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ABSTRACT

Local imperfections in the magnetic field can alter
the topology of the magnetic surfaces, thereby allowing
plasma to escape. A modest longitudinal magnetic field
will maintain the nested surfaces near the plasma bound-
ary, so that the residual topological changes near the

separatrix become unimportant.
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1. INTRODUCTION

A toroidal multipole is able to confine plasma because the mag-
netic field has an average-minimum-B configuration. The stability is
not much affected by the presence of an axisymmetric toroidal field
B¢ as this merely opens out the closed lines of force to produce
nested magnetic surfaces (Furth 1968). Howevér, in any real device,
local imperfections will destroy the perfect symmetry and so cause
the magnetic surfaces to break up and possibly reach the walls., This
is known to be a serious problem in the stellarator (Gibson 1967),
but there is reason to believe (Morozov and Solov'ev 1966), that the
presence of solid conductors threading the field lines will confer
some stability on the magnetic configuration. This paper describes
the topology of the perturbed magnetic surfaces in a quadrupole and
estimates the size of imperfections that should be tolerable in
practice.

On the whole, the toroidal curvature does not play an important
role, so most of the results which follow were computed for a straight
unshielded quadrupole (see figure 1). The closed lines of force in
the unperturbed system were labelled by the coordinate z and the
z-component of vector potential A, = ¥. The origin of ¥ was chosen
to be the separatrix, and the critical surface, at which U = f d¢/B
has a minimum value, is ¥ = 1. Ideally, plasma can be contained
between ¥ =1 and Y = - 3.5 which represents the surface of the
conductors in CLIMAX (Allen et al.1969). The differential equations
describing each field line were integrated by the Runge-Kutta method
using automatic step-length adjustment to keep within chosen error
estimates, typically 10 ym in 30 cm. The magnetic potential, X, was

was taken as the independent variable so that



d¢ = dX/B, dx = BydX/B?, dy = Bydx/BP-, dz = B_dx/B* .
The range of integration was from O to pgl, i.e. for one complete
orbit around the conductors.

One important class of local imperfections arises from defects
in the conductors within the plasma. For example, as in CLIMAX, the
current does not always flow uniformly across the joints between the
segments of the conductors. This does not necessarily lead to a
change in the topology of the magnetic field, as the current density
might retain reflection symmetry across the plane y = O (figure 1).
In the absence of an externally applied longitudinal component B,,
the condition

Uy = 5,005 Gy =y) = =), () = §,0)
means that

By(-y) = -Bx(y), By(~y) = By(y), B,(-y) = -B,(y) ,

hence the field lines must close on themselves, no matter how large
the imperfections may be (Taylor 1967). This constitutes a very
strong argument for trying to ensure that the apparatus is symmetric
across the planz y = 0. The topology will be changed, however, if
there is a component of current density which is not symmetric in y.
A convenient way of expressing the size of the perturbation is
to quote the peak value of the z-component relative to the magnitude
of the original field B, at the same place. This is the way that
measurements were made on CLIMAX and B:L was found to be greatest
close to the conductor surface and at a distance of +2 cm from the
joint. Before the joints were properly tightened, B, was as large
as 30% of By, but it has now been reduced to less than 3% at all

joints,



2. THE ADIABATIC APPROXIMATION

If the perturbation, B,, is small enough, then the adiabatic
approximation (the method of averaging) can be used. This assumes
that lines of force follow their original closed orbits except for

a slow drift in ¥ and z. As by definition no lines of force may
cross a magnetic surface, the flux threading any cross-section inter-
secting the surface, / B.dS, is invariant. By Stokes' theorem this
can be rewritten as ¢@A.d¢ taken around the line of interssction

which for convenience is chosen to be the unperturbed orbit. This

integral is

2

A_. BodX
(¥, z) :f“i =0
BO

because tie zero-th order temm Ag.Bg vanishes everywhere.

Figure 2 shows the trajectories in ¥,z space of thz magnetic sur-
faces when B, 1is the field of a magnetic dipole centred on one
conductor at z = 0 with its polar axis in the x direction, The
trajectories do not depsnd on the magnitude of B,: all that happens
as B, is increased is that the surfaces are traced out more
quickly. The full lines represent. the surfaces which encircle only
the defective conductor or both, while the broken lines represent
those which encircle only the other conductor, Thus the crossing

of trajectories when ¥ <O does not mean that the magnetic

surfaces intersect as they are centred on different conductors.

