000 32,000

l{") © [ 1% 3 105 som| 1% 3 10 o) 1% FE 10% 3O 1% H 0% 308
108 A1l 15 A1l 15 A1 715 »15, 315,315, 14
109 )15, 15, »15, 13 |15, »15, 715, 13 »15, »15, »15, 12 |»15, »15, 15, 11
1010 15, 15; 12, 10 »5, 15, 12, 10 |>»15, 15, 12, 9 |»15, 15, 12, 9
ol 1, 12, 10, 8|, 12, 9, 7|, 11, 9, 7|13 1, 9 T
10212, 10, 8, 6|1, 9, 7, 6|10, 9, 7, 5[10, 9 T, 3
0310, 8 7, 5| 9 7, 6 5| 8 7, 5 4| 8 6 5 4k
o o 7, 6 5| 7, 6 5 k| 7, 5 & 3| 6 5 k3
0% 9, 7, 6 4| 6 5 & 3| 5 & 3 3| 5 k3 3
0 o, 7, 6 ul 6 5 ko 3| & 3 3 2| ko 3 02 2
o7 9, 7, 5. ul o5 a4 3 2| 4 32, 2( 3 302 2
08 e, 7, 5 k| 5 b 3 2| ko 3 2 2| 3 302 2
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Table 4 continued. Values of the smallest quantum number p for which‘i;( p) is

within 1%, 3%, 10% end 30% of unity.
Yo (P) <1 <>1(p)>0.97
@_? 64,000 128,000 256,000

)| B AR A 1% 1ok | 1% w108 o
¥ i

10715, >15, 315, 9 | »15, »15, 13, 3 6, 4, 3, 2

107 (15, >15, 15, 9 | »15, w15, 12, 3 6, 4, 3, 2

1o1°§>15, Y, 1, 7| 15, 13 9, 3 | 6 4, 35 o2

10" b}};—,‘_-_;?,“?' 8, 6 | 12, 1o, 7, 3 | 6, 4 3 2

10'?] 10, l,r“é_,"' 6, 9, 7 & 3 | 5, &, 3, 2
2

7, 6’ h‘! 1"1 5) 3! 2
5’ 1”'1 3: 2 }+; 3! 2, 2

5
10 7, 6, J 5 4
10" 6, s, 4, 3

10 W, 4, 3, ; 2 L, 5, 2, 2 | 3, 2, 2 @2
1016 3, 3, 2, “2“"1; 3, f_ns_, ﬁﬁﬁﬁﬁ 2, 2 |13, 2 l!—“z:""z"
107 5, 2, 2, 2| 37T 2, 2 L_j—,—m;,"‘ 2, 2
10'8| 3, 2, 2, 2 5 2, 2, 2 | 3 2 2, 2

Table 5. The coefficient T(p) 1)(0)-}0

®) P 2 3 4 5 7 10
4,000 4.7 1,372 1.072 2.972 7,97 1,57
8,000 1,473 1,972 5,972 1,071 1.87 2,57
16,000 2,272 9,372 1,771 2.3 3070 3,771
52,000 1,271 2.5 5.3 3,97 Wl 50177
1,000 547" bt 5,37 5,771 6,27 6.5
128,000 6.871 T 7.6~ 7.87" 7.97" 7.97"
256,000 1.1 1.0 1.0 9,971 9.7 9.4
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Table 5. The coefficienﬂo(p) 17((:) - 10° em™

2 3 4 5 7 10
4,000 5.97¢ 1,67 1.4, 3.9 % 1,471 2,471
8,000 1,57 2,272 §7 " 1,27 2,271 3.7
16,000 G e 1,071 1,871 2,57 3.5 LB
32,000 a 2,67 3,5 bt 5.0 5,87
64,000 3,57 4.8 5e5 6.0 ik 7,271
128,000 6.5~ 7.7 7.8~ 8.0 8.3 8.6

256,000 1.1 1.0 1.0 1.0 1.0 1.0

'7(0) - 107 en™?

