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ABSTRACT

The essential requirements for a stable diffuse pinch configura-
tion are derived by considering the hydromagnetic energy principle.
The two basic variables are the radial variation of the pitch of the
field lines and the pressure gradient. If the radial variation of
the pitch exhibits a minimum then the configuration will be unstable.
In order to confine a plasma of appreciable beta (10's of %) with a
vacuum fegion oufside the plesma, it is shown that the axial field
must be reversed and the axial flux must not reverse. Alternatively,
stability is possible if large axial currents flow outside the main
plasma column., It is proved that the value of beta with respect to
the field produced by the current must be less than unity for stabi-
lity; the maximum value for stability is found numerically to be

about one half,
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1. INTRODUCTION

The hydromagnetic stability of a linear pinch with the plasma
current confined to an infinitely thin layer, has been studied in
detail (TAYLOR, 1957; TAYLOR, 1958; ROSENBLUTH, 1958). However all
the structure of the fields is confined to this thin layer and here
we shall consider the stability of the diffuse lirear pinch where
this structure is all important.

To consider the features of a field configuration which are
desirable for stability we will use the hydromagnetic erergy principle
(BERNSTEIN 1958). From this variational principle can be formulated
necessary and sufficient conditions for the stability of a diffuse
linear pinch (NEWCOMB, 1960; SUYDAM, 1958). In particular a neces-
sary criterion for the stability of localised displacement has been
obtained (SUYDAM, 1958). However this criterion i1s not a sufficient
one and in this paper we consider the non-localised displacements or
'kink' modes, together with the localised displacements in an attempt
to determine the essential requirements for stability. This is
usually attempted using the theorems of Newcomb (1960) relating to
the solutions of the Euler-Lagrange equations associated with the
energy principle. Here we obtain our stability conditions by simpler
methods and only use the theorems in considering numerical examples.,

A number of model f'ield configurations have been studied in
detail, in particular the force-free Bessel function model (VOSLAMBER,
CALLEBAUT, 1962) and the force free paramagnetic model (KADOMTSEV,
1962; WHITEMAN, 1962) which compares well with experiment (BURTON,
1962). A modification of the latter model shows that the configura-
tion can support a small plasma pressure (WHITEMAN 1965) and further-

more if the criterion for local stability is not violated near the



magnetic axis then a whole range of stable field configurations is
possible, containing moderately high plasma pressures (ﬁ on axis
~ 20-30%) (ROBINSON amd KING, 1969) .

Experimentally relatively stable diffuse pinches are known to
exist, where the residual instabilities are not thought to be hydro-
magnetic (ROBINSON and KING, 1969; OHKAWA, 1963; BOBELDIJK et al.,
1969). However one cannot exclude the fact that in some of these
cases toroidal curvature may be playing a beneficial role even though
the current is above the Kruskal-Shafranov limit,

Tn Section 2 we shall establish a bound on the potential energy
available to drive an instability which leads us to distinguish
between current and pressure driven instabilities. By considering
all the possible radial pitch variations we establish which forms can
be stable.

The energy integral limits the value of beta with respect to the
field produced by the current, and in Section 3 this is derived
together with an integral condition for stability, which can be close
to sufficient. Section 4 describes a simple method for estimating
the position of the conducting wall for stability and this is
supported by numerical calculations. Finally higher mode numbers
are considered under conditions when the first mode (m = 1) is not

permitted due to periodicity.



2., ENIRGY INTEGRALS

We consider the usual idealised model of a cylindrically symmet-
rical plasma with infinite conductivity surrounded by a perfectly
conducting wall - the columnar pinch of Newcomb (1960).

For such a system the magnetohydrostatic equilibrium condition is

dp B —2 , -84 =
dr * 2 dr * r dr o BB 0 (j)

where p 1is the scalar plasma pressure, Bz the axial field and
Be the azimuthal field in our cylindrical coordinate system. The

field lines form a system of helices with pitch length

on ]33/3e .

We consider the plasma to be subject to a small displacement
from this equilibrium state and according to the energy principle,
if the energy integral is positive for all displacements satisfying
the boundary conlitions the system is stable. For a cylinirical
system the displacement can be analysed in the fomm

E exp(imb + ikz)

r,0,z

272
where m and k are the azimuthal and axial mode numbers respec-
tively. The energy integral can now be minimised with respect to
E which shows that minimisation is effected by incompressible

0,2
perturbations. The expression for the energy integral can then be

written s
w,(g) = n/2 fbrdr j(kr B + mB,.) a& + (kr B - mB,) gj} /(m® + )
A L z 8’ dr ) z &/ r N

0 -

+ e (kr B, + mBO) 2 By 14 (rBe)

-

(2)



where & = Er and b is the radius of the conducting wall. The
sufficient condition for stability, that |rBe‘ be a decreasing func-
tion of r, everywhere, can never be satisfied in a columnar pinch.
This minimisation is not correct if there exist finite regions of

cons tant pitch, since in this case the minimising perturbations are
compressible. For a region of constant pitch, ¢ < r < d, where the
perturbation helix exactly matches the pitch of the magnetic field

lines, the energy integral becomes

W(E) = -ﬂ/zfr'drl:ZB ——;-«-u:B /r"’(B + B +YP)]€2 (3)

where y is the ratio of specific heats. Note that the integrand
vanishes if the region of constant pitch is a pressureless one.
If we use the boundary condition that E(b) = 0, equation 2

can be integrated by parts to give an alternative expression for

W(E)i b
T d 2
WB(E) = 5 f [f(d—f) +g52]dr
o
2
(krBZ+mBe)
f =T
m? + k2 r’
2 2 2 2 2
g:——-2kr a2 . 1 (xyB +mB)2—-———kr+m_1+
2 2 2 dr r z 5} 2 2 2
m +k T m +k r
ok® r
(x* ¢ BZ - m’ Bg) (4)

