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ABSTRACT

In this paper the conditions for stabilizing an elec-
trostatic instability occurring in a simple magnetic mirror
using feedback techniques are discussed. The calculation
is made in cylindrical geometry using a model similar to
that introduced by Arsenin and Chuyanov (see reference 8).
In the first part of the paper a diffuse plasma is considered
and the effect of varying the locations of the sensing and
suppressing systems is examined in the following cases.
Both suppressor and sensor are outside the plasma, only
the sensor is inside the plasma and finally both sensor and
suppressor are inside the plasma. The density threshold
is improved by factors of 4, 12 and 36 in the three
cases. In the second part of the paper a sharp boundary
nlasma is considered but phase shift and frequency response
are included in the feedback terms. The Nyquist method is

used to find a frequency response giving improved stability.
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I. INTRODUCTION

The possibility of stabilizing a high temperature plasma by
means of feedback methods has recently received a good deal of atten-
tion. Since feedback techniques operate with the perturbed plasma
quantities it was hoped that such methods might prove to be both
simpler and cheaper than alternative approaches if indeed they exist.

The electrostatic instabilities occurring in a plasma can be
divided into two general types, digsipative and reactivei. A
characteristic feature of these instabilities is that for the former
the growth rate is less and usually much less than the oscillation
frequency whereas for the latter case the growth rate is of the same
order as the oscillation frequency and often larger. The dissipative
instability is produced by one wave (whose energy can have either
"sign) being driven unstable due to a net exchange of energy between
the oscillation and the medium, The reactive instability results when
two waves whose energies are opposite in sign become degenerate in
their oscillation frequency but there is no net flow of energy between
the oscillation and the medium, In this case the exchange of energy
can be thought of as between the two modes of oscillation.

The conditions for stabilizing the two types of instability are
very different, at least at threshold (see reference 10). Most of
the experiments (and theories) on plasma stabilization by feedback
have dealt with dissipative instabilitieSZ"T An exception to this is
provided by the work of Arsenin and Chuyanovgng, where the problem of
stabilizing a simple magnetic mirror against a flute type instability
has been considered. The feedback technique considered by Arsenin
and Chuyanov consisted in sensing and suppressing from surfaces out-
side the plasma. This could only be expected to influence surface
or large scale ( ~ radius of the system) modes. However, it
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is these modes which are usually the most dangerous.

A general theory of plasma stabilization by feedback has

recently been given by Taylor and Lashmore-Davies However, the

theory only applies close to the stability threshold and for small
feedback signals. Here, we consider only the specific case of the
reactive instability discussed by Arsenin and Chuyanovg but allow
for arbitrarily large feedback signals. Arsenin and Chuyanov con-
fined their analysis to surface modes and rather simple feedback

signals,

There are three main aims of this paper. The first is a
consideration of the plasma body waves as well as the surface waves.
A characteristic feature of plasma body waves in a bounded plasma
is the occurrence of nodes in the wave amplitude. The presence of
these nodes may be expected to have an important effect on attempts

to stabilize the plasma using feedback techniques.

The second aim of the paper is to compare the effect of dif-
ferent locations of the sensing and suppressing surfaces. The follow-
ing three cases have been analyzed and compared. The sensing and
suppressing surfaces are both outside the plasma, the sensing surface
is inside the plasma and both sensing and suppressing surfaces are

inside the plasma.

Finally, in standard control theory the NYquistii diagram is
much used in order to design a frequency response of the suppressor
system giving the desired properties. We shall use the same tech-
nique to analyze the effect of different frequency responses on

stability,



II. THE DISPERSION EQUATION WITH FEEDBACK

We consider a cylindrical plasma of infinite length whose axis
coincides with a uniform constant magnetic field. The plasma is non-
uniform and extends from the origin to some radius a. We simplify
the problem by introducing a fictitious radial gravitational force
to simulate the effect of curvature and gradients in the zero order
magnetic field. For electrostatic perturbations and assuming the
perturbed quantities vary as:

o(x,t) « o(r) exp i(md - wt) ,
we obtain the equation already given by Arsenin and Chuyanova:
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where x is a normalized length %-, N(x) gives the density profile
and ¥ is the precession frequency of the ions due to the gravita-
tional drift (w* = g/ﬂia) where the radial gravitational force was
taken as g(r) = gi ; The remaining quantities have their usual

meaning and w,; refers to the cylinder axis. The boundary condi-

P
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tions at x =1 are:
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where ¢p is the solution of equation (1) in the plasma, mi is the
solution from x=1 to X = b/a and w;g is the solution for