N 2 3 L 5 7 10
),000 €.776 1,970 1.672 o 1.7 P
8,000 1,37 il i 1.5 2,57 49"
16,000 2., 1,07 1,97 2.6 3,77 5.67"
32,000 1,371 2,671 5,57 . 5.2 6.5
61,000 5.6 487" 5.67" Gl 6.7 7,57

128,000 6.9 7.5 7,871 817" 8. g.q7"

256,000 1.1 1,0 1,0 1.0 1.0 1.0
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Table 5. The coefficient Yi(p)

@~rF| 3 g 5 7 10
4,000 8.876 2,573 2,272 7.072 3,271 oG
8,000 1.5 5,772 8,572 1,671 4.0 7.97"
16,000 2,672 1,171 2,07 2,971 4.8 8,171
32,000 1,571 5,7 3,771 T 5,97 8.3
64,000 5,6 el 5.771 6,271 7,17 8.7
128,000 6.971 7.5 7.971 8.17" 8.5 8,3
256,000 1.1 1.0 1.0 1.0 1.0 1.0
"9(0) = 10" en™?
® 2 3 L 5 7 10
4,000 1.57 452 4.872 2,471 6.87" 9,5
8,000 2,072 3,672 1,371 3,07 7.271 9,57
16,000 2,972 1,371 2,571 4.0t 2.5 9.57"
32,000 1471 297 4.0~ 5,27 7297 9.6
64,000 5,771 5,07 5.9 &7 8.4 9.7
128,000 6,971 P50 g8.0~" 8.3 9.1~ 9.8~1
256,000 1.1 1.0 1.0 1.0 1.0 1.0
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Table 5. Coefficient V5(p)

17 (e) = 1012 om

N 2 3 I 5 6 7
1,000 3,672 1.572 2,471 5.5 7.7 g.8~!
8,000 3,470 6,972 5 5 ¥l 8.3 9,271
16,000 56 1.871 b3 7.471 8.6 9.3
32,000 1,571 3,37 5oy 7.57 8.8 Gl !
64,000 38 §ed T 6.7 8.1~ 9,171 9.6~
128,000 7.47" 7.77" 8,37 9.0~ 9.5 9.77"

256,000 1.1 1.0 1.0 1.0 1.0 1.0

’?( o) = 10'3 em™

® b 2 3 b 5 6 7
4,000 1,67 9.62  5.27 7.8~ 9.0 9e5™"
8,000 7.7 2,571 6.9 8.8~ 9.5 9.871
16,000 57 3,871 7.6~ 9,171 9.6~ 9.8~
32,000 1,971 5.4 8.171 9.3 9.7 9.97"
614,000 o2 85 8.6~ 9.1 9.8 9.9
128,000 737" 8.1~ 9,271 9.771 9.9~ 9.97"

256,000 1.4 1.0 1.0 1.0 1.0 1,0

- 16 -



Table 5. The coefficient Y (p)

17(0) 5 10" anP
) 2 3 4 5 6 7
J,000 1.7 3,271 6,971 8.77" 9.4 9.7
8,000 35.4,72 6.1~ 8.7 9.5~ 9,871 9.97"
16,000 1,571 7.4~ 9.3 9.8~ 9.971 1.0
32,000 3,471 8.17" 9.57" 9.871 9.97" 1.0
64,000 5,271 8,671 9.6~ 9.97" 1.0 1.0
128,000 . 9.3 9.871 9.9~ 1.0 1.0
256,000 1.1 1.0 1.0 1.0 1,0 1.0
’7(0) = 10" op™d
() P 2 3 4 5 6 7
4,000 e 5.3 7,677 8,971 9.5 9.87"
8,000 2,171 y iy 9.37" 9.8~ 9.971 1.0
16,000 5,21 9,171 9,871 9,971 1.0 1.0
32,000 6.87"1 9.5 9.971 1.0 1.0 1.0
64,000 7.871 9.7 9.9~ 1.0 1.0 1.0
128,000 8.9~ 9.8~ 1.0 1.0 1.0 1.0
256,000 1.0 1.0 1.0 1.0 1.0 1.0
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Teble 5. The coefficient Ya(p)

