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1. PHYSICAL DESCRIPTION OF THE PROBLEM

The theory of weak turbulence was first applied by KADOMTSEV (1965) (see also
KADOMTSEV and PETVIASHVILI, 1963) to find the spectrum of ion-sound turbulence. However,
he did not consider the effects of the finite correlation time which actually occurs in
most experimental investigations of ion sound spectra and of the structure of collision-—
less shock waves (HAMBERGER and JANCARIK, 1970; PAUL, et al, 1969, 1970; SAGDEEV, 1967),
The theory of correlation functions in plasma has only recently been developed (MAKHANKOV
and TSYTOVICH, 1969%). The purpose of the present paper is to investigate the influence
of finite correlation effects on the effectiveness of those non-linear interactions of
ion sound waves which determine both the spectra and the correlation function in plasma.
The experimentally observed shock width seems to indicate that the non-linear interactions
of ion sound waves must be at least one order of magnitude stronger than was predicted by
KADOMTSEV (1965). Further, in experiments on ion sound turbulence (HAMBERGER and
JANCARIK, 1970) not only the spectrum but also the correlation width and anomalous
resistivity are measured. These are not independent, and it will be shown that in this
theory they are closely connected. Hence an adequate theory must account for all these
experimentally measured quantities just referred to. Such a detailed comparison of theory
and experiment is of course desirable both to further the development of weak turbulence
theory and also for the experimenter. Until now this has not been possible because theory
has been able to give only a rough estimate of the anomalous resistivity (see SAGDEEV,
1967) with a numerical®** factor given only to order of magnitude. We wish to point out
that the correlation broadening makes it necessary to consider a new non-linear inter-—
action for which it is possible to construct a more precise theory*#**.

As shown in MT and RUDAKOV and TSYTOVICH (1970) **** the method of expanding in terms
of the turbulent energy is inconsistent near resonance, i.e. we must include the effect of
the correlation broadening. The broadening of the resonance w = k.v between ion sound
waves and electrons enormously reduces the non-linear interaction between them compared to
the quasi-linear interaction so that non-linear electron - ion-sound interaction never can
be important (RT). The broadening of the decay resonance, as shown in MT means that the
frequency and wave number of the turbulent pulsation are not single valued. This can be
expressed mathematically in terms of the correlation function for the electric fields E of

the turbulent pulsation:

* Hereafter referred to as MT.
*% Fitted parameter.
#%% There will remain only some slowly varying logarithmic functions defined by non-
linear integral equations. These may be solved numerically.

**%% Hereafter referred to as RT.
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where

W = Wiwdkdw (1.2)
. . . 5 _ 4mne? :
is the energy density of the ion sound turbulence, and wpi S & The existence of

i

correlation broadening means that the dependence of wﬁb on w cannot be expressed in terms

of a é-function, WE §(w-w(k)), but by some function with a finite width Aw. To remain

within the assumption of weak turbulence we must have Aw & m(E). This usually also means

that

g &1 (1.3)

Even if the correlation width is finite it is possible to introduce the spectrum of

turbulence as an integral of Wﬁm over frequency

WE = WEwdm (1.4)

As is shown in MT the correlation function near resonance becomes

_ WE AME

kw m[(w-w(k))? + Amﬁ] (1.5)

where AmE (the broadening) is of the order of the character;stic non-linear growth rate
of the process which produces the spectrum. Although in principle the correlation function
wﬂw can be found only by summing the series in W (since AwE is proportional to WE) the
expansion in W can be used to derive an approximate equation for WE' This is because the
value of WE obtained by integrating over w does not appreciably appect broadening, equation
(1.5). The equation for W is called the '"balance equation" and can easily be found by
using the concept of induced processes described in detail in the author's book (TSYTOVICH,
1967).

The three types of process that one needs consider to formulate a balance equation

for ion sound turbulence are

e +s=ce' +s' (1.6)
i+s=1i'+s' (1.7
s =s' + g" (1.8)

Here the symbol s represents an ion sound wave, i a plasma ion, and e a plasma electron.
As mentioned above, process (l.6) can be neglected (RT). Process (1.7), considered by

KADOMTSEV (1963), leads to the equation
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where x; = cos(ﬁ.k), Y§ is the linear (or quasi-linear) damping (YE > 0) or growth rate

(YE < 0). Equation (1.9) is presented here to illustrate two statements.