(m2 + K ra)

For some situations, for example, when the effect of an insula-

ting wall inside a conducting shell 1is included, it is convenient to
combine (2) and (4) so that

- (kzazBi (a) - sz% (a))
W(g) = W(E) + 3

£(a) + w,(8) (5)

2
m + k a

0 <r<a a <r<b



where the integrals, W,, W_, are to be taken over the indicated

A B

ranges., The Euler-Lagrange equation

a@;(f%>-ga=o (6)

must be satisfied by & to make the energy integral , WB(E), an

extremum. This equation is singular wherever

krB_ + mBy = O (7)
and the behaviour of the solutions near the singularity gives rise to
Suydam's necessary condition for stability (SUYDAM, 1958)

rB?
- (%)2 + % > 0 (8)
where P is the pitch, defined as P = rBZ/Be. This criterion limits
only the local pressure gradient and thereby does not give the limit

to the value of P that a given field configuration can confine.

2.2 A Lower Bound for the Potential Energy

Let us consider the m = 1 mode for which the boundary conditions

on & are E(b) = O, Q% l = 0., 1In this case g (equation (4))
0
can be written in terms of the pitch.

k2 p? dp k IB@ 2 _2 2. 2
= ot T o [P+ 1)(xP(3 + k°r®) + kPr- 1)]
T P r ('1-%-1{.'(‘22

(9)

For a confined plasma the first factor is negative when %ﬁ is
negative, which is usually the case over much of the plasma. It can
only make a positive contribution to the potential ernergy for a dis-
placement which is localised near regions of positive pressure

gradient. Stability therefore depends crucially on the second factor,

especially where %ﬁ is small,



By completing the square in KP in equation (9) we can obtain a
lower bound for g. This gives an estimate for the maximum potential

energy available to drive an instability.

d kzr2 AB% ksz .
g(r) > 2 28 — - Se— (10)
dr 1 + k' r r (1 +kr?)? (3 + X°r°)
which is minimised w.r.t.k for k° = 0'59 and thus
& 2
dp __®
g(r) > + 2 dr 3.8r (11)

B2
_.dp 6
and  g(r) > g, = <‘dr ~ 3.8r )

where the minimum value of the expression on the right hand side is

to be taken. For higher m numbers (m 2 2) this lower bound becomes

B2
d G
= mEB _ )
& < dr 2 nin

m r

(12)

From equations (11), (12) we see that an instebility can be driven by
the pressure gradient, either in the form of a localised Suydam mode
or otherwise, and by the current (BG)' For higher modes the pressure

gradient predominates but form = 1, the current driven modes are

most important, provided Be = 2§ %% < 1 (see also (WARE, 1964))
B
Tt follows directly from quation (10) that
r d 2
wi-ehe -~ - (13)
By (1 + X¥°r°) (3 + k°r")

everywhere, is a sufficient comition for stability. It might seem
that by combining a central region where equation (13) is satisfied
and an outer region where the sufficient cordition from equation (2)

is satisfied, we could produce stable configurations with the value



of beta limited only by equilibrium (LAING, 1958).
However, this is not the case as the energy integral now involves the
surface tem, equation (5), which is only non-negative if Be(a) = 0.

Such a configuration could not exist in equilibrium in a torus.

2.3 Radial Pitch Variations and Stability

We now consider the detailed behaviour of the term in equation (9),

which gives rise to the current driven modes; for m = 1

a3
k rBe 4 g
(xP + 1) (kP(3 + k°'r" ) - 1 + k°¢°

€5 © 2 2.2
J (']+kl") (14)

2_2
For kP < -1 or kP > Lale g. 1s positive and if this is

2 2
true everywhere the partfcglzrrﬁode, k, will be stable. The region
over which g; is negative diminishes as k°r® is increased as the
two roots for gj = 0 approacn each other.

Let us now consider all the possible radial pitch variations,
dpP

some of which are illustrated in Fig.1. As =0 for cases

where the pitch is finite on axis, then either tigbgitch decreases

or increases (Figs.1(a), 1(b), 1(a)) monotonically or it can possess

a minimum (Fig.1(c)) or maximum™. In the latter case it must also
possess a minimum on axis, which for our purposes is covered by the
monotonically increasing case Fig.1(b). A second class of pitch
variations comprises the case when the pitch can go to infinity over
some core region near the axis (i.e. a case where there is no axial
current in the core), but Figs.1(a), 1(0), 1(d) cover the three possi-
bilities in this case also.

Fig.1(a) shows a pitch variation which is similar to that of

the force free paramagnetic model (KADOMTSEV, 1962).

# A'point of inflection is considered as covered by Fig.1(a).

-7 -



The behaviour of g; as a function of k and r for this case is
szen in Fig.2, which shows a region of regative gj concemnt rated near
small k values, i.e. long wavelength instabilities. If we consider
a perturbation with wavelength 7, such that there is a singular
point %f P(rs) =-1 at r_, then there is an inner region

0 << Ty where gj > 0, an outer region where gj < 0 initially
and becomes positive again at 1r; when lkrl 2 4. In infinite con-
ductivity theory the regions either side of the singularity can be
considered separately, consequently the inner region is stable and
the outer may be unstable depending on the position of the conducting
wall. For large k, i.e. small X, the region of negative &;
between T and 1r, becomes localised close to the singularity at
ros permitting only a localised instability of the Suydam type. For
small k, gj/f ~%k? and thus £ must be almost uniform to satisfy
equation (6) and consequently instability is only possible for a
corducting wall positioned at large radii. Therefore the most
unstable wavelength for a 'kink' instability will be X ~ 2nP(o) i.e.
kP(o) = - 1 (most unstable in the sense that the radius of the
conducting wall for stability is least compared with other modes,

see Fig.7). In Section 4 we will demonstrate how to estimate the
critical wall position for stability to such modes.