1)(0) = 1016 o
N D 3 L 5 6 7
14,000 6.472 I 7.7 9.07" 9.5 9.8
8,000 6.0 8.9 9.77" 9.97" 1.0 1,0
16,000 8.6 9.87 9.97" 1.0 1.0 1.0
32,000 ek 9,971 1,0 1.0 1,0 1.0
61,000 9.5 9,971 1.0 1.0 1.0 1.0
128,000 5,87 1.0 1.0 1.0 1.0 1.0
256,000 9.87" 1.0 1.0 1.0 1.0 1.0
= 1017 cm-3

M(e)

@ P 2 3 L 5 6 7
4,000 9.872 59 7,871 9.0 9.6 9.8”
8,000 7.7 9,37 9,871 9,971 1.0 1.0
16,000 9.3 9.9 1.0 1.0 1.0 1.0
32,000 9,67 1.0 1.0 1.0 1.0 1.0
61,000 9.77" 1.0 1.0 1.0 1.0 1.0
128,000 9.87" 1,0 1.0 1.0 1.0 1,0
256,000 9.7 1,0 1.0 1.0 1.0 1.0

asi B o



Table 5. The coefficient 75(p)

'?7(0) = 1018
® P 2 3 L 5 6 7
1,000 1,07 5.0 7.871 9.071 .8 9.8
8,000 7.6~ 9.4~ 9.87" 9.9~ 1.0 1,0
16,000 9.4 9.9~ 1.0 1.0 1.0 1.0
32,000 9,771 1,0 1.0 1.0 1.0 1.0
61;,000 9.8~ 1.0 1.0 1.0 1.0 1.0
128,000 9,871 1.0 1.0 1.0 1,0 1.0
256,000 9,9 1.0 1.0 1.0 1.0 1,0
M) > o
® P 2 3 A 5 6 7
14,000 1,171 5,0 7.871 9.0”" 9.6 9.871
8,000 2l 9.4 9.8~ 9,97 1.0 1.0
16,000 9.4~ 9.971 1.0 1.0 1,0 1.0
32,000 9.771 1.0 1.0 1.0 1.0 1.0
64,000 9.8"" 1,0 1.0 1.0 1.0 1.0
128,000 9.8~ 1.0 10 1.0 1.0 1.0
256,000 9,771 1.0 1.0 1.0 1.0 1.0

The indices give the power of ten by which the entries in the coefficient

colums must be multiplied,
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Teble 6. The coefficient ‘1“1 (p)

’?(c) = 108 ™
®» 2 3 L 5 7 10
b000 | 128 557 547 w3 9 340 277

8,000 | 8.9 4.2 357 300 2,57 2,07
16,000 | 6.89 3.2 2.6 2,50 1.870 147
52,000 | 5470 267 1.9 177 1379 1.07

G000 | w52 247 187 127 9.2710  7.271°
128,000 | 3.97° 1.87  1.27 8.51° 6510 54710
256,000 5570 1.6 1.7 o Gl 5,418

’Y)(o) = 10% en >
\EE;\\Ji\ 2 3 b 5 7 10

4.,000 1,277 5.5'8 5.1'8 4.2“8 3.3'8 2,078

8,000 8.978 .28 5570 3,478 2,78 1.578

16,000 | 6.878 328 258 23 78 12

32,000 | 5478  2.67° 198 1.8 128 e

64,000 4.5'8 2,478 1.5'8 1,278 8.977 .57
128,000 | 3.9° 1.8° 1.27%  8a” 6.3 4.6~
256,000 | 3.5 1.68 148 597 4.5~ 5.5 7

- 20 -



Table 6. The coefficient \ﬁ(p)

N)(c) = 100 on @
® P 2 3 4 5 7 10 15
4,000 | 1.27¢ 557 54T, -7 2777 858 g9
8,000 | 8.97 a7l 3,7 50T, 77 6.4 7.7