X > b/a. We introduce a slightly different feedback condition



(which gives rise to a small simplification) from that used in refer-

ence 8, At r =b we introduce a surface charge density:

o(bfa) = e, 0p(1) ()

where 0 is real and represents the amplification of the feedback

circuit. The boundary conditions at x = b/a are then:
I II
vL(v/a) = o1 (v/a) ; ... (5)
d II d I
Tx % (v/a) - £ oy(v/a) =5 ey(1) . oo (6)

The final boundary condition is that:

IIT. STABILIZATION CONDITIONS

We now calculate the conditions required for stabilization in

a number of special cases.

(i) Uniform Plasma with Sharp Boundary at x = 1

This case corresponds to N(x) = 1. The solutions of equation

(1) in the three regions, plasma, vacuum I and vacuum IT are then:

_ 4 Il
P = A x ... (8)
oL = nxll, il .. (9)
ol = p x Inl ... (10)
These solutions represent surface waves. Applying the boundary con-

ditions given by equations (2), (3), (5-7) we obtain the dispersion

relation:
2
2+23Li+m2 25 * b Q(E)IM:O,
o " Inl 9 w(o+n®) T alb (11)



The conditions for stable oscillations are:

1%(_3_)‘”1"1 >‘|ﬁ‘]‘ E:%i" 2, ... (12)

B ) o

where we have used the condition w* « ®;. Conditions (12) and (13)

and

are equivalent but not identical to those of reference 8, because we
consider charge being fed back and not potential. For stability l5|

must exceed some critical value.

(ii) Non-Uniform Plasma with Parabolic Density Profile

For this case N(x) =1 - X . If we also consider the low

density case such that :

2 2

wpi « &5,
then equation (1) reduces to Bessel's equation. The plasma solu-
tion is then:

@y = A J,(px) , s {E)

where the Bessel function of the second kind has been discarded since

it diverges at the origin and g ”
9 2 wEi w
P = - 2.1]1 . o 15
23 w(w+—mm*) ( )

Consider the case without feedback for a moment. For a given
m-number we have an infinite set of radial modes each of which
becomes unstable above a certain threshold of density. It is easy
to see (for example; by considering the plasma bounded by a perfect
conductor) that the first radial mode has the lowest threshold, the
second, the next lowest, and so on. Therefore the stability thres-

hold for a given m-number is determined by the first radial mode.

Now consider the charge fed back at X = b/a as before. The

vacuum solutions are again given by equations (9) and (10) and
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applying the boundary conditions (2),(3),(5—7) again, we obtain the

dispersion relation: Jo(p) .
p = - A
Ja(P ( )
where we have specialized to the m = 1 case. Without feedback

(6 = 0) the stability threshold is given by:

2 2
_Uji IO 1 0.)*_ 3

a % 5 = once. BT

Q4 1

where X, is the first zero of the J, Bessel function. The left
hand side of equation (16) is plotted in Fig.1, With the aid of

this diagram we see that for & » 1 the stability threshold is given

by :
w? . x° e
P1 11 W
s < B o ... (18)
i
where x,, is the first zero of J,. This represents an improve-
ment in density of approximately 2, However, for negative feedback™

Fig.1 shows that there is an optimum amplification given by :

6~ -2

2

when the threshold density is increased by the factor:

() gp - Direshold density with Feedback _ ,
(nO)T ~ Threshold density without Feedback — * ’ (19)

It should be pointed out that the condition given in equation
(18) is actually for infinite amplification. However, once & » 1
this value of the threshold is approached very closely and any further
increase in amplification gives only a negligible improvement. This
is because the effect of the feedback is to reduce the value of the
signal that is being sensed, i.e. the larger the amplification the
smaller the signal to be amplified., However in this example increas-

ing the amount of positive feedback increases the stability, if only



slightly whereas, increasing the amount of negative feedback above
the optimum level decreases stability.

