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1. Introduction

We discuss the structure of hydromagnetic shock waves of
various types. The plasma is treated in the two fluid approxi-
mation and collisional transport coefficients are used. This
treatment should be valid in a collisional plasma subject to
the usual caveat about the use of transport coefficients in
situations where the density, temperature etc., may change
significantly over a mean free path. The approach may also
have some validity for collisionless shocks if the dissipation
mechanisms involve instabilities of sufficiently fine scale
and high frequency that they can be described by effective

transport coefficients.

2. Basic Eguations

The shock is taken to be at rest in the y-z plane. The
upstream flow is in the x-direction and the magnetic field
upstream and downstream is in the x-y plane (see Fig.l). Bo
is the magnitude of the upstream magnetic field and 6 is the
angle between By and the normal to the shock. The equatidns

are then:
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nu = constant (1)
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where primes denote differentiation with respect to x and
K is Boltzmann's constant.

Here 7 1is the plasma resistivity and My the ion
viscosity. These are taken to have the classical temperature

dependence, namely,
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where nl and Hl are the upstream values. The upstream
electron and ion temperatures are assumed equal, Te = Ti = Tl'
Chapman and Cowling (1939) showed the transport coefficients 7
and uxx to be only weakly dependant on the magnetic field.
Here they are assumed to be independant of B. Note that in
these equations we have included the Hall term but we have

neglected the following:



(i) thermal conduction
(ii) electron inertia
(iii) electron viscosity
(iv) thermoelectric effects

(v) shear viscosity

Electron inertia is negligible as long as the scale
length for magnetic field variation is large compared with
the collision free skin depth, c/wpe. Shear viscosity is
strongly affected by the magnetic field and should be negligible
except in some special cases such as switch shocks where there
is a large change in the transverse velocity. Electron viscosity
is negligible compared with ion viscosity provided that
Te/Ti < (mi/me)% (see Chapman and Cowling(@.939)). Thermal con-

duction and thermoelectric effects are probably important in some
wegions of the shock structure (Woods (1969a)); we neglect them for

the present in the interests of simplicity,

3. Structure Egquations

The basic equations can be reduced by eliminating n,

u s u and E, and simplified by normalisation. The units

chosen were

length (c/mpe)l, the collision free skin depth
density nl, the upstream plasma density
temperature Tl’ the upstream ion (electron) temperature
magnetic field Bo' the total upstream magnetic field
velocity Uy the upstream plasma velocity
DEEImE 471 m, n, u®
M = 12 1 1
Al Bo
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MA and M1 are respectively the Alfven and sonic mach
numbers of the upstream flow. V, R, and S are respectively
the viscosity, resistivity, and Hall term coefficients. u¥*
is the wvalue of (ux/ul) when u, has the local normal
Al fven speed bx

b? =
X am mi n

Henceforth a symbol will always signify the normalised

gquantity (i.e. Te means Te/Tl etc.)

The equations take the form

du
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where the suffix x has been dropped from the velocity u .

4. Linearisation about the Singular Points

In the flow through the shock there are two singular points
X =- 9 and X = + o representing the upstream and downstream
flows respectively. The conditions at these singular points are
related through the Rankine-Hugoniot equations (Anderson (1962))with
one important exception. For a given upstream flow the sum (Te+Ti)2
of the downstream temperatures is given but not their ratio
(Te/'I'i)z.

To find the nature of the solution near the singular points
we linearise about them and assume the small perturbations
(G, E&, E;, %; and Ti) vary like exp(A§) in the neighbourhood

of such a point. The perturbations have to satisfy
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and M 1is the local sonic mach number
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A must satisfy the cubic
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To determine whether or not solution curves exist it is
not necessary to solve the cubic (25) but merely to know how
many of the roots have positive (negative) real part. The
number of roots having positive real part is given by the number

of sign changes in the sequence
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where Ce and c, are the (normalised) fast and slow magneto-

acoustic wave speeds.

There are four different singular points (Anderson (1962))

each having different flow conditions as shown in Table 1.