16,000 | 6.877 327 557 , 7 1577 5478 59

32,000 [ 5477 2,577 497 46T, T 4278 5,079
64,000 | 4,577 2,477 1,570 4,477 7.978 555 3,97
128,000 | 3,977  q.877 1.277 g8 5.80 2,578 2,877
256,000 | 3570 4,67 447 58 -8 98 4979
‘?(c) e 07 s
® 2 3 4 5 7 10 15
4,000 | 1.27° 5.5‘6 a.9"6 3,676 1 .3'6 2.677 2.1°
8,00 | 8.87¢ 4176 556 56 g T a7 4,58
16,000 | 6.876 3,276 2,76 1,976 7,177 1..77 1,078
32,000 | 5., B, 5"6 1.876 4 248 5.677 1477 7470
64,000 4.5"6 2,0°% 4 .4’6 1,078 el 9,37 6.77°
128,000 | 3.9 476 46 4T 57 7278 .69
256,000 | 3.57¢ 1,676 406 5,7 2.6 548 g9
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Teble 6. The coefficient Y (p)

7(0) - 10'% o™
® 2 3 " 5 6 7 15
4,000 | 1,274 5570 427 20,575 1.2 638 o9u®
8,000 | 8.87 4.0 267 1.37 656 336  4.07°
16,000 6.77° 3.0 1 85 9.5° ot~ 2,47 1,57
32,000 5D 2470 1472 7.6'6 3876 2,07 2,578
6l4.,000 L 1,97 1,272 5.9'6 2.8’6 1.3'6 7,97
128,000 | 3.8° 1.7 1.07 sa® g aa4® a4
256,000 3.5 1,57 9,276 3.97° 157 9.0~ 4,077
‘7(::) = 10" en™
® b 2 3 b 5 6 7 15
4,000 | 1.2 5% 29 4T 6.2 3070 2.7
8,000 | 8.8% .6 1a47* 547 2275 9.976 5278
16,000 | 6.6 2a*  8.67 505 135 5770 34
32,000 5.2 1.87F 6> 2,57 9.4‘6 Lot o 1.97°
6,000 | 4.3%  1.57% 557 2,07 7.6 3378 4,78
128,000 3T g 5.270  1.87 7.1'6 3.0’6 1,52
256,000 | 347%  1.37% 527 4 85 698 3.0% 1.0

- 22 -



Table 6. The coefficient 1"1(13)

‘?(c) = 10% opd

\EE;\\\EiN 2 3 b 5 6 7 15

4,000 | 1,272 6473 2,93 433 g 5o 3.8”
8,000 | 8.5 267  gu*r  sa g 5% 545 557

16,000 | 6.0 1,53  3.6% 47k 4.870 2,472 1.277

32,000 | 4570 8.87%  23% 7,5 590 4,5 i
64,000 | 3.6  74™%  4gh 585 555 g6 5,975
128,000 | 3.2 6.6 4.7 5,372 2,07 8.,7¢ 3,770
256,000 | 2.9 6.77% 1.8% 5475 45 g5 8.5
’?(c) = 10" o3

) e 3 & 5 6 7 15
5,000 | 147 6,02 272 422 5463 .73 4672
-2 6

8,000 | 6.472 1.8 5.5 2.0 gt 3g% -

16,000 | 3.27% 5.8 4,53 Lo% 494 gD 5,7

32,000 | 2,070 2,970 g% po7h 8.3 3,67 2,677
64,000 | 1,572 2472 g% 45 565 .5 4T
128,000 | 1.7 1,97 a7 13% 505 5475 47T
256,000 | 1.4 2,07 45* quh 505 2,5 4 5T
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Table 6. The coefficient

