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1. INTRODUCTION

During the last few years there has been considerable interest
both experimentally and theoretically in the electrostatic branch of
low frequency waves in an inhomogeneous magneto-plasma, in which the
propagation frequency ® is much less than the ion-cyclotron fre-
quency f}. An important group of these waves are the so called
'drift' waves, whose presence necessarily depends upon the existence
of some inhomogeneity in one of the equilibrium plasma parameters
such as density gradient, temperature gradient, pressure gradient, or
magnetic field inhomogeneity. In this paper, the case is considered
in which the plasma has a constant electron temperature, and there
exists a density gradient in a direction perpendicular to an axial
homogeneous magnetic field. It can be shown that under certain plasma
conditions the waves may be unstable with a positive growth rate, thus
causing the waves to grow to large amplitudes, which are only limited
by non-linear mechanisms in the plasma. At present, most of the
reported experiments on drift waves have been performed on self-
oscillating instabilities in various plasmas. The papers include
HENDEL, CHU, and POLITZER (1968), LASHINSKY (1964), and BUCHELINIKOVA
(1964). Consequently, these experiments have been performed in the
non-linear regime, whereas most of the predictions have been made
based on linearised theories, This paper reports propagation experi-
ments carried out in the small amplitude, linear regime, and this
allows direct comparison with some features of the linear theories,
The measurements were made of the Re (k”) as the applied frequency
w was varied. Here k“ is the axial wavenumber parallel to the

homogeneous magnetic field,



The simplest theory of drift waves in an inhomogeneous plasma
has been considered by KADOMTSEV (1965) for a collisionless, non-
rotating plasma, but this simple theory has left out several import-
ant factors that are normally encountered in any real plasma. These
are (a) both the electrons and the ions suffer a large number of
collisions, and, (b) that plasmas are usually moving relative to
the laboratory frame because of the existence of electric fields in
the bulk of the plasma and at the end electrodes. These effects can
be taken into account by including in the simple theory a mean ion
collision time T;, and a radial electric field E,, which are the
important parameters in this experimental plasma. The modified theory
is developed in Section 2. Section 3 continues to describe the
apparatus and the experimental techniques employed. The results
obtained are discussed in Section 4, and finally, in Section 5, the
results obtained are compared with the modified theory. Some of these
results have been presented earlier in a short note (KEEN and ALDRIDGE

1969).
2, THEORY

The original simple theory of drift-waves (KADOMTSEV 1969) des-
cribed the plasma behaviour by considering the equations of motion
of the electrons and ions without collisions or electric fields
included, together with the equations of continuity of each of these
species. These equations were considered in the following approxi-
mations:-
(i) The 'slab' model was applied in the 'localized' approximation.
(ii) The equations were linearized to first-order for small perturba-

tions of density n’ and potential ¢’ in which the perturbation
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was taken in the form exp -i(wt-Kk.r), where k is the wave vector,

and w the oscillation frequency.

.. . dn,
(iii) The inverse scale length k = £L~<?E§> was taken to be constant
0

and in the x direction, while the uniform magnetic field B, was

along the =z direction. Propagation was considered obliquely to the

dn
magnetic field B,, in which ky » Ky » ﬁL (753>, where no(x) is
o

the equilibrium density.
(iv) The low frequency case was considered in which the propagation
frequency ® « @4, (Q; = eB/M;c, is the ion cyclotron frequency),
in the electrostatic approximation.
(v) The non-isothermal case Tg » T; was considered and thus the
ion pressure was neglected. Here Te and Ti are the temperatures
of the electrons and ions respectively.

The equations were solved under the conditions that the plasma

was collisionless and non-rotating, and this resulted in a relation-

ship between the frequency w and wavenumbers ky and k“:-
wz-um*-kﬁ ¢ = O (1)

where cg = (Té/Mi)% is the sound velocity,-and w* = ck kyjé/éB.
The resulting dispersion diagram is shown in Fig.1. The general
features of the diagram are that it consists of two branches. The
upper branch which follows a frequency shifted sound wave curve

=k, Cg + Wy, (with w, = w*/2), for high k, values, and which
tends at low k“ values (as k“ - 0) to a cut-off frequency ua: w*,
The lower branch follows the frequency shifted sound wave curve
w=-k cg+ w*/2 at high k, values, and as k” < 0 it tends to
a cut-off value w, = O,