Because the separatrix ¥ = O has a field zero, the adiabatic
approximation must break down in its vicinity. However, the magnetic
surfaces are well defined for both positive and negative V¥, and

the region of invalidity shrinks as Bi is reduced. We may therefore



join up the surfaces across the separatrix noting that the surfaces
coming in from the shared flux region (¥ > O) must bifurcate so as
to enter each private flux region. This will be correct for most
lines of force, as the majority cross ¥ = O when B, is finite,
A few lines cross near the field zero and some of these can shoot
off along the axis of the machine and emerge later on a different
surface.

In the stippled regions in figure 2, the magnetic surfaces are
nested tori surrounding the two magnetic axes. The rest of the
¥,z plane is occupied by a single surface with a rather complicated
configuration. It can be thought of as being made up of a series of
gloves having a thumb and only one finger, figure 3, one inside the
other, The digits of each glove are pulled inside out and the finger
sticks out through its own wrist, and ends by merging onto the wrist
of a larger sized surrounding glove, The thumb ends while still
inside the hand, so it merges onto the wrist of a glove which is
smaller than its own. Each wrist is therefore connected to one finger
from a smaller glove and one thumb from a larger. Lines of force
then progress according to the rules of Snakes and Ladders and,
unless they chance upon the right mixture of thumbs and fingers,
quickly reach a wall or conductor. Thus, no matter how small B,
is, only the volume represented by the stippled regions can be used
to confine plasma for an indefinite period. In fact, even some of
this volume is useless as, unless B, is very larg:, the circulation
time around the magnetic surface is longer than the growth time for
flutes, so that the plasma whose surface goes outside ¥ =1 1is also

lost. The time scales will be considared further in Section 5.



3. THE ADDITION OF Bg

One way to trying to suppress the effects of local imperfections
is apply a uniform longitudinal field Bz of the same order as B,.
The vector potential can be taken to be A, = - yB, and hence the

invariant (which is the flux the long way round) is

o
I

fgi.go dx/Bj - sz{y dx

It

a(¥,z) - BZV(W) "

where v 1is volume enclosed per unit length within the orbit V.,
(It is this simple dependence on B, which makes it worthwhile to
use the adiabatic approximation rather than compute exact trajector-
ies). Figure 4 plots the surfaces in ¥,z space for B, = 2% B,.
The steady Bz dominates the numerically larger but sign-reversing

B but the bifurcation of the surfaces still means that plasma will

19
eventually escape. With B, = 6.5% B,, (figure 5), closed magnetic
surfaces exist both inside and outside the separatrix so that the
topology of the surfaces in between becomes irrelevant. The fingers
of the glove have now been pulled the right way out again, and, in
principle, plasma can be contained along the whole length of the
machine.

In the infinite conductivity approximation the plasma is shear
stabilised, but because there are buried conductors, we must use the
V*¥* criterion (Johnson and Greene 1967) to see whether it is stable
against resistive modes. In the expression

V¥ = VI VWA
the prime denotes differentiation but it is easily shown that the

sign of V** does not depend on the choice of independent variable.

Rather than using the flux %, it is convenient here to label the



surfaces by Y, which is the value of ¥ at z =0 and z =«
(where the perturbation a(¥,z) = 0). The volume enclosed by the

surface 1is

V(¥,) = /V(T(z))dz

but, as the effects of the perturbation are felt only locally and

because the contributions from positive and negative z tend to can-

cel, V is dominated by the original v(¥,). In the expansion of
w(¥,) =/B2d3x ;

the leading term is /LOIdez which is a linear function of Y,

the second term vanishes as the integrand Bg. (§1+-BZ) is antisym-

metric in y and the term /kﬁi-kgz)gdsx is negligible in the

adiabatic approximation. Hence W’/W/ is zero in this approximation,

VE* = V¥ and the usual /AB/B criterion is valid.