Table 1

Singular point Flow conditions
I M>1l,u>c_>b >c
£ x s
IT c_>u>b >c
£ X s
IIT c_>b >u>c
f b 4 s
Iv M<l,cf>bx>cs>u

We must now determine the number n of eigen values at
each singular point which have positive real parts since Woods
(1969b) has shown that a unigue shock solution can exist only if

ny = =1
where n, and n, are the values of n at the upstream and down-
stream points respectively.

Wood's argument is that if the eguation for the eigen values
is of degree N then there are n, and N-n, amplitude factors to
be determined at the upstream and downstream singular points.
There will be N variables to be matched at some arbitrary plane
between x = +« . One degree of freedom must be left, essentially
the position of the shock in the x-direction. Thus for a unique
solution we require,

n, #¥§-n, -~ N=1

oy =hng = L

1

In our more general case there is a slight modification to
the argument - we have an additional free parameter at the back
singular point, namely, the ratio of the electron and ion temper-
atures. But since we must match this ratio as well as the other
parameters, the final condition on n is unchanged.

5. The Possible Shock Transitions

The nature of the eigen values at the singular points depends
on which dissipative mechanisms are present and also on whether or
not B, = O at one of the singular points. There are five cases to
consider.

(i) Resistivity and viscosity (R # 0, V # 0)

No matter what value of S 1is used, the allowed transitions

are: I = IT (fast)

IT - IIT (intermediate)
III - IV (slow)

Since ny- n, = 2 for I - III, II - IV shocks a single
= T e



infinity of integral curves exists and no unique structure exists.
If S = 0, one of these structures maintains BZ = 0, so if we

imposed the condition BZ = 0 (as done by Germain (1960), Kulikovskii
and Lyubimov (1961) and Anderson (1962)) unique structure exist for

I - 1II (Slow)

I - III (Intermediate)
IT ~ IV (Intermediate)
IIT - IV (Fast)

and the II - III shock becomes impossible. Notice that in this

case the cubic (25) reduces to the quadratic
RV A\® - (RA + VE)\A + (AE-D) = O (29)
with n given by the number of sign changes in the sequence
RV, - (RA + VE), (AE-D)

(ii) Resistivity but no viscosity (R # 0, V = 0)

For any value of S, A 1is given by the quadratic
A (R® + 8®) \® - R (2AE-D)X +E(AE-D) = O (30)
and n by the number of sign changes in the sequence
A(R® + S®), - R(2AE-D), E(AE-D)

The allowed transitions are

L

T II (M>1)
II(M>1) III (M>1)

ITI(M<1l) - IIT (M<1)

1

III(M<1) = IV

and two transonic shocks

I - IIT (M<1)
II(M>1) - IV

With Vv

Il

0 equations (13) - (17) yield

dB _ dB _
du 1 _ 1 d ) 2 _g R 3 % Z) B 1
dx 2_]'>_'2M2 dx (By+Bz) R [(dx: T Uax _] (31)
Al A]



R#O R#O R#O R#0 R=0 |R=0
V#O V#O V =0 V=0 V#£O |V#O0
any S S=0 any S S=0 S#0 | S=0
B_=0 B_=0 (B_=0)
z z
Order of System 3 2 2 1 3
I (M>1) 3 2 2 1 3
(M>1) 2 1 1 0 2
42 II
o (M<1) 2 1 2 1 2
2
o (M>1) X 1 0 0 1
=
=
PIIII
= (M<1) 1 1 il 1 1
i)
o
ol IV (M<1) 0 o} 0 0 0
Table 2. Number n of eigen values having positive

real part for different restraints on the
system.




transitions.