This picture becomes modified if the zero-order radial electric



field Er and a mean ion collision time <7; are included in the
theory, taking account of the above approximations (i) —(v). Consider

the ion equation of motion:

dvi Vi € © e ':— =
—_— == - = Vo 4+ = | yv.ANB (2)
dt Ti M; Mic i "o

where Gi is the ion velocity, Mi the ion mass, and where the

velocity Gi, density n_, and the potential ¢, are taken in the

form:

<l
i

i= Vio * Gif exp - i (wt - k.1)

n=n +n exp-i (wt - k.T) (3)

=g + ¢ exp-i (wt-Kk.r)

Equating zero-order quantities in equation (2) it can be shown that:

o _a?  /CEp
xVio = 0 = pVio and V4 = (14a?) \ B (4)

th;_'l"e a = r{i.’ti'
' By linearising equation (2) to first-order, and substituting

for v;’ in the equation of continuity

S+ (@. (V) =0 (5)

an expression is obtained relating n;’ and ¢’, which is

o M {w_wr) w, (Qf - wf

2 2
n: ! - 134 (kyw1+ky.fc Qi)
: (6)

where ®_ =ky ;o , and ® = (w - ®, = 1/Ti)

From the electron equation of motion, it can be shown that if k“,
the component of the wave vector parallel to the magnetic field, is

not too small, so that the phase velocity of the wave is much smaller



1
than the electron thermal velocity v; = (Te/m)é, the electrons follow
a Boltzmann distribution so that the perturbed electron density n’e
is given by
n’ ]

2. o
Tk (7)

In the frequency range considered, the principle of quasi-neutrality
holds, and so n’, = n’; . Then, from equations (6) and (7) the

following dispersion equation can be obtained:

Wt - (3i/e)w’ - [l + (3/%) + (k§ + k7)) cg/ﬂf} w?
) {w*/ni - i (1+1/2)/6 - 21 (Kf+Kk?) cZ/a0] ] W

+ k2 ci/F + (kﬁ + k3) c2/a®® + i W*/aQ = 0 (8)

where W= (w - mr,)/ﬂi "

This quartic ecquation is difficult to solve analytically, but in the
limit that w « Qi it can be reduced to a quadratic equation. Then
a dispersion diagram similar to Fig.1 is obtained again. This time

the frequencies w,, o, and w, are given by:

W, =0+ a® wt/(1 + a®) (9)
w, = o, + a? wk/2(a® + 3) (10)
W = o, - 202 o*/(a?+3)(@®+1) (11)

The equation (8) has been solved numerically in its cubic form with
the aid of a computer for the particular conditions prevailing in these
experiments. The resulting curves are shown as solid lines in Figs.10

and 11 and will be discussed in Section.4.



The above calculation applied only to slab geometry but in the
approximations considered it can be taken over into cylindrical
geometry, such that x> r, y > r6, and z - z. In this case
ky - m/ro’ where m is the azimuthal mode number associated with the
wave and s is the radius at the maximum of the wave amplitude.

Also, W, = k is just the rotation of the plasma at radius

y ¥io
Po' Thus in Fig.1 the upper branch of the dispersion diagram is
associated with the m = + 1 mode and the lower branch with the

m= -1 mode.

3. EXPERIMENTAL

3.1 Hollow Cathode Arc Apparatus

The hollow cathode arc apparatus is shown in Fig.2, and is
essentially the same as that described by ALDRIDGE and KEEN (1970).
In this particular case, the discharge was running in helium at a con-
stant current of 20 A. The baffles or limiters shown in the diagram
limit the plasma column to about 4-5 cm dia. inside the 10 cm dia.
glass tube, and the experimental space was about 150 cm long. The
magnetic field was uniform throughout this region to within 0. 5%,
and was kept constant at two values 1.00 kG and 0,75 kG, while dis-

persion curves were measured.

The background neutral pressure was maintained at a constant
value of 2.5x 10 % torr throughout the experiment, by carefully vary-
ing the inflow of neutral gas through the anode, or by restricting the
pumping on this region. Under these conditions the plasma proved to
be fairly 'quiet' and only below 20 kHz did the 'noise' spectrum of

the plasma begin to increase.