The first is that the interaction (1.9) leads to a considerable change in direction
as the waves decrease in frequency. Thus, in the example of current-driven ion-sound
turbulence, waves must exist which move in a direction opposite to that of the current,
which appears to disagree with observation. Indeed, the damping of such waves is only of
order u/vs times smaller than the growth rate in the unstable region (here u is the drift
velocity, v Jf;?ﬁ; the ion sound speed). It can also be easily seen that in the region
of damping a spectrum is formed similar to that found by KADOMTSEV (1963). For example,

for the fully isotropic case where there is only Landau damping we have

/1 m ar T. 2 32 1
e e = R = QW, — (1.10)
2 m, 15 Te R 2 n Te,
Here
_ 4rk? i _ . _
Wn = v Wk, Q = kvs, W = WﬂdQ (1.11)

The energy originates from some © > Q%, that is outside the region for which (1.10) is
assumed to be valid*. TFor each Q there is a balance between the frequency transfer of the

turbulent energy and the Landau damping. The solution of (1.10) is

W 1 Q 15 /7 m T
=0 8 =ilnp ==, L = —a e (1.11)
nT Q Qmin * 2x 8 m, Ti

e

where Qm. is the lowest frequency to which the waves can be transferred without being
completely damped.

The second statement is that the non-linear interaction described by (1.10) is
rather weak, so that to balance the growth or damping rate (which are quite large for ion
sound waves, whose growth rate is bigger than the Landau damping) we need a high level of

turbulent energy. Indeed, even from (1.11) one finds

W — 15 T 7 m 2 £

—_— = = = —_ —g =%

nT iR To /8 m; + 10 Q. (1.12)
e 1 1 min

For the case of hydrogen on the threshold of instability, even if we take T. = STi’ W can

be small compared to nTe only if Qmin is elose ta (.. This means that the spectrum must
have a narrow freguency spread, in contradiction with the observations, The only
other possibility of reducing the ratio (1.12) occurs if Vi is very small, i.e. to say
that the regions near to the threshold of instability are most important, or that the

system, as a result of quasi-linear relaxation, is brought automatically to the condition

* This situation occurs precisely in the case in which the ion-sound waves arise from the
non-linear decay of Langmuir waves.



near to the threshold (KORABLEV and RUDAKOV, 1966; KOVRIZHNIK, 1968). But in this case
if we include the quasi-linear interaction with the resonant ions the frequency spectrum

of the turbulence must also be very narrow, The observation of electron drift velocities
much bigger than the mean ion sound velocity (if the ion sound velocity and the drift
velocity are indeed measured precisely) also contradicts the statement that the turbulence

is maintained by quasi-linear effects close to threshold conditions.

Let us now come to the last of the possible interactions (1.8) which has not been
considered before. Using well defined values of w = w(k) it is not possible to satisfy

the conservation laws for such a process:

kK = Kk +kp (1.13)

w = w; + wy (1.14)

However, as can be seen from (1.5), the correlation broadening Aw tends towards the order
of w as W + nT. On the other hand, as was mentioned above, W tends to be high if the
process (1.8) is neglected. It is easy to show that process (1.8) is allowed if the

correlation broadening is sufficient that
o wm, B (1.15)
pi w

It is known (see TSYTOVICH, 1967) that the process of induced scattering corresponds to
the wings of the decay process, where the resonance conditions (1.13) and (1.14) are not
satisfied. This means firstly that the decay process is much more effective when it is
allowed by the conservation laws, which from the viewpoint of observation is desirable
since it enmhances the non-linear interaction. Secondly, if one includes both the resonant
interaction and its wings, then both the decay processes and ion scattering are taken into

account which seems to offer a more general theoretical picture of ion sound turbulence.

Thus it is necessary to re-examine the problem of the formation of ion sound turbul-
ence taking into account the correlation broadening. That is the purpose of the present
paper.

Before coming to the theoretical calculations it is desirable to give some physical
picture of the process together with some rough estimates. First, let us mention that the
process (1.8) is allowed only for small angular difference A6 between the directions of

the interacting waves;
AB < Aw/w (1.16)

and if Aw/w € 1 the waves mainly interact without significantly changing their angular
distribution. This is quite the opposite to the induced scattering on ions. This implies

that if process (1.8) predominates, waves excited in some definite direction do not change

-4 -
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where x; = cos(k.k), Y& is the linear (or quasi-linear) damping (YE > 0) or growth rate

(Yi < 0). Equation (1.9) is presented here to illustrate two statements.

The first is that the interaction (1.9) leads to a considerable change in direction
as the waves decrease in frequency. Thus, in the example of current-driven ion-sound
turbulence, waves must exist which move in a direction opposite to that of the current,
which appears to disagree with observation. Indeed, the damping of such waves is only of
order u/vS times smaller than the growth rate in the unstable region (here u is the drift
velocity, 7, = /5;75; the ion sound speed). It can also be easily seen that in the region
of damping a spectrum is formed similar to that found by KADOMISEV (1963). For example,

for the fully isotropic case where there is only Landau damping we have

om =4 I o 3 1
Tm 915 e W ogp RV Te (1,10)
1 e ’
Here
4k? _ N
Wﬂ ™= Wk’ Q = ka, W = ngﬂ (1.11)

s

The energy originates from some © > Q%, that is outside the region for which (1.10) is
assumed to be valid¥. For each @ there is a balance between the frequency transfer of the

turbulent energy and the Landau damping. The solution of (1.10) is

W, o L Q 15 T om T
n%i g Qmin * 2m* 8 mi - T: =11

where 2 is the lowest frequency to which the waves can be transferred without being
completely damped.