j\DownStream : II II | III III v
lUpstream . (M>1) (M<1) (M>1) (M<1) (M<1)
| (R#0) !
I (> 1) or (V_# 0) (BZEO.R?-‘O) (BZEO.R#O.V#O) | (BZ'Eo,R#O.
(V#0) or V=0)
(v=0) B
! (R #0) (R#0, V#0) é(B =0,R# 0,
II (M>1) = == or or | V#0)
(s#0) (s#0, V#0) | or
! (V=0)
H
|
(R#0) E(BZEO.R;!EO)
II (M<1) * == * or 1
(8#0) ;
III (M>1) * * == == (V#0)
(R#0)
III (M<1) | * * * =+ or
- (V#0)
Table 3. Restrictions necessary for shock




hence I - II, II - III, IITI - IV shocks cannot cross M = 1
without an infinite gradient in wu. This point was first
noted by Geiger et al (1962). With II - IV and I - III shocks,
crossing M = 1 removes their degree of freedom by imposing the
condition that when M = 1 the right hand side of (31) is also
zero and a unique structure results.

The limitations on M 1lead to critical Mach numbers.
For example transitions of the type I - II (M > 1) only exist
over a limited range of Maq - Above a critical value for the
upstream Alfvén Mach number the Rankine-Hugoniot relations
require M < 1 at singular point II. This guestion has been
discussed in detail by Woods (1969a) for normal shocks.

If S = 0 and we insist B, = 0, from(29)

AB-D
RA

% o=

and the allowed transitions are

I~-»IT (M>1) I~ IIT (M > 1)
ITT (M < 1) -» IV IT (M < 1) - IV

plus the transonic intermediate shock
I - IV .

(The II (M < 1) - III (M > 1) is eliminated since the entropy
must increase through the shock). For the I - IV shock in

(1) n1 = My = 3 giving two degrees of freedom to the integral
curve. However in this case, since the flow speed crosses the
sound speed in the absence of viscosity and also B, = 0, two
constraints have been imposed on the system and a unique structure
exists.

(iii) Viscosity but no resistivity (R = 0, V # 0)

If S # 0 the allowed transitions are

I - 1II
IT - IIT
ITT - IV



If however S = 0, then from (15) and (20) B, = O and from

(29)

AB-D
= )
A VB

and the allowed transitions appear to be
I =-IT, III - IV and I - 1IV.
But from (14) with R =S =0
By(u - u*) = sin § (1 - u¥*) (32),

so no intermediate shock is possible, and the I - IV shock has

to be eliminated.

(iv) No Dissipation

A is given by

E (AE-D) (33) .

2=_
A AS®

Therefore either one root is positive and the other negative or
both are imaginary. No shocks are possible but provided S # O
there may be a wave which stands in the flow. The wave number
k = i)\ so, on eliminating A,E,D and S the wavelength (21/k)

is given in terms of the normalised speeds.

b _ L
WAVELENGTH = 2T f( i Vi e) u®>x® (u?-a”) ]2 (34),

uz- e ) (u®-b 2)(u ~cg?)

which is equivalent to the dispersion relation given by Stringer

(1963) for low frequency waves.

(v) Switch Shocks (BY =

If B = O at one of the singular points, we may have the limiting
cases of switch-on and switch-off shocks.

The switch-on shock is a fast shock propagating parallel to
the magnetic field in B < 2/y plasma. Behind the shock a trans-
verse magnetic field (By)is switched on and u = b, i.e., E = 0.

The switch off shock is the strongest possible slow shock

ahead of which u = by (E = 0) and behind By = 0.

_



When E = O, A is given by
A =D or g.0% + cz:A + c3 =0

where
c1 = V(R® +8%) =20
c; = -A(R® + 8%)
cz3 = -RD < 0O

There is always only one sign change in the sequence (ci, cs, C3)
so there is one zero, one positive, and one negative eigen value.
Since we need exactly one negative eigen value behind a fast shock
and one positive éigen value in front of the slow shock, a unique
solution curve exists for both switch-off and switch-on shocks.