17 (¢) = 1 0 6 u::m-3
N 2 3 L 5 6 7 15
000 | 5470 297 13 587 2,72 1472 ouH
8,000 | 1.977 5472 162 577 22 1473 157
16,000 | 5.772 9.9 257 sa T I T
32,000 | 3.02 .27 9.8 zaT 1.27% 540 3977
61,000 % R 2,970 6.TH 2,17k 7.87 347 2.,
128,000 | 2,272 2770 ea™t 1.97H 7470 3470 a7
256,000 | 2472 3.0 68 24 777 3.3 247
1)(0) = 107 a3
®, P 2 3 L 5 6 7 15
Looo | 8371 a7t 24t ou? 2,272 .07
8,000 | 2370 632 1.97 2472 297 147 1.87
16,000 6.22 1,472 2,770 9.07* X 1.67% 1,678
32,000 | 3472 447 107 32 4 2 540 397
6,00 | 2472 3477 eH 2.2 8.1 3.5 2.5~
128,000 | 2,372 2,970 647 2.0 2070 3.2 2,377
256,000 2.6 3,270 7.7 227 8,172 5,57 2,57

-2 =



Table 6, The coefficlent 1ﬁ(p)

ﬂ?(c) = AOVE oo
® § 2 3 4 5 6 7 15
4,000 [ 897 507 207 40,72, L3
8,000 | 247 6572 202 723 303 4,3 4.8
16,000 | 6,272 1472 283 g4k geh b &b
32,000 | 3,472 4473 4073 33h ok 5.2 3,977
61,000 | 2,472 347 7,07 a0 B 55 2,577
128,000 | 2.37% 2.9  65% 0% 755 5,75 2,377
256,000 | 2,670 3270 702%™ g 555, T
17(0)"’ @
©) P 2 3 I 5 6 7 15
4,000 | 8,97 54Tt o 40T L2 5,2, sk
8,000 | 247 652 202 733 303 4.3 4.8
16,000 | 6.3 1,472 2,873 gqh sk b, 6
32,000 | 3472 4,070 1073 g3 4ok 5.7 3.977
64,000 | 247 3470 7.0 pp% g5 555,577
128,000 | 2.32 2.9  g57%  20% 755 5,75 2,377
256,000 | 2.6 3.2 7.2% g% g5 5575 2,577

The indices give the power of ten by which the entries in the ocoefficient

colums must be multiplied.
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Table 7. ﬂs(‘l)/ﬂg('l)

‘\’)(c) @ ,,000 8,000 16,000 32,000 64,000 128,000 256,000

0Q=0| 36 Yo b Shig 55 Pa@ 13 0h@ 97 fpe 13 0 10 e
108 | 3.6° Bl 5.5° 7.3 9.7 1.7 1.9
10 3.67 oy 5.5 7.2 9.7 1.8 1.8
1010 | 3.3 2% 5,0 7.1° 9.6° 1.3 1.9/
10" | 2.9 3.9° 5.1° 6.8 9.3° 1,30 1.9°
10'2 | 2.4* 3t W Py 8.8* 1.2 1.8
1013 | 1.8 2,67 3.8 Bk 7.7° 1% 1.6
10t | 1.2 1,72 2,5 3.8° Ba7® 8.72 1.3
107 | 9.8 1,3 1.8' 2.6’ 3.8' 5.8' 8.9"
10'® | 1.8 2,2 2.6 3.2 4.2 5.7 7.9
107 | 1. 1.1 1.2 1.2 1.3 1.5 1.7
10'® | 1.0 1.0 1.0 1.0 1.0 1.0 1.1

’Q(C)—?OO 1.0 1.0 1.0 1.0 1.0 1.0 1.0

7. The radiated power

In the calculation of the population densities, two radiative processes
were included, spontaneous radiative decay giving line radiation and radiative -
recombination giving a continuum, To these processes which cause a rediative
power loss a third, bremsstrahlung is added. This radiation is produced by
electrons meking a free-free transition in the field of the bare nuclei of
charge Z, end this process does not affect the population densities of the bound
levels. The radiation produced by the transitions of the second electron in the
field of a hydrogen-like ion is not included.