The second statement is that the non-linear interaction described by (1.10) is
rather weak, so that to balance the growth or damping rate (which are quite large for ion
sound waves, whose growth rate is bigger than the Landau damping) we need a high level of

turbulent energy. Indeed, even from (1.11) one finds

W—zéze >/1--~E!.ln2

m
* (1.12)
nTe 4T TI.. 8 mi

min
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For the case of hydrogen on the threshold of instability, even if we take I.= 5Ti’ W can

be small compared to nTe only if Q in is elose ta f,. This means that the spectrum must
have a narrow frequency spread, in contradiction with the observations., The only

other possibility of reducing the ratio (1.12) occurs if Yie is very small, i.e. to say
that the regions near to the threshold of instability are most important, or that the

system, as a result of quasi-linear relaxation, is brought automatically to the condition

# This situation occurs precisely in the case in which the ion-sound waves arise from the
non-linear decay of Langmuir waves.



near to the threshold (KORABLEV and RUDAKOV, 1966; KOVRIZHNIK, 1968). But in this case
if we include the quasi-linear interaction with the resonant ions the frequency spectrum

of the turbulence must also be very narrow. The observation of electron drift velocities
much bigger than the mean ion sound velocity (if the ion sound velocity and the drift
velocity are indeed measured precisely) also contradicts the statement that the turbulence

is maintained by quasi-linear effects close to threshold conditions.

Let us now come to the last of the possible interactions (1.8) which has not been
considered before. Using well defined values of w = w(k) it is not possible to satisfy

the conservation laws for such a process:

k = k, +kp (1.13)

w = W + wo (1.14)

However, as can be seen from (1.5), the correlation broadening Aw tends towards the order
of w as W -~ nT. On the other hand, as was mentioned above, W tends to be high if the
process (1.8) is neglected. It is easy to show that process (1.8) is allowed if the

correlation broadening is sufficient that
oo, [l (1.15)
pi w

It is known (see TSYTOVICH, 1967) that the process of induced scattering corresponds to
the wings of the decay process, where the resonance conditions (1.13) and (1.14) are not
satisfied. This means firstly that the decay process is much more effective when it is
allowed by the conservation laws, which from the viewpoint of observation is desirable
since it enhances the non-linear interaction. Secondly, if one includes both the resonant
interaction and its wings, then both the decay processes and ion scattering are taken into

account which seems to offer a more general theoretical picture of ion sound turbulence.

Thus it is necessary to re-examine the problem of the formation of ion sound turbul-
ence taking into account the correlation broadening. That is the purpose of the present

paper.

Before coming to the theoretical calculations it is desirable to give some physical
picture of the process together with some rough estimates. First, let us mention that the
process (1.8) is allowed only for small angular difference A6 between the directions of

the interacting waves;
AB < Aw/w (1.16)

and if Aw/w % 1 the waves mainly interact without significantly changing their angular
distribution. This is quite the opposite to the induced scattering on ions. This implies

that if process (1.8) predominates, waves excited in some definite direction do not change

= ik -



that direction (to a first approximation) during the non-linear energy transformation.