A further improvement in the threshold density can be obtained
by sensing at a surface within the plasma (at x=x, where-xi < 1)
but still feeding back outside the plasma at x = x, (xg > 1). The

dispersion relation then becomes:

5 Tad® o lmls1 . ... (20)
Jm(PXi ) R

Notice that for |m| = 1, equation (20) is independent of x_ , i.e.
for lml = 1 the dispersion properties of the system do not depend
on the position of the feedback surface, provided it is outside the

plasma.

The function on the left hand side of equation (20) has been
plotted in Fig.2 for m = 1, (Note the dispersion relation is inde-
pendent of the sign of the mode number m.) With the aid of Fig.1
we can find the new threshold density corresponding to the feedback
parameter & . From Fig.2 we can see that this time positive feed-
back is more effective than negative feedback, (i.e. the larger the
value of p at which a root occurs the larger is the threshold
density). Furthermore there is an optimum positive value of & at
which the threshold density is a maximum. From Fig.2 we can see
that this optimum value of & is approximately 3. The ratio of

the threshold densities with and without feedback is now given by:

(n,) .5\
(no):F - S.Z> ~ 12°5 ... (21)

Thus for a very modest amplification (8 = 3) for positive feedback
the density threshold has been increased by an order of magnitude.
In the previous example where the suppressor was outside the plasma

a similar level of negative feedback produced an increase in the

T -



threshold density by ~ a factor of 4.

With such a large increase to the density threshold for the
m =1 1instability it is interesting to calculate the threshold for
the m = 2 instability. For m =2 the left hand side of equation
(20) is plotted in Fig.3. Tt can be seen that positive feedback is
more effective than negative feedback in the sense that approximately
the same level of stability is produced for less amplification.
For & > 4 the ratio of the threshold densities with and without

feedback is:

(n))pp x(’10 ) 17 e

(no)T \ 24

Thus, for & >4 both m=1 and m= 2 modes are suppressed up
to densities an order of magnitude higher than the value without
feedback. (Note: since we are neglecting the frequency response of

the suppressor circuit we assume it can respond to all frequencies.)

The final example in this section is where both sensing
(x = xi) and suppressing surfaces (x = x, ) are inside the plasma,

we must consider the plasma solutions for the two

Assuming x, > X,
regions:
I
0 <x < x, @P 5
IT

xgﬁX(l"CPp,

IT

m; is given by equation (14) and ¢P by :
II
e - BJ (px) +¢C Y (px) .. (23)
For x > 1, the vacuum solution is:
o. =pxInl . (28)

v

Using the boundary conditions given in equations (2), (3), (5—7) we

obtain the following dispersion relation:
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g 4(®) e
Jm(;xi){Ym(ng) Jm—l(p) - Jm(pxﬂ) X '1(P)} ) E b 6 (25)

We again obtain the roots of this equation graphically and Fig.4 is

a plot of the left hand side of equation (25) for m = 1. From Fig.4
we can see that again both positive and negative feedbacks produce an
improvement in the critical density but that positive feedback gives
the biggest improvement. For & » 14 the improvement in the critical

density is given by:

(n ) 2
o/TF  (14-5\% _
20, \2E ) ~ 36. ... (26)

Note that if & is made too large the density threshold is reduced

by a factor 4! In other words O must be in the range:

14 < & < 200 . ... (27)

1V. FREQUENCY DEPENDENCE OF SUPPRESSOR

So far we have ignored the fregquency dependence of the suppres-
sor, (i.e. we have assumed constant amplification without phase shift
from zero frequency to infinity). The effect of this has been that
the modes of oscillation although stable remain undamped. In this
section we consider the effect of frequency dependence of the suppres-
sor and hence phase shift.  For the sake of simplicity we again
return to the sharp boundary case of Section 3(i). We write the

dispersion relation again for this case:

X 3w W' m| -1 &(w

Hi  w® Opi a\[m| 0

2 4 =+ +(-—\ » ... (28
9? T 2 w(w+ mo™) b/ |m | (28
where & has now been written explicitly as a function of w . We

now consider three specific cases of complex or frequency dependent

feedback.



(1) Feedback Proportional to Spatial Derivative

For this case we can take

b=a+1ip. s (29)
Substituting this into equation (28) and solving for w we can see

that there is always a root for which
Imw >0 cam L0

unless

B = 0, ... (31)

i.e. any phase shift other than 0 or m is destabilizing.