Thus as long as the surface Y5 = 1 does not cross the separa-
trix, the plasma has an outer boundary. Similarly an inner boundary
exists if there is a surface which neither crosses the separatrix nor
touches a conductor. These boundaries were shown as the two darker
lines in figure 5. Figure 6 shows these limits plotted as a function
of Bi/Bz, the minimum value of B, for confinement being 6.0% B,.
It is still, of course, preferable for BZ/B1 to be much greater
than this limit as the break-down of nesting near ¥ =0 will allow
anomalously fast transport of plasma there. Combined with the ofdinary
diffusion mechanism in the outer regions, this will lead to an
enhanced plasma loss rate.

When the perturbation is very small, MHD instabilities will let
the plasma fall back to the separatrix before it can drift to the

conductors. In this case the limiting value is that for which lines
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= 5,



surfaces by V¥, which is the value of ¥ at z=0 and z =
(where the perturbation a(¥,z) = 0). The volume enclosed by the

surface is

V(¥,) = /V(‘l’(z) e

but, as the effects of the perturbation are felt only locally and

because the contributions from positive and negative z tend to can-

cel, V is dominated by the original v(¥y). In the expansion of
W(Y,) = fBBdax )
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metric in y and the term /}Ei-bﬁz)adax is negligible in the

adiabatic approximation. Hence W’/W/ is zero in this approximation,

V¥* — V# and the usual /d{’,/B criterion is valid.

Thus as long as the surface Y, = 1 does not cross the separa-
trix, the plasma has an outer boundary. Similarly an inner boundary
exists if there is a surface which neither crosses the separatrix nor
touches a conductor. These boundaries were shown as the two darker
lines in figure 5. Figure 6 shows these limits plotted as a function

of B,/B the minimum value of B, for confinement being 6.0% B,.

z?
It is still, of course, preferable for BZ/B1 to be much greater
than this limit as the break-down of nesting near ¥ =0 will allow
anomalously fast transport of plasma there. Combined with the ofdinary
diffusion mechanism in the outer regions, this will lead to an
enhanced plasma loss rate.

When the perturbation is very small, MHD instabilities will let

the plasma fall back to the separatrix before it can drift to the

conductors. In this case the limiting value is that for which lines



of force in the critical surface just graze the separatrix, 1i.e.,
B, = 2.7% B,.

4. HIGHER ORDER TERMS AND TOROIDICITY

The discussion has been restricted so far to a magnetic dipole
perturbation as this is the predominant term measured in CLIMAX. The
magnitude originally observed is also reasonable, for, assuming the
local currents to flow on the surface of a sphere embedded within the
conductor, B, = 30% B, is produced when the net current just falls
to zero at one point on the conductor's surface. Higher order modes

do make small contributions, but in general their effect is small

3 of the dipole.

because their range is short compared with the r~
For instance, the hexapole term can be neutralised by B,/B, = 1.5k
or 0.32% depending upon which of the criteria mentioned in the pre-
vious section is adopted.

The only exception is the quadrupole perturbation which, despite
its r~* dependence, has a large effect because the integrand A. d¢
does not change sign while travelling around the defective conductor.
The drift trajectories are shown in figure 7, and it can be seen that
no absolute confinement regions exist when B, = O. The motion along
the broken lines (orbits encircling only the perfect conductor) is
very slow in this case. The minimum value of BZ/Bi for confinement
is now 7.3% or 1.2%, which is comparable with that for the dipole
term. Figure 8 shows the effect of increasing B, to 26 B,, by
which time the plasma has a proper outer boundary but the separatrix
and the conductor surfaces are still confounded.

The toroidal curvature of the machine does not change the

general features of the magnetic surfaces as it does little more than

alter the weighting of different parts of the orbit by the R™*

-7 -



factor. Calculations were made for an unshielded toroidal quadrupole
with major radii of 65 and 95 cm with the currents adjusted so that
the field zero fell midway bestween the conductors. The effect of a
dipole perturbation at the outer conductor is very much like figure 2
with, for example, a pair of magnetic axes in the positive ¥ region
at z =+ 6 cm., Plasma confinement can be obtained right round the
torus using the field from a wire on the major axis, giving a very

similar ratio for B, to B,, viz. 5.%.