If there is a central core region to the configuration where

B, is negligible and the pitch becomes infinite, then gj is

5]
positive for such a region, as indicated by the line passing through
r, on Fig.2, Because of this the configuration is less likely to

have a negative value for W(E) for a given conducting wall position,

however such a situation may only be a transient one because of field

diffusion.



Fig.1(b) shows an example in which the pitch increases away from
the axis, as is thought to be the case in Tokamak (ROBINSON et al.
1970). In this case we can show that, in a cylinder, the con-
figurétion 1s unstable to anm = 1 instability. Choose a trial
displacement & as shown in Fig.1(b) which vanishes as we approach
the singular point ros defined by '%i P(rs) = -1, € 1is assumed to

be very small then
Iy Ty rB
W, =2 gdr + 6 (r-r )?/e? ar | B2 = 2 g dr
B 2 8 £ 0

(15)

(S b=

L T ]

where f has been expandgd near the singularity as 6(r - rs)z.

If Nz is chosen so that kP * 1—:—3252 , which is always possible
then g3 < 0 in the interval 03<+rk<rrS and therefore Wé <0
and the configuration is unstable. A positive pressure gradient in
this region could stabilise such a mode. Note that the instability
would be partially localised near the axis.

In Fig.1(c) we have a pitch variation showing a minimum which
will occur when there is a vacuum region outside a plasma, such as in
the ordinary stabilised pinch, where the pitch is proportional to rz,
In this case we choose a trial function £ which is non-zero between
the two singularities T, Iéz for a wavenumber Zﬂ/ha as shown.
In the region T, < r< Py gj < 0O provided A; is chosen so that
kP $ 1—:—E§£§ » Which again is always possible. As in equation (15)

3 +k’r

WB < 0 and the configuration is unstable to a fairly localised

instability.
The fourth figure, 1(d), shows a configuration with axial field

reversal, which can have a vacuum layer outside the plasma without

introducing a minimum in the pitch and therefore instability as in



Fig.1(c). In this case the regions of gj < 0 are indicated in
Fig.3, where k°’r° has been assumed small for simplification of the
diagram. A larger value of k?r® reduces the area where gj < 0,
The diagram for negative k is essentially as in the lower half of
Fig.2 except that the boundaries associated with

1 -k

34k

kP and kP = - 1

approach each other at the field reversal point, r,.

When k. is small and positive gj is negative out to the point
kP = - 1. In this case a trial function of the form shown in Fig.1(b)
is possible and therefore the positive contribution to W(&) from f
for small negative values of k 1is no longer possible for small
positive values of k. If we choose k so that kP(o) < % and if
kP(rs) = = 1 is such that r, is less than the radius of the conduct-
ing wall, then gj < o everywhere and, as in equation (15), the
configuration will be unstable to a large scale instebility. This

gives us the simple necessary condition for stability
P(r) > - 3P (o) (16)

where P(r) is the pitch at the outer conducting boundary. This
implies that at the outer wall B6 camot be too small relative to
BZ or BZ too strongly reversed. For example, taking the force
free Bessel function model with By = J, (r), B, = Jo(r), equation
(16) then gives instability when r > 3.35, the actual stability
eriterion is r < 3.176 (VOSLAMBER, CALLEBAUT, 1962).

Condition (16) ig far from a sufficient condition for such configura-
tions as we shall demonstrate in Section 3. Evidently the most

unstable wave number for reverse field configurations is about 1P(o).

Note that this is opposite in sign to that associated with field

s O



configurations possessing no reversal. Inclusion of a core region

where B vanishes again makes gj positive for small radii, and

)
equation (16) is not valid.

It is possible to formulate this type of argument in an exactly
equivalent way starting from the expression for WA rather than Wﬁ.
However this approach is less illuminating, apart from indicating
that an outer region where the current is reversed is helpful for
stability, both with respect to localised (ROBINSON and KING, 1968)
and non-localised modes. A sufficient condition for stability to
the mode which we consider to be one of the most dangerous for

reversed field configurations, namely k = - Ef%f) is from the two

tems involving g% in equation (2) just

everywhere. For small r, if jz is non zero this requires
| Eel |
> 1
P(rw
and for large r that jz € o. These conditions are certainly not
necessary ones but are found to give a good guide since all the con-
figurations of this type which have been shown to be stsble approxi-

mately satisfy these comlitions, for example l ?%%2% , can fall to
w

a value of 0,7.