Second, we should mention that the process (1.8) approximately conserves the energy
of the waves. That means that (1.8) affects only the spread of the energy of the waves
(for any given direction). Because the conservation laws forbid this process for fre-
quencies higher than (1.15), we can say that at the limiting frequency given by (1.15)
there exists a barrier, so that the turbulent energy flows towards lower frequency.
However, as we shall see below, the lower the frequency the weaker the non-linear inter-
action. This means that a quasi-stationary spectrum is first created for the highest
frequencies satisfying (1.15), and this formation then propagates like a "wave" towards
lower frequencies. Two different physical situations can occur, in which for any given
direction ion sound waves are either damped or excited, If they are damped there must
be a constant flow of energy from some higher frequency Q,. From the mathematical point
of view we then have as a boundary condition a given value W = The stationarity of the
spectra results from a balance between the non-linear flow towards lower frequencies and
the damping. If the waves are excited, they grow until they have enough energy that the
non-linear spread becomes important. In this case the balance is between the creation of
waves from the instability with the downward flow away from the region of their creation
by non-linear interaction. From this picture it is obvious that the spectra created in
both cases must be similar if the frequency dependence of the damping and the growth rate
is the same. The first case may, for example, correspond to the turbulence created by
non-linear generation by Langmuir waves, and the second to current driven instability.
One may find that there are two stages of development of the instability. The first is
the stage in which the non-linear interaction (1.8) spreads the frequency without changing
the direction. As the "wave" in w-space propagates towards lower w it slows down and the
total energy of turbulent motion is raised. One can then find the (lower) frequency which
this "wave" reaches in the characteristic time for scattering on ions. From then on the
next stage of the development of the turbulence begins in which the angular spread occurs.
This change in direction seems to be a possible mechanism of absorption of the energy of
turbulent motion on electrons. One can also expect in this some significant heating of
ions, because to change the direction of a wave by an angle of the order of unity the ions
must take an appreciable part of the momentum of the wave. It is not at all obvious that
the second stage is developed in each case. Indeed, in the case of non-linear driven ion
sound turbulence the energy can be absorbed before the second stage arises, and in the
case of current driven turbulence the multiple changing of the direction of the waves each
time by an angle (1.16), resulting from interaction (1.8), may also simply transfer the
wave to a direction in which damping occurs before the scattering on ions becomes import-—

ant.

2. CORRELATION EFFECTS IN ION SOUND TURBULENCE

Owing to the possibility of the decay (1.8) we must modify the method used in MT,
We shall not reproduce here the whole calculation which is similar to MT but merely show

the essentially new points. Suppose all non-linear current components Sk Ky, ko and
3 Y



T are known:
k, ki, kp, k3

‘]k. = o + sk,kl,kz Ekl Ek2 G(k—kl-kz)dkldkz

+ = -
i, kp.ko,ks Pk P, B (k=k~kp=k3) dkjdkydk; (2.1)

and modified in such a way as to take into account the resonance broadening for w = k.v
as was done in RT. The non-linear Maxwell's equation for the stochastic part of the

field then becomes

~
L 4ri /
Ve E = —= - B
& "k w / Sk, k—],kz (Ekl Ekz < Ek] Ek2> ) 8 (k kl kz)dkldkz
4ri
# ==& E E -
w | Tk,ky,ky kg ( e T T T T T
_ 2.2
< Ekl Ek2 Ek3 >) 8 (k—kl—kz—kB)dkldkzdka ( )

It is necessary to work near the resonance Ei = 0 (all the intermediate waves are approxi-
mately resonant when process (1.8) is included) where the corrections of the order of W

'3 . 5 ’ i
have the same smallness as P Let us introduce formally the non-linear dielectric con-

stant
N dmi [
€) W Leky Ty dky (2.3)
where EL Ky is a function to be found, and Ikl is the correlation function for the electric
s
fields:
< Ek1 Ek2 > = - Ik1 §(ky + k) (2.4)
N .
Let us add Ek Ek to both sides of (2.2)
(s2 + aN) E, = L (E, EE - <E_ E >)
k k' Tk w k,ki1,ko ki kp ki kg
i
§(k-ky-ks)dkdk, + —
% §(k-kj-ksy)dkdk, {'Zk, Bl (Ekl Ekz Eks
- E < E E > = < E

E, E > + :
i, By By 2 Le kg Pty < Biy By >:}
(2.5)

ki ko kg
x  6(k~kj-ky-k3)dk;dkydky

One can then follow a procedure similar to that in MT but using (ER+EN) instead of ER.
The last stage is to determine the Eé,kl in EN. Multiplying by E s and taking the
ensemble average we obtain an equation similar to that in MI. As € represents the
diagonal terms in the field Ek we require that, at least to first order, the diagonal

terms must vanish on the right hand side of the equation for the correlation function Ik

-6 =



(the arguments are similar to those used in RT). Thus the expression for E&,ki becomes

1

U - T
Tk &y e Py * Rk o=y 0
= ML B e ks Phedbs fehy
N N (2.6)
(w-w1) (

S ky ¥ Bty

From equations (2.6) and (2.3) we see that EN is determined by an integral equation.
Although the general formulation appears complicated one can find an approximate solution
appropriate to the problem in question (see below). We should mention that the argument
that the integrals containing 1/(€E+5N) have no irregularities applies equally to this

case as in MT. Hence the solution has the form:
1 = 20 [ |2 1 T, 6(k-kq-ky)dkjdksy
k w k,kl,kz kl k2 (2.7)

N 2
g+

The difference between the problem considered here and that in MT lies in the determina-—
. N ’ 2 -

tion of € . Owing to the resonance behaviour of (eR + eN) Lfor the decay process we can

to a first approximation neglect the first two terms in (2,6) and put

8mi

S S
E‘:(,k. = = k,ky,k-k; k-kj,k,-k;