6. LARGE PERTURBATIONS

When B, is no longer small compared with Bo’ the drift per
orbit becomes significant and the adiabatic approximation breaks
down. The trajzctories must now be computed directly, but, as was
shown in Section 3, the important feature is whether closed magnetic
surfaces exist between the separatrix and the surface of the conductors.
The computations show that plasma can always be contained if the longi-
tudinal field is large enough (see figure 9 for the dipole perturba-
tion). The slope of the curve starts off at B,/B,, as given by
figure 6, but then the necessary B, rises more steeply. This is
because, as B, is increased, the lines of force thrash about wildly
from their adiabatic trajectories. However, the worst perturbation
now present in CLIMAX, B, = 3% B,, lies well within the scope of
the adiabatic approximation and its effect can be suppressed using
B, = 0.17% By, typically 15 G.

The time scales for the drift motion in figure 2 can now be cal-

culated. When B, is 3% B_, 68 orbits are needed to trace out the

05
magnetic surface which just reaches Y = 1. For 5 eV electrons this
corresponds to 50 ps compared with the observed plasma lifetime of

2 ms. The drift velocities on the open surfaces are larger than this,



€. 8. electrons on the critical surface at z = O can crash down
onto the conductor in only 4 pus.

In Section 1 it was mentioned that symmetric current perturba-
tions leave the lines closed on themselves. When an external B,
is applied, this symmetry is destroyed but, as long as the adiabatic
approximation is still valid, the magnetic surfaces are not altered
by the perturbation. However, when B, is large, the surfaces will
be affected, although B, can always be made large enough to dominate.
Thus in the case of a large perturbation having both symmetrical and
antisymmetrical components, applying an inadequate B, might con-
ceivably enhance the loss rate.

Even when the field lines close on themselves, the perturbation
can influence the stability of the plasma. For an equilibrium to
exist at all

Vpx YU = 0,
i.e. the plésma pressure is constant along each contour of U. The
integral U is now a function of 2z as well as of V¥, Figure 10
shows these isobars for a magnetic dipole perturbation B, 6 = # 10% Bo
having its axis in the y direction. When the fields oppose in the
region between the condictors (figure 10a) the wall of the magnetic
well is breached and plasma can drift out along the contours from as
far in as ¥ = 0.65. When the fields reinforce each other (figure 10b)
the rim of the wall is raised locally. This does not in fact help to
confine the plasma but all that happens is that the contours bulge
inwards near the perturbation. The critical surface remains at ¥ = 1
along the length of the machine apart from this small bulge. Thus it
is safer for the local current perturbation to reinforce the uniform

flow on the side furthest from the other conductor.



6.  CONCLUSIONS

It has been shown that the opening of magnetic surfaces by a
dipole perturbation can be suppressed by a modest longitudinal mag-
netic field. It is desirable that the perturbations remain within
the scope of the adiabatic approximation (Bifﬁ 10% B,) so as to mini-
mise the necessary Bz and to avoid any side effects from symmetrical
perturbations. Even though these symmetrical perturbations do not
change the topology of the surfaces, they can let plasma escape by
making a hole in the side of the magnetic well, but this can always

be averted by adding Bz to remove the degeneracy.
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Fig.1 The quadrupole.
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Fig.3 Topology of themagnetic surfaces,

Fig.2 Projection of the magnetic sur-
faces for a dipole perturbation.
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Fig.4 As Fig.2 with the addition of
Bz = 2%B,.
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Fig.5 As Fig.2 with the addition of By =
6.5%B,.
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Position of the limiting magnetic surfaces in the
presence of a dipole perturbation as a function
of B,/Bz. The critical surface is marked c, the
surface which grazes the conductor is i and

those which graze the separatrix are s,
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Fig.7 Projection of the magnetic surfaces
for a quadrupole perturbation.
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Fig.9 Minimum Bz for confinement of
plasma as afunction of the dipole
perturbation field B,. The solid
line denotes the adiabatic approx-

imation.
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Fig.10 Plasma isobars in the presence

of a symmetrical dipole per-
turbation B, = 10%Bg. The
value of U is shown on each
contour, (a) B, opposes Bg
between the conductors. (b)
B, reinforces Bgp between the

conductors,
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