3.2 Diagnostic Techniques

Between each magnet coil were situated a set of ports, labelled
(a) to (f) in Fig.2, spaced apart by 10 cm each. Each set consisted
of four ports set around the azimuth, each 90° apart. Interchangeable
probes of various descriptions could be inserted at any of these
positions. Another probe was available which could be moved longi-
tudinally along the column, and could be set at any desired radial
position., This was used either in its ion-biased state (in order to
detect density oscillations) or as a floating probe. Density and tem-
perature profiles were measured using a double probe, which could be
moved radially on a micrometer carriage from the centre of the column
outwards.

The rotational frequency of the arc column was determined from
measurements on a single-sided ion saturation probe (BRUNDIN 1964).
Przvious experiments (ALDRIDGE and KEEN 1970) had shown that this
technique gave results in good agreement with a suspended vane techni-
que (BOESCHOTEN and DEMETER 1968). This single sided probe was faced
into the rotation and the ion-saturation current i, was measured
and then faced away from the rotation and the difference in ion current
Ai obtained. This difference was related to the rotational frequency
through the expression wn = éi (E%>4 . In this way, the frequency

rig\Mj
W, was obtained as a function of radius r.

The radial electric field EP is a difficult parameter to measure
and various methods have been discussed in more detail by ALDRIDGE and
KEEN 1970. Briefly, this electric field was obtained by three dif-
ferent techniques, and was deduced from:

(a) the corrected spatial variation of the floating potential ¢f.

(b) the spatial variation of plasma potential ¢, as measured using



thermionically emitting probe (KEMP and SELLEN 1966).
(c) the spatial variation of the plasma potential 9p as deduced

from the 'knee' in the log i, versus V_, plot of a single

e
probe curve. (Here Va is the applied potential to the probe,
and ie is the resulting electron current drawn by the probe).

3.3 Method of wave excitation

Various method were attempted to excite density oscillations in
the plasma, but the two which proved to be most successful were:
(a) four small magnetic field coils, outside the glass tube,

were situated at azimuthal positions, O, w/2, =, and 3n/2,

and oriented such that they produced an oscillating magnetic

field Ez in the plasma. Then, by virtue of the [Er"ﬁz]
drift an oscillating velocity ;@ [or density OScillation]

was produced in the plasma.

(b) four azimuthally symmetrical plates situated around the
periphery of the plasma (as shown in Fig.3) were fed with

an oscillating potential., This created an oscillating Er

in the plasma, and the interaction of this with the zero

order Bz’ through the [Er"ﬁz]’ drift produced an oscilla-

ting ion velocity ;é (or oscillating density n) in the

plasma.

By correctly phasing the currents in the magnetic field coils,
or the potentials to the drive plates, separate azimuthal mode numbers
of m=0, +1 or -1 could be selected. Ultimately, most of the
results were obtained with the method (b) as this proved to be more
efficient at lower frequencies, and also at the shorter wavelengths.

The plates were radially moveable, but were normally kept at a con-

stant equal radii in the range r = 1.8 - 2.0 cm. They were constructed



from tungsten plate and were 0.5 cm long in the axial direction and
1.2 cm in the azimuthal direction.

The electronic set-up is shown in Fig.3. It is seen that the
oscillator set at a frequency f in the range 20-220 kHz, was trans-
former coupled to a system of four power amplifiers, which individually
feed one plate in the plasma. The phase shifter shown in one lead to
the power amplifiers allowed the phase to be shifted by + w/2 or
- n/2, whereas the output from each power amplifier could be chosen
so that its phase was in-phase with the input, or shifted by .
Consequently, by arranging these phases correctly, the separate azi-
muthal modes m =0, + 1, m -~ 1 could be chosen. The wave signal
in the plasma was detected on the ion-biased longitudinally moving
probe which was motor driven along the length of the plasma. This
signal was coupled into a low noise amplifier, and then through a
narrow band filter (set at f), into the 'signal' channel of a phase
sensitive detector (P.S.D.). The 'reference' channel of the P.S.D.
was fed from the main oscillator through another phase shifter. The
output of the P.S.D. (proportional to A cos (k” z), where A is the
amplitude of the wave) was fed into the Y input of an X -Y
recorder. The X arm was fed with a voltage proportional to the
longitudinal position of the detection probe. Typical output plots
are shown in Fig.4, taken at f = 170 kHz for both the m= + 1 and
m= -1 modes. From these plots the axial wavelength, and con-
sequently k”, could be obtained as a function of frequency, thus
allowing a (w - k ) dispersion diagram to be constructed for each

separate mode number.