3. INTEGRAL CONDITIONS FOR STABILITY

The considerations of the previous section essentially relate
to current driven instabilities which do not depend on the value of
B. However by considering the pressure gradient term in equation (9)
we can obtain estimates for the maximum values of B that configura-

tions (a) and (a) of Fig.1 will confine,

- 11 -



Let us first consider WA(E) and a wavenumber such that
kP(rw) = -1 whers T, is the boundary of the plasma. The values
of k may be either positive or negative depending on whether the
axial field reverses or not. For this wavenumber we can choose a

trial function as in Fig.1(b), which satisfies our boundary conditions

2 2_2
m° + k*r

then ( )
rw krB -mB,)
_ X 2 dar 4 2 __z 0
WA( E) = 5 & f - [- 2Bg oo TBg + (krBz + mBy)® + ]
o}
(17)

3,1 Stability Limit to Be form =1

Form = 1 from equation (17) we obtain

2_2 S 3\2
k*r (krBZ—Be)

w
WA(E) ="'5‘ g2 [. %[— 2B, -f—l: By + 2k2r213§ + 2]3; - e
the last temrm is always negative, hence a necessary criterion is that
the sum of the first three temms should be positive.
Integrating the first and third terms we find that

Bg(r ) Iﬁ
WA(E)S’EEE[— 2w +k2[ rBZ

o}

For WA(E) to be positive, it follows from integration by parts and

using pressure balance that

2 2

i Be(rw) > 4'[r r pdr (18)
o

If we write the Bennett relation for a diffuse pinch as

r
w

{3612=2NkT=4m:] r pdr
o}

where I is the total axial current, T the average temperature

and N the line density, then equation (18) gives the necessary

criterion for stability

Bg <1 (19)

- 12 -



Note that we have made no assumptions about the configuration apart
from the existence of a wavenumber such that -kP(rw) = -1, and

m = 1. Criterion (19) will always be satisfied for a resistively
heated diffuse pinch (BUTT and PEASE, 1963).

but for a screw pinch with compressional heating the criterion can

be violated,leading to instability.

3.2 Stability Limit to Bg form =0

WA(E) can also be used to establish a limiting B form = O
perturbations in the case when the axial field is reversed. Suppose
the field revcrses at r, then choosing a trial function & = A r,

' A
O<r<r -e ani E-= (ro - &) - (ro -r), r -e<r<r  am

taking the limit € -» 0 we obtain for WA

r
o}

_ X .2 N a 2 2,2
WA(E)_fo xdr[ms 2B, rBe+krBz:'
o]

which for k - O requires

o
2 2 2
r_ By (ro) > 8 ] rpdr - 4 r’ p (ro)
o

and if p(ro) % 0 then using the Bennett relation requires

By < & (20)

A completely stable conliguration with BZ = 0 at the boundary and

containing a By close to this limit is known to exist (RUSBRIDGE,

196L.).

3.3 Stability Limits for Reverse Field Configurations

Turning now to w3(g) for a trial function as in Fig.1(b) we

have the necessary criterion for stability

k®rp?
f dr[:ri +___9_, (kp+1)(kp(5+k2r2)+k2r2-1):l>o
k d Ko
+ r® dr (1 + ) (21)

- 4% -



where k, r_ are defined by kP(rS) = - 1. This necessary criterion
can now be applied to reverse field configurations to obtain the
maximum possible value of P for a given compression ratio and degree
of field reversal. In addition it can also be applied to field con-
figurations showing no reversal, for it allows us to cbtain the
critical pressure gradient for a region where gj >0 or kP < -1,
The application of the equilibrium equation to (21) gives no
simple expression, so we will demonstrate the essential features of

(21) by choosing a model for the field configurations.

D<yr<yr =0
o

B =3B
z Z0
BB small
r - §<p<r +506 BZ reverses,
By rises and there

is a pressure gradient.

r +0<r<r
w

o}
B, = Bz(rﬁ)
rO

and & << r .
0

If we assume kzr; to be small then we have

4 4 _2 2.2 2 [: e e -~ 1
3 S 4
z k r0 BZO k Be (ro) ro log - + 2
0 r
, w
¥ = T .
-%( = - 2k I‘ip>0
r
w
or if B = 22P
Bk,
r? B*® r r?
paa( ) (= 1)-(1og-w+g-_-2>>o
Y B® (r ) T r’
W o w

- Al



r

B
;# is the compression ratio and [ E—T;rj—| the degree of field

erersal. This illustrative example is ghown in Fig.4 where we see
that large compression ratios necessitate small degrees of field
reveréal and the stability boundary is not very sensitive to B. It
iﬁ?easy to verify for this example that if the total axial flux
/.‘WI'BZ dr is negative then there will be instability and this is
leo borne out by numerical calculations (for an other example see
Fig.8). Increasing kzr; has a stabilising effect but this is
equivalent to decreasing the degree of field reversal and this wave-
number is no longer the most unstable, It is interesting to note

that the optimum heating requirements for such a plasma are incom-

patible with the conditions for stability.

3.4 Proximity to Sufficiency for Modes Having Integral Conditions

for Stability

If the necessary criterion (21) is to be of practical use then
it must be close to sufficient for such modes. Thus we have to
demonstrate that the trial function of Fig.1(b) is close to the dis-
placement which minimises Wﬁ(i).

Let & have the following fom

Sr
£ = EO t==—F i O<¢r2n -8
w
and (gﬁ -r)
E = (EO +8) — =, L, -e8<rc< r,

where & is assumed to be small, then

rW
2
I e T T N I
4 o] I'_W o] rir

(The boundary condition at r = O can be satisfied by choosing a small
region over which the gradient in & vanishes, which does not con-

tribute to the above integral in the limit). For small and large

- 15 -



W
Kr?, ]I‘(f +gr)dr >0 and for k®r® 21 the region over which

0
f+g r" can be negative is small, consequently the third term on the

I
w
right of equation (22) is usually positive. Plainly if J[ rgdr 2 0

then WB(E_,) is positive, whereas if [rwrg dr = 0 it isonegative.