(wmop) (L + e ) (2.8)

Away from the resonance, however, both terms of (2.6) are significant and together
represent the scattering of ions. Hence (2.7) gives a general description of ion sound
turbulence including the KADOMTSEV interaction. For the resonant case the equation con-

tains only those terms for which a definite expression can easily be found for kVp; € W «

kV,, :

Te
el (}El) (iiz)n
Sk!k19k2 -7 m% kikok wwjws (2.9)

By expanding the dominator of (2.7) near the linear resonance
- —w-) SE -
Re g = (w wk) v |m=w(k)

we get an approximate expression for the correlation curve near resonance

T 1
Ko7 a2+ (v)2 (2.10)
k k ‘
N 2 N
. Im Szk + €7) . Ree
where W - EEk : and wp = wp o + gEk (2.11)
| ow lm=w—
Juw w=wg k



In these last expressions we use w = wE which is permissible near resonance. We can also

neglect the difference between w and wr in the factor comnecting WEM with Ir , and so get

N ” N kw
the result (1.5) with ﬂwE =T and w(k) = wr.

The width of correlation curve depends on the turbulent energy, as can be seen from
(2.6). Now in the equation already derived not only the correlation function is broadened,
but also the §-function governing the conservation laws (1.14) for the decay. The most
difficult thing to derive exactly in the present theory seems to be the non-linear equation

N ; . 3
for € . But, as we have mentioned, we do not need the exact expression but, according to
(2.10), only an approximate one with w=w(k). This arises from a solution of an approximate

balance equation. The exact balance equation can be found from (2.7) by multiplying by

Im (aN +£ﬁ)w =y ﬂﬁﬁ_ and integrating both sides over w:

k kw 34
Beé
£ Al 2 N P
v, Wp e =| by, Sy wy il Ty Ty SCkE1-ke)dudigdi, (2.12)
7. N
mlsk + Ek|2

The left hand side of (2.12) contains both the linear damping or growth rate and the non-
linear effect which is proportional to the energy W, in the turbulent motions. The whole
non-linear effect is due to induced scattering and induced decay. The right hand side of

(2.12) includes the spontaneous non-linear decay process.

3., APPROXIMATE BALANCE EQUATION AND SPECTRA OF TURBULENCE

Let us now consider the resonant decay process (1.8). The balance equation des-
scribed by (2.12) differs from the usual one by having a broad dependEﬁce on w(k) for all

three interacting waves, so that instead of §(w-w(k)) we have Ik ey Suppose
m(w-w(k))?2 + Vi

that the broadening is sufficiently great that we can neglect the curvature of the dispersion

curve w(k) and set w(k) = ka. If, nevertheless, yE = Awy <<w(k), which implies that the
turbulence is weak, it is possible approximately to use G(N-EVS) instead of the proper
resonance profiles. Thus we can obtain the approximate balance equation which can be

written in terms of the probability of the decay process:

o L dk,dk, _ _
Yi Nk — [W (k,kq1,kp) (N:El NEZ NE NEI NE Nl_tz)
(2m)
+ 20 (kl ,k,kz) (NITCNE]_ + NE].NEZ - NENEZ) } (3.1)
W(E,Tcl,l—cz) !”.IH_T (2m)3 §(k-k,-ky) & (kvs ~- klvs - kzvs)
e

(ki) (kp)?

b b wwwp (3.2)
K2k} k%3

This expression for the W differs from that which can be found using the general formula

w



for the probability of the decay process derived in TSYTOVICH (1967) by a factor 1/2. This
. In the

| =

arises from using only half of the correlation curve, since formally émﬁ(x)dx =

more general case of non-stationary turbulence the term %gﬁ + vs% %gﬁ must be added to the

left-hand side of equation (3.1).

A rough estimate of the characteristic time for the non-linear energy transformation

described by (3.1) can be found from

. o
a /'w(k,kl,kz)dkldkzwlz - (3.3)
(2.")6 1 nie

which is much larger than the time for the scattering of waves on ions (1.9)

1 T W
= = =1 2
sc w 8Tea (3.4)

nT e
This confirms the above hypothesis that process (1.8) is the most effective one.

Let us now consider a case of axially symmetric turbulence in which the spectrum

WR depends only on |il and the angle © between k and this axis. Let us introduce Wo g
]

where £ = cos 8, 0 = kvs, normalized by the expression

0 i B
fdsz'/dEWQE o = W (3.5)
0 =4
Then equation (3.1) can be written in the form
0
b ; 2
Y W = { |de, W W
2,8 'Q,E ingT. (22 R,E  Q-Q,E
2
_ (2-07)2 _ 9]
wsz,i “'—91 wnl,g o-m wsz,g Wsz—szl,g]
) 0-01)2 Q3
v 2 g, | 27 e Vae * o——— Yo o Vo o
Q 9 ’ » Q1 (2;-9) : #
, -
" W W
- o 3.6
o-n  mHE Q,& (3.6)

where Q, is the highest frequency for which the decay process is allowed

9] YN

* e /_ﬂt (3.7)
w_ .