4, RESULTS

4.1 DC Properties

The density and temperature profiles of the plasma were obtained
using the double probe technique (JOHNSON and MALTER 1950). The
results obtained in the magnetic fields H = 0.75 kG and H = 1.00 kG
are shown in Figs.5(a) and (b). The basic features of these curves
are a peak density of 2.0 x 10*% cm™® with a constant inverse scale
1 _Ldnoh, Y ;

ength « = ng (ﬁﬁ:) ® 0.65 + 0.05 cm within a radius range
0.6-3.0 cm, and a constant electron temperature Te = 7.0 + 0.3 eV
within a 3.5 cm dia.

The results of the plasma rotational frequency as a function of
radius measured with the one-sided probe are shown in Fig.6(a) for
H = 0.75 kG and in Fig.,6(b) for H = 1,00 kG, It is seen that frequency
values of 16 + 3 kHz at 0.75 kG and 20 * 4 kHz at 1.00 kG within the
radiué range 0.5 - 1.5 cm are obtained.

The plasma potential ¢p as a function of radius is shown in
Fig.7. These results were obtained from the 'knee' in the single

Langmuir probe plot of log i_ versus the applied voltage Vé.

e
Essentially, similar results were obtained with the thermionically
emitting probe, although less reliable results were achieved with this
technique. It is seen that a reasonably constant radial electric

or
H = 0.75 kG and, (b) - 2.8 * 0.4 volts/cm at H = 1.00 kG.

o
field EP (% -%) is obtained, which is (a) - 2.1 * 0.3 volts/cm at

The parameter o (= fﬁri) was found by substituting the appro-

priate values of E. and ®, in equation (4) namely,

r

W, = a? cEr/r0 H(1+a?). This resulted in a value of o = 0.87 * 0.07

at H=1.00 kG, and a = 0.73 * 0,07 at H = 0.75 kG.

- 10 -



4,2 AC Properties

When a density wave was propagating in the plasma it was checked
at various axial positions so that the excited mode was consistent
along the column. Fig.8 shows typical results obtained at a point
20 cm from the exciting system for azimuthal phase measurements in
(a) the m= -1 mode and (b) the m = + 1 mode, at an excitation
frequency of 100 kHz. These results were obtained by using a fixed
detecting probe and rotating the magnetic coil excitation system out-
side the tube. Fig.8(c) shows the amplitude measurements which were
obtained simultaneously. It is seen that the phase changes linearly
with azimuthal angle consistent with (a) a m= -1, and (b) a m=+1
propagating azimuthal mode. The radial variation of (a) |A| cos ¢ ,
and, (b) the radial phase angle ¢ are shown in Fig.9, and, again, it
is seen that this is consistent with an m = ll| propagating mode in
the plasma. Throughout most of the experiments the density perturba-
tion (n’) was not allowed to reach a value of n’/ng > 1%.

Tihe wavelengths 1” corresponding to each frequency were deter-
mined directly from traces such as those shown in Fig.4. In principle,
it should be possible to obtain values for the attenuation coefficient
of the wave as a function of frequency, but as the frequency was
reduced the efficiency of wave production reduced correspondingly.
Also, the wavelength became longer and began to approach the length
of the apparatus at the lowest frequencies. This meant that reliable
data on the decay of the wave were impossible to obtain, and also
wavelength values were subject to fairly large percentage errors, as
can be seen from the experimental dispersion diagrams. The resulting
dispersion diagrams are shown in Fig.10 for H = 1,00 kG and in Fig.11