The power lost by line radiation is

- Z n(p) H(P,q) E(p, CL) etqs emsec” (1)
P9

where E is the energy difference between levels p and q in ergs.
'

hine
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The power lost by radiative recombination is given by

p _ (Y 2853x10 0 2 T 2f-0-0113 +0- -5 loge)
Yecomb X + 0. 640)\/3

-..11 2 -3 -1
N cm  Sec
+2 (C) 2.177x10 P ﬁ(P erqs 3 ”
p

B 52
where X = 1,572 xT1O 2 when T is in %k

The first term in this expression is the kinetic energy lost by the free
electrons (Seaton 1959a), and the second term is the potential energy lost by

the electrons.

The power lost by bremsstrahlung is given by
L i 23 -1
= n(c) 1.420X 10 T ergs cm - sec  (17)

brem X

when T is in %K. In the range of interest, this is a compératively small

contribution and the Kramers-Gaunt correction is neglected,

The power radiated by radiative recombination and bremsstrahlung depend
on the electron density, while the line radiation depends on the excited level
population densities, But since these are involved linearly, the total power

rediated may be expressed in the form

P= £ + P n(1) e

whereﬂ(i)is the population density of the ground level. The radiative

recombination and bremsstrahlung contribute only to Po- 7

The two coefficients have scaling laws for Z, and table 8 gives X P o Z

ergs/cc/sec and table 9 P,‘Z ergs/sec for the range of conditions studied,

-



Table 8., The coefficient

‘)(\)@ 4,000 8,000

XPO/Z17 in ergs cm

=3

-1

s3ec

< 16,000 32,000 64,000 128,000 256,000

108 2.077 1.2 7.7 4 &8 5,278 370 2,08
107 2.5 1.2 7578 4670 5,270 5,470 2,07
1010 | 2.9 14 7aH b7 3,07 2. 7% 2,07*
oM |t g e w327 2a” 2.0
102 | 14*2 25 1,07 5,2° 5,57 2.,° 2,0°
10 | st 5P 142 5.9° 3t 2.2 2.0
10 | 1.97 1.0 2,37 Py 3.7% 2. 2.0*
1015 | 1,350 s5.9° 5.27 1,07 418 2,5° 2.0°
1016 | 592 16" 7.8 1.2° a2 2.5° 2,0°
1017 | 9.6 19" 3" 1,3 bot© 2.5'° 2,0'°
1018 | 107 1915 83" 1.3'2 i 5517 2,012
The indices give the power of ten by which the entries in the coefficient columns
must be multiplied.

Table 9. The coefficient P1 / Z6in ergs sec |

M © 4,000 8,000 16,000 32,000 64,000 128,000 256,000
10° 5,272 4,07 6 4.3 b 1= 2,671 5,771 By 1
10 5022 1,075 43712 et 2610 5770 8.5 °
1010 | 522 407 4 460 257 5.777 8,277
1ol | 52720 401 43710 467 2,570 5.67° 8,170
102 | 52717 1,012 137 I 2,77 5e5 7 8.0~/
1013 | 52718 401 4370 e 2,37 o B
ot | 5277 g9 127 5,578 1.872 bt ™ 6,172
1015 | 4618 75710 627 1,572 7.6~ 1.87% 2.97%
1016 | 22715 2279 1.7 2,372 1.7 2.87% il
017 | 5615 2779 a2 2., 1,270 2,97* 5,37
018 | 39715 280 1270 2.7 1,27 97k 5.37%

The indices give the power

must be multiplied.
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In the low density limit Py shows a guadratic dependence on the
electron density. This is because the rediative recombination and
bremsstrahlung are both proportional to the product of the densities of
electrons and bare nuclei, end since the coefficient ﬂ;(p) tends to a
constant value at low densities and the Saha-Boltzmann population density is
proportional to n(c)2, the contribution of the line radiation has the same
variation. In the high density limit the coefficient again shows a quadratic
dependence on the electron density, since the excited levels have a Saha-
Boltzmann population density. BExcept by chance, the constants of rroportiona~
lity are not the same.