If we put viscosity (V) equal to zero, then when E = O

RD

A =0o0or A = - EREEIEQT

and the switch shocks are only possible provided we have M > 1
(A > 0) throughout the switch-on, and M < 1 (A < 0) throughout
the switch-off shock, so again transonic shocks are not allowed.
If we put the resistivity (R) equal to zero then when
E=0
A =0o0r A =A/V,

and transitions are only possible if they are transonic. The
shocks are however not switch-shocks, but purely gas dynamic.
Putting u = by where the flow is parallel to the field does not
uniquely determine a switch shock, for there is also a gas shock
satisfying the same criterion. The fact that a switch-on shock
cannot exist if the resistivity is zero can be seen by casting
equations (14) and (15) in the form

(B2 + B®) =0 (35)

Sax By TP

when R = 0 and g = O.

It is clear that all the results of this section are unchanged

if we neglect the Hall term (S = 0).

o T w



The results of (i) (ii) (iii) are summarised in Tables 2
and 3. The values of n are listed in Table 2. Clearly point I «can
never be a downstream point, while IV can never be an upstream one.
Table 3 shows what restrictions are necessary for each shock
transition to be possible, and also which transitions can never
occur. Those marked * correspond to decreasing entropy, and

those marked =F can never satisfy n; - np = 1.

6. Computing Shock Wave Structures

To compute a shock structure we must integrate the full
non-linear shock structure equations from one singular point
to another. 1In order to start the computation, we leave a singular
point using perturbations of the parameters (By, Bz, u, T, and
Ti) that satisfy the linearised equations (18) - (20). The
properties of the eigen values at the singular points determine
the method of computation for we cannot enter a singular point
unless the roots are such that all perturbations decay as the
solution approaches it. For example, in the case of a fast
(I = II) shock (Table 2) the roots upstream all have positive
real parts, while downstream two are positive and one is negative.
In this case, it is necessary to compute from the downstream
point to the upstream one. A further complication is that the
Rankine-Hugoniot relations give us the sum of the electron and
ion temperatures downstream, but not their ratio. Thus we must
guess a value for the ratio, compute towards the upstream point,
and if the electron and ion temperatures do not approach the same
upstream value, we must correct the guess and calculate the
structure again. In the case of the slow (ITT = 1V) shock, all
the downstream eigen values have negative real part, and it is
possible to compute from the upstream point (where there is one
positive eigen value) to the downstream point in a straight-
forward manner.

For the intermediate((I — TII) shock of 5(i), the situation
is complicated by the appearance at each singular point of two
eigen values giving growing perturbations. Thus a solution curve

cannot enter either point and a degree of freedom is allowed on

= PP s



the perturbation used to leave either point - the proportion of
the two eigen-perturbations. We again have the problem that we

do not know the separate electron and ion temperatures at the down-
stream point, but in order to simplify the problem we impose the
constraint T, = T; in this case. By integrating from the front

and back points and varying the perturbation, the solution curve

can be found by matching in the middle.

7. Results

With the exception of the intermediate (II - III) shock,
the parameters were chosen to match those of Paul et al (1965)
for normal shocks and Robson and Sheffield (1968) for obligue
shocks. For the intermediate shock they were chosen arbitrarily
to make all the scale lengths similar in order to ease the
matching problem.

(a) Fast Shocks

Computed structures for the normal case with the Alfvén
Mach number less than and greater than the critical value (MK)
are shown in Figures 2 and 3. Note that in both cases the BZ
component of the magnetic field remains zero throughout the
structure. This is to be expected since the Hall term (S) is
zero for perpendicular propagation.

In the case Mp < MK the electrons receive the bulk of the
irreversible heating, the ion heating being mainly due to adiabatic
compression with the ion viscosity playing a negligible role.

The velocity and magnetic field wvary smoothly through the shock on
the same scale length, determined essentially by the resistivity(R).
By contrast when Mp > Mﬁ , the ions receive substantial irreversible
heating so that T; > T, at the back of the shock. The velocity
undergoes a sharp change as the flow becomes subsonic and the scale
length of this 'sub-shock' is determined by the viscosity V.

Since R = R; T, % and V =V Ti% we have in this case R ~ V in
the region of the subshock,and a clear distinction between the
effects of resistivity and viscosity is not possible in Figure 3.