for H = 0.75 kG. Considering Fig.10, it is seen, typically, that

= 11 =



both the m=+ 1 and m = - 1 mode waves appear to satisfy a linear
(w,k) relationship for larger k, values, and that as k, ~ O both
modes appear to tend towards cut-off frequencies. However, the m = O
mode wave seems to obey a linear relationship without deviation, right
down to 20 kHz. The corresponding slope of this line results in a
phase velocity of 1.20 # 0.15 x 10° cm/sec, compared with a predicted
theoretical ion sound velocity, cg = (Te/Mi)}é of 1.28 * 0;04x 10% cm/
sec. In Figs.10 and 11 the full curve is that obtained from solving
numerically, on a computer, the cubic part of the theoretical dis-
persion curve, (equation (8)), using the appropriate values for the
physical parameters. It is seen that reasonable agreement with theory
is obtained. Table 1 summarises the various cut-off frequencies and
phase velocities predicted by theory compared with the experimental
value. Here again, it is seen that reasonable agreement with the

theory is achieved.
5. DISCUSSION AND CONCLUSION

In order to compare the experimental results with theoretical
predictions, it has been necessary to extend'the simple theory of
KADOMTSEV (1965) in order to include the effects of a radigl electric
field, and a finite ion collision time ;. One of the problems of
making a comparison is that the theoretical calculation has been
performed in cartesian or 'slab' geometry, whereas the experimental
results are for a cylindrical plasma. In the calculation the cylindri-
cal case has been approximated by taking over the 'slab' situation
such that x> r, y >rd, and 2z > z. As a consequence ky = m/ro,
where m is the azimuthal mode number, and r, has been taken as

(o}

the radius at which there was a maximum in the wave amplitude. Also,

e P s



TABLE 1

Theory Experiment Theory Experiment
Parameter H=1 kG H=1KkG |H=0.75kG| H=0.75 kG
m=+1
Cut-off 67+10 kHz 60+10 kHz 66+10 kHz 55+10 kHz
frequency (w,)
m=-1
Cut-off -7+ 5 kHz -20+10 kHz -13+7 kHz -25+10 kHz

frequency (wa)

SlOpe Of 8 (-] 1.28i.04 X 1.%1'.15 X
m=0 line (CS) 1.22£)g25x10 IaZgi};g;x10 10% cm/ 10° cm/
Sec sec

ky yVoi my”io/bo =m w,, which is the rotation of the column at
the radius rye Hence, in order to compare these calculations with
the cylindrical experimental case, it is necessary to assume that the
azimuthal wave vector ky should be large compared with the inverse
radial scale length «, (i.e. ry, k « 1). In fact in this case

L. kK = 0,5, and this is anlimportant point of divergence.

Another important point is that the 'slab' model used is based
on the 'local' approximation (i.e, ky » k,). A much more realistic
calculation would be to set up the appropriate differential equation
for potential ¢ or density n perturbation from the equations of
motion. This could, then, be solved with the appropriate boundary
conditions taken into account. The solutions to the eigenvalue
problem could then be used to obtain the dispersion diagram in the
cylindrical case. Therefore, the neglect of the x dependence in
the calculation, can only be justified if r, k<1 (i.e. the

weakly inhomogeneous case). As pointed out, experimentally, this

condition is not completely justified.

- 13 -




The theory has been considered in the low frequency approximation
(m/ﬂi « 1), and at the low frequencies as k" -+ 0, this is well

satisfied. Consequently, the cut-off frequencies , and W have

1
been obtained by solving the dispersion equation (8), including only
terms up to those quadratic in W[= (w-wp)/9]. At higher frequencies,
for finite k“, this equation was solved numerically including cubic
terms in W. The resulting curves are shown as the full line in
Figs.1l0 and 11 solved under the appropriate conditions. The portion
between l/X" = 0.06 = 0.10 has been dotted since two roots of the
cubic equation cross in this region, one the root shown and another
highly damped root, which would not show up experimentally.

Experimentally, the small amplitude, low frequency approximation
was justified throughout most of the range, except at the highest
frequencies where m/Qi approached 0.5. It was found possible to
obtain results for the dispersion curve, only for w against the
Re(k”), since reliable results for the damping rate could not be
obtained for the reasons stated in Section 4. Hence, in view of the
difficulties associated with the theory, and.the errors in the experi-
mental results the agreement between the results and theory is
reasonable,
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