Pl Q:'c

For many cases of interest Ya,E is a linear function of §
2

Yo = %Y (3:8)

For Landau damping in the case of an isotropic distribution of electrons



4 H
v
i (3.9)

In the case of Maxwellian distribution displaced by a mean electron drift velocity u we have

e

-
1
I
e
ra =
E

5]
[=H

m (3.10)

In the more realistic case in which the angular electron distribution during a current
driven instability is determined by quasi-linear relaxation in the turbulent fields created
by the non-linear effects considered here the expression for YE is more complicated, but

the linear dependence on 2 remains.
From a dimensional analysis in the case of a dependence of the form of (3.8) it can
be seen that the solution of (3.6) must be of the form
1 4nT 2
W, T @ T v "”(sz*) (3-10)

where § (1) (X < 1) is a slowly varying logarithmic time-dependent function of X that

satisfies the equation

B0 = A2y, )

1 i
OJ’ ‘f’;(}‘x)‘f: [;\(l-x)] dx + 2 A_r ?lcz \rt (%) . ‘f: [% (1-x)] dx
(3.12)

. (0) 22

1 A A .

The + sign is to be taken for y > 0 and y < O respectively. Equation (3.12) is valid
only in the region in which there has been enough time for a stationary spectrum to be
established, i.e. the smallest A in (3.12) corresponds to the time of observation, or the
flow time of the plasma through the shock fromt. Although the exact solution of (3.12)
can be found only by numerical computation, it is not necessary to know the exact
behavious of | for small A to derive the anomalous plasma conductivity, as we shall see
later. The lowest frequency in (3.12) for y < O can be found by the following physical
arguments.

If u, the mean drift velocity of electrons, is large enough compared with Voo the
most important effect is the scattering of electrons by the turbulence, rather than their
heating. That means that during the quasi-linear transformation, the electrons mainly
change their angular distribution and therefore the ratio y/Q does not change. However
the time for non-linear energy transfer is proportional to 2 !, so that one can find some
low enough @ for which this rate of energy transfer equals that of the quasi-linear heat-
ing, In this region the quasi-linear transfer mixes Q and the angular dependence, and
equation (3.12) is no longer valid., On this time scale the quasi-linear heating is more

important than the non-linear transfer. The heating rate is of order

_10_



Y -ﬂ._ —e
heat 7% (3.13)

213

Since we have for the non-linear transfer y ~ QW/nT we may roughly estimate

m
2 z 0 —e (3.14)

i * m.
min 4

We can say that the energy is transferred without a significant change of direction until
it finds an absorption region as a result of a significant quasi-linear change of y. As
we show later, the anomalous resistivity does not depend on Qmin or the lack of station-
arity of turbulence at low frequencies*.

It is now possible to estimate the turbulent energy that occurs in the first stage

in the range Qmin << @

1 Q%
W .8 -
aT " @ f*ng/ 98 obgy = 23 an?-/r—“e (3.15)
Q ™ m:i.
& Qmin

m

where y is the mean value of Y If we put yu/ n %} we find a value that is on a factor
i Vs

T;/8Tg smaller than (1.20),

From (3.11) it is possible to find the correlation time T = l/YN

=it

1
dx (+1 + 4= (Ax)) + 4./ +(Ax) dx
/ § ot

N
Y+ = n‘Ya

1
+ 8/ v (ax) (3.16)
R

The largest term is the second in the square brackets. The minimum value of @ is given

by Qmin/Q*A = Qmin/Q and therefore (3.16) becomes approximately
N - &% /_TL r_ne (3.17)
t V. oo 2 m; '
s min 1

The last estimate is written for a current-driven instability. By putting £ = @, in

(3.17) it is easy to see that y/Q ~ 1 if Qmin ~ #me/mi(u/vs).

Thus we find that the smaller is nmin the greater the correlational broadening for
the highest frequency Q ~ Q,, and that the real ﬂmin must be higher than (3.17) if u > v
This argument is independent of the quasi-linear estimates given above. On the other hand,

one can see also that the correlational broadening introduces a new type of heating.