However, by making V << R, such a distinction becomes very clear.

- 13 -



In the experiments of Paul et al (1965, 67, 68, 69) the
electron temperature is measured directly, whereas the ion
temperature must be inferred by subtraction from the Rankine-
Hugoniot value for the sum of the two temperatures. Analysed
in this way the experiments show that the irreversible heating
;, while for M, > MZ
an increasing fraction goes into the ions. In this general sense

goes entirely into the electrons for M < M

the computed structures and experiments agree. However, the com-
puted scale length for the magnetic field variation is approximately
an order of magnitude less than the experimental value. This is
natural since we have taken the classical resistivity in the
computation, whereas the resistivity in the experiments is
enhanced by the electron-drift excitation of the ion waves
(Sagdeev (1967)).

In the case of oblique shocks the computed structures
(Figures 4 and 5) show rotation of the magnetic field vector
through the shock as re?resented by oscillating By and B,
components. This is a whistler wave standing in the shock front
which agrees with the experimental observations of Robson and
Sheffield (1968). The computed wavelength agrees well with the
linear theory of equation (34). We note that for high Mach numbers

and low B plasma the whistler wavelength is approximately

751 cosh
Loo= 27 a— — = 2718 (386) .

As with the normal shock, a sub-shock occurs when
MAl = 4,0 > MZ, but the effect is more marked in this case. The
velocity changes rapidly over a scale length determined by the
ion viscosity, whereas the magnetic field is sensibly constant.
Corresponding to this sub-shock there is strong irreversible
ion heating. Note, however, that the pre-heating of the electrons
by the currents in the whistler is such that even when MAl > M;

the electron temperature still exceeds the ion temperature at the

- 14 -



back of the shock. In the case MAl = 2.0 < M; only a vestigial
whistler oscillation occurs, essentially because of the strong
resistive damping. If the value of R 1is increased sufficiently
the oscillation can be damped out so that only a monotonic trans-
ition in B, occurs.

In summary we can say that there are three lengths in the
problem corresponding to resistivity (R) viscosity (V) and Hall
effect (S). The viscosity controls the scale length over which
the flow velocity u can vary, while the resistivity and Hall
effect control the magnetic field. If the resistive length is
substantially longer than the "Hall length" there will be no
whistler oscillations. If the opposite is true, there will be a
large number of oscillations roughly proportional to the ratio
of the resistive length to the wavelength. Note that since
resistivity and viscosity depend sensitively on temperature,
the effective damping lengths will show considerable variation
over their upstream values. Thus it is not possible in some

cases to predict the form of the structure simply from a knowledge

of the upstream values.

A polar diagram showing the critical Alfvén Mach number M;

as a function of 6 for different upstream plasma conditions

is shown in Figure 6. Note that the critical Mach number is
reduced as the ratio B (B = 16n1h,kT1/Boz) of the upstream plasma
is increased.

(b) Switch-on Shocks

An example of a switch-on shock structure is given in Figure
7. Most of the heating goes into the electrons. There is again
a whistler oscillation at the front of the shock and the wavelength
agrees well with equation (34) which for parallel propagation
takes the form
2
1

(37) «

. M
A —2nJ-~ml - o
- 2.1 M_2-1
w me MAl A

Because, in this case, the downstream flow is subsonic, a viscous

= 15 -



subshock appears at the back.

(c) Intermediate Shocks

(1) II - IIT shock

In finding the structure of a IT - III shock (with
electron and ion temperatures assumed equal) we examined the
integral curves leaving the downstream point for different (linear)
perturbations. The projections of some of these curves on the
o By) planes are shown in Figures 8 and 9. The
curves cannot enter the "saddle point" at II so they diverge to

(u, By) and (B

end with u - O or on another singular point, namely point I.
Two solution curves were found which went within a small pertur-
bation of the conditions at point II, hence the "matching in
the middle" could be performed at the front point. There is
clearly an infinite set of solution curves joining IITI to I
showing explicitly the non-uniqueness of the I - III shock
structure. (We also see the unique I - II transition).