(ii) Feedback Proportional to Time Derivative

This time we can write for & :

8(w) =a - iwp . sve 4 32)
The dispersion equation for ]ml = 1 can be written in the form:
2 B =2 * m” CL’zi w”®
m+mw*w+iAw(w+mw)+T——P—_1—-=0, sns (53]
m il

where

A

2
2 + E%} + a .
&

The Nyquist diagramii is often used in plasma stability problems
and it is particularly useful in the control problem being considered
here. The result of such an analysis on equation (31) shows that
there are no conditions corresponding to this form of feedback for
which the plasma is stable - the plasma is always unstable. A

typical Nyquist diagram for this case is shown in Fig.5.

(iii) Feedback Proportional to the Time Integral

For this case we take:
in
8(w) = a + - - co. (34)

The dispersion equation can now be written in the form:

2 2. *
N
w? w¥o + i Fw+mo) + =0 . e K35)
+m A( TET 2 X
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If we let:
2

=mei._*
BE Tl 5,

then since we take W' positive B 1is a positive definite quantity.

The Nyquist diagram of equation (34) has six possibilities given by :

N < 0 /
w¥ >0
4B N
0< 5 < m°  and nfw* < 0 ... (36)
@
A

Only one of these six possibilities gives stability, namely:
4B/A <0 n/w <0 .

The Nyquist diagram for this case is shown in Fig.6. Thus, the con-

ditions for stabilization with integral feedback are:

n/d* < 0, A0 (57)
wE v

-a>2+ —%% : ... (38)
23

When the conditions given by equations (37) and (38) are satisfied
the plasma is stabilized and the modes of oscillation are damped.
Furthermore, the phase shift is no longer critical since by equations

(37) and (38) one quarter of the phase plane allows stability.

V. CONCLUSIONS

In this paper we have examined the effect of feedback control
on a flute type instability occurring in a low density plasma. The
instability is of the reactive type, i.e. it is due to two modes of
oscillation whose energies are of opposite sign becoming degenerate

in their frequency. The conditions for feedback stabilization have
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been analyzed for a number of special cases. In the first set of
examples the frequency response of the suppressor system is neglected
and amplification at all frequencies without phase shift is assumed.
In all cases the electrostatic potential was sensed and charge was
fed back.

First of all a surface mode was considered and both positive
and negative feedback produced stability for large enough amplifica-

tion. The resulting modes were purely oscillatory.

Next the effect of feedback on body waves was considered in
the following three cases. The sensing and suppressing surfaces were
both outside the plasma; only the suppressing surface was outside;
and finally both surfaces were inside the plasma. Again both posi-
tive and negative feedback quenched the instability. However, when
the sensing and suppressing surfaces were both outside the plasma
negative feedback was more effective whereas in the other two cases

positive feedback appeared to be more efficient.

A characteristic feature of the body wave case was the exis-
tence of an optimum value of the amplification at which the density
threshold reached its maximum value. For a further increase in
amplification the density threshold for instability either remained
almost constant or was actually reduced. This fact appeared to
be related to the fact that the effect of the control system is to
reduce the signal being sensed. Under these conditions it seems
reasonable that there should be an optimum level for the amplifica-
tion. For the first case the density threshold was increased by a
factor of 4 by the control system, in the second case by a factor of

12 and the last by 36.
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In the above three cases the results were obtained for the m=1
instability which has the lowest threshold. In the second case, it
was also verified that the m = 2 instability was stabilized under

the conditions required to quench the m =1 instability.

In the last part of the paper the frequency response and phase
shift of the suppressor system was investigated. For phase shift
without frequency dependence all phases (except 0 and m) are

destabilizing, even for an initially stable plasma.

A frequency response corresponding to the time derivative is
also destabilizing but the time iﬁtegral response was shown to pro-
duce stability under certain conditions. This last case shoﬁld be
useful since it results in damped modes of oscillation and allows
stability over one quarter of the phase plane instead of at just two
values. Finally, it should be remarked that the type of frequency
response which is stabilizing will of course depend on the instabi-
lity. For some other instability the time derivative might be

stabilizing and the time integral response destabilizing.
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