Indeed, the approximate expression for the correlational broadening can be now used
in the exact equation to find more precisely the spectrum and time development of the ion

sound instability. 0f course, this interaction includes the scattering on ions and

* The quasi-linear transfer for @ < Qi is qualitatively different from that considered by
RUDAKOV and KORABLEV (1966) as a result of the in flux of turbulent energy from higher Q.
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their heating during this scattering. The time scale of this process is much longer than
that considered above. We restrict ourselves here with only one comment which shows what
kind of new effects appear in the general equation (2.17) of ion-sound turbulence apart
from the well known effects of ion-scattering. For example, if one considers current
driven ion sound turbulence, excitation occurs for waves in the Cerenkov cone along the
applied electric field.The final stationary turbulent state must include conversion of
these waves to the damping region to balance the power generated. Since, for current-driven
ion-sound turbulence, the growth rate exceeds the damping (u > vs) for all @ the usual
reduction of frequency cannot give a stationary turbulent state. However, the sign of y
changes with increasing angle to the direction if u. Therefore the non-linear angular
transformation can transfer the turbulent pulsations to the damping region. The

correlation width allows the interaction of waves with

AG ~ o (3.18)

To change the direction of the energy by an angle A6 ~ 1 it is necessary to have 1/48 =
Q/0Q steps. This can give a rough estimation of the time needed to transfer the energy

to the dissipation region

.1— ~ ﬁ 11_ E ﬁ,nzﬂ_ /Te o & . Q‘nz E*

T m. min
¢ A% Vs T Roin * Qmin (3.19)
/e
if Q. - m. §,, we have 1 .1 g . The characteristic time for non-linear transfer
min i % T 5 *
by ion scattering for @ = @, is of order
1 QT m Q
< * T —-e 9 %
- £ e — ]
Tia 5T i Q. (3.20)
i e min

At least 1. > Ty 10 Te/Ti' Moreover T, can also exceed the absorption time

1 fm
s /ﬁf: Q (3.21)
T 1

This means that the turbulent energy can be transferred to the absorption region, and
there absorbed by the electrons before the ion scattering becomes important. In this

case the ion heating must be small,

4, ANOMALOUS CONDUCTIVITY

Although a truly stationary turbulent spectrum is reached only after the waves reach
the absorption region, the anomalous conductivity reaches a steady value when the spectra
is formed for the highest 2 of the order of Q,. We conclude this from the expression for

the quasi-linear diffusion coefficient, which is proportional to

- 12 -



Q- W, ,de (4.1)

This shows that one can consider the anomalous conductivity as defined even when the
spectrum is formed only for frequencies of the order of ~ (1/5 - 1/10)9*, and that (4.1)
is not sensitive to the low frequency changes in the spectrum. We shall therefore con-
sider here only the conductivity during the first stage of the development of the ion

sound turbulence. The general quasi-linear term can be written as follows:

3 36
av, s o, (4.2)
2 -
D.. = = e [ k. W s(ukv)dE (4.3)
ij ol i7j k
e

where ¢ is the regular part of the electron distribution function. In the first
approximation the collision of an electron with a sound wave is elastie, i.e. electrons

are scattered and lose their momentum but not their energy. The distribution function,

due to the axial symmetry along the direction of the electric field, depends on v and x

cos (E,v)

¢ = ¢(v,x) (4.4)
If the mean drift velocity u lies in the interval

Ve TTU T Ve (4.5)

the biggest term in (4.2) arises from the derivative 3/9x and (4.2) can be written in the

form

vZ 1
—Te = 9 2,2 o= = J¢
evz " k<E WE §(kv) dk x (4.6)

where £ = cos (E,E), and W depends only on £ and k = Q/vs. After integration over the
angle ¥ between the components of K perpendicular to E and ¥, we can find the equation
which describes the quasi-statiomary distribution in which the electric force is balanced

by the turbulent collisions:

2 2 o 2
e o M 2 Jdn f a_ Mg g57dEde B (4.7)
av nvsv3 ax 2 _r2 3 x
I 1-x°-£

Here the distribution function is divided into two parts
9 = ¢0(V) + ¢1(v,x) (4.8)

where ¢ is the isotropic, and ¢; the small anisotropic parts
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o< 9 (4.9)

The right hand side of (4.7) contains only ¢; and ¢; is neglected in the left hand side.

The normalisation of W is
1
/(wﬁ’g dtdn 27 (4.10)

In a similar way we can write the ion-sound growth rate

k 3¢y
£ & n v ax

This expression is valid if the Landau damping due to ¢, can be neglected as is in the

conditions of (4.5) and if

v
By ot (4.12)

u

To an accuracy of the order of vs/u the Cerenkov cone corresponds to £ > O. Integration

of (4.11) over o gives

/1-£2

27 dx 3 @
g —
£ n 1-¢2 /1-x2- 2 ax e

In the approximation considered in Section 3, £ does not change during the non-linear