If the term in &° is positive then® f Y orgadr >0 is a sufficient
condition for stability and as g 1is a?function which is strongly
weighted to large r (ecr Bg) then the two integrigs will have

similar values and thus the necessary condition f. ! gdr 2 0

forms a reasonably accurate necessary and sufficiZnt condition flor

such modes (gives the wall position to an accuracy of about 7%).

This is borne out by numerical calculations, as illustrated in Fig.5,
which shows the minimal & as the wavenumber approaches that given

by kP(rW) = - 1. These E's are very close to our simple trial function
and thus equation (21) will give necessary and sufficient conditions
for stability for this particular wavenumber. We have already shown
that for reverse field configurations this wavenumber is approximately
the most unstable.

For configurations possessing no reversal equation (21) can still
be used to detemmine the critical pressure gradient. For example,
consider a configuration where the pitch becomes infinite on the axis,
i.e. B, = Ar" , n >1 for small r, then for g small, such that

G

krs << 1, equation (21) becomes

Ir
s
2 2 d 2 3 2
k[ (21« -Bdr+3krBZ>dr>o,

o)
This requires %E > 0 for small r as k can be chosen to be

. . oA . ;
arbitrarily small, k = ETEQT' For larger r this equation can

be solved to give the limiting pressure profile such that this inte-

gral is always positive as the wavenumber is varied.

- 16 -



4. POSITION OF THE CONDUCTING WALL FOR STABILITY

In the previous sections we obtained various necessary (and
 sufficient) conditions for stability. Here we will indicate how to
estimate the position of the conducting wall required for stability
which previously was only obtainable using Newcomb's analysis
(NEWCOMB, 1960)., By a change of variables the Euler equation (6), can

be rewritten in the fom

be)
X ¢ v ile,m, B) 50 (23)
ar®
Wiiere 1 (kr B +m By)
'l!! = r2 Z .

B
(m2 + X° r2)2
which is closely related to the radial field perturbation. We then

apply the following theorem: If A has a maximum positive value

2
A (the solution of iy + A ¥ =0 has its first zero at
g dr” MR 1

2 " —_
=] i a i f ] i
T:/Amax) the solution of equation (23) has its first zero at r » ﬂ/Amax
The accuracy of the estimate depends on how close V¥ approaches to
1

sin <A§ax r). The boundary for stability is therefore obtained by

invoking Newcomb's theorem (NEWCOMB, 1960) concerning the first

zero in & and maximising A with respect to r and k.

A 1is a complicated function and given by

oK r? 5 do (wB, -l By) o 2omk (o' +10m°k®r® - 3Kt ]
o2 dr mBe+kr BZ o2+ k22 1+r2 (m2 K2 )2
x84 Ei.E_i(Lii_E +<L@>z_(m2-kzr2) 1_dp
(mBy + kr 32)2 B®r dr dr \ B? dr B® dr m +k°r°  rB® dr
0 gp Lo (mB - kr Be) kB - mBy/r ]

- —2 _.E Z + Z ) o = {.E/Bz (2)4—)
B” dr mB. + kr B mB, + kr B
e A V] Z

This method can be readily applied to the force-free Bessel function

model where %E = Be = Jl(r), Bz = Jo(r) and therefore

- TG -



T = JZ/BZ , g—‘; - 0. This latter property makes equation (23) non-

singular at kr BZ - mBe = 0. In this case A has the simple fomm

_Bm_n’ sk P 2mk C(mt v on® K P - 3 )
r m® + k° r° Lr® (m® + K5 r?)

(25)
Maximising this coefficient for m = O and 1 gives the position of the
first zeros to be not less than 3.3 and 2.97 respectively, and the
corresponding waverumbers as O and + 0.5; a conducting wall placed
at r € 2.97 will therefore give stability. That a positive wavenumber
should be the most unstable for m = 1 agrees with our general consi-
derations (Section 2) of the stability of reverse field configurations.
The exact analytical results for the position of the wall in this

case (VOSLAMBER, CALLEBAUT, 1962) are infinity and 3.18

form = O and 1 respectively. However we have made an estimate for
the position of the first zero in ¥ (not é) and as noted by
Whiteman (GIBSON and WHiTEMAN, 1968) this gives us the conducting wall
position for stability to the tearing mode, In this case the axact
positions are 3.83 and 3.10 form = 0 and 1 respectively, which are

the numbers to be compared with our estimates. Thus in this case the

method is accurate.

do

i # 0 and A possesses a

For all other field configurations
singular term. Our general considerations showed that the most
unstable perturbation for a non-reversed field configuration was ons

given by kP(o) = - 1, so the singularity in A occurs at r = 0.

Expanding all the quantities in A for small r we have

2
.0 (_1— 2r

P YY) B ses )

j 2
e P(o) (26)

1

0] r ..
= O — ve s
g (1 P(o)2 (1 + 2y) + )
2 P 4°P
P =P(0) (1 + ===+ .00 )5 Y=" "
: P(o) 2dr
r=>0
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where we have assumed %f = 0. vy 1is the curvature of the pitch on
axis.,
For local stability (ROBINSON, 1969) to m = 1 we have vy > 0 i.e.
a pitch variation as in Fig.1(h), and ¥ < -‘% (Fig.1(a)). When the
shear is 'strong' <- % and 45 ;5 positive, whereas for Lo
g g =2 dr 2 dr ?

%%. is negative which we already know to be unstable (Fig.1(b)). The

; : 1 + 2
singular term in A for small r +takes the form - é—:—Eﬁ%%j
2 .
which for the perturbation kP(o) =-1 becomes - ! : This
ry

is negative for ¥y < - % or >0 and thus we can apply our theorem

to equation (23) for this perturbation which is singular on the axis.