To understand the extent of the non-uniqueness of the II -

IITI transition, consider the case S = 0. From (15)

dB,

—_— - u*

dg BZ ('Ll u*) (38)r
hence le| grows to some maximum value where the flow speed

crosses the normal Alfvén speed and then decays to zero. Since

BZ only occurs squared in the other equations, it is only determined
in absolute value. Therefore, there are two solutions having
opposite polarisation. This is to be expected since a large
aﬁplitude intermediate wave may have either polarisation. Thus,
there is a unique structure for each polarisation.

The two solutions are shown in Figures 10 and 11. They have
opposite polarisation at the front where the non-linear terms
dominate the dispersive effects. At the back, however, (where
the dispersive effects dominate) they are both polarised in the
opposite sense to that of the whistler. This is due to a higher
frequency intermediate wave which follows the shock. Since its

velocity is slightly greater than the sound speed, it is identified

w 18



from the linear theory of Stringer (1963) as an ion cyclotron/
acoustic wave. The wave is strongly damped because the local
value of V (~280) is larger than the wavelength (~235) given by
(34). With reduced dissipation we have shown that the wave
becomes a much more dominant feature with the wavelength agreeing
with (34) when V,R << S at the back of the shock.

We also see that due to the effects of the Hall term, the
right hand polarised case shows an expansion preceding the com-
pression.

(ii) I - IITI Shock

By neglecting the Hall term and imposing the condition B, & Q@
we found the I - III structure shown in Figure 12. In this case
the transverse magnetic field reverses by decreasing through
zero to its final value. The shock is first expansive and then
compressive as predicted by Anderson (1962).

Note however that this is only one of the infinite set of
I - IIT shock structures which exist when S = O, namely, the

one which has EZ = O when leaving point ITI.

(d) Switch-off Shocks

The structure of a switch-off shock is shown in Figure 13.
The flow is supersonic upstream and subsonic downstream, so a
viscous subshock occurs, this time at the front of the shock.
Consequently, the ions are initially heated more than the electrons
but subsequent ohmic heating makes the electrons hotter at the back

of the shock. The oscillations in B, and B, are in the opposite

sense to the whistler wave, and are iaused by a heavily damped
electro-acoustic wave (Stringer, 1963). The wavelength agrees
well with (34) which gives the dimensionless value of 208.

(e) Slow Shocks

Computed structures for a subsonic and a supersonic slow shock

are shown in Figures 14 and 15. Both show changes over a scale
length defined by the resistivity,with the second one having a sub-
shock as the flow becomes subsonic. The electrons receive most of

the irreversible heating. B, varies slightly through both shocks

= 17 =



in the same sense as the electro-acoustic wave (Stringer, 1963).
By decreasing the resistivity, a wave can be seen following the
shock. The predicted wavelengths (Egn.34) in the two cases are
126 and 137, so they are damped out by resistivity in the case
considered here.

Note that the magnetic field decreases across this shock.

Conclusions

We have shown that the only shocks to have a unique structure
are the I - II fast shock, the right and left hand polarised II - III
intermediate shocks, the III -~ IV slow shock, and the switch shocks.
We have computed the structure in each case. All the other transi-

tions are only possible with special limitations, and so must be
considered structurally unstable.

With one exception (when an anomalous resistivity coefficient
would have been more realistic) the magnétic field varies over a
scale long compared with the collision-free skin depth, thus
justifying the neglect of electron inertia. In some cases the
neglect of other physical effects such as thermal conduction and
shear viscosity is probably not justifiable, but their inclusion
would clearly complicate an already extremely complex multi-para-
meter problem.

Good agreement with experimental data on fast shocks can be
obtained, although to do this it is sometimes necessary to use fitted
(enhanced) values for the effective resistivity. As yet there are
no experimental results for switch-on, intermediate, switch-off

and slow shocks.
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