¢ dv (4.13)

interaction, and the turbulent energy exists only in the region of excitation, that is to

an accuracy of order vs/u in the region where £ > 0. We get then

2 1
wQ,E, S :5 noTe g |Y€|¢J+(A)
4 1 Jl_gz dxi 3 oo
- =g el B ] [ ——— = f 41 (x,v)dv | (4.14)
F 2
i f = 1_52 1-x=-E Bxi o

From (4.7) one can then see that ¢; is proportional to v3 B¢0fav. Let us define a function

g by
e 133 B v, g(x) (4.15)
vTe v

If we suppose ¢0 to be a Maxwellian distribution, we then have

jﬁ 3 Vs
¢1(v,x)dv = - ng(x) _3
0 ' 4 Te (4.16)

Thus we have from (4.13) and (4 16)

= - /‘e & S (4.17)
-X 9x
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g is an odd function of x, and therefore 3g/d9x is an even function.

, f__ /_r; 1 - -2
0 = 5 T [ ng —P,.(A j’ _dx 38 (4.18)
n = " 0 Jl—xl-E X1

Putting (4.18) and (4.15) into (4.7), and integrating (4.7) over x taking into account

that the right hand side of the result vanishes as x + 1 we find

[1-%2 [1-€2 3g(x1)

3
o] (1-x2) = J 34 /dxzﬁax 38(x) (4.19)
1-x2-£2 1~xi-E ax

[o] o]

where

« = “e'f (4.20)
GmEVSQ*é Y (A)dA

By introducing a new function

og i

= Jla

o(s); g w [ ieu? (4.21)

m].-a

X

and changing the order of integration, equation (4.19) can be written as follows:

g3

1
Sl d | s%+n? (s+m)? _
o(s) Jo T-n2 { e =) S”} (4.22)

The function p(s) can be found numerically. Notice that if s is not small p(s) is of
=1

the order of 1. If s < 1, p behaves as p= /in s , so that it is a slowly varying

function of s. The current density j is
1

1 @
24mevs
j = 4me hI xdx v3ipy(v,x)dv = 3 xg(x)dx -
[ o

v
& 1 Te e

2p(s)ds
. _J- vi¢ (V)dv = 24/—2~ env j S 0A8/C8 |/|u.| (4.23)
0 © 1 ° 0 J 1-52

Since by definition, the mean drift velocity is

]
u = (4.24)
en

then from (4.23)

- s52p(s)ds
u = 24\!2' VSJ Vv el (4.25)
T

Therefore
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2benvga  , 1 s p(s)ds Seanv [;[ Q(S)ds ]
= - 24

j = = .
flal m Jﬁ 1-s2 m eu /¢¢+(A)dk

o]

(4.26)

If we now define the effective collision time t* and the effective collision frequency

v* by
ne? 1
j = oE; o= —1%; 1% = - (4.27)
W
we find
* = ‘f s2p(s)ds |2 Vs — 192
a — .28
) /152 u QS V4N dA Hs28)

This dependence on u is similar to that found in the case of scattering by ions, but the
numerical factor is much bigger and in general depends on the turbulent energy. This

arises from Q, whose maximum value is of the order of wpl

5. DISCUSSION OF THE RESULTS

Let us briefly underline the above statements. Firstly, the correlation effects
change the non-linear interactions. The new interaction is stronger and therefore gives
a more anomalous conductivity. Secondly, the time development of the instability is much
faster than for ion scattering, and therefore the spectrum can be formed under conditions
in which the turbulence is excited for much shorter time intervals., Thirdly, the present
considerations predict that during the first stage of ion-sound turbulence the 'direction
of waves is not much changed. The opposite effect is predicted from the non-linear theory
based on induced scattering on ions. In this interaction the direction of the waves can
be changed considerably, and if an interaction of this type limited the energy of resonant
waves, an appropriate number of waves must be excited in the direction opposite to that of
the applied electric field. Therefore, in principle, experimental results can indicate
which of the possible types of interaction of ion-sound waves occurs not only by quantita-
tive comparison the measured resistivity with that predicted by theory, but also by
checking the qualitative predictions, for example the presence of the waves moving in the
direction opposite to the field. Recent results (HAMBERGER and JANCARIK, 1970; PAUL et
al, 1970) show that the waves moving in the direction opposite to E are much weaker than in
the direction of E. Fourthly, we should mention that according to the theory considered
in this paper the energy of the turbulence heats mainly only electrons, and the energy in
the ions must approximately disappear as the sound waves are damped. We should also mention
that the angular distribution of the waves excited according to (4.18) has a complicated
angular dependence not simply ~ £ as can be found if the electrons have a Maxwell
distribution displaced by some drift velocity. Finally, we mention that the correlation

time idecreases rapidly during the development of instability and therefore the average

= 1§ -



correlation time is not a good quantity to compare with theory. Some more detailed numerical
computations of the general equations found in Section 2 are desirable for comparison with

experimental data.
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