Both the force free Bessel function and paramagnetic models have

Y=-% and so o is approximately constant for small r. For the

do BB Bz ZBB
3 —_ 2 —_— — - 3 -
paramagnetic case 0o = BZ/B e ” ( T 1) and maximising
1

A form =1 and k = -3 we obtain 2.82 as the limiting wall position
for stability. The numerical solution of the Euler equation gives
3.16 so again the method is reasonably successful. The theorem can
be used for examples with finite pressure gradients provided they
satisfly op 2 0 for small r, otherwise they are unstable to a

dr

localised displacement near r = O,

5  NUMERTICAL EXAMPLES OF STABLE AND UNSTABLE CONFIGURATTIONS

Thess calculations have been perfomed using the numerical pro-
cedure developed by Copley and Whiteman (COPLEY and WHITEMAN, 1962).
First we consider the configurations of Fig.1(a) and (d). Fig.6
shows a force free field configuration derived from the paramagnetic
equations by the inclusion of a temm Sﬂhﬁz (which has the form of a
Reynolds stress between the conductivity and electric field). This

additional term allows reversal of the axial field, Bz’ wnich can be
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arbitrarily varied. The resulting stability diagrams for various
values of this parameter are shown in Fig.7. For no field reversal,
a = 0, the most unstable wavenumber is that given by kP(o) = - 1,

or k = 0.5; this is also true for the reversed field cases as

2
1

stabilising for these negative wavenumbers, but as noted earlier

P(o) = The increased shear produced by the reversal is more
instability is now possible for positive k.

Guided by the necessary and sufficient conditions obtained above
we have constructed a field configuration in Fig.8 with a central
value of P = 31% which is stable for wall positions up to that marked.
Note that the point where the total axial flux vanishes is close to
the stability limit. The maximum value for B 1is probably not more
than 40%. The existence of such field configurations has already been
pointed out (ROBINSON and KING, 1968) using fields generated
from a paramagnetic model by including an azimuthal electric field
EG' |

Consider now the configuration of Fig.1(c), produced by vacuum
fields outside the plasma, This is most conveniently obtained analy-
tically, by supposing that the conductivity decreases radially in the
paramagnetic model. Fig.9 shows the stability diagram for a configu-
ration like that of Fig.1(c) obtained using o, = o,,(0)(1 - r°/21).
The position of the singularity, kP(r) = 1 is denoted by S and is
a plot of the inverse pitch. Not only is there instability produced
by the minimum in the pitch, as we would expect, but also at the
point kP(o) = -1. This later instability is a local one due to the
fact that the curvature of the pitch on exis ¥y = g iig = - &%
fails to satisfy the stability criterion (ROBINSON, ?5693 P

that ¥ >0 or < - % for stability. The stability diagram for a
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pitch variation of the form P = 0,8 cos r + 1.2 is shown in Fig.10.

In this case ¥y < - % so there is no local instability associated
with k = - 0.5. Again an instability is associated with the minimum
in the pitch, and in the usual way with kP(o) = ~1. A more extreme
case where the minimum in the pitch occurs at r = 2.5 rather than

r =L4.2, of Fig.9 is shown in Fig.11 for o, = o,(0)(1 - r*/10).

Here vy = - #% so we have the local instability again, an instability
associated with the minimum in the pitch and a third region of insta-
bility appearing because the configuration tends to that of Fig.1(b).

In addition to considering these types of field configuration we
have also studied those where the pitch tends to infinity on axis,
where regions of constant pitch exist (BOBELDIJK et al. 1967).
and/or large currents flow outside the plasma. The maximum beta for
stability is obtained by optimising the pressure gradient, in the
outer regions such that equation (8) is satisfied and near the axis
so that the Qf g dr criterion" (Section 3) is satisfied. For example ,
if jZ is assumed to be uniform then the field configuration is
determined by these conditions amnd the maximum value of beta for
stability is 35% (RUSBRIDGE, 1964 ).

Conf'igurations possessing regions of constant pitch outside the
plasma and relatively high values of P internally have been studied
experimental 1y (BOBELDIJK et al., 1967) and theoretically (SCHUURMANN
et al,, 1969 and GOEDBLOED, 1970). Fig,12 shows a field conf'iguration
possessing constant pitch and zero pressure gradient everywhere, i,e,

B, - —Cr/P B - —GC

— 3 =t
8 1+ 2 /P? 29 4 /PP

where C is a constant. The stability diagram shown in Fig.13,

nf—=

exhibits instability at all radii close to k = - 1/P = -



Actually at k = - 1/P the energy integral vanishes, equation (3).
Fig,12 also shows a configuration where the central core has been
replaced by a pressureless region with Be = IP/Z. The stability
diagram in this case, Fig.13, shows instability only in the constant
pitch region.

In an attempt to find configurations containing an appreciable

B that of Fig.1k, defined by a pitch variation of the fomm
p(o)

1T+
Even though the Suydam criterion is satisfied it is unstable for

P = 2.0 + 1.6/7°, and a pressure profile p(r) = , was studied.
wavenumbers in the range O -» - 0.47 to an instability which arises
because the "f g dr criterion" is not satisfied for small radii, as
the pressure gradient is too large.

Figs.15 and 16 show the configuration and corresponding stability
diagrams obtained by optimising the pressure gradient to satisfy the
ﬂf g dr criterion" and Suydam for the same pitch variation. Fig.16
shows the stability diagram for B = O and for the maximum beta
value for stability of 5%. Thié is to be compared with the case of
a screw pinch with a sharp boundary which gave B ~ 20% ( SCHUDRMANN
et al., 1969); evidently the diffuse nature of the configuration
reduces the critical @ for stability.