The dependence of Po at low densities on the electron temperature is small
because the radietive recombination rate coefficient is not sensitive to the
temperature. The main contribution to the variation with temperature is that
on average each photon produced during recombination at a high temperature
carries a correspondingly larger energy. The large power loss at high
density end low temperature reflects the large recombination rates for these
conditions (Paper 1 table 6).

The P1 coefficients depend on the excitation of line radiation by electron
collisions with the ground level. At low densities, they have a linear
dependence on the electron density but es stepwise excitation becomes important,
they become independent of electron density. The steep temperature dependence
is governed by the dependence of the excitation rate coefficients K(1,p) on the
temperature,

8. The energy of ionisation

In a plasme where ionisation is occurring, energy has to be provided by the
free electrons not only for the actual ionisation but also for the power lost by
radiation. So the total energy needed for each ionisation is given by

Power absorbed from the free electrons

m——

2| 1@ (nz’s- QY Z}+X 8, 2" 400 p/z
N VZS - 1) /7
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where IH is the hydrogen ionisation potential in ergs and S and of are the
collisional radiative ionisation and recombination coefficients described in
paper 1. The energy transferred in elastic collisions between the electrons
and ions, and the energy of 3/2 kT required to give the newly released electron
the mean kinetic energy of the others are neglected.

When the reduced electron temperature is greater than 16,000°K the ilonisa-
tion rate in most practical cases greatly exceeds the recombination rate. The
terms 7)(C)££: and 2&E§ are then negligible compared with the others and the

7. -21'1

energy of ionisation mey be written

2 1,28+ a5

Bnergy/ionisation = (20)

73S

so that the energy per ionisation divided by 22 is a function of the reduced
electron density“v(c) and the reduced electron temperature (:) only, and the
results are shown in figure 1.

At low temperatures end densities excitation followed by radiative decey
is much more probable than stepwise excitation leeding to ionisetion, so the
energy required for each jonisetion is large. At high temperatures the
energy of ionisation rises agein because the excitation rate coefficients
particularly from level 2 to the upper excited levels fall with increasing
temperature. This is illustrated in the curve fku“?@ﬂof 1016 cm'5. At
high densities, radiative processes are dominated by collision processes end
the curves tend towards the simple jonisation energy of 13.6 ev. At low
densities, stepwise excitation is negligible and all excited ions decay
redietively., In the low density limit, the energy reguired for each ionisa-

tion is

T)[1)’)(C)ZlIH{ZS K(%C)“*“ ZP—-ZBK("' P)["M VP?j} (21)
(1) () 2 K(1,€)
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This is independent ofﬂ)éﬁ)andﬁ)[ﬁ) and the approach to this low density
limit is shown in the results,
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Appendix 1.
The first nine integers raised to the various powers appearing in the

Z scaling laws.

z 7" i ZN il
2 6.40" 1,28° 2,05” 1.31°
3 7-292 2.193 1 .775 1.298
L L.10° 1.64% 419° 1.7210
5 1.56% 7.81% 4.887 7.63"1
6 467" 2.80° 3,635 1.69"3
7 1.187 8.23° 1.98% 2,334
2.62° 2,10 8.597 2,259
9 5,317 4.78° 3.131° 1.67'6
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Appendix 2. The collision limits.

e ®| Lo000 8,000 16,000 32,000 64,000 128,000 256,000
10° 1, 15 15 16 17 17 18
107 11 11 11 12 12 13 1L,
10'° 8 8 9 9 9 10 10
10" 6 6 6 7 7 7 8
10'% 5 5 5 5 5 5 6
10'? " b ! I ) " L
10" W 3 3 3 3 3 3
10"? 3 3 2 2 2 2 2
1016 5 2 2 2 2 2 2
1017 3 2 2 2 2 2 >
1018 3 2 2 2 2 2 2




CLM- P23 Fig. 1 The energy in electron volts per ionisation divided by Z2 plotted
against the reduced electron temperature @ for various values of
the reduced electron density 7(c).
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