The numerical results presented here and the general considera-
tions given in the preceding sections indicate that there are only
two types of configuration which are stable for appreciable values of
B. These are the reversed field configurations with small or zero
current near the outer wall and configurations with large currents
near the wall. Configurations possessing regions of constant pitch
near the outer boundary do not appear to have more favourable stabi-
lity properties than other configurations with similar large currents

near the wall.
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6. HIGHER MODE NUMBERS m 2 2

For practical systems without a periodicity restriction the least
stable displacement are those with m = 1 so there is little need to
consider the higher mode numbers. However, the m = 1 mode may be
absent due to periodicity, for example in a toroid or cylinder of
finite length which has a pitch length comparable with the length of
the system, and in such cases the hydromagnetic stability depends on
the higher modes (SHAFRANOV, 1970) and in particular the Suydam
criterion.

Let us now consider a toroid of major radius R so that the
wavenumber k has discrete values n/R, n = 1, 2, «es , and
q = %. The singularity condition becomes ng + m = O and consequently
as g becomes greater than unity at some point the m = 1 mode is no
longer possible. As we have seen, the configuration of Fig.1(a) is
most unstable for kP(o) = - 1 so that a(o) would have to exceed
unity to exclude the m = 1 mode. However for the configuration of
Fig.1(d) the most unstable mode was that given approximately by
kP(o) = 1/% so periodicity will strongly affect the results when
q(o) ~ 1/3 as the most unstable modes are no longer permitted. A
similar conclusion is arrived at for configurations possessing core
regions where the pitch becomes very large, or the axial current is
negligible on axis.

In this notation g (equation (6)) can be written

2
n r B

6 2 m® + n° rF/R?
P Y —. (ng + m) { (ng + m)(m® - 1) -
R(m +n I‘/R) - I‘/R2

+ ng(m® +2 +n° r°/R%) &+’ -2m 4+ m 25 }

R
2_2
- @ g By BB (27)
R By dr
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where we have ignored temms arising from toroidal curvature for the

moment. Form = 1 the two boundaries for stability i.e. g > O, are

ng < - 1 —<‘I +n2r2> -ﬁ-@- and nq>l + 13—6
o8 L 3 L
where Be = % dp is assumed to be small.
Be dr

For (36 = 0, the two roots of the equation g = O are

Lm

ng = -m 3 ng = -m +
2 3 L B
(=-(%))
\2

m2+2+<n—§> + (m® - 1)

(28)
As m increases so the twb roots approach each other and the region

over which g can be negative decreases. As r/R is small and

ng ® -m then the second root becomes nq = - m ——;L-—) <% ) .
m(m -1
If we expand q near the singular point as q =4q (r's) + A % + e

then the distance A , over which g 1is negative is given by

dr m2-‘1

4 e T (frqj (29)

For g > 1 this is very small even form = 2, provided the shear is

not very weak i.e. é‘% % 4. Examining the roots of equation (27)

2
for Be # 0 we find that provided Be > <R_Ic.1 ) , the equation for

A is

(VB

Adg 2r _@_e__,. (30)

d
q dr Rg (m2 _ 1)‘2‘

A lower bound on g for this case is
B? 4
8 s
r) > — —
s(r) > — By ( e )
which by comparison with equation (11) and assuming {36 = 1. will g

ive

2
r
rise to much slower growth rates than form =1, by a factor ( T ) .

o Bl



Without any additional temms in our energy integral due to toroidal
curvature the configuration of Fig.1(c) is unstable. However, our
proof that the configuration of Fig.1(b) is unstable is not valid
form = 2 as the boundary condition on axis changes, and g 1is posi-
tive for small r. In this case application of a modified form for
the integral g condition gives rise to a critical value of the shear
for stability if Be is small. We choose the perturbation shown in
Fig.1(b) except that it goes to zero rapidly near r = 0; this it can
do and make no contribution to the energy integral as f - Q ag r » 0O,
2

Using the g of equation (27) and expanding q = g, + ar + ... we

obtain

& q, R® > 22 : or R q, é—f e b (31)
m -1 dr ok )

as a necessary criterion for stability, when Be is small. This
parameter is the quantity vy (ROBINSON, 1969) mentioned earlier,
which has to be positive or < - % to ensure stability to a localised

displacement near r = O, In practice equation (31) would easily

be satisfied unless the shear near the axis was very weak (i.e.

rdg (.Y
z39. (2,

The inclusion of toroidal curvature into the energy integral
introduces a term of the fomrm %E qa, consequently situations which
are unstable because the pressure gradient is negative become stable
when g > 1 (i.e. toroidal curvature greater than field line curvature).
Even when ﬁe is small there are other toroidal curvature temrms
associated with the driving force for the possible instability of
equation (31), namely é% Ei , but we shall not consider the effect
of these here (ROBINSON, 1969). Evidently for q << 1 there

are no toroidal effects associated with the stabilify criteria

that we have derived. However as q - 1 so the "/g criterion"
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which depends on a detailed radial balance of positive and negative
terms, is likely to be strongly affected by toroidal effects if
stability is achieved by having ,f g dr 2 0. This may be favourable
or unfavourable. Certainly the latter is to be expected if the
stability largely depends on pressure gradient driven modes.

Consequently for m 2 2, only Fig.1(c) will be unstable and then
only if Be is small enough to allow the current driven instability.
Such an instability could be present during the heating phase of a
Tokamak when skin currents flow (ROBINSON et al., 1970).

From equation (11) it is seen that the growth rate for anm = 1

instability is given approximately by

O - S (32)
Lmp a2

where a is the radius of the systeﬁ and p the average mass density.

For a flute instability in a Tokamak this becomes

2
#ts (5]
hﬂp a° Rq

whereas for a current driven instability the growth rate is given

2

approximately by B® 4
=10
Lmp az Bq

and ® can be two orders of magnitude slower than that given by

equation (52).

7. CONCLUSION
The stability of a diffuse linear pinch system has been studied
in order to determine the essential requirements for stability and
the maximum values of beta for stability.
By considering a lower bdund to the potential energy available

to drive an instability we find that the first azimuthal mode (m=1)
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is predominantly a current driven mode, whereas for higher mode numbers
pressure gradient driven instabilities are more important.

An examination of the potential energy available to drive this
m = 1 current or kink instability shows that it will always be
unstable if the radial variation of the pitch of the field lines
possesses a minimum, For stability it is therefore necessary for
the pitch to decrease away from the axis., If the pitch changes sign
then the system will be unstable if its magnitude at the outer boun-
dary is more than three times the central value.

A gereral proof was given that the value of B with respect to
the field produced by the current i.e. Be, must be less than unity
for stability.

An analytic method for testing the staebility of a given configu-
ration, which is shown to be in good agreement with numerical calcula-
tions, is derived. It is formulated in tems of a trial function for
the displacement which is uniform, and the resulting integral condi-
tion is shown to be close to sufficient for perturbations whose
wavelength coincides with the pitch length at some position. If this
is on axis (or does not exist) a simple theorém can be used to esti-
mate the position of the conducting wall for stability. Application
of these results shows that values of B of 30-40% are possible for
two classes of diffuse pinch configurations - those where the axial
field reverses outside the plasma or where large currents flow in
that region. The former case is the only one in which high-f is
possible with a vacuum region outside the plasma.

It is deduced from a numerical study of many different examples
of field configurations possessing axial field reversal that for

stability the axial flux must not reverse.
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Periodicity effects are considered in the limit that the first
azimuthal mode is no longer possible and it is shown that any insta-
bilities must then be only local in character. In this case toroidal

curvature is the major stabilising influence.
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Fig.1 The four basic pitch variations for a non-zero axial cqirrent on axis. (a) mono-
tonically decreasing, (b) monotonically increasing, (c) exhibiting a minimum and (d)
decreasing and changing sign.
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Fig.2 Regions in k-r space where gj can be nega-
tive (unshaded) for the pitch variation of Fig.l(a),
rs is the position of the singilarity, and rp the

point at which g;j = 0 that is not a singularity, Fig.3 Regions in k-r space where gj can be nega-
for a perturbation of wavelength A;. r; denotes tive - (unshaded) for the pitch variation of Fig.1(d).
the point at which the axial current vanishes, the rg is the position of the singularity to a perturba-
dotted line is for KP = — 1 in this case, and the tion of wavelength s which will be unstable.

shaded region to the left has gj > 0. CLM =P 247
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Fig.5 The minimal radial perturbation as a function of
Fig.4 Dependence of the stability boundary on compression radius for two wave numbers approaching that given by
ratio and percentage field reversal, By(0)/Bz(ry) for the kP(ry) = - 1. (Kwall = 0-41).

three values of (. (For this example B = fg). Values to
the right of the aurves are unstable.
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Fig.6 A field configuration, possessing a small axial Fig.7 The stability diagrams for various values of a. The
reversed field, generated from the paramagnetic equa- shaded areas are the regions of instability and @ = O corres-
tions including a term o = oyEy/cuEz. In this case ponds to the force free paramagnetic model. CLM -P 247
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Fig.8 A reversed field configuration with a
central g value of 31%. The maximum con-
dicting wall position for complete stability
is denoted by r4. r: shows the position
at which the total axial flux vanishes,
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Fig.10 Stability diagram for a pitch varia-
tion P(r) =0-8 cos r + 1-2 and %E =0,

The unstable regions are shown for a conduct—~
ing wall at r = 4-0. S denotes the radius at
which a singularity occurs.
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Fig.9 Stability diagram for the paramagretic model with oy = oy (0)
x (1 -r®/21), oy = 0. The hatched regions are unstable for a con—
dicting wall placed at r = 4-5 and S is the radius at which a
singularity occurs for a given wave number. r; denotes the posi-
tion where the shear vanishes.
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Fig.11 Stability diagram for a paramagnetic model with oy = onw(0)

x (1 = r3/10), oy = 0. The hatched regions are unstable for a con-

ducting wall at r = 4-5, and S is the radius of the singularity.
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Fig.12 The dotted curves show the constant pitch zero pressure gradient
field configuration and the full curves a force free configuration with
constant pitch for r > 1 and Bg = r*/2 for O <r <1,
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Fig.13 Stability diagram for the two field configurations of Fig.12. The outer limits
of the shaded region refer to the constant pitch case and the inner region to the con-
stant pitch configuration with a central core. The line kP = — 1 denotes the radius

at which the singularity occurs for the second field configuration. CLM-P 247
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Fig.14 Field configuration and pressure profile for

P = 2.0 + 1-6/r° which satisfies the Suydam criteri-
on and which has an approximately constant pitch
field outside the plasma but is unstable.

Fig.15 Field configuration with a pitch variation
P =20+ 1:6/r° and a pressure gradient determined
from the integral condition.
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Fig.16 Stability diagram for the configuration of Fig.15 for B =0 and 5%,
The shaded regions are unstable and kP = -1 denotes the radius at which the
singularity occurs. CLM =P 247












